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FOREWORD

Modern geography is alive, robust and flourishing. This is
what | conclude from the recently published 'Handbook of
Theoretical and Quantitative Geography', edited by
Frangois Bavaud and Christophe Mager of the University
of Lausanne. The book contains twelve substantive
papers in 457 pages. | say substantive because they
average 38 pages each, with appropriate empirical data,
and treat subjects both old and new. The old are topics of
long standing interest; the new are a la mode, so to speak.
All are based on a conference of the same name held in
2007 in Montreux, Switzerland, on the lovely north shore
of the Lake of Geneva. The European Colloquia for
Theoretical and Quantitative Geography have now been
held for many years, but, in my opinion, are not sufficiently
well known outside of Europe. Unexpectedly there is one
presentation that cogently argues the merits of qualitative
approaches to information.

Papers from scientific conferences are most often a
heterogeneous lot and often of widely variable quality.
That is not the case here. The materials were obviously
carefully selected and clearly warrant the 'Handbook' title.
The authors came from Belgium, France, Great Britain,
Italy, Ireland, The Netherlands, Portugal, Spain, and
Switzerland. One third of the papers actually came from
authors residing in two different countries, which speaks
well for inter-country collaboration, an objective of the
European Union. But who is missing? Well | missed the
conference and know that the informal exchanges during
free time are an exciting part of such events. Adding to
this regret is that it has been over sixty years since |
traveled by bicycle through the south facing vineyards of
the area with a school friend from Chexbres, with
appropriate tastings of course.

Waldo Tobler
Santa Barbara
November 2009
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(Montreux). The Colloquium also constituted the annual Workshop of the
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and metropolitan contexts. The high-quality and variety of the contributions
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investigated in Europe, as well as the vigor and scope of contemporary
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questions raised, several European research teams were asked to write
articles presenting and evaluating, for various geographical fields, the
progress achieved, the methods used, and the scientific prospects. This
Handbook reflects their long-term efforts. Six themes were selected, by
alphabetical order:
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This Handbook shows that the thematic borders within which we wanted to
restrict the authors did not systematically make — scientifically — sense, in
particular because, by nature, geography, as a scientific object, and the
geographers, as researchers, are wanderers. This is why we recommend
traveling through this book as on a country lane, being attentive to
unexpected approaches, new topics, innovative methods and cross-
section fertility. We thank Prof. Waldo Tobler — to whom we owe so much
— for his interest and also express our gratitude to the authors for the
quality of their contributions. We hope that they will give birth to new
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Francois Bavaud & Christophe Mager
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SIMULATING PEDESTRIAN BEHAVIOR IN
COMPLEX AND DYNAMIC ENVIRONMENTS: AN
AGENT BASED PERSPECTIVE

Arnaud BANOS
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ABSTRACT

Agent-based simulation offers multiple advantages when
dealing with complex phenomena like pedestrian
movement, characterized by a possibly large number of
locally interacting entities. The main goal of this article is
to illustrate this key point, through the simulation of
pedestrian movements in dynamic environments. The key
point we will try to defend here, is that pedestrian
movement should not only be considered as a specific
phenomenon, but should also be included in a much more
global and complex perspective, the urban system as a
whole. Pedestrian motion indeed occurs in an ever-
changing environment, defined by constraints and
opportunities, but also nuisances and dangers.

KEYWORDS

Agent based simulation, Complex systems, Pedestrian movement, Urban
mobility

INTRODUCTION

Despite the central and fundamental role pedestrian walking plays within
the urban transport system, it still remains a poorly known transportation
mode. Generally speaking, while most of the developed countries have
been developing, for the last 40 years, a wide variety of sophisticated
methods and tools aimed at studying urban mobility, only a few of them
were really designed to deal with pedestrian movement, especially in
interaction with the other transportation modes. Noticing the longstanding
tremendous asymmetry in the scientific literature between traffic flow and
pedestrian movement, Weifeng and his colleagues (Weifeng, 2003: 634)
also regret that “ill now, most pedestrian movement models are
established based on the rules used for traffic flow and consider little of
the special characteristics of pedestrian movement itself”.



It is a paradox that walking, the very essence of all movement, is the one
mode of transportation about which we know the least. Given its very
nature - diffuse, almost isotropic, often short-lived and largely stochastic -
pedestrian movement is a difficult field to both observe and model. In
recent years, however, it has been receiving greater interest thanks to the
emergence of two contingent phenomena. The first is the steady growth in
pro-environmental politics, which by bringing the merits of soft modes of
transport to the fore has highlighted the lack of knowledge to hand.
Elsewhere, research into the phenomenon of self-organization has turned
the notion of pedestrian movement into a rich field of research.

Exploring the behavior of pedestrians in interaction with their environment,
in virtual cities where most phenomena can be mastered and studied, has
thus become a main concern. Generally speaking, this idea of designing
“virtual laboratories” (Batty & Torrens, 2001), within which “artificial
societies” can be grown (for example Epstein & Axtell, 1995; Batty 2005)
has become very popular in recent years and is largely related to two
other fields, complex systems and agent based modeling. Moreover, it is
firmly embedded in a microscopic approach of urban mobility, where the
world is represented as closely as possible in a one-to-one way, which
means that “people should be represented as people, cars should be
represented as cars and traffic lights should be represented as traffic lights
and not as, say, departure rates, traffic streams and capacities
respectively” (Nagel et al., 2000: 152). Reaching such a modeling level,
without being flooded with microscopic details, thus requires an ad-hoc
procedure for designing agent-based computer simulations. The two
crucial principles of reductionism and parsimony (Batty, 2005) may
therefore constitute main guidelines, in our quest for the identification of
the micro-specifications sufficient to generate macrostructures of interest
(Epstein, 1999). We will illustrate this point with two different models we
contributed to develop in the recent years.

PEDESTRIAN MOVEMENT MODELLING

Since the first quantitative approaches to pedestrian movement in the
1950s (Mayne, 1954; Schweitzer, 2003), a considerable amount of work
has been done in the field, from queuing models (Lovas, 1994) to traffic-
like models (Test, 1976; Timms, 1992; Hine 1995; Timms & Cavalho,
1991), with some incursions towards more behavioral ones (Goldsmith,
1977; Griffiths et al., 1984; Hunt & Williams, 1982; Hunt & Giriffiths, 1992)
and more recently large investments in micro-simulation approaches (Blue
& Adler, 1998; Helbing & Monnar, 1997; Helbing et al., 2001; Batty, 2003;
Haklay et al., 2001; Kerridge et al., 2001).
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The last family is of special interest for our purpose, as it specifically deals
with interactions at the pedestrian level, a key point in our project. For
example, focusing on the emergence of collective pedestrian behavior
from very simple specifications made at the level of individuals, Blue &
Adler (1998) managed to reproduce, with a cellular automata, collective
characteristics such as formation of pedestrian lanes or speed-flow
diagrams, while the social force model proposed by Helbing (Helbing &
Monnar, 1997; Helbing et al., 2001) and extended recently by Pelechano
et al. (2007) focuses more directly on the influence of the environment and
other pedestrians on individual behavior, the whole being formalized as a
fluid-dynamic pedestrian model.

While being fundamental steps, these works have nonetheless the
drawback of relying on an excessive simplification of the urban
environment (a corridor, a place or a room). Motivations and goals of
pedestrians are also particularly simplified, reduced to the couple
destination to reach / obstacles to avoid. Theses limitations encouraged
other researchers to explore agent-based models of pedestrian movement
(Batty, 2005; Haklay et al., 2001; Kerridge et al., 2001; Paris, 2007; Paris
et al. 2006; Paris et al., 2007; Zachariadis, 2005). In this last family, each
pedestrian/agent is defined by a set of capacities and tries to achieve a set
of goals, interacting locally with its environment and with other agents.

The diversity and richness of individual capacities mobilized during
pedestrian movement have for long limited any attempts at formalization
and generalization. Let’s think for example that, nowadays, it is largely
accepted that at least four cognitive capacities are required for a single
road crossing. First, the capacity to detect traffic, which involves the
activation of a strategy of visual search, able to identify and discriminate
elements of the environment that are relevant for the current task. Second,
the capacity to visually define appropriate timings, that is to compare the
current speed of a given vehicle with the expected time needed for
crossing. And finally, each pedestrian has to organize, coordinate and
update in real-time flows of information coming from different sources,
such as traffic on different lanes, traffic signals, other pedestrians...which
involves two complementary capacities, short-term memory and the
capacity to divide attention in order to handle information coming from
multiple sources.

If we recognize the unavoidable heterogeneity of the distribution of these
capacities amongst pedestrians, and replace them in their local urban
environment, then we have a good idea of the kind of complexity we are
dealing with. And it becomes quite evident, in such a perspective, that



decomposing this complexity into more simple components, which could in
turn be decomposed into smaller and smaller parts, is a dead-end issue.
As Gilbert & Troitzsch (1999) recall, even if we were able to know exactly
each of the factors implied during individual actions, we still wouldn’t be
able to predict the resulting behavior of a group composed by the
individuals at study, given the tremendous amount and diversity of
interactions at work. This strong limitation of the analytical perspective
encouraged us to move towards a more appealing paradigm, broadly
embedded in the science of complex systems, and methodologically
anchored in geosimulation (Benenson & Torrens, 2002).

AGENT-BASED MODELLING OF COMPLEX SYSTEMS

Defining cities as complex adaptive systems is not a new issue (Krugman,
1996; Portugali, 2000; Pumain et al., 1989). However, the rather recent
growth in interest for the science of complex systems now regroups a
huge variety of works being most of the time transversal to several
disciplines and relying, despite their diversity, on a few basic principles.
Generally speaking, in its broader acceptation, a complex system consists
of a large number of localized interacting entities, operating within an
environment. These entities, being human or not, act and are influenced
by the local environment they are situated in. While the behavior of these
entities may be inspired, guided or limited by various global trends (think
for example of the Highway code), it is usually admitted that they are not
directly controlled by upper-level instances but operate on their own,
having some “self-control” over their actions and internal states. From that
perspective, the study of complex systems requires the development of
new scientific tools, nonlinear models, out-of equilibrium descriptions and
computer simulation, agent-based modeling being one of these tools. As
Doyne Farmer recalls in his foreword of Franck Schweitzer ‘s book on
brownian agents, “the basic idea is to encapsulate the behavior of the
interacting units of a complex system in simple programs that constitute
self-contained interacting modules” (Schweitzer, 2003: VI). The features’
list of agents Schweitzer provides in his book is so complete that we will
rapidly recall its main components. Agents can indeed be depicted by their
internal structure and their capacities of action. Two main components
define the internal agent structure: a) the internal degrees of freedom,
defined by the various variables defining the characteristics of each agent;
b) autonomy, as agents act in accordance with their internal structure and
the environmental conditions they are facing, without being controlled by
upper-level instances.
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Agent activities can then be described by four features of specific interest
for our purpose: a) spatial mobility, as agents are situated in space and
time and are able to move, a crucial capacity in everyday urban life; b)
reactivity, as agents can perceive their environment and other agents
using various kinds of sensors, and are able to respond to it, in
accordance with the specification of their internal structure; c) proactivity,
as agents can alter, modify their environment or other agents; and d)
locality as agents act locally, according to the environment and the other
agents they are directly interacting with.

A multi-agent system (MAS) may then consist in a large number of agents,
being different or not from the perspective of their internal structure and
their capacities of action. Designing and implementing such a system
implies that some specific features be respected. First, modularity is
fundamental for flexibility: MAS are usually composed of interacting
modules, represented as agents themselves. Second, redundancy is a key
feature: MAS are indeed composed of a large number of agents,
eventually similar in function and design. The main idea is that such
systems exploit this redundancy as a factor of robustness: the failure of
any given agent can hardly lead to a system breakdown, balanced as it is
by the large number of agents performing correctly. The third feature is
called decentralization, as there is no (or little) global control in MAS,
capacities being distributed across agents. This bottom-up organization of
capacities leads to a kind of self-organized control, resulting or emerging
from the interactions occurring between agents. Emergent behavior is also
an important feature: as agents interact locally, following rules defined
according to their internal structure and capacities. Anyway, being
observed from an upper-level, groups of agents may exhibit collective
behaviors that are not specified at the level of the agent, nor at the level of
the group, but that emerge spontaneously. This new quality, therefore, is
not deducible from the agents’ characteristics, and due to non-linear
effects is hardly predictable from the constitutive parts of the MAS. The
fifth feature, the functionality of the system, for example in problem
solving, is not explicitly defined but rather emerges from the interactions
between agents. Adaptation can be seen as the next key characteristic of
MAS: modularity, decentralization and emergent functionality are key
features which, being combined one with each other, may let MAS adapt
to changing situations. And finally, a last feature may be added to
Schweitzer’s list: Parallelism as, in order to allow agents to act in an
autonomous way, a specific parallel architecture is needed, within a single
computer and/or between connected computers (grid computing).



From this point, the key idea is to design a MAS allowing to run
simulations and to compare results obtained with various sets of
parameters, in order to test “what-if’ scenarios. “Unfortunately, however,
agent-based modelers often lack self-restraint and create agents that are
excessively complicated. This results in models whose behavior can be
seen as difficult to understand as the systems they are intended to study.
One ends up not knowing what properties are generic and which
properties are unwanted side-effects” (Farmer in Schweitzer, 2003: VII). It
is fairly obvious that models do not have to be as complex as the reality
they are designed to depict. But this general statement is of little value if it
does not come with a more precise procedure, allowing the modeler to
really define what a simple enough model is. Unfortunately, such a
procedure does not exist, and should be replaced instead by a couple of
principles serving as general guidelines. The first principle is reductionism,
as defined in a very pragmatic way by Franck Schweitzer (2003: 5):
“instead of incorporating as much detail as possible, we want to consider
only as much detail as is necessary to produce a certain emergent
behavior”. The second principle, called parsimony — or “Occam's razor”
after the mediaeval philosopher William of Occam — suggests us to
choose between several possible explanations of a phenomenon the
simplest one, the one that requires the fewest leaps of Logic. This very
general principle is essential for model building because of what is known
as the under-determination of theories by data: “for a given set of
observation or data, there is always an infinite number of possible models
explaining those same data. This is because a model normally represents
an infinite number of possible cases, of which the observed cases are only
a finite subset” (Heylighen, 1997). This principle of parsimony is not as
trivial as it seems to be. Indeed, it is truly acceptable that any model will
always contain more assumptions about the reality than are testable (Batty
& Torrens, 2001).

Combined together, reductionism and parsimony lead to a strategy that
has been called “generative”, and which seeks to identify the set of rules
that are sufficient to generate the structures of interest, that is the
minimum set of micro-specifications needed to generate a given
macrostructure (Epstein, 1999). Two recent examples developed in
collaboration will allow us to illustrate this critical point. The first one
focuses on pedestrian movement in a subway station (Banos &
Charpentier, 2007), while the second one associates pedestrians and car
drivers in a virtual city (Banos et al., 2005, Godara et al., 2007).
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SIMULATING PEDESTRIAN MOVEMENTS IN A SUBWAY STATION

Every subway station may be seen as an open complex system, part of a
wider system dedicated to mobility. Simulating pedestrian’s behavior in
such a peculiar system faces different challenges, related to equipments
and location of facilities (ticket dispensers, shops, services), traffic
management (speed/density/flow of users) or Emergency procedures
(evacuation).

Design of the model

A map of the station was rasterized and divided into a large number
(nearly 7000) of small cells (0.4 m?). Then, a distinction was made
between what we called “physical space” and “direction graph”. The
physical space is defined as the set of cells E, = {C4, Cy,...C;, Cy}, each
cell Cij1n being defined by a set of attributes V = {V4, Vy,...Vi Vi}.
Secondly, we sought to enrich the space, by distinguishing specific
landmarks and directions. To this end, we took inspiration from classic
research demonstrating the important role played by certain nodes and
landmarks on individuals’ mental representations of their environments
(Lynch, 1960). We drew a direction graph G6=(S, 0), with S being the
nodes, defined as localised decision points (Timmermans & Djikstra,
1999), and 6 the edges defined as headings between adjacent nodes. A
decision point can be seen as a pivot, a location where a choice of
heading must be made. This point may correspond, in a given physical
space E,, to a landmark (signalling), a particular service (store, ticket office
or machine, etc.), or simply to a bifurcation.

Fig.l1a

Figure 1: Montparnasse station and the direction graph built for a given O/D (Figure 1a)
and for every O/D (Figure 1b)



Therefore, the direction graph may be seen as an underlying invisible
skeleton, approximating individuals long distance vision field. Figure 1
shows the kind of graph drawn for Montparnasse station in Paris, France.
Note that in this case, for simplicity, the nodes of these graphs are solely
restricted to bifurcation points. In other words, we assume that agents are
unfamiliar with the availability and location of services (ticket offices, ticket
machines, shops), they shall identify locally when passing nearby through
a vision sensor.

The complexity of this graph depends largely on the assumptions we
make on pedestrians. If we accept the idea of an average pedestrian with
complete information and boundless rationality (Homo Oeconomicus),

then Go/,,, =GO, with Gg,, the minimum energy path between a given
origin and destination. Each pedestrian may then have the same
optimized orientation guide for a given O/D. On the contrary, if we move
towards more heterogeneous agents, with limited information and

bounded rationality, then Gg,, =(5',6')>S'cE, and ¢'cE, . Each agent
may then possess his own graph for a given O/D.

Designing pedestrians
In MAGE (Modélisation Agent a Grande Echelle / Modeling with Agents at
Fine Scales), each pedestrian is represented by an agent 4,, described by

a vector of attributes X(4,) = {G6),,:5,:4,1:6/:v/ } with: G6,, his orientation
graph for a given origin/destination; 5, his vision field; ¢, his action field; /;
his location (x, y) at time t; 9, his orientation at time t, 0°<¢/ <360° and v;

his speed at time t (Figure 2).



Obstacle O~
~

Action field @),

n+l

A

@+ Decision point S

n

Vector : orientation

And size

v

0/

Banos, A.

i

Agents Aj

— Attractor ()'
AgentA,-,

" localised in /]

T Vision field O,

i

Figure 2: Pedestrian as a brownian agent

Each agent then updates at each time t his location I/ — //*', by modifying
his orientation and/or his speed, depending on the various constraints and

opportunities encountered locally :
0= f(5,0c 8,0 c6,4,,.,c8.)

and
V; = f(#Ai,jﬂ < ¢:)

In the absence of interaction with environment and other agents, each
agent computes at each time t his next location //*':

XM= x4 Ax, Ax = v x sin(@i’ + 8)

+1 _

y =yl + Ay, Ay =v; x cos(@f + 6‘)

with: 6/ the angle location I/ of agent 4, and his next decision point S ;

v speed of 4, (m/s); € an angular value to be chosen by user in the interval
[0, 360].

Then, following the set of decision points S, — S,,, constituting his

n+l
orientation graph G6,,, , each agent may face obstacles and then try to
bypass them:



if "' %0

0] v

then I/ — "

’
.6/ v

else 0/ = min|(6) +a)- 0|51/ , #0, 0<a <180°

On the contrary, various equipments (ticket dispensers, shops...) may
attract an agent with a given probability:

if 0'c s,

and if g, <B, with B a constant belonging to interval [0,1] and B, a
random (uniform) value chosen in the same interval [0,1],

then 0'—S,,S, — §,,, and more generally n — n+1.

n+l

Then, the presence of agents in the vicinity of agent A, may cause
interferences. Indeed, if every agent is supposed to avoid any agent on his
way, he may change his behavior when the level of pedestrian density
increases. In this case, we implemented specific crowd behaviors, inspired
from Boids as defined by Reynolds (1987) and extended by Hartman et
al., (2006), Shao et al. (2005) and Thalmann et al. (1999). Each agent
then adopts a crowd behavior when the density of agents in his
neighborhood reaches a given value and when some of these neighbors
share the same decision point than agent A;:

(#4, ., c6)>2and (#4

JoJ#

c6,35,=5,)%0

JJ#i

In this situation, agent A; tries to align himself to neighboring agents
sharing the same decision point:

9: :#14729;

At the same time, he also tries to move closer to the barycenter 4 j,8,5=5,; Of
this group:

1 < 1 <
x:#Ainj and y:ﬁz)}/

78y =Su J=1 728y =S, J=1

10
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Finally, each agent modifies his speed according to the number of agents
in his action field:

Vf = f(#Az,#z < ¢1)

A non-linear model fitted on data collected by Fruin (Fruin, 1987) was then
used:

Vi I #4, ., ¢, =0
vi=1-0,376%S5"° +1,372 if S > 0,4m’
0 if 8 <0,4m’

with v/ the walking speed (m/s) of agent A; at time t and S the free surface
(m*pedestrian) available, i.e.

54,
#Al.‘jﬂ. c e
Implementation and first results
A first version of MAGE was implemented within the simulation platform

Netlogo (http://ccl.northwestern.edu/netlogo/). Figures 3a and 3b show
snapshots of the kind of environment created.

*n*ﬁ aﬁ £ 4

* %
th? Aotk %
% *m* 4

Fig.3a Virtual Montparnasse station Fig.3b Agents queuing at turnstiles, exit doors
and tickets dispensers

Figure 3: An overview of MAGE

The focus may also be put on global structures, through real time display
of density maps (Figure 4). It may be noticed that Map 4a (no interactions
with local environment and little noise) is very close to the orientation
graph in Figure 1b.

11



The more interactions and noise we add, the more deviations we obtain
from this initial skeleton (Map 4c).

Fig. 4a€=0,B=0 Fig. 46 £=30,B=0

Density maps obtained for different values of
parameters ¢ (random deviation from straight line)
and B (probability of using a given equipment).

Each cell Cjj; ) records at each time t the number of
pedestrians passing. This cumulated number is then
displayed using a gradation of reds (the darker the
higher).

Fig. 4c€=30,B=0.5

Figure 4: Revealing macrostructures: density of agents

Exploring the role of interaction through the fundamental diagram

One of the objectives of the MAGE model is to allow, further ahead, the
introduction of an experimental approach to pedestrian behavior in the
confines of a subway station. Using individual behavior, the aim is to
achieve a clearer understanding of the emergence of observable collective
behavior, which is fundamental to the design of public transport areas.

12
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Figure 5: Flow-Density diagram showing the impact of local interactions on bi-directional
flows (“Density” is the number of agents created, half at each entrance of the path
highlighted Figure 1a; “Mean Flow” is the number of agents reaching the opposite exit
during a one minute period, averaged over 10 simulations; vertical bars show the
variability of this last output variable over the 10 simulations)

We defined an experimental protocol in order to illustrate the relevance of
an individual-centered approach based on computer simulation. Within
Montparnasse station, a space characterized by a multitude of flows
leading to every direction, a benchmark path was selected (see Figure
1.a), to explore the influence of individual interactions on the flow-density
diagram in the case of bi-directional flows. The diagram was constructed
by way of an exit variable (flow) where values change depending on the
values of the entry variable ‘density’. This last variable is defined by the

13



number of pedestrians following the itinerary, while flow corresponds to
the number of passengers reaching their destination during one minute
(Figures 5). These two variables are defined (density) and measured (flow)
in a systematic way, for several combinations of behavior and spatial
configurations. Agents’ ability to avoid collision and adopt crowd behavior
was favored. Note also the presence or absence of facilities constricting
pedestrian movement (ticket gates and exit doors). Figure 5 highlights the
variation of bi-directional flow relative to the density parameter, based on
different scenarios.

In both diagrams, curves are characterized by two distinct variation
ranges, on both sides by a so-called critical density value, after which
pedestrian flow decreases as the number of agents increases. When there
are no doors or gates (Figure 5a), the capacity of agents to avoid collision
and adopt crowd behavior after certain density values increases
pedestrian flow significantly (no overlapping of confidence intervals).
Under this configuration, avoidance without crowd behavior has a
penalizing effect, as each agent wastes time avoiding all other agents he
comes across. Adding doors and gates alters the hierarchy of the lines in
a remarkable fashion (Figure 5b).

Under this configuration, the critical density value is systematically
replaced by an interval (between 100 and 150 agents), while the maximum
flow values obtained are relatively lower than in a situation where there
are no facilities to constrain agents. The change in hierarchy of the lines
highlights the regulating role that these facilities play in one direction,
which automatically encourages a certain level of flow separation.

This first example illustrates how complex environments can be formalized
and introduced into an agent based model. This environment, being
composed of both static and dynamic components, imposes constraints
and provides opportunities to pedestrians, which have to be taken into
account. However, what may happen if we want to deal with more active
and reactive environments, defined not only by the built infrastructure but
also by other categories of agents, having a strong influence on pedestrian
behaviors? We will address that specific issue in the next example,
focusing on the interactions between cars and pedestrians in a virtual city.
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SIMULATION OF CARS/PEDESTRIANS INTERACTIONS IN A VIRTUAL
CITY

The SAMU prototype (Simulation Agents et Modélisation Urbaine) has
been designed to explore the behavior of pedestrians in interaction with
the motorized traffic (Banos et al., 2005; Godara et al., 2007). It is a hybrid
model, combining characteristics of both cellular automata and agent-
based models.

The Basic Principle

Cars and pedestrians are defined as agents, situated on an active grid
with which they interact. In order to do so, they perceive their local
environment through a sensor (vision), which is of limited range (Figure 6).

Figure 6: A situated agent, perceiving his local environment (source: internet)

Then, agents have to perform specific tasks, interacting locally with other
agents and with their environment. Figure 7 shows the prototype
developed in order to observe and test these interactions, as well as
emerging parameters, such as speed of cars or proportion of
cars/pedestrians collisions.
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Figure 7: The SAMU prototype
(http://arnaudbanos.perso.neuf.fr/geosimul/samu/samu_english.html)

Model of cars behaviors

In SAMU, we developed a new model of car's behavior by appropriately
modifying earlier NaSch/ChSch rules (Nagel & Schreckenberg, 1992) to
take into account pedestrian and also turning movements. We also
considered two-way traffic with turning movements to bring the model
closer to the real world.

Following the prescription of the NaSch model, we allow the speed V of
each vehicle to take one of the Vmax + 1 integer values V = 0, 1,
2....Vmax. For urban systems we do not want to have Vmax more than 70
km/h. So we are taking maximum speed as 3 (22.5 m/s as each cell is 7.5
m in length as in NaSch model). Suppose Vn is the speed of the nth
vehicle at time t while moving in any direction (different from
NaSch/ChSch/BML model where vehicles move either towards east or
towards north and number of cars is fixed on a given road). To emphasize
the effect of turning movements and pedestrians we are considering only
not signalled intersections in our model and also we want each car to stop
at the intersection and decide regarding the turning movements to get
homogeneity. The above assumption is true considering the fact that
drivers become more cautious and reduce their speed at intersections to
avoid any kind of collisions with other vehicles.

At each discrete time step t — t+1, the arrangement of N vehicles is
updated in parallel according to the following driving rules:
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Step 1: Acceleration.

If Vn < Vmax, the speed of the nth vehicle is increased by one, i.e., Vn—
Vn+1.

Step 2: Deceleration (due to other vehicles/pedestrians).

Suppose Dn is the gap in between the nth vehicle and the vehicle in front
of it, and Dpn is the minimum gap between the car under consideration
and the pedestrian in front of it on the road (if any).

if min(Dn,Dpn) <= Vn
and
if Dn < Dpn,
then Vn — (Dn - 1)
else Vn — [ V(Vn? - (2*g*Dpn*e)) ]

using Vf=Vo?*+2ad, with Vf = Final velocity; Vo= Initial velocity; a =
Acceleration rate; d = Distance traversed during acceleration.
Furthermore, [ ] denotes the integer part and  denotes the square root, g
is the gravitational acceleration conventional with standard value of exactly
9.80665 m/s? and e is a parameter which includes driver’s reaction time
and braking efficiency of the car.

The motivation for this choice comes from the fact that we want to have
the "physical braking phenomenon" in our model for accidents, i.e. if the
gap Dpn and braking efficiency is not sufficient for the car to come to a
complete stop before hitting the pedestrian then this will result in an
accident (which actually happens in real world scenario).

Step 3: Randomization.

If Vn > 0, the speed of the car under consideration is decreased randomly
by unity (i.e., Vnh—Vn — 1) with probability p (0 < p < 1); p the random
deceleration probability is identical for all the vehicles, and does not
change during updating. Three different behavioral patterns are then
embedded in that single computational rule: fluctuations at maximum
speed, retarded acceleration and over-reaction at braking

Step 4: Movement.

Each vehicle moves forward with the given speed i.e. Xn—Xn + Vn.
Where Xn denotes the position of the nth vehicle at any time t.
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While being very simple, this model allows reproducing some of the basic
traffic dynamics. For example, Figure 8 shows the emergence of localised

traffic jams when the density of vehicles increases.
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Figure 8: Emergence of localised traffic jams for a given density of vehicles

By simulation, we can explore this phenomenon in an even more detailed
way and identify the so-called critical density point. In such a perspective,
a closed system was defined (Figure 9) and several simulations were run,
in order to explore the variations in traffic flow for different densities of
vehicles.

J RN

Definition of a closed sub-system Y axis : rate of change of flux (in cars/sec)
X-axis: vehicular density

Figure 9: Exploring by simulation the flow-density relation

Here, the flow is approached by the rate of change of flux (cars/sec.),
which is simply the difference of rate of incoming flux (cars entering in
system per unit time) and rate of outgoing flux (cars leaving the system per
unit time). The simulations for each vehicular density (c = .1, .2,.....1 ) are
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run for 1800 sec. and finally this rate of change of flux is plotted against
varying vehicular density to obtain the fundamental diagram. At sufficiently
high densities (c > .5), the dynamical phase of “free-flowing” traffic
becomes unstable against the spontaneous formation of jams and the
entire traffic system self-organizes so as to reach a completely jammed
state.

5.3 Model of pedestrian’s behavior

Pedestrians are first located at random then have to reach their
destination. A path-finding algorithm combining global and local attraction
fields is used. The first one refers to a ground field based on distance to
destination (gradient descending), while localized fields are emitted by
marked-crosswalks.

On this basis, Godara et al. (2007) introduced modeling crossing behavior
as a coordination game, which assumes that the probability of acting in a
given manner increases as a function of the proportion of people in
proximity to a given agent and acting in that manner (Taillard, 2006). In
such a perspective, two possibilities of crossing are defined:

e Yield: before crossing, a pedestrian will stop and check for any
moving cars on the street in his/her radius of vision and if the
pedestrian detects any moving cars, he will stop and allow the cars
to pass;

e No-Yield: the pedestrian will just cross without taking care of cars,
i.e. blindly.

Defining the behavior of each pedestrian, for each crossing, is then
addressed in a dynamic way.

Step 1: Decision-making

In this step a pedestrian will decide to Yield or not (No-Yield). This will
depend on the value of a random Bernoulli’s variable (< 1). If the value of
this variable is less than En (Noise in the system) then Y= 0, else Y = 1.

IfYy=1
Then
If P> .33, the pedestrian will Yield

If Py = .33, the pedestrian will continue to do whatever he was doing
earlieri.e. Yield or No-Yield
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If Py < .33, the pedestrian will not Yield (No-Yield)
Else the pedestrian will choose randomly from the option Yield/No-Yield.
Step 2: Movement
The pedestrian will move forward with his walking speed.

This very simple “metamimetic” process (Chavalarias, 2006) allows the
proportion of yield/no-yield crossings to evolve in a punctuated equilibrium
way (Figure 10).

0,9 -
0,8 1
0,7 4
0,6 -
0,5 1
0,4 1
0,3 1
0,2 1
0,1+

0 1000 2000 3000 4000 5000 6000

Simulation Time

— %TR (En = 0,5) = %TR (En = 0,1)

Figure 10: Proportion of yielding pedestrians during a given simulation, for varying Noise
levels (En) in the system

Instead of a slow, continuous movement, fluctuations will occur,
characterized by long periods of virtual standstill ("equilibrium"),
"punctuated" by episodes of very fast development of new forms.
Increasing the level of noise in the system reduces its stability (as more
randomization takes place) and the proportion of carefully crossing
(yielding) pedestrians decreases accordingly, which gives rise to higher
number of accidents (Figure 11).
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Figure 11: Number of accidents at midblock for varying noise in the system (En)

Risk modelling

Despite its simplicity, SAMU provides a simulation platform useful to
explore interactions between the two types of agents (pedestrians and
cars) and possible accidents occurring from such localized interactions.
Indeed, agents’ movements can be recorded in a very simple way: at each
time t, each cell increments its stock values based on the presence of a
given entity: car, pedestrian or accident. Figure 12 shows the kind of maps
obtained, which are updated dynamically during the simulation.

Em m

EI_IEIEI

JORE:

IE,I:I.E

Density of pedestrians Density of cars Pedestrian/car accidents

Figure 12: Dynamic mapping of simulation outputs (pedestrians, cars and accidents
densities)

From that point, the idea is to link these three variables, in order to
estimate the risk of accident for a given set of parameters. As expected,
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the risk may be seen as a function of a combination of hazards (cars) and
people exposed (pedestrian). Statistical models may then be defined and
estimated, as Lassarre & Godara (2007) showed. As an example, Figure
13 shows, for a given simulation and for each cell, the relation between
the number of pedestrians recorded and the total number of accidents
having occurred.

® oo

T T T
000 5000 100,00 15000 20000

Figure 13: Accident risk modelling (Y-axis: number of accidents per cell / X-axis: number
of pedestrians per cell)

On that basis, a Poisson model of the form

N:ea111(P)+ﬂln(F)

could be defined, with:
e N the number of accidents having occurred on each cell
e P the number of pedestrians having passed on each cell
e F the number of cars which passed on each cell

Fitting by WLS method gave the following values for the two parameters
(o = 1.154; B = 1.130), for a surprisingly good quality of adjustment (R? =
0.814) given the simplicity of the model. However, being able to reproduce
or at least approach an observed reality may not guarantee that the model
grasps some parts of the essence of that reality. Evaluating and validating
agent-based models is indeed much wider and much more complex than
this apparently simple and evident task (Phan & Amblard, 2007). We
believe a more reflexive approach is required, taking inspiration from the
work of Ginot (2002), Kleijnen (1987, 2000) or Laperriere (2009) for
example and going beyond traditional objectives of finding recognizable or
expected structures.
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This implies that we have to tackle the issues of uncertainty and surprise
when simulating complex systems (McDaniel, 2005), these being
prerequisites for the distribution and practical application of these models.

CONCLUSION

These two examples, aimed at modeling and simulating pedestrian
behavior in complex and dynamic environments, allow to test “what if
scenarios” and to explore some fundamental aspects of complex spatial
systems. However, reaching such a modeling level - even still simplified -
without being flooded with microscopic details, is not that easy. As
Leombruni & Richiardi (2005) see it, the complexity of agent-based
modeling is also its strength, implying that we should accept this state of
affairs and work towards setting up innovative protocols for simulation and
validation. The principle of parsimony, suggests that we should constantly
question the relationship between complexity and efficiency (Batty &
Torrens, 2005). Would simpler models with no or fewer interactions enable
similar results to be produced? Our initial investigations demonstrate the
major role played by individual interactions and their influence on the
overall behavior of the system. However, a certain amount of fine-tuning is
needed before this type of application can really be generalized, in order
to include for example: a wider variety of individual behaviors
(heterogeneous agents), more complex spaces and finally, larger
populations in the simulations. Determining values for these parameters
and their combinations poses a formidable problem, which is aggravated
by their already high number at this stage of the model's development.
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ABSTRACT

A recent body of research in the fields of geography,
economics and sociology suggests that the spatial
structure of cities might influence the socioeconomic
characteristics and outcomes of their residents. In
particular, the literature on neighbourhood effects
emphasises the potential influence of the socioeconomic
composition of neighbourhoods in shaping individual's
behaviours and outcomes, through social networks, peer
influences or socialisation effects. However, empirical
work has not reached yet a consensus regarding the
existence and magnitude of such effects. This is mainly
because the study of neighbourhood effects raises
important methodological concerns that have not often
been taken into account. Notably, as individuals with
similar socio-economic characteristics tend to sort
themselves into certain parts of the city, the estimation of
neighbourhood effects raises the issue of location-choice
endogeneity. Indeed, it is difficult to distinguish between
neighbourhood effects and correlated effects, i.e.
similarities in behaviours and outcomes arising from
individuals having similar characteristics. This problem, if
not adequately corrected for, may yield biased results.

In the first part of this chapter, neighbourhood effects are
defined and some methodological problems involved in
measuring such effects identified. Particular attention is
paid to the endogeneity issue, giving a formal definition of
the problem and reviewing the main methods that have
been used in the literature to try to solve it. The second
part is devoted to an empirical illustration of the study of
neighbourhood effects, in the case of labour-market
outcomes of young adults in Brussels. To this end, the
effect of living in a deprived neighbourhood on the
unemployment probability of young adults residing in
Brussels is estimated using logistic regressions. The
endogeneity of neighbourhood is addressed by restricting
the sample to young adults residing with their parents.
However, this method is an imperfect solution. Therefore,
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a sensitivity analysis is used to assess the robustness of
the results to the presence of both observed and
unobserved parental covariates. Results show that living
in a deprived neighbourhood significantly increases the
unemployment probability of young adults. This result is
not sensitive to the presence of observed and unobserved
parental characteristics.

KEYWORDS

Neighbourhood effects, Endogeneity, Self-selection, Sensitivity analysis,
Brussels

INTRODUCTION

The last twenty-five years have seen a rising interest among economists,
social scientists and geographers in the study of the way in which
neighbourhood context may affect individual behaviours and outcomes.
The work of sociologist W.J. Wilson has been particularly influential in
suggesting that social influences in the neighbourhood, i.e. neighbourhood
effects, could be part of the explanation for the social problems
experienced by poor inner-city residents in American metropolitan areas.

...in a neighbourhood with a paucity of regularly
employed families and with the overwhelming majority of
families having spells of long term joblessness, people
experience a social isolation that excludes them from the
job  network  system  that permeates  other
neighbourhoods and that is so important in learning
about or being recommended for jobs... In such
neighbourhoods, the chances are overwhelming that
children will seldom interact on a sustained basis with
people who are employed or with families that have a
steady breadwinner. The net effect is that joblessness,
as a way of live, takes on a different meaning...

Wilson, The Truly Disadvantaged (1987: 57)
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Studies aiming at estimating neighbourhood effects are numerous and
have been the focus of several extensive surveys (see, among others,
Jencks & Mayer, 1990; Ellen & Turner, 1997; Sampson et al., 2002; Dietz,
2002; Durlauf, 2004). These studies focus on a wide variety of outcomes
such as teenagers’ educational attainment and school attendance,
delinquency, drug consumption, out-of-wedlock pregnancy, as well as
labour-market outcomes (unemployment and welfare participation) and
health status (for example, well-being and mental health).

Despite the bulk of empirical studies, there is still considerable debate
over the existence and magnitude of neighbourhood effects. Some
authors consider that neighbourhoods play a significant role in explaining
individual outcomes while others are convinced that their role — if any — is
of marginal importance compared to that of personal characteristics and
backgrounds. For example, Jencks & Mayer (1990: 176) conclude their
survey on the role of neighbourhood effects in shaping children and
adolescents’ behaviours by saying that “the literature we reviewed does
not [...] warrant any strong generalizations about neighbourhood effects”.

According to several authors (Ginther et al., 2000; Dietz, 2002), the
primary reason for this lack of consensus is the great diversity regarding
the methods, data and variables used to test for the existence of
neighbourhood effects. Moreover, the estimation of neighbourhood effects
is a difficult task. Recent studies have highlighted the existence of
important methodological problems inherent to the estimation of such
effects, which have rarely been accounted for in most earlier empirical
works (Manski, 1993; Durlauf, 2004; Blume & Durlauf, 2006). Of
paramount importance is the endogeneity bias that results from the self-
selection of individuals into neighbourhoods (Blume & Durlauf, 2006).
Indeed, trying to explain individual outcomes by neighbourhood
characteristics in a simple regression analysis does not lead to concluding
results as residential locations are not exogenously determined. On the
contrary, individuals having similar characteristics tend to sort themselves
in some parts of the urban space. There is thus a two-way causality: on
the one hand, residential location influences individual socioeconomic
outcomes, and on the other hand, individual outcomes influence the
choice of a residential location. Standard econometric methods are unable
to distinguish between two-way causality and may consequently yield
biased results.

This chapter seeks to contribute to the field by defining neighbourhood
effects and giving an overview of existing solutions to overcome
endogeneity problems. The first section gives a conceptual definition of
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what lies behind the generic term of “neighbourhood effects” in order to
precisely define what this chapter is concerned with. The second section
briefly lists some of the more recurrent methodological problems that has
encountered most empirical work on neighbourhood effects. The third
section then focuses on the most prominent problem in this field: the
endogeneity associated with residential location. It provides a precise
formulation of the endogeneity issue and critically reviews the various
methods that have been proposed to solve it. The rest of the chapter is
devoted to an empirical application of the study of neighbourhood effects.
Instead of trying to solve the endogeneity issue, the importance of
endogeneity biases is assessed through a sensitivity analysis, in order to
evaluate the robustness of the results. This method is illustrated with
estimates of neighbourhood effects on labour-market outcomes of young
adults residing in Brussels.

NEIGHBOURHOOD EFFECTS: DEFINITION AND IDENTIFICATION
ISSUES

There are numerous reasons why residential location should matter in
explaining individual behaviours and outcomes (see Ellen & Turner, 1997,
Jencks & Mayer, 1990 for extensive surveys). For example, peer
influences refer to a contagion effect in which the propensity to adopt a
socially-deviant behaviour (like dropping out of school, consuming drugs
or being unemployed) depends critically on the proportion of peers
exhibiting the same behaviour in a community (this is known as the
“epidemic theory of ghettos” developed by Crane, 1991). Socialisation or
role model effects refer to the influence on the behaviour of teenagers of
the socioeconomic success of adults in their neighbourhood of residence,
those serving as models to which young people can identify and for what
they may aspire to become (Wilson, 1987). The density and composition
of social networks inside the residential neighbourhood may also influence
individual outcomes by conditioning the quantity and quality of information
available to individuals regarding access to social services and economic
opportunities (Reingold, 1999). Finally, the physical disconnection and
isolation may influence accessibility to services or economic opportunities
(see for example the spatial mismatch hypothesis in which distance to job
locations explains the high unemployment rates of American inner-city
black residents; Ihlanfeldt & Sjoquist, 1998). These few mechanisms all
point to a more general concept, which has generically been labelled
“neighbourhood effects” or “contextual effects”. However, they cover very
different types of residential location influences. It is thus helpful to give
some conceptual definitions and to identify what kind of effects will be
studied in this chapter.
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Spatial versus neighbourhood effects

First, the effects of residential location can be decomposed into pure
spatial effects and neighbourhood effects. Spatial effects are pure
locational effects and refer to the influence on individual outcomes of
residing in a particular location in the city, which may give some
advantages and disadvantages in terms of accessibility to economic and
social opportunities located in the metropolitan area. Clearly, the spatial
mismatch hypothesis which postulates that the spatial disconnection
between residence and job locations might negatively affect individual
labour-market outcomes is an example of such a spatial effect (lhlanfeldt
& Sjoquist, 1998). On the contrary, neighbourhood effects refer to the
effects of belonging to a group on the behaviours and socioeconomic
outcomes of individuals (Dietz, 2002), independently of the geographical
location of the group within the city. Neighbourhood effects refer in general
to the effects of belonging to a group defined on a geographical basis. In
this case, neighbourhood effects concern influences on an individual's
behaviour and outcomes due to the characteristics and behaviours of
his/her neighbours.

Although spatial effects and neighbourhood effects are not mutually
exclusive, they have often been considered separately. Therefore and for
the sake of simplicity, pure spatial effects will be left aside from now and
the remainder of this chapter will consider only neighbourhood effects.
However, most of the methodological problems that will be highlighted in
the next sections also apply to pure spatial effects.

Endogenous versus contextual effects

In a widely cited article, Manski (1993) identifies two types of
neighbourhood effects (or social interactions, following its own
terminology): endogenous effects, whereby the propensity of an individual
to behave in some way varies with the average behaviour of the group,
and contextual effects whereby the propensity of an individual to behave in
some way varies with the average background characteristics of the
group. The distinction between endogenous and contextual effects is
subtle as their definitions differ only by one word: a person’s behaviour (or
choice) is influenced either by the behaviour (endogenous effect) or by the
background characteristics (contextual effect) of those in his/her group. To
clarify, consider the example of school achievement. There is an
endogenous effect if a teenager's achievement is influenced by the
average achievement of his/her peers (i.e. other students in his/her school
or neighbourhood). There is a contextual effect if his achievement is
influenced by the socioeconomic composition of his neighbourhood, for
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example by the employment status observed among adults in the
neighbourhood, which may provide role models and affect teenagers’
aspirations. The relevance of this distinction lies in the fact that
endogenous effects generate a social multiplier: acting on an individual’s
behaviour does not only influence this sole individual, but also exerts an
influence on the aggregate behaviour of the group. For example, if a
teenager’s school achievement increases with the average achievement of
the students in the school, then tutoring some students in the school does
not only help the tutored students but indirectly helps all students in the
school. Contextual effects do not generate such social multipliers (Manski,
1993).

Endogenous and contextual effects may be formalised using the following
equation (adapted from Manski, 1993):

yi=a+ X+ 10 X 0 + e, M

where y; is the outcome of interest of individual /i (for example, school
achievement), X; is a vector of individual characteristics (gender, age,
family characteristics), y°x; is the mean outcome of those individuals in the
neighbourhood n in which individual i resides (mean educational
attainment of peers), X%; is a vector of variables describing
neighbourhood composition (including mean values of individual
characteristics X; such as mean parental outcome), and ¢; is a classical
error term. The parameter 6, when significantly different from zero,
measures an endogenous effect, while n measures a contextual effect.

Neighbourhood versus correlated effects

Besides endogenous and contextual effects (which taken together will be
labelled neighbourhood effects), Manski (1993) identifies a third
explanation for the fact that individuals belonging to the same group have
similar outcomes: correlated effects. In correlated effects, individuals
belonging to the same group (in our case to the same neighbourhood)
exhibit a similar behaviour simply because they have similar unobserved
individual characteristics, and not because of the influence of the group’s
behaviour and composition. Taking the example of Ilabour-market
outcomes, individuals residing in the same neighbourhood may have high
unemployment probabilities because living in a neighbourhood with a high
proportion of unemployed or low-educated workers generates pervasive
effects such as peer effects or poor social networks (a neighbourhood
effect). On the contrary, this might simply reflect the fact that individuals
living in the same neighbourhood share common unobserved factors that
are detrimental in finding a job, such as low ability (a correlated effect).
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The following equation amends equation 1 in order to reflect correlated
effects:

yi=a+ ﬂ'Xi + @/en(i) +77'Xen(i) +Vn(i) +¢&; (2)

where the error term is decomposed in two parts, one is the classical error
term ¢; reflecting unobserved characteristics which are peculiar to
individual i, and the second reflects unobserved characteristics that
individual / shares in common with other individuals in his neighbourhood
Vn(i)-

Endogenous and contextual effects both express an influence of the social
environment on the behaviours of individuals (i.e. group/neighbourhood
matters), whereas correlated effects express a non-social phenomenon
(Manski, 1995). Therefore, distinguishing between neighbourhood effects
(i.e. endogenous and/or contextual effects) on the one hand and
correlated effects on the other hand is important for the design of social
policies. Indeed, if neighbourhood effects exist, policies which aim to
achieve a more even distribution of individuals across neighbourhoods (for
example, by relocating some categories of residents in more socio-
economically diverse neighbourhoods) may have an impact on individual
outcomes.

Identification issues

Distinguishing between endogenous, contextual and correlated effects
using standard observational data is not straightforward and two
identification issues have been highlighted in the theoretical literature on
social interaction and neighbourhood effects (Blume & Durlauf, 2006).

The reflection problem

The first issue pertains to the difficulty in distinguishing between
endogenous and contextual effects and is named the reflection problem
(Manski, 1993). Indeed, when researchers observe a correlation between
an individual outcome y; and the average outcome in a neighbourhood
¥°n@, they cannot determine whether this correlation is due to the causal
influence of aggregate outcomes or to the fact that aggregate outcomes
simply reflect the role of average background characteristics in influencing
individuals X%;). In very simple terms, the average background
characteristics influence average outcomes, which in turn affect individual
outcome.
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In this framework, identification amounts to distinguishing between the
direct effect of average background characteristics on individual outcome
(the contextual effect) and the indirect effect of background characteristics,
as reflected through the endogenous effect generated by the average
outcome of the group (Durlauf, 2004).

Identification of endogenous and contextual effects relies on strong
assumptions regarding how the characteristics of the individuals vary with
the characteristics of the group, and these assumptions may not be
credible according to the nature of the data (see Blume & Durlauf, 2006,
for a useful synthesis of formal conditions under which statistical
identification is possible in the case of basic linear models as well as
binary choice models). Very few studies try to properly disentangle
endogenous and contextual effects (loannides & Zabel, 2008 is a recent
example). Most empirical studies either estimate one of the two effects,
positing the assumption that the other is absent, or instead estimate an
aggregate of both effects. The same caveat applies to this study, its goal
being to prove the existence of neighbourhood effects, whether they arise
from endogenous or contextual effects.

The self-selection or endogeneity issue

The second problem pertains to identifying neighbourhood effects (i.e.
contextual and endogenous effects taken together) and disentangling
these from correlated effects (i.e. similarities in behaviours and outcomes
arising because of unobserved characteristics shared by individuals in the
neighbourhood). Correlated effects arise because individuals are not
randomly distributed across the urban space. On the contrary, individuals
sort themselves into neighbourhoods on the basis of their personal and
family background characteristics (for example, income) and some of
these characteristics also influence the outcome of interest. These
background characteristics are either observed by the researcher, and
might be controlled for (i.e. included in X)), or unobserved. Because of
these unobserved characteristics, distinguishing neighbourhood effect
estimates from any correlated effects is difficult. As will become clear later
in this chapter, if correlated effects are ignored, estimated neighbourhood
effects will be biased (Dietz, 2002; Durlauf, 2004). This problem is referred
to as the endogeneity issue or the self-selection issue in the literature, as it
arises from the fact that individuals choose their neighbourhood of
residence (i.e. “self-select” into neighbourhoods). It is important to note
that “endogeneity” is used here in its econometric sense, without any
relation to Manski’s endogenous effect.
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The first set of studies on neighbourhood effects completely ignored self-
selection issues (see for example Datcher, 1982). However, more recent
studies have paid particular attention to developing strategies for coping
with this problem and disentangling neighbourhood effects from correlated
effects (see for example Dietz, 2002, and Durlauf, 2004, for useful
reviews). The purpose of this chapter is to review these strategies and to
highlight their respective advantages and shortcomings. Doing this, we
deliberately ignore questions relating to the distinction of underlying
mechanisms through which neighbourhood effects operate (for example
the distinction between endogenous and contextual effects). While
distinguishing Manski’'s endogenous and contextual effects would clearly
be of interest, we consider solving the self-selection issue as a
precondition, and leave the identification of particular mechanisms for
future research.

SOME METHODOLOGICAL ISSUES

Despite an increasing interest, there is still no consensus regarding the
magnitude and even the existence of neighbourhood effects in previous
empirical work (Jencks & Mayer, 1990; Dietz, 2002). This may be due to
the great diversity regarding the data, methods and variables used to test
for the existence of neighbourhood effects, in particular regarding the way
researchers correct or not for the endogeneity of residential locations
(Dietz, 2002). Table 1 illustrates this lack of consensus by comparing
results obtained by ten selected papers focusing on the potential impact of
neighbourhood effects on labour-market outcomes. These papers have
been chosen to reflect pioneering works that do not control for
endogeneity (the first four studies) as well as more recent studies
proposing various ways to deal with this problem. Among earlier works,
Datcher (1982) and Case & Katz (1991) both find evidence of
neighbourhood effects on the labour-force participation of young men.
Osterman (1991) also finds convincing support for the existence of
neighbourhood effects on the welfare participation of single mothers.
However, Corcoran et al. (1992), extending Datcher’s pioneering study,
find no evidence of neighbourhood effects and attribute this contradictory
result to the wider range of individual controls used. Among studies trying
to deal with the endogeneity issue, three find evidence of neighbourhood
effects (O'Regan & Quigley, 1996; Cutler & Glaeser, 1997; Fieldhouse &
Gould, 1998). However, Katz et al. (2001), using quasi-experimental data
from a government housing relocation program, find no impact of
residential changes on adults’ labour-market outcomes.
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Finally, Plotnick & Hoffman (1999) and Weinberg et al. (2004) both find
evidence of neighbourhood effects when endogeneity is not accounted for,
but much smaller or non-existent effects when endogeneity is accounted
for.

Before moving to the formal exposition of the endogeneity issue and to the
enumeration of solutions that have been proposed, it is useful to briefly
review two of the other methodological concerns raised when one intends
to initiate an empirical evaluation of neighbourhood effects: the choice of
spatial scale and the choice of measures to characterise neighbourhoods
(see Dujardin, 2006, for more details on these methodological issues).
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Some scale concerns

The first question one has to answer when initiating a research project on
neighbourhood effects is the choice of a database on which to conduct
analyses. In this respect, two important concerns are the level of data
aggregation and the definition of neighbourhood size.

Addressing the issue of data aggregation first, empirical studies can be
divided into two groups according to whether they use individual-level data
or spatially-aggregated data (Sampson et al., 2002). In the first group,
studies generally regress an individual outcome measure (for example an
individual’s employment status) on individual and family characteristics
(age, gender, level of education, etc) and on a set of variables describing
the social composition of the neighbourhood (for example, mean
educational level). In the second group, researchers focus on data at a
spatially-aggregated level (for example, census tracts) and try to explain
spatial variations of the outcome of interest (mean unemployment rate)
using indicators of the local social composition. The main problem with
such an approach is the risk of ecological fallacy, an interpretation error
arising when one tries to infer individual-level relationships from results
obtained at an areal level of aggregation (Wrigley, 1995). Robinson (1950)
was the first to provide empirical evidence for this potential problem. He
showed that literacy and foreign birth in the US were positively associated
at the State level (suggesting that foreigners were more likely to be literate
than the native-born). In contrast, at the individual-level the correlation was
negative. Moreover, in the context of neighbourhood effects, studies that
use spatially-aggregated data are unable to distinguish neighbourhood
effects from simple compositional effects (Oakes, 2004). Indeed, a
correlation between an area’s unemployment rate and its mean level of
education can either be due to the fact that the unskilled are more often
unemployed or the fact that the spatial concentration of unskilled
generates poor social networks. Dujardin et al. (2004) provide evidence of
the superiority of individual level data in neighbourhood effect studies.

A second and related scale concern is the choice of appropriate
neighbourhood delineations. Due to data availability, virtually all studies
rely on geographic boundaries defined administratively (such as census
tracts or zip-code areas) and assume that two individuals living in the
same administrative unit have more contacts than individuals living in
different units. While it is unclear whether these administrative boundaries
accurately represent the neighbourhood conditions that really make a
difference in people’s lives (Ellen & Turner, 1997), due to confidentially
restrictions, researchers often have no other choice but to use such
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artificial neighbourhood definitions.

How to characterise neighbourhoods

The second issue that arises is the choice of a set of indicators which may
be used to measure and characterise the social composition of
neighbourhoods. In this respect, several tendencies are observed. First,
some authors do not characterise the social composition of
neighbourhoods per se but use several dummy variables to reflect the
individual’s location in a particular area/neighbourhood (see for example,
Osterman, 1991 which uses 16 dummies to reflect different areas in
Boston). This method seems quite simple but becomes relatively
untreatable as soon as the number of areas increases. More often,
researchers use one or several quantitative measures of the social
composition of neighbourhoods (for example, average family income,
unemployment rate, racial composition, percentage of single-mother
households or poverty rates; see column 4 in Table 1). However, while it is
likely that individual outcomes are influenced by a wide variety of
neighbourhood characteristics, introducing all of them into a regression
analysis may cause collinearity problems as many indicators of
neighbourhoods’ social composition are highly correlated (Johnston et al.,
2004). Usually the symptoms of such collinearity problems are instability in
parameter values and significance levels (O’Regan & Quigley, 1996,
present an illustration of this parameter instability). For this reason, some
authors prefer using a composite measure of the social composition of
neighbourhoods. For example, Buck (2001) characterises a
neighbourhood’s level of social exclusion by using a composite indicator of
housing tenure, housing density, unemployment and car ownership.
Similarly, Duncan & Aber (1997) use a factorial analysis to summarise
thirty-four socio-demographic variables into a small number of composite
factors. Dujardin et al. (2008) also use factorial analyses combined with
clustering techniques to define five types of neighbourhoods and use
these categories as indicators of different socioeconomic environments.

THE ENDOGENEITY OF RESIDENTIAL LOCATIONS

The most difficult methodological problem in the study of neighbourhood
effects is probably the endogeneity of residential choices which may lead
the researcher to confound neighbourhood effects with simple correlated
effects. The objective of the following subsections is first to provide a
precise formulation of the problem and then to review the various solutions
that have been proposed — sometimes wrongly — in order to try to solve it.

41



Definition

Endogeneity arises because residential locations are not exogenously
determined (Dietz, 2002). On the contrary, individuals/households have
some degree of choice regarding the neighbourhoods in which they live.
Therefore, individuals with similar socioeconomic characteristics, notably
similar labour-market outcomes, tend to sort themselves in certain areas
across urban space. For example, individuals with well-paid jobs will
choose to reside in better-off neighbourhoods in order to benefit from a
social environment of better quality. There is thus a two-way causality: on
the one hand, individual outcomes influence the choice of a residential
location, while, on the other hand, residential location influences in turn
individual socioeconomic outcomes. Of course, standard approaches to
the estimation of neighbourhood effects allow one to control for some
individual and household characteristics that might influence both
neighbourhood choices and individual outcomes, as illustrated by the X;in
the following equation (the same notation as in equation 1 is used but, for
the sake of simplicity, Manski’s endogenous and contextual effects are not
distinguished anymore; N, is used instead for indicating neighbourhood
characteristics more generally):

yi:a+ﬁ'Xi+y'Nn(i)+gi (3)

However, it is likely that some individual and household characteristics are
in fact unobserved (and therefore not included in Xj) and influence both the
outcome of interest y; (for example labour-market outcome) and
neighbourhood choice Ny;. For example, individuals with a low labour-
market attachment or with low abilities (which decreases their labour-
market performance) may choose to reside in deprived neighbourhoods
for economic or social reasons. As a consequence, what the researcher
perceives as a neighbourhood effect through the estimated y parameter
may simply be a spurious correlation reflecting common residential choice
(Weinberg et al.,, 2004). Such unobserved individual/household
characteristics are in fact incorporated in the error term ¢;, thus generating
a correlation between & and the observed regressor N, (recall that in
equation 2, this error term was decomposed into an individual specific
error term & and a group specific error term v,); equation 3 now assumes
that v, being unobserved, it cannot be distinguished from ¢;). Therefore,
the consistency assumption in OLS estimation methods stating that
regressors must be uncorrelated with the error term is not valid as

E(gi‘Xi’Nn(i))io (4)
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and results of studies based on standard methods that do not control for
these unobserved characteristics will be biased (a formulation of the bias
can be found in Greene, 2008). As it arises from the presence of
unobserved individual and household characteristics, the endogeneity bias
might also be understood as an omitted variable bias and a consistent
estimation of equation 3 would require constructing a consistent estimate
of E(&]X;,Nn@)) and using it as an additional regressor (Durlauf, 2004).

The direction of the bias is difficult to predict as it depends on the
relationship between the wunobserved factors that determine
neighbourhood choices and the unobserved factors that determine the
outcome of interest (Evans et al., 1992). However, researchers generally
assume that neighbourhood effects are overestimated. For example, in the
context of neighbourhood effects on children outcomes, parents that lack
the financial resources to move to better neighbourhoods often lack the
qualities to help their children to perform well in school; then the true y
parameter will be overestimated leading to an upward bias. However, a
downward bias can also arise if parents choose a single-earner strategy
and earn less, therefore being forced to live in poor neighbourhoods, but
allowing the stay-at-home parent to spend more time with their children
(Duncan et al., 1997). The following subsections review the methods that
have been proposed in order to cope with this issue. The first method is
based on experimental data, where exogeneity is reached through random
assignment of individuals in different neighbourhoods, whereas the other
methods use standard observational data collected through conventional
surveys (such as census data).

Quasi-experiments

Perhaps the best way to correctly identify the causal effects of
neighbourhoods would be to conduct a kind of controlled experiment in
which individuals would randomly be assigned to neighbourhoods
(Durlauf, 2004). One could then compare the socioeconomic outcomes of
similar individuals with respect to the characteristics of the neighbourhood
in which they are assigned. While it is difficult to translate such controlled
experiments to the study of neighbourhood effects, data provided by
government-subsidised relocation programs in the United States can be
considered as quasi-experiments (see Oreopoulos, 2003, for a review of
such programs). Indeed, government interventions into the residential
choices of households can be used to assess neighbourhood effects, as
households that would normally belong to one neighbourhood are moved
to another through an exogenous intervention. The best-known example is
the Moving To Opportunity Program conducted by the Department of
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Housing and Urban Development in five American cities (Baltimore,
Boston, Chicago, Los Angeles and New York). In this program, eligible
families (public housing families with children residing in census tracts with
at least 40% of poverty) who volunteered for the program were randomly
drawn from the waiting list and randomly assigned into three groups: the
Experimental group, in which families received housing subsidies and
search assistance to move to private-market housings in low-poverty
census ftracts, the Comparison group, in which families received
geographically unrestricted housing subsidies but no search assistance,
and the Control group, which received no special assistance. Households
were periodically surveyed in years following relocation, thus allowing
researchers to analyse the resulting evolution of their socioeconomic
characteristics (see for example Katz et al., 2001, and Kling et al., 2007).

While it is clear that such data are well-suited for removing the
endogeneity bias in neighbourhood effects studies, they do present some
disadvantages. The first issue is undoubtedly the cost and difficulty of
implementation as well as the ethical concerns surrounding such
experiments (Harding, 2003). Moreover, eligibility conditions, screening of
families and participation willingness generate sample selection problems
(Dietz, 2002; Durlauf, 2004). Indeed, the estimates give the effects of the
relocation program on the types of people who were authorised and chose
to participate, and may thus be different from the effects obtained from
relocating a randomly selected group of families from poor areas. Brock &
Durlauf (2001) also suggest that the implementation of such programs to a
wider scale would result in moves of large numbers of households, thus
modifying the social composition of neighbourhoods. Therefore, estimation
of neighbourhood effects without taking into account induced changes in
the neighbourhood composition would be misleading and would not allow
the generalisation of results to wide-scale programs.

Sample restriction

The second method is perhaps the easiest to implement and the most
frequently used. It consists in restricting the studied sample to a group of
individuals for whom residential choices are limited and might thus be
considered as fairly exogenous. For example, in their study of
neighbourhood effects on the employment outcomes of young adults,
O’Regan & Quigley (1996) limit themselves to a sample of youngsters still
living with at least one parent.
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They justify their approach by the fact that location choice has been made
previously by the parents and can thus be thought of as exogenous to the
employment status of their children.

However, the sample restriction method presents some disadvantages
(Glaeser, 1996; lhlanfeldt & Sjoquist, 1998). First, it is only applicable to
very limited sub-populations (generally people under 25) and one cannot
use it when the focus is on elderly adults, nor can results be generalised to
young adults that have moved out of parental home. Moreover, it can
create a sample selection bias. Indeed, in the case of neighbourhood
effects on labour-market outcomes, young adults obtaining a job are more
likely to leave their parents’ home than still-unemployed young adults, and
this leaving rate might differ according to the perceived characteristics of
neighbourhoods. Finally, it does not completely eliminate endogeneity
bias. Indeed, the household’s residential choice depends on observed as
well as unobserved parental characteristics and some of these
unobserved parental characteristics might also influence children
employment outcomes. For example, lack of commitment to work or social
norms may induce parents to locate in high poverty neighbourhoods and
also probably influence youngster’s motivation and intensity of job search
(Glaeser, 1996).

Siblings data and family fixed effects

Some studies resort to siblings data to solve endogeneity, i.e. data on
individual children from the same family (Aaronson, 1998; Plotnick &
Hoffman, 1999). It consists in finding siblings pairs in which one sibling
was exposed to a particular neighbourhood and the other one to another
neighbourhood (because of family residential moves). For each sibling i=1,
2 belonging to family f, the outcome of interest (yi) is then expressed as:

Yp=a'X, +B' X, +y'N,, +&,+¢& (5)
where X;is a vector of family-specific variables, Xiris a vector of individual
characteristics for sibling i belonging to family f, Ny, is the standard vector
of neighbourhood characteristics, ¢ris an error term associated with sibling
i (individual unobserved characteristics) and & is an error term associated
with family f (family unobserved characteristics). Then, by assuming that
observed and unobserved family characteristics are constant across time
(and thus for the two siblings), differentiating outcomes between siblings
eliminates family effects and y is interpreted as an unbiased estimate of
neighbourhood effects:
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The application of this method is quite limited due to data availability as it
requires data on families that have raised two or more children in different
neighbourhood conditions. Moreover, the assumption on which it rests is
quite strong as it requires that parents do not change their behaviour when
moving (Durlauf, 2004). However, residential moves might reflect changes
in parents’ unobserved characteristics that may also influence children
outcomes (change in income, divorce). Therefore, such estimates of
neighbourhood effects might in fact reflect changes in family
unobservables.

Longitudinal data and individual fixed effects

Recent studies have used longitudinal data that allow researchers to track
individuals over time and follow their successive residential moves (see for
example Weinberg et al., 2004). By comparing individual outcomes before
(t=1) and after the move ({=2), one can assess neighbourhood effects
using the equations below:

Vit :a"‘ﬁ'Xiz"'?/'Nn(n)"'gn (7)

Yo=Yy =B'(X,, = X))+ 7'(Nn(i2) _Nn(il))+(gi2 —&,) (8)

Xit is a vector of individual characteristics for individual j at time t, some of
these being constant across time (such as gender) while others may vary
across time (such as level of education or marital status). Ny is a vector
of characteristics of the neighbourhood in which the individual i resides at
time t. However, this method suffers from the same problems as siblings
studies. Data availability concerns limit its usefulness and it relies on the
assumption that unobserved individual characteristics (&) that influence
socioeconomic outcomes are constant across time. Yet, it is likely that
residential moves are the consequence of previous changes in individual
characteristics, including observables such as the family composition as
well as unobservable determinants.

Multilevel models

Multilevel models (also known as hierarchical, mixed or random-coefficient
models) have also been used to study the influence of neighbourhoods on
individual outcomes, particularly in the context of health studies (Blakely
and Subramanian, 2006). Without going into details, the principle of
multilevel modelling is that the parameters of the model are not constant
but are allowed to vary across neighbourhoods:
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Yi=a,,t ﬁn(i)'Xi +¢&; with A,y =+, and ﬂn(i) =B+ Moy 9)

In this formulation, ang and B, are random variables, with means a and .
Ungy and piny are neighbourhood’s deviations from mean values and reflect
the fact that the relationship between the outcome and the individual-level
variables varies across neighbourhoods. Note that these random
coefficients can further be explained by neighbourhood-level explanatory
variables (see Goldstein, 2003, for more detailed formulations).

In other contexts, multilevel models present numerous advantages.
Notably, they allow one to take into account the fact that, because of the
grouping of individuals within neighbourhoods, individuals from the same
neighbourhood are generally more similar than individuals drawn randomly
from the population, which violates the assumption of standard OLS
regressions that individual observations must be independent (Goldstein,
2003). However, in the context of epidemiologic studies, it has been
argued that, by explicitly considering the grouping of individuals into
neighbourhoods, multilevel models allow one to obtain unbiased estimates
of neighbourhood effects and to perfectly distinguish neighbourhood
effects from the effects of individual characteristics (which are often
termed “compositional” effects in this context). As is argued by Oakes
(2004), this assertion is a little bit presumptuous. Indeed, as they do not
take into account the reciprocal nature of the relationship between
neighbourhood and outcome, multilevel models are unable to specify
whether the estimated spatial variations of the relationship between y; and
X; are the result of neighbourhood effects or the result of non-random
neighbourhood selection (i.e. correlated effects). Indeed, spatial variations
in app and Bn;m may simply indicate that some unobserved individual
characteristics have an impact on the outcome and simultaneously
determine neighbourhood choice.

Inter-city studies

A sixth group of studies have used inter-city data in order to evaluate the
effects of residential segregation on individual outcomes, and to achieve
exogeneity. The best known example of such a study is Cutler & Glaeser
(1997). In their study of the effect of racial and income segregation on
individual outcomes, these authors argue that the selection bias arising
from the fact that more successful African-Americans will choose to live in
richer and whiter neighbourhoods is difficult to solve using an intra-urban
approach. Instead, by focusing on inter-city data, it is possible to evaluate
if African-Americans in more segregated cities on average have worse or
better outcomes than African-Americans in less segregated cities. By

47



doing this, one avoids the within-city sorting of individuals along abilities
and other unobserved characteristics.

However such studies do present some shortcomings. First, one can
question the comparability of segregation measures across different
metropolitan areas. Indeed, the effect of size of spatial units on the value
taken by such indicators is well documented (see for example Wong,
2004, for a discussion of the Modifiable Areal Unit Problem in the context
of segregation indicators). By comparing segregation indicators across
metropolitan areas, one implicitly assumes that spatial units in different
cities are of comparable size and shape. This seems a rather strong
assumption. Moreover, the constructed segregation index applies to all
people residing in the same metropolitan area, regardless of their specific
location within the city. Yet, there can be substantive variations in social
composition within the city itself (lhlanfeldt & Sjoquist, 1998). In the
extreme case where every metropolitan area has the same degree of
residential segregation but where important disparities exist between
neighbourhoods in the same city, such an analysis would identify no
segregation effects at all. A huge cost in terms of loss of information is
thus attached to such strategies (Glaeser, 1996).

Instrumental variables

More generally, in econometrics, endogeneity is dealt with by using
instrumental variable techniques. Broadly speaking, this method consists
in replacing the endogenous regressor by an instrument, i.e. a variable
which is highly correlated with the endogenous regressor but not with the
unobserved determinants of the outcome. This therefore eliminates the
correlation between the regressor and the error term (see Greene, 2008
for an introduction to instrumental variables). The most common form of
Instrumental Variable Estimation (IVE) is two-stage least squares (2SLS).
In the first stage, the endogenous regressor (in the case of neighbourhood
effect studies, this would be the neighbourhood characteristic Nyg) is
regressed on a set of chosen instruments. The resulting coefficient
estimates are used to generate a predicted value for the neighbourhood
characteristic. In the second stage, this predicted value is used in the
outcome equation, in place of the actual neighbourhood characteristic. If
the instruments are correctly specified (i.e. they are highly correlated with
the neighbourhood characteristics but are not direct determinants of the
outcome), then the predicted value from the first-stage equation is
uncorrelated with the error term of the outcome equation.

Instrumental variables are rather common in econometric studies.
However, they have rarely been applied to the study of neighbourhood
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effects. This is mainly because it is hard to find a good instrument in this
particular context (Dietz, 2002). Indeed, one has to find a variable that is a
true determinant of neighbourhood choice but that is not correlated with
the outcome measure. One can easily figure out how tricky it is to find
such an instrument, and the few examples of instrumental variable
estimates of neighbourhood effects have received some criticism (Durlauf,
2004). For example, in their study of neighbourhood influences on
educational outcomes, Duncan et al. (1997) use the characteristics of the
mother’s neighbourhood of residence after the child has left the parental
home. This assumption relies on the fact that as long as the child is at
home, the neighbourhood of residence reflects both the mother’s
preferences as well as her (unobserved) concerns about the effects of
neighbourhood on the child’s development. After the child has left home,
the mother’s neighbourhood choice no longer reflects these concerns but
only her own preferences. However, the authors themselves criticize their
instrument choice on the basis that inertia may cause the mother to stay in
the same neighbourhood even after the children have left home. Evans et
al. (1992) also use IVs to study the effect of peer groups on teenage
pregnancy and school dropout rates. They assess the percentage of
disadvantaged pupils in the school by measures of unemployment and
poverty rates at the metropolitan level, based on the assumption that
adolescents living in a metropolitan area with a high poverty rate are more
likely to attend a school with a higher percentage of disadvantaged
students. This choice of instrument is debatable as it implies exogeneity in
parent’'s choice of a metropolitan area and it is not clear how such
instruments can account for neighbourhood effects within cities (Durlauf,
2004).

While the validity of the instruments used by Evans et al. (1992) may be
questioned, their results are quite interesting as these authors provide
peer group effects estimates obtained with and without treatment for
endogeneity. First, they regress the propensity for a teenage girl to
become pregnant on a set of family characteristics as well as on the log of
the percentage of disadvantaged students in her school. They find a
positive and significant coefficient for this last variable, thus indicating the
presence of peer group effects. Then, using an instrumental variable
specification, they find no evidence at all for the existence of peer group
effects, concluding that the significant effect in the first specification could
in fact be attributed to unobserved family determinants affecting the choice
of a school for their girl as well as the girl's propensity to become
pregnant.
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Their findings thus strongly advocate in favour of an explicit treatment of
endogeneity in all studies of peer group and neighbourhood influences on
individual outcomes.

Conclusion

While initial studies of neighbourhood effects rarely mentioned the
problems associated with endogeneity, nearly all recent empirical studies
are aware of its existence and attempts to solve it are numerous. Results
of comparative studies suggest that the biases arising from not taking the
endogeneity of residential location choices into account are important
(Evans et al., 1992; Plotnick & Hoffman, 1999; Weinberg et al., 2004).
Unfortunately, the perfect solution does not exist and the various methods
reviewed in this chapter either rely on very particular datasets that are
rarely available (for example experimental data or siblings data) or present
several important shortcomings. Durlauf (2004) suggests that future
empirical works should attempt to simultaneously model neighbourhood
effects and neighbourhood configurations via structural models: “Structural
models will allow for a full exploration of self-selection in neighbourhoods
models” (Durlauf, 2004: 2232). To our knowledge, there have been only
few attempts at such structural modelling in the context of neighbourhood
effects and this will have to be on the research agenda for the next years.

EMPIRICAL APPLICATION: LABOUR-MARKET OUTCOMES OF
YOUNG ADULTS IN BRUSSELS

The remainder of this chapter is devoted to an empirical illustration of the
study of neighbourhood effects and how to cope with endogeneity issues.
It presents results of an empirical exercise aiming at estimating
neighbourhood effects on labour-market outcomes of young adults
residing in the Brussels urban area. Testing all the methods presented in
the previous section to cope with endogeneity would be an impossible task
as most of these methods rely on particular datasets that are not available
for Brussels. Instead, the endogeneity of residential choices will be treated
with the sample restriction method, i.e. restricting the sample to young
adults residing with their parents. In addition, a step-by-step model-
building strategy will be used in order to provide an assessment of the
sensitivity of the results in the presence of observed and unobserved
parental covariates. This allows evaluating the robustness of the results.
This method had already been applied by the authors on 1991 census
data in a previously published paper (Dujardin et al., 2008). The analyses
presented here provide an update of the results of this previous paper with
2001 census data. The following subsections proceed by briefly describing
our research question (i.e. why residential location should influence
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labour-market outcomes), the study area and the data used. Then, the
methods and results will be presented in detail.

Research question

Estimates of neighborhood effects on individual outcomes are illustrated in
the particular context of labour-market outcomes. There are numerous
reasons why residential locations might influence labour-market outcomes.
First, the socioeconomic composition of the neighbourhood can influence
human capital acquisition, especially for young adults, which may in turn
deteriorate their employability in later years. Indeed, as the success of a
given student depends on the results of other students in his class, in
neighbourhoods with a high concentration of low-ability students, peer
effects can deteriorate school achievements and employability (Benabou,
1993). Social problems which deteriorate employability (like dropping out
of school, consuming drugs or having illicit activities) also spread through
social interactions within the neighbourhood (Crane, 1991). This contagion
is all the more prevalent as adults are themselves unemployed and do not
provide a role model to which youngsters could identify (Wilson, 1987).
Moreover, the socioeconomic composition of the neighbourhood
influences the quality of social networks. This is a crucial point since a
significant portion of jobs are usually found through personal contacts and
since low-skilled workers, young adults, and ethnic minorities often resort
to such informal search methods (Holzer, 1988). Therefore, in
neighbourhoods where local unemployment rates are higher than average,
local residents know fewer employed workers that could refer them to their
own employer or provide them with professional contacts. Finally,
employers may be reluctant to hire workers residing in disadvantaged
neighbourhoods (a practice known as territorial discrimination; Zenou &
Boccard, 2000). Note that the spatial mismatch hypothesis, which
emphasises the role of physical disconnection between job opportunities
and residential locations, has also been put forward to explain the poor
labour-market outcomes in the context of black ghettos in American cities
(see Gobillon et al., 2007 for a survey). Previous work has suggested this
hypothesis has no support in Brussels; we therefore will not elaborate
further on this issue (Dujardin et al., 2008).
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Data and studied area
Studied area and neighbourhood size

In institutional terms, Brussels comprises 19 municipalities and hosts
around 1 million inhabitants on a 163 km? area. However, as in most cities,
Brussels’ functional metropolitan area extends far beyond its institutional
limits. Therefore, the so-called Extended Urban Area is used to reflect its
functional metropolitan area, which comprises 41 municipalities that
together host 1.4 million inhabitants and cover a 723 km? area.

The smallest spatial unit for which census data are officially available is
the statistical ward (in French, “secteur statistique”), a subdivision of the
municipality defined according to social, economic and architectural
similarities (Brulard & Van der Haegen, 1972). Statistical wards that
present a common functional or structural nature (for example a common
attraction pole like a school or a church) can further be grouped into larger
entities, which constitute an intermediate level between the statistical ward
and the municipality. The limits of these units were generally defined by
geographical obstacles, like important roads, railways or waterways.
Because of this delineation criterion and their functional definition, these
units can be considered as appropriate to reflect social influences and are
used here to define the local environment that may potentially matter for
individuals. There are 328 such neighbourhoods in the Extended Urban
Area, grouping on average 4,250 inhabitants each. For statistical reasons,
neighbourhoods with fewer than 200 inhabitants are not considered in this
analysis (i.e. 19 neighbourhoods were left aside).

Data and neighbourhood characteristics

The statistical analyses are based on data extracted from the 2001
Socioeconomic Survey carried out by the Belgian National Institute of
Statistics, which provides data for all individuals residing in Belgium (i.e.
this is a 100% sample). Analyses were restricted to members of private
households. For each individual, detailed information on personal
characteristics (including age, gender, education, citizenship, employment
status, kinship with household’s head) are provided, along with family and
housing characteristics (for instance, type of family or car ownership) as
well as statistical ward (and neighbourhood) of residence.

These statistical analyses aim at explaining an individual’'s unemployment
probability by taking into account personal and household characteristics
as well as the possible role played by the neighbourhood of residence. It is
therefore necessary to choose one or several measures of the
socioeconomic composition of neighbourhoods. As previously mentioned,
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even though it is likely that individual outcomes are determined by a wide
variety of neighbourhood characteristics (such as neighbourhood
household mean income, unemployment rate or racial composition),
considering all these together into a single regression may cause
colinearity problems (Johnston et al., 2004). Therefore, a typology of
neighbourhoods is used, which is intended to reflect different types of
social environments within Brussels. This typology is built on a set of
eleven neighbourhood characteristics, chosen in order to reflect various
aspects of the social composition of neighbourhoods likely to affect labour-
market outcomes. These variables concern educational levels,
professional statuses, unemployment rates, percentages of foreigners, of
single-mother households as well as average household income. First, a
Principal Component Analysis is run in order to define a limited number of
non-correlated factors summarizing the information carried by this set of
neighbourhood variables. Then, neighbourhoods are grouped according to
their coordinates on the factorial axes, using a hierarchical ascending
classification (with the Ward method which minimizes intra-group
variance), in order to define deprived neighbourhoods versus non-
deprived neighbourhoods (in a previous paper, a 5-class typology was
used; the 2-class typology is used here for the sake of simplicity; see
Dujardin et al., 2008 for more details on this classification).’

Spatial structure of Brussels

The Brussels Extended Urban Area presents a well-marked spatial
structure characterised by important disparities opposing its city centre to
the periphery. Figure 1 maps the percentage of unemployed workers
among labour-force participants aged 19 to 64 in 2001, highlighting a zone
of very high unemployment rates (above 20%, and even above 30% for
some neighbourhoods) in the central part of the urban area, along the
former industrial corridor. On the contrary, unemployment is much lower
(below 12.5% or even 8.5%) in the suburbs. Figure 2 maps deprived
neighbourhoods and table 2 summarises their characteristics. Deprived
neighbourhoods are located in the centre of Brussels. They are
characterised by high unemployment rates (2.5 times as high as the
average unemployment rate in non-deprived neighbourhoods), high
proportions of North-Africans and Turks and single-mother households,
low educational levels, high percentage of blue-collars, and low income
levels.

" The neighbourhood typology used here was defined by Dujardin et al. (2008) on the basis of 1991 census
data. This 1991 typology is used here to explain individual unemployment propensities in 2001. Because of
inertia in housing prices and residential choices, it is likely that similar results would have been obtained for a
typology of neighbourhoods on the basis of 2001 data.
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Figure 1: Percentage of unemployed workers among labour-force participants in the
Brussels E.U.A. in 2001
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Figure 2: Location of deprived neighbourhoods in the Brussels E.U.A.

Deprived Not deprived Total

Demography

% North-Africans and Turks 16.1 0.7 4.3

% single-mother households 23.5 15.8 17.6
Average household income 772 1,113 1,033
Education

% of students in technical classes 39.7 25.5 28.8

% with lower education 53.9 43.2 45.7

% with at least intermediate education 28.6 46.2 42.1

% with higher educational levels 13.0 23.8 21.3
Professional status

% blue-collars 31.7 16.2 19.8

% executives 7.4 14.0 12.4
Unemployment

Unemployment rate (19-64) 18.8 74 10.0

Youth unemployment rate (19-25) 26.5 15.0 17.7
Total population 563,704 829,106 1,392,810
Number of neighbourhoods 72 237 309

Source: calculations based on data from the 1991 Population Census (INS)

Table 2: Mean characteristics of neighbourhood types
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A logistic model of unemployment probability with sample restriction

Individual-level data are used to estimate a logistic model of
unemployment probability while taking into account both personal and
household characteristics as well as the neighbourhood of residence, as
illustrated in the following equation:

P
Log(ﬂp} =a+p'l,+p,"H, +yDN, (10)

where P, is the unemployment probability of individual j, /; is a vector of
personal characteristics, H; is a vector of household characteristics and
DN; is a dummy variable indicating whether the neighbourhood in which
individual / resides is deprived (DN=1) or not (DN=0). a, B8+, B2 and y are
vectors of parameters that will be estimated using Maximum Likelihood
Estimation (MLE). In particular, y, when significantly different from zero
identifies an impact of neighbourhood deprivation on unemployment, i.e.
neighbourhood effects. Using (10), the individual probability of
unemployment P;is given by:

fLa+B i+ B, H, +yDN,)
P =
L 1+e(a+ﬁ1’15+ﬁ2'Hi+7DNi) (1)

In this equation, the parameter y is potentially subject to an endogeneity
bias. As already explained in the first part of this chapter, residential
locations are partly determined by labour-market outcomes as individuals
choose where they live and sort themselves in the urban space along their
socioeconomic characteristics. In other words, the right-hand side variable
DN in equation 11 is an endogenous regressor, which is determined jointly
with the left-hand side variable P, and y cannot be estimated without any
bias using standard methods. The first part of this chapter discussed
various strategies used in the literature to correct for the endogeneity of
neighbourhood choice. Although it is an imperfect solution (Ihlanfeldt and
Sjoquist, 1998), the sample restriction method is used here in this purpose
and all statistical analyses are restricted to young labour-force participants
(aged 19 to 25) residing with at least one parent (as in O’Regan & Quigley,
1996). This rests on the assumption that the choice of a residential
location has been made previously by the parents and is thus fairly
exogenous to the employment status of their children. In addition, focusing
on at-home young adults will enable the use of parental explanatory
variables as the individual census database allows identifying members of
the same household. Parental characteristics are indeed important
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determinants of children outcomes and it is important to take these into
account, when possible.

Setting aside individuals for whom important personal and family
characteristics are missing as well as individuals living in neighbourhoods
of fewer than 200 inhabitants, the studied sample consists of 27,044
individuals.

In a first step, equation 11 is estimated using only individual-level
explanatory variables as well as neighbourhood type. Parental
characteristics will be introduced in a second step, in the sensitivity
analysis. The set of individual explanatory variables /; includes gender,
age, level of education and citizenship. Three levels of education are
distinguished: lower for individuals with at most a diploma of junior
secondary education (normally corresponding to an age of 15);
intermediate for those with a diploma of senior secondary education
(normally aged 18); and higher for those with a higher diploma.
Concerning citizenship, four main groups are defined: Belgians, foreigners
from the European Union, North-African and Turkish foreigners, and other
foreigners. Furthermore, the nationality of the household head is used to
approximate the concept of ethnicity, by distinguishing Belgians with
Belgian parents, Belgians with EU parents, Belgians with North-African or
Turkish parents, and Belgians with parents of other nationality.

Results from this model are presented in Model | of Table 3, while Model Il
adds a dummy variable for living in a deprived neighbourhood or not. Note
that all results are presented in terms of odds ratios. This means that the
reference value is one (which indicates no effect) and that a value above
one indicates that the corresponding variable increases the unemployment
probability, while an odds ratio between zero and one indicates that the
corresponding variable decreases the unemployment probability. Results
show that men or educated workers are less likely to be unemployed than
women or workers with a lower education. The probability of
unemployment also decreases with the age of the individual. Moreover,
citizenship plays a key role: North-Africans and Turks and other foreigners
are more disadvantaged than UE citizens and Belgians. This is consistent
with discrimination on the labour market, but may simply reflect differences
in competence and qualification that are not taken into account by the
educational level and which may differ between ethnic groups (such as
experience or language fluency). Interestingly, young Belgian adults born
to foreign parents are more likely to be unemployed than young Belgian
adults of Belgian parents, suggesting that besides citizenship, the name or
visible characteristics associated with foreign origin are a handicap on the
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labour market. This is consistent with both labour-market discrimination as
well as social networks of lower quality for individuals with foreign parents.

Introducing neighbourhood deprivation in the regression (Model II)
significantly increases the fit of the model (see the likelihood ratio and the
Akaike Information Criterion). The odds ratio of the neighbourhood
deprivation variable is 1.491 and is significant at a 1% level, indicating that
all else being equal, residing in a deprived neighbourhood significantly
increases the odds of being unemployed by nearly 1.5. This indicates that,
all else being equal, young adults living in neighbourhoods characterised
by the worst combination of social characteristics are more likely to be
unemployed, thus confirming the importance of the social environment on
labour-market outcomes (through mechanisms such as peer effects, role
models or poor social networks).

As was already mentioned, the sample restriction used here to solve
endogeneity presents some shortcomings, the most important being that it
does not completely eliminate endogeneity. Indeed, the assumption on
which it rests (that residential choice is made previously by the parents
and is thus exogenous to the employment status of their young adult
children) is questionable. Indeed, it is likely that parental characteristics
determining residential choices also influence children’s future
employment outcomes (Glaeser, 1996). In this context, Model Il does not
allow distinguishing neighbourhood effects from the effect of parental
characteristics on the unemployment probability of young adults living with
their parents.

Instead of attempting to completely remove endogeneity, it may be useful
to evaluate potential remaining bias by conducting a sensitivity analysis, in
order to assess the robustness of estimated neighbourhood effects (as
suggested by Glaeser, 1996: 62). A two-step strategy is therefore used.
Firstly, several models of unemployment probability are estimated, which
incorporate various sets of parental characteristics. The estimated
neighbourhood effects from these models are compared in order to test
the robustness of the results in the presence of observed parental
covariates. The second step of the sensitivity analysis consists in
generating random variables that are correlated to a certain degree with
both the unemployment probability of young adults and with parental
residential choice. Introducing these random variables in the
unemployment probability model tests the sensitivity of the results to
unobserved parental covariates.
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Sensitivity to observed parental covariates

In their study of neighbourhood effects on children outcomes, Ginther et
al. (2000) argue that the disparity in past estimates of neighbourhood
effects is mainly the result of differences in the set of included family
characteristics. They specify a number of models that vary to the extent to
which family characteristics are introduced as statistical controls and show
that estimated neighbourhood effects tend to fall in value (and sometimes
become insignificant) as the set of family controls becomes more
complete. Building on their framework, several models of youth
unemployment probability are estimated, which incorporate various sets of
household characteristics, moving away from a model with no household
variable towards a model including an extensive set of parental and
household controls. These parental characteristics were built by assigning
to each young adult the characteristics of the household head or that of
the household head’s spouse (when data was missing for the household
head). For each young adult, the parental employment status and
educational level were computed, as well as the household car ownership.
Single-mother households were also identified, as these households are
more frequently prone to social problems detrimental to finding a job.
Table 3 includes these parental characteristics step by step in a model
including only youth personal characteristics and the characteristics of
their neighbourhood of residence (Models Ill to VI). Comparing estimated
neighbourhood effects in these different models allows one to test the
robustness of the results to the omission of observed parental covariates.
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Model 1 ] 1] v v vi

Likelihood ratio 690.91 84248 964.55 1040.05 1109.54 1130.33
Akaike Information Criterion 28,791 28,641 28,523 28,452 28,384 28,365

Neighbourhood Type
Deprived 14917 14157 14707 14147 14187

Individual characteristics

Male 0937 0946 0951 0946 0949  0.950
Age 09147 09157 0908" 09057 0906 0906
Education
Lower Ref. Ref. Ref. Ref. Ref. Ref.
Intermediate 0641 0661 0674 0656 0667 0669
Higher 0695" 07477 07807 07057 07247 0729
Citizenship
Belgian (of Belgian parents) Ref. Ref. Ref. Ref. Ref. Ref.
Belgian (of EU parents) 1111 1.089™  1.067%  1.110" 1120  1.136

Belgian (of North-African or Turkish par.) ~ 1.916 1517 13517 14247  1.397.  1.443"
Belgian (of parents of other citizenship) 1.893 1.689 1.574 1.501 1.469 1.491

EU 13377 12200 1198 1246 1256  1.268
North African and Turkish 32037 25437 2267, 2363 2297 2374
Other 2815" 25487 24357 23427 21597 2175

Parental and household characteristics
Employment status and professional status

Employed Ref. Ref. Ref. Ref.

Not participating to labour force 1393, 1443 1393 1.381

Unemployed 1.571 1.614 1.544 1.511
Education

Lower Ref. Ref. Ref.

Intermediate 1.049"  1.063"  1.053"

Higher 13717 1.3987  1.386
Possession of an automobile 0.701 0.736
Single-mother household 1.185"

significant at a 1% level; ** significant at a 5% level; * significant at a 10% level; NS not significant at a 10%
level. Number of observations: 27,044.

Table 3: Logistic regression of unemployment probability (odds ratios)

Regarding parental characteristics, models Ill to VI show that the
unemployment probability of a young adult is higher when the household
head (or spouse) is not participating in the labour-force or is unemployed
than when he/she is employed. This effect is highly significant and is
consistent with social network theories (at the household level,
unemployed parents being little able to help their job-seeking children) and
socialisation considerations (unemployed parents failing to provide their
children with an image of social success to whom they could identify;
Wilson, 1987). Living in a single-mother household (Model VI) also
significantly increases the likelihood that a young adult be unemployed,
suggesting that these households are more frequently prone to social
problems detrimental to finding a job. Living in a household which does not
own a car (an indirect measure of lack of financial resources) also
significantly increases the unemployment probability, suggesting it is more
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difficult for individuals from poorer households to find a job. Surprisingly,
the effect of parental educational level is not always significant, and when
significant, seems counter-intuitive: all other things being equal, having a
parent with a higher level of education increases the unemployment
propensity of young adults. This counter-intuitive effect illustrates one
shortcoming of the sample restriction method used to solve endogeneity.
As already mentioned, restricting the sample to young adults living with
parents may create a sample selection bias in the sense that young adults
obtaining a job are more likely to leave parental home than young adults
still unemployed. Indeed, if having parents with a high socioeconomic
status (as reflected by parental educational level) in fact increases the
chances to find a well-paid job, it is likely that young adults originating from
these families will move out of their parents’ dwelling more rapidly. This
would leave an over-representation of unemployed young adults among
families with higher parental socioeconomic status. Another possible
explanation is that children from more educated (and richer) families do
not feel pressured to intensively search for a job in order to move out of
unemployment if they get financial support from their parents. In the
absence of longitudinal data in which young adults are followed after they
move out of parental home, it is not possible to distinguish between these
two potential explanations.

By comparing the parameters and significance levels of the
neighbourhood types across the different models, one can assess the
sensitivity of the estimated neighbourhood effects to the inclusion of a
more comprehensive set of parental controls. Table 3 shows that although
the inclusion of parental and household characteristics significantly
increases the fit of the model (see the likelihood ratios), the estimated
neighbourhood effects change little (ranging from 1.491 in Model Il to
1.418 in Model VI) and all parameters remain significant at a 1% level.

To provide a more intuitive interpretation, marginal effects of
neighbourhood type were computed for Models I, Ill and VI. These give
the change in predicted probability of unemployment associated with a
change of neighbourhood type on the average individual of our sample.
Results indicate that living in a deprived neighbourhood in comparison
with non-deprived neighbourhoods, increases the unemployment
probability of the average young adult by 7.3 percentage points in Model
Il, 6.3 points in Model Ill and 6.3 points in Model VI. Thus, adding an
extensive set of parental characteristics to a model including only
individual characteristics makes the estimated neighbourhood effect fall by
1 point. Moreover, estimating neighbourhood effects including only
parental employment status (Model Ill) gives the same result as in the
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more comprehensive specification (Model VI). By way of comparison, the
observed unemployment rate for young adults living with parents is 31% in
deprived neighbourhoods and 19% in the rest of the agglomeration. The
estimated marginal effect for Model VI indicates that 6.3 points of this gap
(i.e. approximately 50%) are due to neighbourhood effects. The remaining
would be due to the sorting of individuals with similar personal and
parental characteristics into neighbourhoods.

Sensitivity to unobserved covariates

After having evaluated the influence of observed parental characteristics
on estimated neighbourhood effects, it may be useful to test the sensitivity
of the results to the endogeneity bias which results from the omission of
an unobserved parental covariate which is correlated to both the
probability of unemployment among young adults and parental residential
choice. The approach used here is based on the method developed by
Rosenbaum & Rubin (1983) and recently applied by Harding (2003) in the
context of neighbourhood effects. The goal of this analysis is to assess
how an unobserved binary covariate which affects both the probability of
unemployment among young adults and the choice of parents to reside in
a deprived or a non-deprived neighbourhood would alter the conclusions
of this research about the magnitude and significance of neighbourhood
effects. This is done by generating a series of unobserved binary variables
U that vary according to their degree of association with the
neighbourhood dummy variable DN and with the binary outcome measure
Y. The degrees of association between U and Y and between U and DN
are measured by parameters k and /, both expressed in terms of odds
ratios.

In practice, the method implemented consists in generating a binary
variable U sampled according to the following logistic model:

[Prob(U"znjza+Kyi+lDNi (12)
1-Prob(U, =1)

where Prob(U=1) is the probability that the unobserved variable U takes a
value 1 for individual J, y; is a binary variable indicating whether i is
unemployed or not and DN; is a binary variable indicating whether j resides
in a deprived neighbourhood or not. In this formulation, k=log(k) and
A=log(/), with k and / being chosen odds ratios that measure the strength of
the association that is imposed by the researcher between U and Y and U
and DN respectively. a is determined so that the overall prevalence of
U=1 is 0.5. More precisely, the previous equation and the three imposed
constraints (on the two sensitivity parameters k and / and the overall
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prevalence of U=1) are used to determine the proportion of U=1 in each
one of the four subgroups defined by DN and Y, i.e.
p11=P(U;=1|DN;=1,yi=1), p1o=P(U,~=1|DN,-=1,y,-=0), po1=P(U,~=1|DN,-=O,yi=1)
and poo=P(U=1|DN=0,y=0). A random variable U is then generated in
each one of these subgroups, following a Bernoulli distribution of
parameter pqy for subgroup (ND=1,y=1), p1o for subgroup (ND=1,y=0),
etc. Once each individual has received a value for U, new estimates of
neighbourhood effects are obtained by including U in the unemployment
probability model given by (11). This is repeated for increasing values of
the sensitivity parameters k and / in order to investigate what level of
endogeneity bias (i.e. the strength of the association between U and Y and
between U and DN) would be needed to invalidate the results and render
the estimated neighbourhood effects not significant.

Table 4 presents the estimated odds ratios associated with living in a
deprived neighbourhood on unemployment probability, for two different
models: (i) the model including only individual characteristics (and
neighbourhood type) and no parental characteristics (as in Table 3’s
Model Il) and (ii) the model including the full set of parental controls (as in
Table 3's Model VI). In each panel of Table 4, the odds ratio in the
extreme top-left cell (corresponding to k and / equals to one) gives the
baseline odds ratio associated with living in a deprived neighbourhood,
without introducing any amount of selection on unobservables. This odds
ratio is 1.491 in Model Il and 1.418 in Model VI. For each one of these
models, an artificially created binary variable U is included and a
sensitivity matrix is obtained by varying the sensitivity parameters k and /,
which measure the associations of the unobserved parental characteristic
U with the neighbourhood type and the employment status.

As expected, Table 4 shows that in both specifications, the estimated
neighbourhood effect decreases as the values of k and / increase. This
means that accounting for a previously omitted variable correlated both
with the neighbourhood type and with the employment status does indeed
reduce the intensity of neighbourhood effects estimates. However, the
effect seems fairly robust since the values of k and / would have to be very
high to make the neighbourhood effect not significant. Indeed, in the
model including no parental or household characteristic (Model Il), an
unobserved covariate which multiplies the odds of living in a deprived
neighbourhood by 3.5 and the odds of being unemployed by 4.0 would be
required to totally erase the neighbourhood effect. This is also true when
the full set of observed parental characteristics is included in the analysis
(Model VI).
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In this case, the neighbourhood effect becomes insignificant when at least
one of the two odds ratios reaches 3.5 and the other one equals 3.0.

Model Il Sensitivity parameter k
Sensitivity parameter / 1.0 15 2.0 25 3.0 35 4.0
1.0 1.4917" 1.485" 1.488"" 1.482"" 1.494™ 1.503" 1490
1.5 1.496" 14377 1.3917 1.366 1.352"" 1.308" 1.319"
2.0 1.491" 1397 1327 13017 1250 1217 1.187"
25 1.494™ 1.380" 1.274" 12117 1.200" 1.164" 1.123"
3.0 15017 1.365 " 1.263" 1.184" 11377 1112 1.070"
35 1.506 1.333" 1.229" 1.135" 1.093" 1.062" 1.032"®
40 1514 1.320" 1.205" 1.150" 1.073" 1.025™ 0.992"
Model VI Sensitivity parameter k
Sensitivity parameter / 1.0 1.5 20 25 3.0 35 4.0
1.0 1418 14117 1418 14127 1.420" 14337 14177
15 1.423" 1.367" 1.325™" 1.297" 1.287" 1.246" 1.256
2.0 1417 1.328" 1.265" 1.237" 1.187" 1.163" 1.132"
25 1420 1.309" 1212 1.155™" 1.143" 1.106" 1.069"
3.0 14317 1.300" 1.198" 1.126" 1.119” 1.085" 1.058"°
35 14317 1.265" 1170 1.077" 1.040"° 1.011" 0.982"°
4.0 1.438" 1.256" 1.147" 1.093" 1.018" 0.973"° 0.946"°
significant at a 1% level; - significant at a 5% level; *significant ata 10% level; NS ot

significant at a 10% level. Number of observations: 27,044. Sensitivity parameters k and /
are expressed in terms of odds ratios and measure the effect of an artificially created
binary variable U on the probability of unemployment and the probability of living in a
deprived neighbourhood respectively.

Table 4: Sensitivity of neighbourhood effect estimates to the presence of an unobserved
covariate (odds ratios)

In order to provide a more substantive interpretation, one may compare
values for k and / (i.e. the amount of selection on unobservables that
would be needed to make neighbourhood effects disappear) to the odds
ratios estimated on observed covariates. Let's assume for example that
the unobserved variable U is parental involvement with their children (this
is indeed the most-often mentioned source of bias in neighbourhood
effects studies; see O’'Regan & Quigley, 1996; Harding, 2003). Though
parental involvement is not measurable using standard census surveys, it
is likely to affect both their children labour-market outcomes and their
residential location. Indeed, whatever their income, social status or
educational level, more involved parents will try to help their children as
much as they can, by offering them support and advices in their job search
effort or by monitoring their peer relations. At the same time, these
involved parents may anticipate the detrimental effects of the social
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environment on their children and make some financial sacrifices to afford
housing outside distressed areas. The question asked by this sensitivity
analysis is then: “How big would the effect of parental involvement need to
be to completely wipe out the effect of neighbourhood?”

The sensitivity analysis shows that having involved parents would need to
increase the odds of being unemployed by 4.0 in order to totally erase the
neighbourhood effect in Model Il (or 3.0 in Model VI). As can be seen from
Table 3, none of the observed parental and household characteristics
already included in the model results in odds ratios as high as 4.0 or even
3.0, the highest odds ratio for a parental characteristics being 1.571 in
Model VI (for bhaving an unemployed parent). Among individual
characteristics, the highest odds ratio is 2.374 for North-African or Turkish
citizenship, and it is still below the 3.0 limit obtained by the sensitivity
analysis. In other words, for the neighbourhood effect to become
insignificant when considering parental involvement, the effect of this
unobserved characteristic on unemployment would have to be stronger
than that of parental employment status or that of citizenship, which
seems not realistic. This provides some relatively strong evidence on the
robustness of estimated neighbourhood effects.

The statistical analyses conducted here thus confirm that residential
location does influence the labour-market outcomes of young adults
residing with their parents in the Brussels agglomeration. Living in one of
the deprived neighbourhoods of Brussels, i.e. characterised by the worst
combination of social characteristics, significantly increases the
unemployment probability of young adults. Although it may be feared that
focusing on young adults residing with their parents creates some sample
selection problems, the sensitivity analysis developed here suggests that
estimated neighbourhood effects are robust in the presence of both
observed and unobserved parental covariates. Indeed, the amount of
selection on unobservables would have to be unreasonably high to make
the estimated neighbourhood effect not significant.

CONCLUSION

The objective of this chapter was to investigate the endogeneity issue,
which is one of the prominent problems encountered in neighbourhood
effects studies. Indeed, despite the huge amount of empirical studies,
there is still considerable debate about the existence and magnitude of
neighbourhood effects (Ellen & Turner, 1997). This is mainly because
empirical studies are subject to several methodological problems (Dietz,
2002, Durlauf, 2004), in particular to an endogeneity bias arising from the
fact that individuals are not randomly distributed into the urban area but
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instead “self-select” into neighbourhoods on the basis of their personal
characteristics. In other words, some individual characteristics that
influence individual outcomes (for example their employment status) also
influence their residential choice. This means that what the researcher
perceives as an effect of neighbourhood on individual outcomes may
simply stem from a correlated effect reflecting a common residential
choice.

This chapter contributes to the literature on neighbourhood effects and
endogeneity issues by firstly reviewing the methods that have been
proposed in the literature to try to solve the endogeneity issue. Secondly
this chapter shows (on the basis of one empirical example) how to cope
with endogeneity and how to evaluate endogeneity biases in
neighbourhood effects estimates. To this end, the effect of living in a
deprived neighbourhood on the unemployment probability of young adults
residing in Brussels is estimated by means of logistic regressions. The
endogeneity of residential choices is addressed by means of the sample
restriction method, which consists in restricting the sample to young adults
residing with their parents. This is the simplest and most often used
method in the literature (e.g. O’Regan & Quigley, 1996). It is based on the
argument that residential choices have been made previously by the
parents and can thus be considered as fairly exogenous to the
employment status of their children. However, it is an imperfect solution as
unobserved parental characteristics may still influence both the residential
choice of parents and the employment status of their children (lhlanfeldt &
Sjoquist, 1998). In this context, the methodological originality of this
chapter is to evaluate the potential remaining endogeneity biases by
conducting a sensitivity analysis to the presence of both observed and
unobserved parental characteristics.

The results of this empirical application mainly showed that living in a
deprived neighbourhood significantly increases the unemployment
probability of young adults in Brussels, which confirm previous findings on
1991 data (Dujardin et al., 2008). This result is robust in the presence of
both observed and wunobserved parental covariates. Indeed,
neighbourhood effects remain statistically significant when an extensive
set of parental controls is introduced in the regression. Moreover, the
sensitivity analysis based on artificially created unobserved covariates
developed for this analysis shows that the amount of selection on
unobservables would have to be unreasonably high to render
neighbourhood effects estimates not significant.
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However, results also suggest that, while it seems that it is enough to
remove much endogeneity biases, the sample restriction method presents
other shortcomings. Indeed, besides the fact that it does not allow
generalising the results to other age groups, restricting the sample to
young adults residing with parents is likely to generate sample selection
problems (for example, if the leaving rate of young adults once they have
found a job differs according to the characteristics of parents and/or
according to the type of neighbourhood they live in). Some counter-
intuitive findings of the statistical analyses conducted in this chapter tend
to indicate that this is probably the case in Brussels. In this context, it
seems important that future research on neighbourhood effects focus on
exploring other ways to solve the endogeneity issues. As suggested by
Durlauf (2004), the solution to endogeneity will probably have to be
searched in the simultaneous modelling of neighbourhood effects and
neighbourhood choices, through structural models. This will require a
better understanding of residential choices as well as feedback
mechanisms between individual outcomes and the characteristics of the
social environment.
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INFORMATIONS

The sensitivity analysis to unobserved covariates developed in this
chapter makes use of the Sensuc function, which is part of the Design S
library written by F. Harrell. Documentation and programs can be found at
the following web links:

http://lib.stat.cmu.edu/S/Harrell/Design.html (general introduction to the
Design library)
http://lib.stat.cmu.edu/S/Harrell/help/Design/html/sensuc.html (specific
documentation on the Sensuc function)
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ABSTRACT

The application of GIS and Gl science approaches within
health and social care has been an established area for
research for over twenty years. The chapter identifies
core theoretical concerns with topics such as: supply,
demand, need and choice in health care, and examines
some of the ways in which these notions have been
modelled quantitatively in applied settings. In addition,
summaries are provided of previous research in the sub-
themes of accessibility & utilisation, health inequalities,
location-allocation modelling, epidemiology, service
planning and health informatics. The second part of the
chapter examines three research case studies carried out
by the authors in the UK and Ireland around the areas of:
a) cross-border hospital accessibility, b) geographically-
weighted regression modelling of iliness data and, c) the
planning of social care services. The final section
identifies some future directions for work under the wider
headings of spatial data, analysis and visualisation.
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INTRODUCTION

Given the inherent spatiality of health and the organisation of structures
within society to manage health, it is no surprise that geographers have
developed an interest in the subject in a variety of ways. Driven primarily
by relationships between health, place and space, geographers and other
subject specialists from computing, medicine, mathematics and statistics
have researched spatial modelling aspects of the management of health
care (Gatrell & Loytonen, 1998; McClafferty, 2003). Prior to the 1980s
much of this exploration was carried out using quantitative models but with
improvements in computing power, new forms of geocomputational
modelling and analysis have been developed (Joseph & Phillips, 1984;
Gatrell & Senior, 1999). As an analytical tool, GIS have been at the core of
those explorations, while the increasingly common term, Gl Science also
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frames that analysis as a process and a paradigm (Wilson &
Fotheringham, 2008). One focus of this chapter will be on exploring the
quantitative and theoretical aspects of how health care is modelled and
theorised in spatial analytical terms. This is also linked to an improved
reputation within health for the potential of spatial approaches as GIS
becomes increasingly embedded in health care systems (Croner &
Sperling, 1996; Gatrell & Senior, 1999; Melnick, 2002; McLafferty, 2003;
Smith, Higgs & Gould, 2005). At the same time social scientists have also
become interested in other aspects of the organisation of health in society
and the more qualitative elements that shape that structure. These more
theoretical and applied aspects have in part led analysts to consider some
of the more formative aspects of health care, including social care. They
also suggest the need to link people more fully into the systems to provide
more effective modelling (Couclelis, 2003; Elwood, 2006).

The core concerns for these particular branches of theoretical and
quantitative geographies have strong foundations within economic,
biomedical and to a lesser extent, social geographies. As state systems in
all these areas developed after the First World War and in to the 1960s,
the quantitative revolution in the subject became a strong driving force for
early research on these topics (Hubbard et al.,, 2002). Well-known
examples of the kinds of quantitative models developed would include
Christaller's Central Place Theory and Hagerstrand’s early models of
diffusion (Dicken & Lloyd, 1990). The former theoretically modelled the
hierarchical nature of urban networks and their spatial organisation while
the latter was interested in how spatial phenomena varied and developed
over time and across space. Both were applied to an extent within medical
geography and indeed acted as markers for the main initial divisions of
interest in the subject, namely epidemiology and health care planning
(Joseph & Phillips, 1984; Cliff & Haggett, 1988). Much of the early
modelling, while theoretically very sound, was also partially hamstrung by
two core barriers: access to detailed spatial data and the lack of
processing power. Despite this, there was some effective cartographic
research in the area of mapping disease, using examples such as
measles, influenza and later, HIV/AIDS (Cliff, Haggett & Ord, 1986; Cliff &
Haggett, 1988). With the advent of desktop computing power and
improved access to electronic data records, these problems were partially
tackled in the 1970s and early 1980s. A third issue related to how these
data could be effectively visualised so as to bring out the inherently spatial
aspects of the modelling. Traditional cartographic approaches were
applied in the medical/health arena and as a result there was a reasonably
strong tradition of medical mapping including some good historical, if
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contested examples from the work of John Snow and William Booth
around cholera and poverty and Mourant on blood group distributions
(Mourant, 1954; Cliff & Haggett, 1988; Koch & Dennike, 2006). How these
three main elements, spatial data, spatial analysis and spatial
visualisation, remain at the heart of all subsequent work in this field will be
explored throughout the chapter and will form its primary aim
(Fotheringham, Brunsdon & Charlton, 2000).

As a subject, medical geography emerged primarily from Germany (as
GeoMedizin) and Russia in the 1940s and 1950s. In turn taken up in the
English-speaking world, especially in the US, UK and Canada, the subject
developed along two broad lines from the 1970s onwards. Focused firmly
on health care planning, a concern with modelling effective spatial
structures for service planning was to lead into much of the early
quantitative work around modelling optimal locations of health services as
well as looking into the equitable distribution of those services (Jones &
Moon, 1987). The other main strand within medical geography related to
epidemiology, the distribution and management of disease, driven by
ecological theory and using diffusion modelling as one effective way of
mapping and predicting the spread of disease (Gatrell, 2002). While this
latter strand will be discussed briefly in this chapter, the focus is very much
on the planning and service aspects of the subject. The two are clearly
linked in that services are put in place to combat disease and the location
and supply of services are in some ways determined by the demand
created by the location and spread of disease. In addition, social care, in
the form of support services for the poor, the elderly and people with
disabilities, also has a strong service dimension which requires planning
for both the delivery of those services and their integration with health
care. Nonetheless, current understandings of health and social care
planning spread well beyond the curative aspect of the subject. Indeed it
could be argued that a strong focus on the planning aspects, in terms of
improvements in access, social supports, preventative health and health
promotion initiatives, are key steps in reducing disease in the first place
and require more attention (Curtis, 2004).

The rest of this chapter will consist of two main sections. The first one will
provide a critical literature review which looks at how theoretical and
quantitative geography perspectives have been developed and used
within health and social care planning. It will look at the range of theories,
problems, methodologies and models developed around the broad themes
of data, analysis and visualisation and seek to critically examine where the
subject situates itself in late 2008. The second half of the chapter will
summarise some examples of work that the authors have been engaged
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in for the past decade and will be drawn from the UK and Ireland to
demonstrate how those themes have been addressed. A final section will
look at where the future may lie and suggest some ways in which the
attention of quantitative and theoretical geographers and computer
scientists can be effectively directed into the future of health and social
care planning. At all times, the work will have a very strong emphasis on
services and their associated planning.

RECENT ADVANCES IN HEALTH AND SOCIAL CARE PLANNING
Introduction

Before embarking on a survey of work in the areas of health and social
care planning, it is helpful to briefly list some of the core theoretical issues
for researchers working in this area and identify the kinds of problems
researchers have been grappling with over the past three decades. This is
helpful in framing how subsequent quantitative approaches have sought to
tackle these problems. The discussion will focus on empirical issues and
not on the underlying political and ontological ideas which shape health
care systems in the first place, though any meaningful study of how health
and social care planning functions is shaped by how those services are
organised within any single country. Nevertheless the same core issues
commonly emerge no matter what type of health care system operates. In
a summary document on the then current themes in the US, McLafferty
(2003) identified four headings around which GIS and Health Care more
generally might be studied, namely: need, access, utilisation and the
evaluation and planning of health services. This provides a useful starting
point for this work as well.

At the core of any health and social care planning discussions are the
simple theoretical constructs of supply and demand. In a perfect system,
supply would match demand. For geographers, this would be represented
spatially by the correct placing of services in urban and rural settings to
exactly match demand in those areas. It is probably fair to say that such a
system does not exist anywhere in the world. Indeed in many countries,
especially in the global South, systems barely exist and huge demands
swamp limited supplies (Meade & Earickson, 2000; Curtis, 2004). Even in
the more developed global North, similar inequalities exist, albeit on
nothing like the same scale. Where those mismatches occur and at what
scale remains a primary interest for geographers and identifies a role for
spatial approaches in health and social care planning. In addition, the
ways in which supply and demand operate in the real world are multiple
and complex. One might consider a number of additional factors which
add to the theoretical difficulties spatial planners face, namely equity or
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effectiveness, need and time (Rushton, 1998; Goddard & Smith, 2001;
Guagliardo, 2004; Yuan, 2008). Equity within health care systems relates
to notions of fairness and equal supply to meet equal demand. But this is
skewed so that supply is often structured unfairly whereby unequal
supplies operate in some areas when measured against need. Some
examples of this might be the over-supply of general practitioners in urban
areas as opposed to rural areas, a phenomenon observed in the US,
China, France and the UK (Vigneron, 1997; Gatrell, 2002). Another
example which is particularly relevant to geography is the notion of the
Inverse Care Law, where proximity to a supply seems to be a more
marked explanatory factor than need-based demand (Curtis, 2004). A
further complicating factor is the linked concept of effectiveness (often
mentioned in conjunction with efficiency), whereby health and social care
planners need to make some judgements on how best to provide supply to
meet what they perceive as realistic demand while at the same time
spending limited funding in as efficient a way as possible (Oliver &
Mossialos, 2004). Clearly there are conflicts between planning and the
operation of equity or effectiveness based systems. Many of these are
outside the control of theoretical and quantitative modelling but it does
suggest that such models should be flexible and complex enough to take
these structural elements into account.

Linked very strongly to the term demand is the notion of need. Demand is
an all-encompassing term so that within any planning system, provision
must be made for different forms of need. In most societies, the supply of
services may have to be weighted in favour of those groups within society,
namely, the very young, the elderly, the poor or the excluded, who are
most likely to be in need. These considerations add considerably to the
simple supply versus demand model but must be considered in any
theoretical and quantitative model of service planning (Weiner & Harris,
2008). A final complicating factor is time. Clearly it is one thing matching
supply to demand in a fixed time period but planning is very strongly
associated with predictive capabilities. Any meaningful planning system
should have the capacity and indeed aim, to try and model future supply
and demand as well. This is often difficult and subject to many additional
factors which are again, often outside the control of the planners or
modellers (Curtis, 2004; Charlton, 2008). All three of these areas provide
challenges, but also opportunities for health and social care planners and
some of the ways in which these challenges have been met will be
outlined in the rest of the literature review below.
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Clearly for theoretical and quantitative geographers, the kinds of problems
listed above provide a rich framework for their fertile imaginations. When
need, demand, supply and additional elements such as choice and volume
need to be expressed spatially, the use of geo-computational approaches
seems simultaneously ideal and under-exploited. Plotting the relationships
between these different concepts has been led by a number of statistical
approaches which in turn have helped develop the medium of spatial
statistics (Fotheringham, Brunsdon & Charlton, 2000). Regression and
correlation have been used to look at and understand underlying
relationships between expected and observed health patterns and derived
some useful explanations from these. Some of the more planning-specific
aspects are also driven by spatial theory especially around identifying
optimal locations for services when weighted by existing patterns of supply
and demand. In addition, the increasing technical power of computing has
led to much more rapid and sophisticated modelling of different scenarios
so that multiple choices can be modelled and best results identified. Within
the geo-computational models, much of the research has been around
improving the quality and precision of how that modelling is carried out.
For example the development of improved estimations of kernels and
associated aspects of spatial statistics has continued to drive work in this
area (Fotheringham, Charlton & Brunsdon, 2000; Jacquez, 2008; Wilson &
Fotheringham, 2008).

Mindful of the ontological and epistemological backgrounds and the
technical concerns discussed above, the remainder of this section will
explore recent work in a number of sub-themes of health and social care
planning. Within each sub-theme there will be an implicit link to the core
themes of data, analysis and visualisation. Accessibility and utilisation has
been a common theme in health and social care planning which in turn
has links with ways of studying and measuring health inequalities.
Theoretical work around the areas of location-allocation and optimal
location modelling is then examined followed by a more epidemiologically
focused section. The following section discusses a summative theme,
namely that of service planning and how policy is theorised, modelled and
achieved. A final section focuses on what is an increasingly public and
open interface between health geographers, medics, statisticians and the
general public. With the increasing embeddedness of GIS in public life and
the role of the internet in broadening both knowledge and expectations
around health information, the potential for Gl Science to take its potential
into the public arena is considerable but must be approached with caution.
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Accessibility and Utilisation

While the subject of modelling accessibility to health care is more
comprehensively and fully explored in a separate chapter in this book
(Morrissey et al., 2009), it still has important links to other aspects of
health and social care planning and will be briefly discussed here. One of
the original core texts in the subject by Joseph & Phillips (1984), explicitly
studied the twin terms accessibility and utilisation. In addition, any study of
access to and utilisation of health care needs to be aware also of the core
concepts referred to previously such as need, equity, supply and demand.
A large number of authors have incorporated some of these elements into
their spatial data requirements which in many ways are fundamental to the
modelling of accessibility and utilisation. For example, geographies of
supply are expressed through counts of the number of hospitals, their
physical location and configuration and the relative size of those hospitals
and numbers of services provided (Luo & Wang, 2003). Demand is often
measured through utilisation but there are issues here in terms of how fully
demand identifies need in a setting where waiting lists and staffing
shortages are not unknown and where the structure of the system itself
shapes utilisation rates. Need is also a complex term with a number of
different definitions relating to expressed need in the form of presenting
patients and unexpressed need within the wider population (Joseph &
Phillips, 1984). Finally equity can be expressed in a number of ways,
depending on whether one uses a vertical or horizontal definition
(Goddard & Smith, 2001) or even whether one takes a measure based on
a population or catchment based approach (Christie & Fone, 2003). The
work of Khan & Bhardwaj (1994) is particularly useful in developing a fuller
understanding of what they refer to as spatial and aspatial aspects of
accessibility. The aspatial aspects include a wide and complex set of
variables including income, education, social class, insurance and other
social and economic factors, which affect how people access and utilise
health care. They identify these as being separate but linked elements to
the more purely spatial aspects of location, distance, time and supply
which provide the other part of the equation. Together these provide a
fuller integrated model. In addition, utilisation can often act as a
confounding factor when combined with accessibility measures in that it
sometimes merges measures of ‘supply’ with proxy measures of ‘demand’,
especially for use in a health policy setting (Oliver & Mossialos, 2004).

The core traditional approach used by medical/health geographers has
been to focus on a number of core spatial datasets and use these in the
modelling of accessibility. Some of these approaches have been used
before the widespread use of GIS and digital spatial data (Horner &
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Taylor, 1979; Joseph & Phillips, 1984). The arrival of the latter has,
however, allowed for more efficient and effective modelling using a
number of new spatial analytical techniques. In general terms, modelling
spatial accessibility has involved the following key spatial data. Firstly, the
location and distribution of health care facilities often forms a first layer of
information. While much of the research has focused on secondary and
tertiary care, other services associated with primary care, community care
and even voluntary services have also been modelled in this way (Bullen
& Moon, 1994; Foley, 2002). A second core element is a layer that
incorporates demographic data and the distributions of different
populations. These function as proxies for demand/need and can be
broken down into sub-populations depending on the services being
modelled (Love & Lindqvist, 1995; Teljeur, Barry & Kelly, 2006). A final
layer of information needed is information on the transportation network
used to model the spatial linkages between patients or potential patients
and services. This was traditionally modelled as Euclidian or straight-line
distance which often enabled planners to quickly see buffers or
catchments zones around hospitals and to visualise quickly those areas or
groups who fell outside those areas (Kumar, 2004). Other visualisation
approaches which have been enhanced by GIS include spider-graph
approaches showing linkages between patient and service as a series of
straight lines (Bullen & Moon, 1994; Campbell & Parker, 1998).

With the advent of GIS the ability to overlay and merge these three
different layers within a single automated information system has been
recognised as providing an important new evidence base for health care
planning (Gatrell & Loytonen, 1998). Brabyn & Skelly (2002) took these
core elements and combined them in a vector (linear) GIS to model
access to public hospitals by travel time across New Zealand. They
identified an effective accessibility score by area, weighted by population
which also incorporated a locally relevant remoteness factor. Such a
concern for local topography was also reflected by Lin et al. (2002) who
studied access to hospitals in British Columbia in an area also
characterised by mountains and a limited road network. They produced a
tabular output by district which also incorporated existing utilisation data to
weight the model.
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A final example of this straightforward spatial modelling was provided by
Christie & Fone (2003) who used the same methodologies to look at
access to tertiary hospital services in Wales. In their example, they used
GIS to help tabulate travel time by social groups (weighted by deprivation
score) to look at equity of access to very specialist services, which
unsurprisingly was biased towards the more affluent urban dweller, a
finding consistent with much accessibility modelling work.

Some of the studies above used GIS to produce more robust forms of
spatial modelling, by moving beyond Euclidian distance to include
consideration of travel distance along road networks and even more
usefully, travel time. Additional sophistication was provided by studies
which looked at incorporating public as well as private transport into the
models (Martin et al., 2002; Lovett et al., 2002; Jordan et al., 2004). These
studies looked respectively at Cornwall and Norfolk and added public bus
and train networks to the previously modelled road network to try and get
a fuller picture of levels of access. Martin et al. (2002) also developed their
model as a raster (surface) approach which is the other method feasible
within a GIS and this was replicated by Luo & Wang (2003) who
developed a model of access to primary care in the Chicago area based
on a raster travel friction approach. They also used the power of the GIS
to develop a gravity model approach which incorporated floating
catchments weighted by location and population. This approach was also
developed by Guagliardo (2003) in a similar study of access to primary
care in Washington DC with the additional spatial modelling element of
kernel density which effectively modelled the effect of service clustering
and the subsequent impact on access. Other GIS approaches have
focused on specific services within hospital provisions with interests in
maternity and other specialist services (Beere & Brabyn, 2006;
Schuurman et al., 2006).

Another valuable example is the work of Damiani et al. (2005) who used a
surface model approach to measure access to acute hospitals which in
turn was weighted by a measure of choice, as expressed through levels of
available beds. In this way, a normal mapped result, which identified rural
and remote areas as poorly served, was considerably modified when the
impact of waiting times and available beds was fed in. In the modified
version, areas around the South East and South West of England showed
up as under-served, an interesting example of how demand and supply
affect the original models. In all cases, the ability of GIS to effectively
visualise accessibility in the form of vector time maps and raster
accessibility surfaces have allowed for ready analysis and interpretation as
both a pointer to and a time-saving short-cut for subsequent explanatory
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analysis. Finally the work of Robitaille et al. (2008) points to ways in which
accessibility can be measured not just to services, but rather to its
opposite, sites of health risk. In this case, the location of gambling
machines in Montréal is used to model risk and vulnerability to health-
endangering behaviours, within a GIS. Each small (dissemination) area
was mapped with a gambling vulnerability score which in turn was spatially
weighted using gravity model and LISA spatial autocorrelation
methodologies, to identify locations for targeted health promotion
interventions (Anselin, 1995).

Equity and Health inequalities

Apart from the more service-specific areas, much of the work of medical
geographers and cartographers has also focused on the related issue of
health inequalities. Some of the early cartographic work in the UK by the
likes of Howe (1972) focused on mapping spatial variations in morbidity
and mortality to draw attention to inequalities across regions and even
within cities. This work was taken up by a number of early applied users in
the late 1980s and early 1990s though it took till the late 1990s for it to
become mainstream in the National Health Service (NHS) in the UK
(Gordon & Womersley, 1997). In the US the use of GIS in visualising and
analysing health inequalities was developed at an earlier stage principally
through the work of Gerard Rushton, Chuck Croner and Robert Earickson
(Gatrell & Senior, 1999; Rushton, 2000; McLafferty, 2003). In the same
period European research, often with an epidemiological flavour was also
developing strongly in areas such as water quality (Kistemann,
Dangendorf & Exner 2001; Crabbe, Hamilton & Machin, 2004), and motor
neurone disease (Sabel, 2000).

Quantitative measurements of health inequalities have taken a number of
forms. There is a clear relationship between wealth and poverty and the
different measures of health inequalities. Put simply, the rich traditionally
have good indicators for health while the poor bear the burden of ill-health.
A simple starting point for many geographers is to look at how these
relationships are expressed spatially by mapping income against health
indicators (Wilkinson et al., 1998; Driedger et al., 2007). For many
countries, spatial data on income is hard to access. This is less of a
problem in some Western European and Scandinavian countries but
elsewhere the mapping of poverty and deprivation is more problematic. To
get around the absence of direct measures of poverty and wealth, the
development and creation of mathematically derived deprivation indices
has been a common response. This was initiated in the UK with an explicit
health focus to measure the extra income needed by general practitioners
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(GPs) working in deprived areas but has since developed a much wider
suite of applications in both health and social care planning (Jarman,
1984; Noble et al., 2004). Typically a series of relevant census indicators
are chosen, standardised, weighted and then combined, often based on
simple statistics but sometimes using principal components analysis to
come up with a final score (Townsend & Davidson, 1982; Haase &
Pratchske, 2005). Other innovative approaches include the use of
associated multi-criteria analysis to develop the creation of deprivation
scores (Bell, Schuurman & Hayes, 2007). These scores can then be
applied as either an absolute or relative measure, with the latter being
used more widely in policy interventions (Kelly & Teljeur, 2004; Philibert et
al., 2007). There are a number of technical issues with the ways in which
deprivation indices are created, especially as new versions have begun to
combine global scores with domain specific subsets such as employment,
access and health (Noble et al., 2004). Principal amongst those are the
choice, type and relative weighting of indicators, technical issues with
standardisation and the shrinkages applied in creating final scores and the
geographic scale of their application within administrative units (Pringle et
al., 2000). All of these are and have been contested, but despite the fact
that there are ongoing issues with their construction, deprivation indices
remain popular proxies of poverty. In turn they also provide a valuable
denominator for the spatial modelling of health inequalities and
geographical areas with high relative and absolute deprivation scores
have been shown to have a persistent and strong association with
indicators of poor health (Curtis, 2004). This is a common finding whether
it is a study of the suburbs of Glasgow, the banlieue of Lyon or downtown
Montreal. Other ways in which the associations between place and
inequalities in health outcomes have been measured include the afore-
mentioned standardised approaches, in this case through the production
of single indicator measures. The relationships between ‘poor places’ and
poor health is a strong one and Gl Science provides an ability to measure
morbidity and mortality in more sophisticated ways. Clearly to enable
effective scientific comparison between places, there is a need to provide
age and gender standardisation with the raw morbidity or mortality data
(Bailey & Gatrell, 1995; Longley et al., 2005).

From an exploratory spatial data analysis perspective, other theoretical
problems relate to the scale and size of the units for which comparisons
are made. Detailed spatial units, whether wards in the UK, Départements
in France, Gemeinde in Germany or mesh blocks in New Zealand, are
rarely homogenous in either size or population. In addition rural units are
typically larger, but with smaller populations, than their urban equivalents.

83



A number of statistical techniques have been applied to try and account
for this spatial heterogeneity. Bayesian shrinkage approaches have been
used to try and bring extreme values and outliers closer to the mean
values (Langford, 1994; Johnson, 2004). A persistent issue in mapping
health data to areal units is the modifiable areal unit problem (MAUP)
whereby the distribution of observations may be aggregated to different
areal units and thereby exhibit completely different patterns of density. A
number of researchers have studied, and continue to study, this problem.
One approach is to increase the levels of homogeneity in the basic
building blocks and work in this area is being carried out by the National
Centre for GeoComputation (NCG) in Ireland whereby a new geography of
‘atomic small areas’ has been designed to improve the homogeneity and
level of detail of census units for the forthcoming 2011 Census. Other
approaches return to the raw data and use a number of interpolation-
based surface models to essentially bypass the MAUP problem through
the creation of health and population surfaces (Openshaw & Taylor, 1981;
Marceau, 1999; Shuttleworth & Lloyd, 2005). A final issue relates to
comparative work between jurisdictions which may use different types of
spatial units. In these cases a variety of approaches to unit modification in
forms such as weighted aggregation and splitting are necessary to enable
meaningful comparisons to be made (Gleeson et al., 2008).

The use of multi-level modelling has also developed apace in the last
decade or so with an increased interest in the spatial variation of health-
place relationships when examined at a number of different scales. This is
not unlike concerns about using global relationships to model at a local
level expressed in other statistical settings, but essentially the use of multi-
level modelling allows analysts to look at regional or local variation against
a national standard. One example was the work carried out in the north of
the UK by Jones et al. (1997) which explored national patterns in the area
of dental health and tried to see how these varied by local authority area.
A further twist was to pick three areas where different models of
flouridisation (none, artificial and natural) were practiced to see which
provided the best outcomes. In the end, the best outcomes were achieved
in the region where natural fluoridation was practiced. However in all
cases, a strong positive linear relationship between levels of deprivation
and poor dental health were observed. A final linked area, and one with a
long tradition within medical & health geographies is the use of location
quotients, whereby each local/regional measure is weighted by the
national average to identify its relative performance against that global
measure (Joseph & Phillips, 1984).
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Location-allocation and Optimal location modelliing

One theoretical problem which was particularly difficult to tackle in the pre-
digital period, was that of location-allocation modelling and the associated
area of optimal location modelling. Most health and social care planning
systems need to plan the location of services in as efficient a way as
possible. There is a spatial dimension to this problem in that decisions
need to be made as to the locations of services. This decision is usually
based on one of a number of different scenarios which can include: the
location of a brand new service, the addition of a new service to existing
services, the removal of a service or the multiple alteration of existing
services. While it was possible to manually examine this problem, the
constant drawing of different scenarios coupled with the mathematical
calculations of summed distances and catchments meant it was slow work
which often limited the number of different scenarios that could be
modelled. With the arrival of GIS and geo-computational methods working
in tandem with improved spatial data, the calculation of multiple scenarios
became much quicker and the arrival at optimal locations for services
based on available data was easier to achieve.

In addition some of the complexity of real-world choices could be built in to
the system. Typically location-allocation models can factor in different
location criteria, aimed at minimizing the aggregated distance travelled
from home to health centre. The relative sizes of centres are important as
well, as they are taken, in a very broad sense, as measures of
attractiveness and the catchments and drawing power of larger centres
can be factored in to the models as well (Fotheringham & Rogerson,
1994). Some examples of the kinds of work done is this area include the
work of Hodgson in Goa, whereby the existing locations of clinics were
remodelled and overlaid with the optimal locations given the distribution of
the demand population (Bailey & Gatrell, 1995). What emerged was clear
evidence of a need to shift the existing services from the over-supplied
south to the under-supplied north. Oppong & Hodgson (1994) also carried
out some local level planning in Ghana to observe the differing
distributions between an existing and a modelled solution for rural health
clinics in Northern Ghana. Indeed the application of location-allocation
modelling may be particularly effective in mobile settings in the global
South, as opposed to the more fixed health facility locations in the global
North.

A third area where the modelling of optimal locations has been
demonstrated to have power is in the area of system re-organisation, a
common issue in most jurisdictions dependent on often fluid patterns of
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demand and supply. Clarke’s work on the options and possible outcomes
of the closure of a cardio-thoracic service in one hospital in Yorkshire and
its spatial implications is a good example of such work (Martin, 1996). In
this example, the knock-on effect of the re-distribution of service supply
was modelled to examine where revised catchments would emerge and
effectively modelled the new geographies of demand against three
different hospitals, thereby enabling the health authorities in their choice of
where to relocate services. Another example was the work of Charlton,
Fotheringham & Brunsdon (2001) who looked at the spatial implications of
hospital service closure in the UK Midlands. More recently this type of
work has been extended specifically into the planning of community and
health promotion areas through the work of Tomintz, Clarke & Rigby
(2008) around smoking cessation services in Leeds, England. In the
paper, the technique of micro-simulation is used to take existing survey
and area data on ‘at-risk’ groups and use this to provide an intelligent
estimate of smoking rates within the smallest available data units (output
areas). This new knowledge is then used to look at the location of existing
smoking-cessation services to see if they are effectively located given the
modelled demand. In turn, location-allocation approaches were used to
model potentially more effective locations for those services.

Epidemiological planning

Much of the early work of quantitative and theoretical geographers on
health and social care planning focused on the modelling of disease
(Meade & Earickson, 2000). One of the earliest examples of disease
modelling from a spatial dimension was Cliff, Haggett and Ord’s work on
the spread of influenza in Iceland (Cliff, Haggett & Ord, 1986). Prior to
1900 Iceland had no history of the disease but its outbreak and spread in
three separate decades provided a very useful test-bed for the mapping of
its arrival and diffusion. It was found in the last epidemic in 1957-8, that
the infection arrived by air and was then spread, not in a gradual surface
spread form but rather in a hierarchical way, moving from the capital
Rekyavik to the smaller provincial towns and then out to smaller towns and
then the countryside. Once visualised in cartographic form, the
hierarchical and spatial aspects of these flows were clearer to planners
and as a result more effective disease prevention measures were put into
place.

This hierarchical process was also observed by Gould & Wallace (1994)
with the spread of HIV/Aids in the US in the early 1980s. At a key time for
the management of the spread of the virus, the advantage of being able to
map existing and model potential future outbreaks of the disease was both
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providential for the containment and understanding of the disease and as
a by-product, established the potential of Gl science for epidemiological
purposes. The Centre for Disease Control (CDC) in the US, continues to
use GIS in disease mapping. Clearly for epidemiologists, the specific
statistical and spatial statistical techniques used for mapping and
monitoring disease are important. As there is no single definitive or perfect
statistical approach, this has led to a variety of quantitative approaches
across a range of health settings. A useful first collection on GIS and
Health, Gatrell & Loytdnen (1999) focused primarily on the epidemiological
strand. Within that text a number of important issues were identified in
terms of the effect of using different methodologies to map the same
datasets. Braga et. al's work in the mapping of lung cancer clusters in the
vicinity of the Italian cities of Lucca and Viterbo showed the benefits of
using kernel and Bayesian methods for classifying rates of stomach
cancer over more traditional standardised methods (Braga et. al, 1998).
However while the results were more effective in visualising clusters they
continue to raise some issues around whether the method drove the
patterns rather than vice versa. In addition, critical concerns with the
nature and meaning of disease clusters also inform ongoing
epidemiological work in this area (Jacquez, 2008).

Again the place of statistical modelling of spatial data is central to studies
like that of Johnson (2004) on the modelling of prostate cancer rates in
New York State. In this work, standardised incidence rates (SIR) for
prostate cancer by zip code were subjected to full Bayesian hierarchical
modelling to identify the relative performance of spatially smoothed data.
The result showed that the spatial scan statistic was effective in mirroring
observed SIRs and that relative density of population was behaving
consistently within the model with smaller rural zip codes being associated
with greater levels of uncertainty. Innovative data approaches used to try
and link personal spatial data with measured air quality data was the
subject of work by Crabbe, Hamilton & Machin (2000) whereby the health
status of individuals and their daily time-space patterns of exposure was
compared with observed air quality data to see if relationships could be
established. It was also a comparative piece of work between the cities of
London and Barcelona.

Policy and service planning

The location and distribution of health services, both primary and
secondary, has long been a core concern of medical and health
geographers. In particular the location of services in relation to the
distribution of populations has focused attention on issues of equity,
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location quotients and notions of inverse care (Joseph & Phillips, 1984;
Boyle et al. 2002). Additionally the relocation, reallocation and in some
cases, closure of services has also been a highly contested area of health
care planning debate. While such debates are often related to political and
cultural factors, they are also debates which are regularly couched in
spatial terms (Meade & Earickson, 2000; Jordan et. al, 2006). Similarly the
geography of service administration and the tensions between
administrative health region boundaries and the more natural and even
non-spatial aspects of patient choice and mobility remain significant issues
(Curtis, 2004; Gatrell & Rigby, 2004). All of these debates have a spatial
dimension and clearly implicit in all, the notion of access to services is
paramount. Indeed accessibility is often used as a proxy measure of
service equity and it is with this in mind that the ways in which
geographers have measured and modelled accessibility are explored
below.

An area of study which in a sense links accessibility and utilisation with the
location of services in a very specific spatial sense is the planning of
emergency services. Such services include a range of ambulance services
as well as fire, air-sea rescue and other paramedic services. A key aspect
of such services is their mobility and spatial spread. Unlike most user-
service interactions, which involve the former travelling to the latter, the
reverse is often the case in emergency situations, though the patient is
ultimately brought back to the service. Time and space modelling within
GIS had been carried out in a number of emergency scenarios (Jones &
Bentham, 1995). Examples include the work of Jones & Jargenson (2003)
who used multilevel modelling to explore risk factors associated with road
traffic accidents in Norway and Zerger & Smith (2003) who looked at how
GIS could effectively support disaster-scenario planning in the event of
cyclones in Queensland, Australia.

GIS has also been applied to the financial modelling aspects of health and
social care planning. The funding and resourcing of health care systems is
a complex mix of econometrics, demography, case-mix data and
forecasting. In the 1980s in the UK, there was a realisation that health
care resourcing was likely to vary over space and a number of
approaches, broadly named, resource allocation models, were applied.
These methods set in place the process whereby funding was moved from
over-resourced areas to under-resourced areas and similar patterns were
observed under the period of communist rule in the USSR as more
equitable resourcing in the different republics led to an evening out (and
improvement) in a range of health indicators.
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More recently, the spatial dimension of resource allocation modelling has
been more fully incorporated in countries such as Wales and New Zealand
(Gordon et al., 2001; Senior & Rigby, 2001; Rigby et al., 2005).

The use of GIS in the planning of social care services, is, as stated
previously, much less developed than health care. Depending on the
jurisdiction, social care was traditionally managed separately from health
care (as in the UK and Scandinavia) or embedded within health care
structures (as in Ireland). With a growing realisation that a more integrated
approach to social and health care planning may be more effective, some
of the Gl Science approaches used in the health sector are being slowly
moved across to the social services. Many of these are still quite close to
health services such as in the areas of community health, exemplified by
the work of Driedger et al. (2007) whereby GIS-based spatial decision
support systems were introduced into a public/community health arena
related to early years services. The work aimed at seeing how easy or
difficult it was to engage non-experts using web-based spatial tools and a
number of difficulties arose, specifically around spatial literacy and the lack
of spatial skills amongst key staff. Other work has been linked again into
more specifically social settings such as the work of Zhang et al. (2006) on
monitoring obesity and physical activity levels in public schools in Chicago.
Here, the data was used to link spatial data across two different sorts of
boundaries, namely census tracts and school catchments to better target
educational initiatives to improve the future health of the children. Again
some of these studies, while having a social/community dimension, are
still within the health arena. More social-specific studies include the work
of Foley (2002) on using GIS to plan services for informal carers
(described in more detail below) and Milligan & Fyfe (2005) on planning for
volunteering services as well as developing work in the fields of disability
(Moss, Shell & Goins, 2006).

Public Health and information management

As noted previously, the gradual ‘democratisation’ of Gl science and
spatial data sets within society has led to a developing concern with the
ways in which GIS experts can translate their theoretical and quantitative
concerns and knowledge more effectively into the public realm. Quite
apart from the promotion of the subject, it does behove Gl experts to think
through more fully about ways in which to inform and engage the public
(Goodchild, 2006; Elwood, 2006). The development of the Internet as both
a process and platform is also timely in terms of the presentation of health
information. A number of public agencies including government health
departments, specialist agencies such as the CDC in the US and even
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international bodies such as the World Health Organisation, have all been
engaged in the promotion and dissemination of spatial health information
in the last decade or so. In addition, this is an area where the potential of
the visualisation features of GIS are particularly suitable. Bell et al. (2006)
noted the increasing production and consumption of traditional flat maps
but suggest that there is a need for more interactive and on-line health
information which allows the public to carry out their own queries and
analysis. Given concerns around cancer and other data sets, especially in
relation to public (mis)interpretation, the clarity and communicative
potential of such maps must be carefully thought through. They identify
some examples, both from the work of the CDC but also within individual
US states, which identify interactive formats, incorporating spatial
statistical summaries and displays (see Figure 1 below) to better inform
the public.
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Figure 1: Example of Interactive Health Statistics Website (Bell et. al., 2006)

Another area where digital health information has developed is evidenced
by the gradual normalisation of electronic patient records (EPR),
especially in countries such as France, where full patient data is held on a
small credit card allowing for a much greater mobility and sharing of digital
patient information. In terms of disseminating the tools and base data to
set up a Health GIS capacity, the work of the WHO and its Health Mapper
system, though flawed, is also an example of work in the developing world
to tackle critical and ongoing issues around the management of infectious
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and increasingly, degenerative diseases. A good regional example of data
sharing and disease monitoring is the work of Singhasivanon et al. (1999)
on the management and spatial modelling of drug-resistant malaria in the
Mekong Delta. Other ongoing examples are the work of the Health
Observatories in the UK and the creation in Ireland of a new online
product, jointly development by government, academia and private
agencies called Health Atlas Ireland (Pringle et al., 2007). While ongoing
problems remain with such initiatives, especially in the release of detailed
spatial data sets for public consumption and getting the balance right
between technical knowledge and public understanding, these are hopeful
developments, especially in relation to the democratisation of public health
information and the greater partnership involved between GIS experts,
health professionals and lay users of health services.

Summary

The above summaries are precisely that, a brief survey of ongoing Gl
science research in a number of sub-themes within the broader heading of
health and social care planning. While the theoretical and quantitative
aspects may be more fully appreciated by reading the cited references, it
is hoped that a flavour of the kinds of problems and ways in which those
problems have been tackled to date is incorporated above. While the
division amongst the different application areas has created an applied
structure, it is useful to summarise them in relation to the wider themes of
data, analysis and visualisation. Clearly as the value of spatial data has
become better understood, the collection and tagging of health data has
become more and more effective and detailed. While the quality and level
of this spatial ‘tagging’ does vary from country to country and from region
to region, there is a much clearer understanding that good analysis
requires good data. From an analytical perspective, the ongoing
development of spatial statistics and spatial data analysis whether through
Bayesian models, improved scan statistics along with increasingly
sophisticated methods of data mining have all improved both the precision
and quality of data analysis. Notwithstanding this, there are some
persistent spatial problems, primarily around sampling, the spatial
configurations of the data sets and comparability issues which continued
to be problematic for analysis. Finally, the improvements in data and
analysis are gradually feeding through into the public arena. While
traditional maps and other cartographic output continue to be widely used,
there is a development, driven by the ubiquity of the Internet, in other more
interactive and innovative ways of displaying spatial data which are
leading to better health and social care planning. Issues remain however
in the areas of access, interpretation and public spatial literacy.
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APPLICATIONS IN HEALTH AND SOCIAL CARE PLANNING

This section will deal with the work of the authors and their own histories
coming out of the UK and Irish systems. A number of surveys and studies
carried out by the study team, do, we feel, exist as a useful body of work
around spatial analysis and Gl Science applications in the health and
social care arena and we have been selective in choosing three examples.
The chosen studies are driven by concerns with data, analysis and
visualisation but also focus in on a core applied problem, with the intention
of identifying an outcome or solution as well as identifying future directions
for that particular line of enquiry. The first, and longest, example is based
on work presented at the 15" European Colloquium on Theoretical and
Quantitative Geography, held in September 2007 at Montreux in
Switzerland. This work explored the modelling of cross-border hospital
access on the island of Ireland. The other two examples are more briefly
discussed and relate to: a) a UK based research project on the application
of GWR techniques to the modelling of limiting long-term illness in
Northern England and, b) a social care application in Southern England.
From these empirical works, we have developed a range of evidence that
also informs the wider literature. Many of the issues we have found in our
research reflect wider concerns and we will end the chapter with some
suggestions around how these issues might be tackled.

Cross-Border Access to Hospital Services on the island of Ireland

With recent changes in the security situation in Northern Ireland, the two
governments of the Republic of Ireland and Northern Ireland became
interested in modelling economic and social structures across the whole
island and health has been one of the key areas explored (Gleeson et al.,
2008). Informally, there has been cross-border movement in the utilisation
of health care and a recently published study by Jamieson & Butler (2007)
identified considerable potential for cross-border collaboration in hospital
services, particularly in the vicinity of the border. The pilot study presented
here took a geographical or spatial approach to measuring accessibility to
acute hospitals and examined how the current configurations both north
and south could be expressed in terms of an accessibility score. It also
quantitatively investigated another of Jamieson and Butler's themes,
namely the relative equity of hospital catchments both North and South as
expressed by beds per patient. In the latter half of the 20" century, the
introduction in the North of the NHS model created one structure while a
theoretical national public hospital system also existed in the South,
though characterised by a more complex public-private mix with a stronger
role for private health insurance. Northern Ireland had a population of 1.69
million according to the 2001 Census and this was estimated to have
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increased to approximately 1.74 million by 2006. In the Republic of Ireland
Census data put the population at 3.92 million in 2002 and 4.23 million in
2006. Within both jurisdictions there was a range of hospital sizes,
expressed in both the number of specialisms and the total bed count, with
the latter being the sole measure which was meaningfully used in the
model. In all 9 hospitals (Trusts) in the North and 40 hospitals in the South
were included in the modelling.

From a spatial modelling perspective, there are a number of important
considerations contained in policy discussions, which need to be
considered. The re-organisation and improved planning of hospital
services is by definition, the core concern of policy in both jurisdictions.
Clearly, geographical tensions always exist in any decisions on where to
locate services. These will reflect tensions between urban and rural areas,
between densely and lightly populated areas and between local, regional
and national imperatives. Few decisions made around either additions to,
or cuts in, services provision escape the contentious question of exactly
where these adjustments take place. Ongoing discussions noted in
Jamieson & Butler (2007) and Murphy & Killen (2007) around the location
of new hospitals (both regional and service-specific), exemplify all of these
issues and further emphasise the importance of geography and the need
to have spatially-informed decision making.

One area where policy was arguably lacking was in some of the evidence
bases that were used for health care planning, particularly those with
spatial dimensions (Charlton, Fotheringham & Brunsdon, 2001). It was
possible to access annual data on the nature and level of hospital service
provision in terms of bed counts, occupancy rates, specialisms and day
patient activity. These were associated with individual hospitals but were
aggregated up to regional or national level as well. It was also possible to
get information on utilisation of services though the spatially-tagged data
on this was better in the North than the South with postcodes found only in
the former. Both of these sets of data have been studied and analysed but
rarely had the locational/spatial aspects of both been put together in a
holistic way. Additionally, geographical aspects such as density of
population and the impact of distance had rarely been factored in to
strategic planning (Murphy & Killen, 2007).

Perhaps the primary value of a GIS based approach is its ability to collate
large volumes of information and to produce not one answer but a number
of different answers to inform a number of different planning scenarios.
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The aim of the project was to test the use of a spatial approach to examine
specific aspects of accessibility associated with existing hospital provision.
The specific objectives of the study are a) to use GIS to model spatial
accessibility to acute hospitals in both Northern Ireland and the Republic
of Ireland; b) to model for two different time periods to identify how
changes in bed provision and local populations had impacted on
accessibility; c) to provide a spatial measure of supply equity in the form of
beds per patient and finally d) to explore how changes, even over a very
short time period, impacted spatially on improvements or reductions in
modelled supply.

The modelling was driven by the three core geographical considerations
mentioned previously around: a) the distribution of potential patients
(potential need/demand), the configuration of hospitals north and south
(potential supply) and the transport network (accessibility based on travel
time). Based on the literature on spatial accessibility noted above, three
core datasets were identified as being essential. These included a)
demographic data at electoral divisions (ED) and output area (OA) levels
(drawn from the census), b) point datasets for individual hospitals with
associated data on size, status and levels of provision and c) data related
to the road networks in both countries. A number of issues arose in
relation to spatial scale, compatibilities of classifications and the timing of
data collection but a robust initial model was still produced (Pringle et al.,
2000; Kitchin, Bartley & Gleeson, 2007). Once all the component parts
were in place the data was fed in as a set of spatial data layers into Arc-
Info, a proprietary GIS package, using a primarily raster approach. For the
travel time each road segment had a unique ID and classification code for
the road type which in turn allowed for the modelling of average speeds
and hence travel time. The demographic data for population (and sub-
populations) for each ED/OA was initially stored within a set of vector
polygons but these data were transformed to be attached to an ED/OA
centroid for development within the raster model. Finally the locations of
all the hospitals were digitised into the system, initially in vector format.

Given that the aims were to produce a working accessibility ‘score’ as well
as to define nominal catchments, the model started by assuming the
creation of nominal non-overlapping catchments for each hospital. Once
these catchments were defined and mapped, it was possible to use the
background demographic data to compute the number of residents in each
catchment. Given that we also knew how many beds were available at all
the hospitals, we could then compute the national ratio of beds per head of
population. To develop this, it was possible to then compute the expected
number of beds if local supply followed the national rate and then
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calculating the ratio of the actual number of beds to the expected number
of beds gives us the local bed rate as a location quotient. The second
piece of modelling was more complex and primarily carried out within the
GIS to combine the road network, travel speeds and the specific locations
of the hospitals with small area local population counts to produce an
effective ‘cost-distance’ surface which provided us with an accessibility
score. The final technical stage was to remodel the accessibility scores
with the Border included and excluded to examine its spatial effect on
hospital activity.

The initial modelling focused on the period 2001/02. There was an
estimated combined island population of 5.59 million in this period. The
total number of beds modelled into the system at this time was 14,129 and
using the two statistics together and all-island rate of 0.00257 beds per
person was identified. Multiplying each modelled catchment's population
by this rate would yield the expected number of beds, which could be
compared with the actual number. The initial map (Figure 2) identified a
strong clustering of high accessibility values around the urban centres.
This was driven very strongly by the location of the hospitals and by
extension the higher densities of population close to those hospitals. The
areas with the lowest accessibilities consist of two types, firstly the lakes
which had been given artificially high values in the modelling and
secondly, mountainous areas which were typically areas of low population
density and amounts. However, the general low levels of inaccessibility
associated with the western seaboard and the upland parts of the north
should also be noted as identifying areas with genuinely low accessibility.

The second phase of the modelling looked at the period 2005/06 using
updated hospital, road and demographic data. There were strong caveats
with the demographic data due to the lack of up-to-date small area data for
Northern Ireland and as a result this data was modelled from district level
estimates. The accessibility modelling identified for 2005-06 provided very
similar results for the earlier period with the same urban clusters being
identified as areas with good accessibility and the more remote and rural
areas being identified as poorly served. It was difficult to get a very strong
sense of change from the spatial accessibility maps as the periods were
particularly close and the increases in bed provision were matched by an
increase in population across both jurisdictions. From a policy evidence
point of view this is a useful finding in that the input of additional beds in
this period (15,008 in 05-06 as opposed to 14,129 in 01-02) was
countered by an almost identical 6.2% increase in population.
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What was more valuable from a comparative point of view in this period
was to look at change in a more disaggregated way by looking at provision
at a regional scale. This was achieved by looking at the local hospital
regions and their modelled bed rates. As noted in the methodology
section, for each hospital catchment a form of location quotient for that
hospital was calculated which compared actual local provision to the
expected provision if national averages were applied.
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Figure 2: Modelled Accessibility to Hospitals on the Island of Ireland
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This allowed for the calculation of location quotients for both periods.
When the two time periods were compared (Figure 3), it was possible to
tease out more fully changes at a local level. A number of areas showed a
reduction or a loss in their location quotients, most definitively in Galway
but will small losses recorded across the Midlands and South Coast and in
Donegal and South Down as well. While a global pattern of change was
hard to establish, this local level change was explained by areas where
bed numbers had been reduced or had stayed static against an increasing
population. In turn much of the North saw slight increases in the their
location quotients as did parts of central and mid-Leinster and even some
more remote parts of Mayo and West Cork. Policy makers could find this
data, caveats notwithstanding, useful in a number of ways. Spatial
approaches such as this identify more exactly where change is taking
place. In addition, it should be noted that a reduction in the location
quotient for an area like Galway, while in absolute terms suggests a
diminution of service provision, could also be seen in relative terms as a
reduction in over-supply which in turn brought the area more into line with
the national average.
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Figure 3: Variation in Service Provision: Change in Regional Bed Supply, 2002-2006,
Ireland

As a final part of the modelling the impact of the border was identified and
spatially modelled as two scenarios, one with and one without the border.
This allowed the impact of a non-border scenario to be modelled and
compared with a separate model. This identified the location of areas
disadvantaged in terms of accessibility by the presence of the border, as
well as the extent, expressed in excess travel time zones, of that
disadvantage (Figure 4). Within the GIS it was possible to model in the
border as a fixed feature and by subtracting the ‘no-border’ and border
accessibility surfaces, it was possible to calculate a time disadvantage
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grid. This grid was then classified into time bands, vectorised and
intersected with the population data to obtain the proportions in each
band. While 52% of the populations in these areas were disadvantaged by
the presence of the border by less than five minutes, a full 26% of the
residents were disadvantaged by fifteen minutes or more. As Figure 4
demonstrated, the GIS was able to not only calculate these inequities but
identify exactly where the zones were. This also identified another very
useful policy function for a spatial modelling approach.
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Figure 4: Time Variation in Access related to the presence of the Border

A developed version of the model would be improved by analysis of
population data at small area level along with specialist health service data
by specialty (utilisation rates, staffing numbers, hospital throughput).
However the primary aim of the research was to identify the potential of
GIS in terms of ‘scenario modelling’ and allowed for both a spatial and a
numerical analysis of the impacts of the existence of the border. A
predictive version of the model for say 2011 or even 2015 which included
an adjustment to the bed sizes based on planned capacity changes would
also be relatively easy to do. A third quantitative approach would be to
model individual services which would incorporate the production of
service specific accessibility surfaces, which might also be weighted by
utilisation data.
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Using GWR to model Limiting Long-term lliness in Northern England

One of the most common technical issues is modelling health care
applications in such a way that local, rather than global associations are
incorporated into those models. Fotheringham, Charlton and Brunsdon
(1998) looked at this problem in relation to the development of what they
term geographically-weighted regression (GWR). Though GWR has been
further developed in the intervening decade, this application is a health-
specific one. Taking as a starting point earlier work around estimation
methods (EM) which try to tackle the problem, the basic premise is to see
how regression techniques can be improved by shifting from global to local
relationships (Jones & Casetti, 1992). Typically, when a regression
approach is used to establish a relationship between two variables for a
number of spatial units, that relationship, usually expressed as a
parameter estimate in the regression equation, is assumed to be the same
(stationary) across all units. Yet clearly if one was applying this method
across a region or country, one would assume that there would be some
spatial variation (spatial nonstationarity) in that relationship in different
parts of the country or region. Such spatial nonstationarity is not
accounted for in the model. The methods used in EM tackle this problem
by looking at trends in parameter estimates over space. However GWR
develops this more fully by assuming that within the regression equation
there is a continuous surface of parameter values, and we can obtain
estimates of the values of the parameter at various locations of this
surface. A number of statistical problems affect such an approach,
particularly in the model specification, and are related to the choice of the
spatial weighting function (to find the optimal bandwidth for the kernel type
approaches used in the model) and also to finding a balance between
sample bias and variance.

These issues were applied to a health-related data set, namely levels of
limiting-long-term iliness (LLTI), in Northern England, to test and map the
spatial variation in the local parameter estimates created by GWR. In
essence the paper analysed: a) how the GWR parameter estimates
(showing spatial non-stationarity) compared with the earlier EM method
and, b) how they performed when tested against a number of independent
variables used to predict LLTI. The variation between the two different
methods is shown in Figure 5 below with a focus on the parameters used
in modelling the relationship between LLTI and unemployment.

The spatial distributions of the EM (Quadratic) showed an artificial
tendency to the north-west of the map, whereas the GWR version much
more closely matched empirical patterns of unemployment on the ground.
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Another particularly interesting result was that for population density,
another of the independent variables. One would assume that given that
LLTI rates are higher in urban areas; these would in turn be associated
with greater population densities. Yet the mapped GWR parameters for
this variable showed up as very high in more rural part of Durham, one of
the counties in the study. However, given the fact that high levels of LLTI
in the UK have traditionally been associated with former coal-mining
districts, it was found that those parts of rural Durham were actually where
most of the former miners lived. This proved the effectiveness of GWR in
exposing previously disguised local variations in explanatory statistical
relationships. This and other forms of spatial statistics have to date been
proved effective, yet have been under-used in other health related studies
and continue to provide potential value in the planning of public and
chronic health interventions.
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Figure 9. Quadratic expansion of the unemployment parameter.
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Figure 14. Geographically weighted regression distribution of unemployment parameter.

Figure 5: Spatial Variations between EM and GWR Methods (Fotheringham, Charlton &
Brunsdon, 1998)
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Modelling Social Care Planning for Informal Carers in Southern England

One of the few examples where GIS was applied in a social care setting,
Foley (2002) looked at the potential of GIS to assist in the planning of
services to and for informal carers in Sussex, England. While a
considerable lack of knowledge of the potential of GIS in this area was
identified in discussion with key informants in the services involved, three
useful case studies were developed to show its potential. The first case
study used GIS to help model the financial implications of different levels
of service provision within a spatially-costed model of potential demand. In
essence, a cost per spatial unit (ward) for three different levels of service,
daily, weekly and monthly, was calculated for respite and short-term care
services across the county of East Sussex. This was weighted by existing
and potential future demand and helped the local social services
department identify exactly where costs might accrue in respect of the
different models of services provision proposed.

The second related to identifying the optimal location for a new special
school as access to an existing school had been closed off. This involved
the mapping of existing utilisation of services and the demographic
modelling of a specific sub-population of children (under-fives) who might
use the school in future. Two potential sites were chosen and while the
final choice was outside of the scope of the project, the narrowing down to
two sites was a big step forward for the commissioning agency.

Finally, the work also modelled the impact of changes to service
boundaries and the impact on potential catchments for a new voluntary
service located on the border of two different authorities and crucially
helped the service identify that it had sufficient capacity within the new
authority to justify its location. The final section of the work also looked at
some of the barriers and opportunities for the use of GIS in social care
planning more generally, some of which are persistent and will be
discussed below.

CONCLUSION: SETTING A RESEARCH AGENDA

Having examined the wider literature and the specific recent projects
carried out by the authors, it appears that the application of theoretical and
quantitative aspects of Gl science has reached a certain level of
maturation, but is also ready for a new injection of energy. As an
application area, health and social care planning are emblematic of this
stage. Within the broad areas of data, analysis and visualisation, we have
identified a range of ideas, many of which have been around for twenty
years or more, such as MAUP, modelling local relationships and the
meaningful measurement of health inequalities, which still exercise the
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minds of theoretical quantitative geographers. The focus on the spatial is
in part what separates Gl scientists from mathematicians and statisticians,
which is also a source of complexity. Many algorithms and models, which
work well in the abstract, become more problematic when projected onto
Cartesian or three-dimensional space. Spatial behaviours, especially when
modelled within the arenas of health and social care planning, have an
additional applied aspect which is also a source of complexity. While
theoretical aspects of supply, demand, need and access can all be
modelled spatially, the planning aspect, essential in any applied use of
these ideas, is subject to the input of humans, who have an innate ability
to contradict any known theoretical construct. From a social care
perspective, professional knowledge of these factors may be better fed
into any future Gl modelling.

This remains a core challenge to any work in the health and social care
planning arena; to make the theoretical and quantitative work make sense
in a real world environment. It should also be noted that Gl scientists do
not work in a vacuum and collaborate in both theoretical and applied ways,
with a range of social and health professionals and biomedical experts. In
such interdisciplinary settings, this potential is not always met as
established practices and approaches often sustain barriers. This is not to
say that such models cannot have value on their own. Indeed they often
help planners to rethink the ways in which they model their own data. For
example, the MAUP notion, familiar to most Gl scientists, still comes as a
surprise to some social and health care planners. Yet there is rich
evidence that the demonstration of spatial analysis and the outputs of that
analysis have helped focus planners and administrators attention much
more thoroughly on the spatial potential of their own data sets (Foley,
2002; Smith, Higgs & Gould, 2005). Indeed the simple ability to map a
health data set has often been sufficient to stimulate the interest of health
service managers (Gordon & Womersley, 1997). As a balancing effect, the
established work of health and medical professionals, especially in clinical
and applied epidemiological settings, has sometimes been underused by
Gl scientists, and stronger collaboration and better communication must
be considered. Finally, it should be noted that many of the algorithms and
quantitative tools used by Gl scientists in other arenas such as economics,
engineering and the biological sciences may also have a wider
applicability within health care, especially in the epidemiological and
service-planning aspects of the subject (Longley et al. 2005; Wilson &
Fotheringham, 2008). These have been barely looked at to date and
represent a useful future direction.
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With the gradual development of web-based products and the increasing
ease with which locational data can be created, there are a number of
pointers towards opportunities for the Gl science community to embed
their ideas into health and social care planning. As was noted above, the
increasing publication and dissemination of health data on the Internet has
created on the one hand, an expectation and on the other a requirement,
to engage the public in this way. The success of Google Earth and the
increasingly common applications being developed which link this to public
mapping, mash-ups, wiki-environments and location-based services points
to ways in which spatial data and visualisation are developing almost
beyond theory. Information on health and social care facilities for example,
is becoming one of a range of service information which is provided on
such services. This is led by developments in the US, with many sites set
up to provide answers to spatial queries such as ‘where is my nearest
hospital?’ and ‘what residential care homes exist within 30 miles of my
home?’. These types of sites are less well developed, though likely to be
no less popular, in the more publicly-funded systems in Europe and other
parts of the global North. The development of government sponsored web
sites, both from within the health arena, but also from wider statistical
sources such as the Office for National Statistics in the UK and
EUROSTAT at an EU level, have also begun to create expectations for
quality health data. In addition, the development of easy-to-adapt
technologies such as Google Maps and open source software provides a
real opportunity to promote the use of GIS in health and social care
planning in the poorer countries of the world.

So what are the possible barriers to accessing this potential wider and
deeper supply of spatial data? As noted above with the realisation of the
potential of spatial information, data holders, public and private, are
experiencing a demand for that information which has made them sit up
and take notice. In an information society, where knowledge is power,
ownership of spatial data, especially data at a detailed or even individual
scale, has become more contested in the last decade. At the same time as
the usability of data has improved due to better spatial tagging (often at
address or even detailed co-ordinate level) and the development of EPRs,
access to that data can remain problematic. This is less of an issue in
countries such as Sweden, Finland and Norway, where traditions of public
access to private information are well-developed, but in other parts of the
EU, data holders often retreat behind issues of privacy and data
protection. Indeed recent ‘scares’ around the loss of CDs containing
personal information are likely to harden rather than soften that position
(Fresco, 2008). While INSPIRE, the recent EU Directive on spatial data

105



should theoretically embed frameworks to make a range of spatial data
sets more publicly available, health and social care data do not appear
prominently in the initial data appendices (European Union, 2007). A
number of successful examples of accessing health data seem to have
features in common. Working with and on behalf of health and social care
agencies is important as are signed agreements around access. Proofs of
concept, whereby sample data provided can be shown to be: a) safe and
b) useful (in terms of its output being usable for planning purposes) may
also help to build up a culture of trust and openness.

While technical advances in spatial modelling are and will continue to
develop, there are a number of ways in which some of that technical work
could perhaps be better integrated. While research on accessibility and
utilisation often go hand in hand, they are often treated as separate issues
in theoretical and modelling terms. This is partly to do with the fact that
conflating the two can sometimes lead to counter-intuitive results. In
addition, work on the measurement of accessibility is dominated by the
supply end, so that much of the modelling looks at population-weighted
travel times to generate accessibility surfaces. At the same time, location—
allocation approaches are interested in the ways in which the volumes of
supply impact on the location of services. Yet it seems as if the logical and
strong theoretical connections between these two are not as well
developed as they could be. The development of supply-weighted (as
opposed to demand-weighted) accessibility and travel time maps seems a
logical next step. Damiani et al.’s (2003) attempt to model choice into such
an equation is a useful first step but it feels like more could be done. It is
unlikely that the problems associated with MAUP will ever be overcome,
especially in the area like health and social care planning. Given the fact
the organisation of service planning in most jurisdictions is still wedded to
fixed boundaries, catchments and administratively-oriented real units, this
will remain a problem. Perhaps one approach might be to see if advances
in spatial data at an individual level can be used as f‘input’, thereby
providing a greater flexibility for developing different forms of areal units of
‘output’. By aggregating better-quality raw data into models and using
them to develop more applied, practical but still ‘data secure’ outputs, a
lessening of the grip of MAUP and traditional reporting units might be
possible. One interesting example of this from Ireland was the work of
McCafferty & Canny (2005) in mapping benefit claimants into previously
unused areal units such as housing estates and Traveller (Gypsy) halting
sites.
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While the development in secondary health care is stronger, there is the
feeling that much promise remains in primary and social care settings.
There is a suggestion that a gap still remains between the
methods/technologies and their use in applied settings and part of the aim
of the literature review is to see whether this gap is expressed through
issues of spatial literacy, resourcing, data constraints or even human
factors such as participation (Elwood, 2006). The increasing use of
primary care data in interesting forms of analysis and visualisation coming
out of research centres like CASA in London points to ways forward for
this type of work (Batty & Longley, 2003). Examples include using geo-
demographic data to model potential demand and the use of new survey
sources to model interventions in a variety of public health and health
promotion application such as teenage pregnancy and social deprivation
(Longley and Singleton, 2008; Petersen et al., 2009). The championing by
the WHO of the use of GIS in planning health care services in countries as
diverse as Ethiopia, Cambodia and Niger points to its global potential.
Indeed in many poor countries with poorly developed health surveillance
infrastructures the arrival of location-based technologies has been a huge
boon to spatially-tagged health data (Kloos et al., 2007). Finally, the
challenges of climate change, and particularly its environmental health
dimensions, point to ways in which GIS can be applied to more effective
planning at a global level.

REFERENCES

Bailey, T.C.; Gatrell, A.C., 1995, Interactive Spatial Data Analysis. Addison
Wesley Longman: Harlow

Batty, M.; Longley, P., 1999, Advanced Spatial Analysis: The CASA Book of
GIS. ESRI Press: Redlands

Beere, P.; Brabyn, L., 2006, Providing the evidence: Geographic accessibility of
maternity units in New Zealand. In: New Zealand Geographer, 62: 135-142

Bell, B.S.; Hoskins, R.; Pickle, R.W.; Wartenberg, D., 2006, Current practices
in spatial analysis of cancer data: mapping health statistics to inform
policymakers and the public. In: International Journal of Health Geographics, 5,
49

Bell, N.; Schuurman, N.; Hayes, M., 2007, Using GIS-based methods of multi-
criteria analysis to construct socio-economic deprivation indices. In: International
Journal of Health Geographics, 6, 17

Brabyn, L.; Skelly, C., 2002, Modelling population access to New Zealand public
hospitals. In: International Journal of Health Geography, 1, 1: 3-12

107



Braga, M.; Cislaghi, C.; Luppi, G.; Tasco, C., 1998, A Multipurpose, Interactive
Mortality Atlas of Italy. In: Gatrell, A.C.; Léyténen, M. (Eds), GIS and Health.
London : Taylor and Francis: 125-138

Bullen, N.; Jones, K.; Moon, G., 1996, Defining localities for health planning: A
GIS approach. In: Social Science & Medicine, 42, 6: 801-816

Charlton, M.E., 2008, Quantitative Methods and Geographical Information
Systems. In: Wilson, J.P.; Fotheringham, A.F. (Eds), The Handbook of
Geographic Information Science. Oxford: Blackwell: 379-394

Charlton, M.E.; Fotheringham, A.S; Brunsdon, C., 2001, Analysing Access to
Hospital Facilities with GIS. In: Clarke, G.; Madden, M. (Eds), Regional Science
in Business. Berlin: Springer: 283-304

Christie, S.; Fone, D., 2003, Equity of access to tertiary hospitals in Wales: a
travel time analysis. In: Journal of Public Health Medicine, 25, 4: 344-350

Cliff, A.D.; Haggett, P.; Ord, J.K., 1986, Spatial Aspects of Influenza Epidemics.
Pion: London

Cliff, A.D.; Haggett, P., 1988, Atlas of Disease Distributions. Blackwell: Oxford

Couclelis, H., 2003, The certainty of uncertainty: GIS and the limits of
geographic knowledge. In: Transactions in GIS, 7: 165-175

Crabbe, H.; Hamilton, R.; Machin, N., 2000, Using GIS and Dispersion
Modelling Tools to Assess the Effect of the Environment on Health. In:
Transaction in GIS, 4, 3: 235-244

Croner, C.; Sperling, J., 1996, Geographic Information Systems (GIS): New
perspectives in understanding human health and environmental relationships. In:
Statistics in Medicine, 15: 1961-1977

Curtis, S., 2004, Health and Inequalities: Geographical Perspectives. Sage:
London

Damiani, M.; Propper, C.; Dixon, J., 2005, Mapping choice in the NHS: cross
sectional study of routinely collected data. In: British Medical Journal, 330, 7486:
284-288

Dicken, P.; Lloyd, P.E., 1990, Location in Space: Theoretical Perspectives in
Economic Geography. Harper and Row: New York

Driedger, S.M.; Kothari, A.; Morrison, J.; Sawada, M.; Crighton, E.; Graham,
l., 2007, Using participatory design to develop (public) health decision support
systems within GIS. In: International Journal of Health Geographics, 6, 53

108



Foley, R. et al.

Elwood, S., 2006, Critical Issues in Participatory GIS: Deconstruction,
Reconstructions and New Research Directions. In: Transactions in GIS, 10, 5:
693-708

Foley, R., 2002, Assessing the applicability of GIS in a health and social care
setting: planning services for informal carers in East Sussex, England. In: Social
Science & Medicine, 55, 1: 79-96

Fotheringham, A.S.; Charlton, M.E.; Brunsdon, C., 1998, Geographically
weighted regression: a natural evolution of the expansion method for spatial data
analysis. In: Environment and Planning A, 30, 11: 1905-1927

Fotheringham, A.S.; Brunsdon, C.; Charlton, M.E., 2000, Quantitative
Geography. Perspectives on Spatial Data Analysis. Sage: London

Fotheringham, A.C.; Rogerson, P., 1994, Spatial Analysis and GIS. Taylor and
Francis: London

Fresco, A., 2008, Data-loss fiasco caused by ‘woefully inadequate’ system. In:
The Times Online, http://www.timesonline.co.uk /tol/news/uk/crime/article421171
1.ece, Accessed October 30™

Gatrell, A.; Loytonen, M. (Eds), 1998, GIS and Health. Taylor and Francis:
London

Gatrell, A.C.; Senior, M.L., 1999, Health and healthcare applications. In:
Longley, P.A., Maguire,_D.J., Goodchild, M.F.; Rhind, D.W. (Eds), Geographical
Information Systems. Chichester: John Wiley: 925-938

Gatrell, A., 2002, Geographies of Health. An Introduction. Blackwell: Oxford

Gatrell A.C.; Rigby, J.E., 2004, Spatial perspectives in public health. In:
Goodchild, M.F.; Janelle, D.G. (Eds), Spatially Integrated Social Science:
Examples in Best Practice. New York: Oxford University Press: 366-380

Gleeson, J.; Kitchin, R.; Bartley, B.; Driscoll, J.; Foley, R.; Fotheringham,
A.S.; Lloyd, C., 2008, An Atlas of the Island of Ireland: Mapping Social and
Economic Change. NIRSA-AIRO: Maynooth

Goodard, M.; Smith, P., 2001, Equity of access to health care services: Theory
and evidence from the UK. In: Social Science & Medicine, 53, 9: 1149-1162

Goodchild, M., 2006, GIScience Ten Years after Ground Truth. In: Transactions
in GIS, 10, 5: 687-692

Gordon, A.; Womersley, J., 1997, The use of mapping in public health and
planning health services. In: Journal of Public Health Medicine, 19, 2: 139-47

109



Gordon, D.; Lloyd, E.; Senior, M.; Rigby, J.E.; Shaw, M.; Ben Shlomo, Y.,
2001, Targeting Poor Health: Report of the Welsh Assembly's National Steering
Group on the Allocation of NHS Resources. National Assembly for Wales: Cardiff

Gould, P.; Wallace, R., 1994, Spatial structures and scientific paradoxes in the
AIDS pandemic. In: Geografiska Annaler, 76B: 105-116

Guagliardo, M., 2004, Spatial accessibility of primary care: concepts, methods
and challenges. In: International Journal of Health Geographics, 3, 3

Haase, T.; Pratchske, J., 2005, Deprivation and its spatial articulation in the
Republic of Ireland: new measures of deprivation based on the Census of
Population 1991, 1996 and 2002. ADM: Dublin

Higgs, G.; Smith, D.P.; Gould, M., 2005, Findings from a survey on GIS use in
the UK National Health Service: organisational challenges and opportunities. In:
Health Policy, 72, 1: 105-117

Hodgson, M.J., 1988, An hierarchical location-allocation model for primary
health care delivery in a developing area. In: Social Science and Medicine, 26,
153-161

Horner, A.A.; Taylor, A-M., 1979, Grasping the nettle — location strategies for
Irish hospitals. In: Administration, 27, 3: 348-370

Howe, G.M., 1972, Man, Environment and Disease in Britain. Barnes and Noble:
New York

Jacquez, G.M., 2008, Spatial Cluster Analysis. In: Wilson, J.P.; Fotheringham,
A.F. (Eds), The Handbook of Geographic Information Science. Oxford: Blackwell:
395-416

Jamieson, J.; Butler, M., 2007, Removing the Barriers: An Initial Report on the
Potential for Greater Cross-Border Co-operation in Hospital Services in Ireland.
Centre for Cross-Border Studies: Armagh

Jarman, B., 1984, Underprivileged areas: validation and distribution of scores.
In: British Medical Journal, 286: 1705-1709

Johnson, G.D., 2004, Small area mapping of prostate cancer incidence in New
York State (USA) using fully Bayesian hierarchical modelling. In: International
Journal of Health Geographics, 3, 29

Jones, A.P.; Bentham, G., 1995, Emergency medical service accessibility and
outcome from road traffic accidents. In: Public Health, 109: 169-177

Jones, A.P.; Jorgensen, S.H., 2003, The use of multilevel models for the
prediction of road accident outcomes. In: Accident Analysis & Prevention 35, 1:
59-69

110



Foley, R. et al.

Jones, C.M.; Taylor, G.O.; Whittle, J.G.; Evans, D.; Trotter, D.P., 1997, Water
fluoridation, tooth decay in 5 year olds, and social deprivation measured by the
Jarman score: Analysis of data from British dental surveys. In: British Medical
Journal, 315: 514-517

Jones lll, J.P.; Casetti, E., 1992, Applications of the Expansion Method.
Routledge: London

Jordan, H.; Roderick, P.; Martin, D.; Barnett, S., 2004, Distance, rurality and
the need for care: access to health services in South West England. In:
International Journal of Health Geographics, 3, 21

Joseph, A.E.; Phillips, D.R., 1984, Accessibility and utilisation: Geographical
perspectives on health care delivery. Harper & Row: New York

Kelly, A.; Teljeur, C., 2004, A new national deprivation index for health and
health services research. SAHRU: Dublin

Khan, A.A.; Bhardwaj, S.M., 1994, Access to Healthcare: A Conceptual
framework and its relevance to Health Care Planning. In: Evaluation & the Health
Professions, 17, 1: 60-76

Kistemann, T.; Friederike Dangendorf, F.; Exner, M., 2001, A Geographical
Information System (GIS) as a tool for microbial risk assessment in catchment
areas of drinking water reservoirs. In: International Journal of Hygiene and
Environmental Health, 203, 3: 225-233

Kitchin, R.; Bartley, B.; Gleeson, J.; Cowman, M.; Fotheringham, A.S.;
Lloyd, C., 2007, Joined-up thinking across the Irish border: Making the data
more compatible. In: Journal of Cross-Border Studies in Ireland, 2: 22-33

Kloos, H., Assefa, Y., Adugna, A., Mulatu, M.S.; Mariam, D.H., 2007,
Utilisation of antiretroviral treatment in Ethiopia between February and December
2006: spatial, temporal and demographic patterns. In: International Journal of
Health Geographics, 6, 45

Kumar, N., 2004, Changing geographic access to and locational efficiency of
health services in two Indian districts between 1981 and 1996. In: Social Science
& Medicine, 58: 2045-2067

Langford, I. H., 1994, Using empirical Bayes estimates in the geographical
analysis of disease risk. In: Area, 26: 142-149

Lin, G.; Allen, D.; Penning, M., 2002, Examining distance effects on
hospitalizations using GIS: a study of three health regions in British Columbia,
Canada. In: Environment and Planning A, 34: 2037-2053

Longley, P.A.; Goodchild, M.F.; Maguire, D.J.; Rhind, D.W., 2005, Geographic
Information Systems and Science, 2" Edition. Wiley and Sons: Chichester

111



Longley, P.A.; Singelton, A.D., 2008, Social Deprivation and Digital Exclusion in
England. In: CASA Working Paper, 145. London: UCL Centre for Applied Spatial
Analysis

Love, D.; Lindquist, P., 1995, The Geographical Accessibility of Hospitals to the
Aged: A Geographic Information Systems Analysis within lllinois. In: Health
Services Research, 29, 6: 629-651

Lovett, A.; Haynes, R.; Siinnenberg, G.; Gale, S., 2002, Car travel time and
accessibility by bus to general practitioner services: a study using patient
registers and GIS. In: Social Science & Medicine, 55, 1: 97-111

Luo, W.; Wang, F., 2003, Measures of spatial accessibility to health care in a
GIS environment: synthesis and a case study in the Chicago region. In:
Environment and Planning B, 30: 865-884

Martin, D.J., 1996, Geographic Information Systems: Socioeconomic
Applications. 2" Edition. Routledge: London

Martin, D., 1998, Optimizing census geography: the separation of collection and
output geographies. In: International Journal of Geographical Information
Science, 12, 7: 673-685

Martin, D.; Wrigley, H.; Barnett, S.; Roderick, P., 2002, Increasing the
sophistication of access measurement in a rural healthcare study. In: Health and
Place, 8, 1: 3-13

McCafferty, D.; Canny, A., 2005, Analysing Poverty at the Local Scale in
Limerick. Presentation to Mapping Poverty Conference, Combat Poverty Agency,
NUI Maynooth, Ireland, September 8"

McLafferty, S., 2003, GIS and Health Care. In: Annual Review of Public Health,
24: 25-42

Meade, M.; Earickson, R., 2000, Medical Geography. 2" Edition. Guilford: New
York

Melnick, A., 2002, Introduction to Geographic Information Systems in Public
Health. Jones & Bartlett Publishers: Boston

Milligan, C.; Fyfe, N., 2005, Making Space for Volunteers: exploring the links
between voluntary organizations, volunteering and citizenship. In: Journal of
Urban Studies, 42, 3: 417-433

Morrissey, K.; Clarke, G.; Hynes, S.; O’Donoghue, C., 2009, Accessibility
Modelling. In: Bavaud, F.; Mager, C. (Eds), Handbook of Theoretical and
Quantitative Geography. Coll. Workshop, 2. Lausanne: UNIL-FGSE: 311-334

112



Foley, R. et al.

Moss, M.P.; Schell, M.; Goins, R.T., 2006, Using GIS in a first national mapping
of functional disability among older American Indians and Alaska natives from the
2000 census. In: International Journal of Health Geographics, 5: 37

Murphy, E.; Killen, J., 2007, Transportation accessibility issues and the location
of a national facility: the case for a new paediatric hospital to serve the Republic
of Ireland. In: Irish Geography, 40, 1: 1-16

Noble, M.; Wright, G.; Dibben, C.; Smith, G.A.N.; McLennan, D.; Anttila, C.;
Barnes, H.; Mokhtar, C.; Noble, S.; Avenell, D.; Gardner, J.; Covizzi, l.;
Lloyd, M., 2004, Indices of Deprivation 2004. Report to the Office of the Deputy
Prime Minister. Neighbourhood Renewal Unit: London

Oliver, A.; Mossialos, E., 2004, Equity of access to health care: outlining the
foundations for action. In: Journal of Epidemiology and Community Health, 58:
655-658

Oppong, J.R.; Hodgson, M.J, 1994, Improving Spatial Accessibility to Health
Care Facilities in Suhum District, Ghana. In: Professional Geographer, 46, 2:
199-209

Petersen, J.; Atkinson, P.; Petrie, S.; Gibin, M.; Ashby, D.; Longley, P., 2009,
Teenage pregnancy—New tools to support local health campaigns. In: Health
and Place, forthcoming

Philibert, M.D.; Pampalon, R.; Hamel, D.; Thouez, J-P.; Loiselle, C.G., 2007,
Material and social deprivation and health and social services utilisation in
Québec: A local-scale evaluation system. In: Social Science and Medicine, 64, 8:
1651-1664

Singhasivanon, P.; Kidson, C.; Supavej, S. (Eds), 1999, Mekong Malaria.
Malaria, multi-drug resistance and economic development in the Greater Mekong
sub-region of South-East Asia, incorporating geographical information systems
databases. In: The Southeast Asian Journal of Tropical Medicine and Public
Health, 30, Supp. 4: 1-101

Pringle, D.; Cook, S.; Poole, M.; Moore, A., 2000, Cross-border deprivation
analysis: a summary guide. Oak Tree Press: Dublin

Pringle, D.; Johnson, H.; Cullen, C.; Boyle, E.; Doyle, D.; Brazil, J.;
McKeown, P.; Staines, A.; Beaton, D.; Mcintyre, M.; Hennessy, C.;
O’Kiersey, C., 2007, Health Atlas Ireland: An open-source mapping, database
and statistical system. GeoComputation 2007. National University of Ireland,
Maynooth, 3rd-5th September

Rigby, J.E.; Skelly, C.; Tate, N.J.; Brabyn, L.; King, R.; Borman, B., 2005,
Inequalities in geographical access to healthcare services: using GIS to inform
policy planning and implementation. Paper presented at the 10th International
Symposium on Health Information Management Research, SEERC, Greece

113



Robitaille, E.; Herjean, P., 2008, An analysis of the accessibility of video lottery
terminals: the case of Montréal. In: International Journal of Health Geographics,
7:2

Rushton, G., 1998, Improving the Geographic Basis of Health Surveillance using
GIS. In: Gatrell, A.C.; Léyténen, M. (Eds) GIS and Health. Taylor and Francis,
London: 63-80

Rushton, G., 2000, GIS to Improve Public Health. In: Transactions in GIS, 4, 1:
1-4

Sabel, C.; Gatrell, A.C.; Loytonen, M.; Maasilta, P.; Jokelainen, M., 2000,
Modelling exposure opportunities: Estimating relative risk for motor neurone
disease in Finland. In: Social Science and Medicine, 50: 1121-1137

Schuurman, N.; Fielder, R.S.; Grzybowski, S.; Grund, D., 2006, Defining
rational hospital catchments for non-urban areas based on travel time. In:
International Journal of Health Geographics, 5, 43

Senior, M.; Rigby, J.E., 2001, Unavoidable costs of rurality and remoteness in
NHS resource allocation: applying the Scottish evidence to Wales. NHS Wales
Resource Allocation Review: Cardiff

Shuttleworth, I.; Lloyd, C., 2005, Analysing commuting using local regression
techniques: scale, sensitivity and geographical patterning. In: Environment and
Planning A, 37: 81-103

Teljeur, C.; Barry, J.; Kelly, A., 2004, The Potential Impact on Travel Times of
Closure and Redistribution of A&E Units in Ireland. In: Irish Medical Journal, 97, 6

Tomintz, M.; Clarke, G.; Rigby, J., 2008, The geography of smoking in Leeds:
estimating individual smoking rates and the implications for the location of stop
smoking services. In: Area, 40, 3: 341-353

Townsend, P.; Davidson, N., 1982, Inequalities in Health: The Black Report.
Penguin: Harmondsworth

Vigneron, E., 1997, Santé, société inégalités géographiques en France. In:
Actualité et dossier en santé publique, 19: XII-XVI

Weiner, D.; Harris, T.M., 2008, Participatory Geographic Information Science. In:
Wilson, J.P.; Fotheringham, A.F. (Eds), The Handbook of Geographic Information
Science. Oxford: Blackwell: 466-480

Wilson, J. P.; Fotheringham, A.S. (Eds), 2008, The Handbook of Geographic
Information Science. Blackwell: Oxford

114



Foley, R. et al.

Yuan, M., 2008, Adding Time into Geographical Information System Databases.
In Wilson, J.P.; Fotheringham, A.F. (Eds), The Handbook of Geographic
Information Science. Oxford: Blackwell: 169-184

Zerger, A.; Smith, D.l., 2003, Impediments to using GIS for real-time disaster
decision support. In: Computers, Environment and Urban Systems, 27, 2: 123-
141

Zhang, X.; Christoffel, K.K.; Mason, M.; Liu, L., 2006, Identification of
contrastive and comparable school neighborhoods for childhood obesity and
physical activity research. In: International Journal of Health Geographics, 5:14

AUTHORS INFORMATION

Ronan FOLEY Martin C. CHARLTON A. Stewart FOTHERINGHAM
ronan.foley@nuim.ie martin.charlton@nuim.ie stewart.fotheringham@nuim.ie
National Centre for National Centre for National Centre for
GeoComputation, NUI GeoComputation, NUI GeoComputation, NUI
Maynooth Maynooth, Co. Kildare, Maynooth, Co. Kildare, Ireland

Department of Geography, NUI  Ireland
Maynooth, Co. Kildare, Ireland

115






Grasland, C.

SPATIAL ANALYSIS OF SOCIAL FACTS

A TENTATIVE THEORETICAL FRAMEWORK DERIVED FROM TOBLER’S
FIRST LAW OF GEOGRAPHY AND BLAU’S MULTILEVEL STRUCTURAL
THEORY OF SOCIETY

Claude GRASLAND

Université Paris Diderot, UMR 8504 Géographie-cités, France

ABSTRACT

This document presents an attempt to build a theoretical
framework for the spatial analysis of social facts, derived
from Tobler’s first law of geography (‘Everything is related
to everything else, but near things are more related than
distant things’) and Blau’s theory of macro sociology and
multilevel structural analysis. At the individual level four
basic times of position and interaction are defined
(geographical/sociological and discrete/continuous). It is
then necessary to discuss the effects of scale aggregation
and time dynamics on the elementary levels of position
and interaction. This part is illustrated by examples about
airflows between world cities in 2000 and euro coin
diffusion across borders between 2002 and 2007.
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INTRODUCTION
In friendly tribute to Waldo Tobler and in memory of Peter M. Blau (1918-2002)

This document presents an attempt to build a theoretical framework for the
spatial analysis of social facts, derived from Tobler’s first law of geography
(‘Everything is related to everything else, but near things are more related
than distant things’) and Blau’s theory of macro sociology and multilevel
structural analysis.

Waldo Tobler’s first law of geography is defined by “everything is related to
everything else, but near things are more related than distant things”
(Tobler, 1970). This law was formulated in 1969 and many authors claim it
is no longer valid in a global world where distance in general — and
physical distance in particular — is less and less important for the
understanding of economic, political and social dynamics. Following
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Tobler, I argue that focusing on a “space of flows” rather than on a “space
of places” as proposed by many authors in their research on Global City
(Beaverstock et al. 2000; Sassen, 2002; Castells, 1996) in no way means
that physical distance has to be excluded from spatial interaction models.
Moreover, | argue that the distinction between “places” and “flows” is a
kind of nonsense if we adopt the perspective that distance is not
independent from flows.

The Association of American geographers recently organized a special
session on Tobler’s first law in 2001 and published the results in AAG in
2004, with six contributions (Barnes, 2004; Goodchild, 2004; Miller, 2004;
Philips, 2004; Smith, 2004; Sui, 2004) and a reply of Waldo Tobler himself
(Tobler, 2004). Some of the authors are critical and consider Tobler’s first
law as nothing more than an “unlawful relation and verbal inflation” (Smith,
2004) that can be explained by a specific step in the history of sciences
(Barnes, 2004) Other authors are very positive but do not really discuss
the law and rather use it as a justification of their own scientific activity as
geographers, in the field of Geographical Information System (Goodchild,
2004) or Physical Geography (Philips, 2004) for instance. But only two
authors (Miller, 2004; Sui, 2004) examine how Tobler’s first law could be
used as a way to build bridges between Geography and other Social
Sciences, in particular sociology.

Based on my previous research in particular (Grasland, 1997), | suggest
here that Tobler’s first law provides the theoretical basis for a specific
research field called spatial analysis of social facts, which could take place
at the border between Geography and Sociology. As noticed by many
human geography specialists (Rushton, 1993; Harvey, 1969) spatial
analysis was for too long confined to the study of objects and paid
insufficient attention to the behavior of individuals and groups. The study
of the spatial behavior of individuals and groups is a subject that has been
largely overlooked in the other social sciences, though it is at the very core
of the specific contribution that geography could potentially make to the
social sciences generally: “Social science deals with behavior and good
theory is about behavior. Since all behavior occurs in spatial contexts,
what then distinguishes the work of human geographers from that of social
scientists more generally? (...) As all geographers know - though,
curiously, many refuse to acknowledge — the spatial arrangement of things
usually affect behaviors. The core of spatial analysis to the behavioral
geographers is the analysis of behavior in its spatial context” (Rushton,
1993).
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In the first section of this chapter, | present an analysis of Tobler’s first
law of geography in connection with other works published by Tobler at
the same period of his career, in particular the inversion of gravity
model that allows linking positions, distances and interactions. |
demonstrate that the inversion of gravity model modifies completely the
point of view on gravity model as distance can be an output rather than
an input of the analysis. What is important in gravity model is not its
capacity to predict flows but its capacity to link structures and
interactions. As a personal complement to Tobler, | develop the
importance of barriers that are related to discrete attributes of spatial
position (e.g. belonging to a political unit) and can sometimes be more
relevant for explanation than quantitative attributes related to
continuous attributes of location like coordinates.

In the second section, | present Blau’s macro sociological theory of
social structure, which is a theoretical attempt to link social positions
and social interactions through the concept of distances and
opportunities. The formal analogy between the approach of Blau and
Tobler makes it possible to derive a generalized framework of analysis
of social facts, at the border of Geography and Sociology. |
demonstrate how the axioms and theorems proposed by Blau for the
analysis of social integration can be easily transposed to geographical
parameters of position that can be either quantitative (distance) or
qualitative (belonging) and are formally equivalent to the distinction
made by Blau between graduate social parameters (e.g. income) and
nominal social parameters (e.g. religion).

In the third section, | focus on my personal contribution about the
elaboration of a theoretical framework for the analysis of social facts
that integrates into a wider perspective the previous discoveries made
by Blau and Tobler. | examine in particular the difficulties to combine
parameters of social and geographical position in the same explanatory
model and | discuss how the analysis of a particular situation has to be
integrated into a wider perspective in terms of scales of aggregation
(emergence, determination) and time dynamics (memory, anticipation).
These theoretical considerations are illustrated by recent research
results on the diffusion of euro coins in Europe, which is considered as
a proxy of global mobility. This example proves that the proposed
theoretical framework can be applied on concrete situations and that
both sociological and geographical factors can be nicely combined in
the explanation of international mobility.
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FROM TOBLER’S FIRST LAW TO GRAVITY MODELS AND THEIR
INVERSE

Tobler’s first law of geography

Looking at the contributions published by AAG on Tobler’s first law of
geography, | was very surprised to observe that most contributors focused
on the famous isolated sentence (“Everything is connected to everything,
but near things are more related to each other than distant things”) without
exploring its relations with the article where it was published, the articles
published at the same time period and the following works by Tobler. This
is not so surprising if we consider that, except some very famous papers
like “Push-Pull migrations laws” (Dorigo & Tobler, 1983) or “Geographical
filters and their inverse” (Tobler, 1969), many publications by Tobler are
difficult to read as they were unpublished preliminary versions or purely
grey literature. When | organized a seminar on Tobler's work with C.
Cauvin in 2002, it was very difficult to realize a complete compilation of his
paper and the 4 volumes that we were able to summarize still did not
cover all of his bibliography. Invited to this seminar, Waldo Tobler filled
some of our gaps in its bibliography but not all. And we were finally very
surprised that such an initiative of collecting the complete works of Waldo
Tobler had not been engaged in the USA before we did it in France.

Tobler’s first law was published in the paper entitled “A computer Movie
Simulating Urban Growth in the Detroit Region” in the journal of Economic
Geography in 1970. In this relatively short 7-page paper, the main concern
is the elaboration of a model of population forecast by computer
simulation, which is very similar to present-day cellular automata
procedures and other dynamic model like SIMPOP (Sanders, 2007). The
first law of geography appears in its complete form only at the third page
but the first part (“everything is related to everything”) is formulated much
earlier in the second paragraph of the introduction, with a clear position in
favor of a positivist and structural approach of social life: “As a premise, |
make the assumption that everything is related to everything else.
Superficially considered this would suggest a model of infinite complexity;
a corollary inference is that social systems are difficult because they
contain many variables; numerous people confuse the number of variables
with the degree of complexity. Because of closure, however, models with
infinite numbers of variables are in fact sometimes more tractable than
models with a finite but large number of variables” (Tobler, 1970). Tobler
clearly considers that a scientific approach implies to write simple models
able to capture a large part of the reality, rather than trying to cover every
dimension. Moreover, the simplest models are the most general and are
therefore likely to be transposed from one field of research to another.
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About his model, Tobler comments: “The model recognizes that people
die, are born and migrate. It does not explain why people die, are born and
migrate. Some would insist that | should incorporate more behavioral
notions (...). My attitude, rather, is that since | have not explained birth,
death or migration, the model might apply to any phenomenon which has
these characteristics, e.g. people, plants, animal, machines (which are
built, moved, destroyed), or ideas. The level of generality seems inversely
related to the specificity of the model” (Tobler, 1970).

My own practice of Tobler’s work has led me to the personal feeling that
the key to Tobler’s first law cannot be found in this paper which is rather a
claim in favor of scientific geography but not really a demonstration of the
law, at least as the second part is concerned (near things are more related
to each other than distant things). It is rather in two other papers published
at the same period that we can find a clearer demonstration of the interest
of a symmetric approach of positions and interactions through distance,
which for me is Tobler's major contribution to theoretical geography. To
support my assumption that linking position and process is the core of
Tobler’s contribution and the key of interpretation of his first law, it is also
important to remind that the paper “Geographical Filter and their Inverses”
was published in 1969, one year before the first law, and focused precisely
on the theoretical problem of discovering processes through the analysis
of forms: “If one assumes that geographical processes operate at various
scales, then a filtering by scales could separate processes. The Fourier
interpretation of scale is the wavelength, or, equivalently, the form of the
spread function. Large-scale processes can thus be separated from small-
scale processes as a preliminary step in geographical analyses. Some
examples follow.” (Tobler, 1969). This was really a research program that
was defined here and the publications of the following years were
therefore clear attempts to propose empirical validations in various fields.

In the paper published in 1970 and entitled “Geobotanical Distance
between New Zealand and Neighboring Islands” (Tobler et al., 1970),
Tobler presented for the first time an empirical application of the inversion
of gravity model and showed how it is possible to derive positions from
interactions and, more generally, to link the analysis of flows and
dissimilarities. In this work realized with natural scientists, Tobler appears
as first author (against alphabetical order) and this fact clearly shows that
he realized the core of the demonstration. Briefly said, the paper
demonstrates how it is possible to propose a simulation model of diffusion
of botanic species between the islands of New Zealand and to estimate
the effect of distance on this diffusion. Even if we ignore the initial location
of species, it is possible to make assumptions on it through an inversion of
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gravity model. Of course, the model does not fit very well with reality as it
is based on Euclidean distance, but further complexity can be added and
anyway it is sufficient to demonstrate that near things are more related to
each other than distant things. Contrary to common opinion, Tobler does
not believe that the concept of distance can be reduced to its basic
geometrical component. But he claims that the simplest model should be
firstly applied before to propose more sophisticated versions based on
residuals. This is very clear in this paper where the authors write: “Model-
building is useful not only because it may allow predictions but also
because it identifies areas for further research by making assumptions
explicit (...) Although the existing model cannot explain all distributions,
one-third of the floristic variation between New Zealand and neighboring
islands is explained by island location and size alone, demonstrating the
importance of spatial arrangement in plant geography”.

One year later, in 1971, Tobler published with S. Wineburg in Nature what
we consider his most fascinating realization. Entitled “A Cappadocian
Speculation” (Tobler & Wineburg, 1970), this very short paper proceeded
to a secondary analysis of archeological data and tried to determine the
location and the name of unknown cities mentioned on the cuneiform
tablets found by Hrozny near the village of Kiltepe in 1925. The author
notices immediately in the introduction that “This is theoretical geography
in the sense of Bunge, which is conditional on several assumptions.”
Contrary to previous researchers that had tried to analyze the relation
between cities mentioned on the tablets through historical approach or
linguistic approach, Tobler focused immediately on geographical distances
that he proposed to estimate through an inversion of the gravity model
assumption: “On a purely random basis, one would expect the names of
large towns to occur more frequently than the names of small towns. The
total expectation is thus that the interaction between places depends on
the size of the places and the separation between the places. This rather
obvious result has been verified in a large number of societies and for
many phenomena. Specifically, we expect the interaction to increase as
the places get bigger, and to decrease as they are farther apart. Many
functions satisfy such a requirement. For social interaction the most
common formulation is the so-called gravity model:

lij = k Pi Pj/ d%j
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Where lij is the interaction between places i and j; k is a constant
depending on the phenomena; P, is the population of i; P is the population
of j; and d is the distance between places i and j’ (Tobler & Wineburg,
1970). Of course, we ignore what the size of the cities is and the flows
between them, but we can propose an estimation of these variables: the
size of cities is estimated by the frequency of quotations on the tablets and
the flows are derived from the common citation of names. It is now
possible to extract the distance by transforming the previous equation in:

dij = (k. Pi Pj / 1ij)""

But distance is only an intermediate step of the research as the real goal is
to link the names of the unknown cities mentioned in the tablets with
archeological spots that were discovered in the region. To fulfill this
objective, Tobler proposed to use a trilateration method in order to derive
the positions of cities from their distance and to produce a map of
hypothetical position as names of a few cities were known and related to
precise locations in space. The final result was the famous map presented
in Figure 1.

One again, Tobler used Euclidean distance as the basic reference of the
analysis but he claimed that this was not an obligation and that the model
proposed could be extended to different situations: “Distance may be in
hours, dollars, or kilometers; populations may be in income, numbers of
people, numbers of telephones and so on; and the interaction may be in
numbers of letters exchanged, number of marriages, similarity of artifacts
or cultural traits and so on” (Tobler & Wineburg, 1970).

In our opinion, Tobler's most important discovery in 1970-71 was not the
efficiency of the gravity model (it was established before), neither the
importance of simplicity in scientific model (it was a very common thought
in this period). The crucial discovery of Tobler was the fact that positions
and interactions can be analyzed in a symmetrical way through the
concepts of movements and accessibility. From this point of view, the
common distinction proposed by M. Castells (1996) and followers
(Beaverstock et al., 2000; Derudder et al., 2007; Sassen, 2002; Taylor,
2006) between the so-called ‘space of places’ and ‘space of flows’ is a
kind of nonsense. What really matters is to define what the relevant
geometries for a common description of both positions and interactions
are. A real criticism of Tobler probably relies more on the choice of his
favorite geometry (Euclidean, continuous) than on the ignorance of the
importance of flows. But we have seen that Tobler always claimed that
there was no reason to limit the analysis of relations between flows and
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structure to the case of Euclidean distance. From this point of view,
Tobler’s ideas are fully compatible with the network society and we have
no reason to reject Tobler's first law on the basis of more and more
complex forms of accessibility taking the form of networks. We can
compare the position of the main airports according to Euclidean distance
and to airflows distances (derived from an inverse gravity model)
(Grasland, 2007).
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Figure 2: Predicted positions of 100 world cities according to Euclidean distance and air

flows in 2000

What | want to illustrate with this two figures is the fact that the interesting
scientific question is not to produce an artificial opposition between places
and flows but, on the contrary, to propose various representations of
places according to various types of flows by means of various types of
distances. The map of Euclidean distances between cities is interesting for
a given set of flows that are related to physical proximity. For example, the
explosion of a nuclear plant power like Chernobyl has much to do with
Euclidean distance, even if winds can introduce some anisotropy. If a
nuclear problem appears in Toronto, we will obviously use the map (a)
based on Euclidean distance to estimate the danger for neighboring cities
and consider that Chicago is more likely to be concerned than Paris. But if
we are interested in the propagation of a disease by means of air flows, it
is certainly more relevant to use a distance based on the frequency of air
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flows as the one presented on map (b). In this map, the distances are
derived directly from the flows through the inverse of a double constraint
model. The proximity of cities reveals here the existence of small worlds of
interconnected cities that are more connected than expected according to
a random network (Guimera et al., 2005). We are exactly in the situation of
the “Cappadocian Speculation” but the tablets have been replaced by the
number of flights between airports, which could be analyzed by an
archeologist of the future, making assumption on the location of cities
according to the discovery of a manuscript describing the air connections
in 2000.

The justification of spatial and territorial interaction models in a social
sciences perspective

Starting from Tobler’s perspective of joint analysis of positions and flows,
the status of the gravity model appears completely different as it no longer
is a deterministic model but a tool for the analysis of society that can be
analyzed both in classical and inverse forms. To support this point, it is
first necessary to remind some basic evidences on the theoretical
justification of the decrease of interactions with distance and to complete
what Tobler considers as obvious in his publications. At this point, we will
introduce a more personal touch by considering not only continuous
measure of distance (measured in time, kilometer, cost, energy) but also
discrete forms of distance related by common belonging to a geographical
area. In our publications and academic teaching courses, we propose to
use the term “spatial interaction” for general effects of distance measured
in a mathematical continuous form and to specify “territorial interaction”
when we want to measure the discontinuous effect of a partition of space.

One remarkably persistent misconception is the claim that applying
Newton’s law of universal gravitation to human movement is the main
justification for the use of spatial interaction models. While it is undeniable
that it has played a major part in their historical development, from
Ravenstein and Reilly to Stewart and Zipf, the analogy should serve
primarily as the starting-point rather than the end point of any theoretical
inquiry into the role of geographical positions in the development of
relations between individuals or groups. This is hardly the place for a
comprehensive historical survey of the various stages in the development
of models of social interaction. Still, it is worth noting that, in parallel with
the refinement of instruments of formalization and modelization of flows at
a macroscopic level, several theoretical currents have sought to provide
an account of the concrete actions and processes that determine the
spatial mobility at the level of individuals or small groups and which explain
the emergence of regulations at the higher aggregate level constituted by
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places. At the same time, the empirical applications carried out at different
levels and in different territorial or institutional contexts have tended to
make more complex the basic hypotheses of the gravitational model and
to refine it significantly with the addition of other variables besides the
simple effect of Euclidean distance (linguistic barriers, political borders,
infrastructure networks, time or cost of relation, etc.).

In my view, there are three broad categories of hypotheses that are likely
to provide the theoretical foundation for models of spatial interaction (effect
of distance) and models of territorial interaction (effect of belonging to the
same grid). The following outline of these categories will be based on the
specific case of migrations.

Justification by the economic theory

Firstly, the economic account of mobility starts with the hypothesis of a
relation between the probability of relation and the cost of moving.
Irrespective of the specific kind of cost incurred (monetary, psychological,
temporal), the migrant is assumed to be a rational being seeking to
optimize the relation between the benefits provided by mobility and the
cost of mobility. If the opportunities of mobility situated at different points in
space offer the same benefits for the migrant, he/she will merely seek to
minimize the function of use constituted by the cost of moving. In theory,
every migrant ought therefore to choose the destination involving the
lowest cost, i.e. the closest destination. But because the migrant is in
competition with other agents, there is an imbalance between offer and
demand of mobility for some destinations. Because of such competition, it
may therefore have to opt for a destination that involves a higher cost or
abandon all hopes of moving if the cost involved is higher than the
predicted benefits. The regulation between offer and demand should
produce a balance resulting in a decrease of the probability of a relation
according to the cost of moving. Thus formalized, the economic
explanation does not prejudice the nature of the cost of moving and its
relation to the geographical situation of individuals. An additional
hypothesis is therefore required to change the economic determinant (the
cost of moving) into a geographical determinant.

In the case of models of spatial interaction, | put forward the hypothesis
that the costs of moving borne by the migrant are proportional to a given
distance that is presumed to include a range of pressures bearing on the
decision of mobility. Thus, in the case of a change of address, the choice
of a remote destination implies a monetary cost (the cost of moving), a
psychological cost (the rupture of social relations with individuals in the
original location), a relational cost (the time involved in moving from the
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original location to the destination, if the migrant decides to make periodic
returns), etc. Most of the distances that determine the overall cost of
relation are variously correlated with Euclidean distance, which is the main
justification for the efficiency of predictions obtained by means of the
gravitational models, even the simplest ones.

The same hypotheses are equally applicable to a model of territorial
interaction where the cost is dependent not on the number of kilometers
effectively covered but on clearing limits of territorial grids. This is
especially apparent in the case of trade flows where crossing a political
border entails tax payments (monetary cost) and a waiting period that may
vary at the border (temporal cost). But the same principle applies to the
mobility of individuals. A person moving to another area or country is often
forced to carry out a number of administrative formalities that entail a
range of costs (temporal, physical, and financial), not to mention the
psychological cost if the territorial grid in question is a particular territory or
an inhabited space to which the individual is particularly attached.

My empirical research on internal migration in multinational countries
(Belgium, Czechoslovakia, and Cameroon) demonstrated many times that
territorial interaction effects are sometimes complementary to spatial
interaction effects (Bopda et al., 2000). And in any case, they both should
be simultaneously introduced in the model in order to control their relative
contribution to explanation. Barriers are not residuals of gravity models
based on distance but alternative forms of analysis of reality that imply the
existence of discontinuities in social and spatial organizations.

Justification by means of the theory of information flow

The economic account of geographical interaction is the most relevant one
since it does not reduce the notions of cost and utility to a mere monetary
equivalence and since it also includes in its definition other factors such as
time, attractiveness, habit, etc. A number of recent studies in spatial
economics have tried to formalize subjective distances by showing that
they are the product of a learning process and that they are thereby
subject to more or less important intervals in relation to the distances that
a homo economicus needs to consider.

Hagerstrand’s theory of the field of spatial information usefully
complements the economic account by focusing on the information
received by or made available to agents that is relevant to their
opportunities of destination. The traditional economic paradigm
presupposes that every agent is a rational and well-informed being, and
assumes that an agent is fully aware of the cost and benefits of every
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relation that he/she is likely to forge. In practice the paradigm remains
unverified. Any material flow is accompanied and preceded by counter-
flows of information that enable agents to make a rational choice between
several destinations though in a context of limited information.
Hagerstrand’s central hypothesis is that the probability of material relation
between two individuals or groups depends on the quantity of information
circulating between these individuals or groups. For example, the theory
helps to provide an account of the process of self-maintenance of long-
distance migratory channels. The settlement of the first migrants
generates a flow of information between the point of origin and the
destination, which facilitates the arrival of new migrants, who in turn will
generate a still greater flow of information, and so on.

In the case of models of spatial interaction, it is the hypothesis of a
deterioration of information in relation to the given distance that helps to
account for the decrease in probabilities of relation as a result of distance.
Individuals seeking to change address are far better informed about their
migratory opportunities in their immediate environment than they would be
in a distant environment. Within their immediate environment, they may
benefit from local relays (parents, friends, newspapers, classified
advertisements...) that facilitate their decision. In a more distant
environment, they will incur a variety of costs in order to acquire
information about their destination. Faced with two equivalent
opportunities (such as two jobs with the same income), the agent will often
choose the closer option because more information will be available and a
number of uncertainties will presumably be removed, thus enabling the
agent to act with full knowledge of the facts.

To a certain extent, Hagerstrand’s theory of information flow accounts for
the decrease in probabilities of relations with distance. But it applies just
as much (if not more so) to models of territorial interaction. Indeed,
Hagerstrand (1952, 1953) was the first to articulate the notion of a barrier
that prevents the propagation of innovations and information flow.
Obstacles to relations, whether physical (mountain range, lakes, rivers),
political (borders, administrative limits) or social (linguistic barriers, socio-
cultural discontinuities), often result in a decrease of information
exchanges between inhabitants located on either side of such barriers.
The effects of such barriers on information flow are numerous. Examples
of barriers that prevent the complete circulation of messages between two
territorial entities include super-absorbing barriers, which destroy the
message and the sender, absorbing barriers, which merely destroy the
message, and reflexive barriers, which return the message to its point of
origin without destroying it. Cases of hermetic barrier are comparatively
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rare. Permeable barriers that allow for a transmission of some of the
messages according to their permeability are far more frequent.

In short, the effect of barriers is both the concentration of information
within territorial grids and the correlative weakness of information
exchanges between territorial grids. In practice, this means that at an
equal distance, an agent will have at their disposal more information
pertaining to the opportunities of relation with the inhabitants of their own
territorial grid than with those located in different territorial grids. The agent
will therefore tend to privilege such relations, even if a higher cost is
thereby incurred. Furthermore, if a territorial limit is an obstacle to the
acquisition of information (for example as a result of linguistic barriers), the
migrant will devote more energy to the acquisition of information related to
opportunities of mobility in their new environment. The economic paradigm
and the paradigm of information flow thus tend to complement and
strengthen one another in the justification of the hypothesis pertaining to
models of territorial interaction.

Justification by the sociological theory of interposed or grouped
opportunities

Among the numerous criticisms leveled at the application of models of
spatial interaction to the study of social relations, one of the most
significant objections concerns the nature of the distance used to describe
probabilities of relations. Most models of spatial interaction use a
continuous measure of distance designed to reflect the impact of the cost
of moving on the decision to develop a relation. The use of a function of
decline of the probability of relation is the same for all the inhabitants or, at
the very least, there is an average behavior that describes mobility
continuously in relation to distance.

However, the hypothesis is only valid if the opportunities for relations are
distributed evenly in space, i.e. if every agent has at their disposal an
equal number of short, medium and long-range relations. This is not
generally the case, which means that individuals situated in areas offering
a low potential for relations are often forced either to incur greater costs or
to reduce their mobility. Nevertheless, it is obvious that when mobility
constitutes a response to a minimum need for relations, it is the first
solution rather than the second that will tend to be adopted.

The solution provided by the sociologist S. Stouffer (1940, 1960) in order
to bypass this difficulty is to alter the role of distance and to use it merely
as an ordinal criterion allowing an agent to classify opportunities for
relations. Generally speaking, the agent classifies its potential destinations

130



Grasland, C.

in relation to the benefit/cost ratio, and then examines them sequentially.
The probability of forging a long-distance relation does not therefore
depend on the absolute value of this distance but on the number of
opportunities in a more immediate environment. As the number of
interposed opportunities (situated at closer range) increases, the
possibility that the migrant will already have obtained satisfaction and
decided against examining distant opportunities becomes ever more
probable.

Stouffer’s solution is illustrated by the example provided in Figure 3. Two
individuals situated at points A and B purchase their bread in either one of
two bakeries situated in 1 and 2. If we were to apply gravitational logic
strictly, we would have to say that the individual located at point B has a
greater probability of using bakery 1 than the individual located at point A,
because it is located twice as close to the bakery. But the individual
located at point B has at its disposal a closer opportunity for a relation and
if it decides to minimize the cost of moving, it will opt for bakery 2. By
contrast, the individual located at point A has no alternative at its disposal;
bakery 1 is the closest bakery to its house (no interposed opportunities).
Unless it chooses not to eat bread, it will therefore agree to incur a higher
cost of moving. Thus, contrary to predictions made on the gravitational
model, the person situated at point A is more likely to use bakery 1 than
the person located at point B, if the two agents adopt a strategy that aims
to minimize distance. In fact, if ordinal distance is used instead of direct
distance (ranks of opportunities), the behavior of the agents is in keeping
with the logic of the spatial interaction model.

in which bakery (1 or 2) do the residents (A or B) buy their bread ?

80m 40m 20m

> > 3>

[ A {5 M

Street Street Street

Street
Street

Figure 3: The case of the two bakeries
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Thus Stouffer's model helps to improve models of spatial interaction and to
make them more realistic by demystifying the role of distance. The
decrease in probabilities of relation as a result of distance does not
necessarily correspond to a mechanical effect but may be interpreted by
means of a psychological hypothesis of behavior. Indeed, Stouffer's
critique mainly pertains to gravitational modeling (simple constraint of
preservation of all the flows) but it does not target the double-constraint
models of the kind devised by Wilson or Tobler. The latter incorporate
competition for destinations, thus helping to predict situations of the kind
illustrated in Figure 3. Indeed, if we assume that every inhabitant uses a
single bakery and that every bakery has just one customer (a double
constraint of preservation of the total flows that are emitted and received),
the most likely situation from the point of view of the minimization of
mobility costs is that resident A uses bakery 1 and resident B bakery 2.

Stouffer’'s model therefore validates the hypotheses of spatial interaction
models and undermines the objection that they project mechanistic models
onto the spatial behavior of individuals. However, what remains to be
shown is the validity of the hypothesis of the agents’ behavior that
underlies Stouffer’'s theory. Models of spatial interaction posit that agents
organize opportunities of relation according to distance, which is presumed
to reflect the cost of forging relations. This amounts to having recourse to
the economic paradigm, which we previously demonstrated was equally
applicable to models of territorial interaction. It also amounts to assuming
that the agent is fully informed of the entire range of opportunities of
relation and that its classification takes account of the full range of relevant
information.

However, as we saw previously with Hagerstrand’s model, the agent
needs not necessarily to have at his/her disposal the exhaustive range of
relevant information, and so the organization of opportunities that serves
as a basis for his/her choice may be founded on partial or incomplete
information. All other things being equal in relation to distance, the agent
may have the use of more complete information related to the
opportunities for relations situated within his/her own territorial grid than
information pertaining to the opportunities for relations in different territorial
grids. The agent’s classification may therefore be a function not merely of
distance but also of territorial affiliation, which may cause him/her to adopt
a behavior that is both spatial and territorial. The migrant may also
deliberately choose to prioritize territorial affiliation as a criterion of choice
of destination.
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It is thus possible to conceive of forms of embedded classification in which
a migrant decides (1) to migrate if possible within their affiliation grid and
(2) to opt for the closest destination, all other things being equal in relation
to affiliation.

In the example of the two bakeries, it is conceivable that it is the children
who purchase the bread and that their parents wish them to cross as few
roads as possible. The decision rule established by the parents is thus an
embedded choice that consists (1) in crossing as few roads as possible
(territorial effect) and (2) in choosing the nearest bakery, all other things
being equal in terms of the number of streets which have to be crossed
(spatial effect). In this case, the inhabitants of residence B will choose
bakery 1, which, despite being further, has the advantage of being located
in the same block of houses (territorial grid) and does not entail having to
cross a street (territorial limit). For the inhabitants of residence A, whoever
purchases the bread will have to cross at least one street, and it may even
be necessary to go to bakery 2, since the inhabitants of residence B, who
are nearer, will more readily make use of the opportunities (bread loaves)
located in bakery 1.

Other studies, particularly those by Fotheringham & O’Kelly (1989) have
sought to enrich Stouffer's theory of intermediary opportunities with the
concept of grouped opportunities. The models of spatial interaction based
on the impact of masses and distance do not always take account of the
spatial autocorrelation of such masses, i.e. the fact that there are areas at
a higher level than the grid under study in which opportunities are either
grouped or dispersed. Yet the migrant moving to a distant destination does
not merely take account of the opportunities on offer at the destination but
also considers those that it will be able to reach around the destination at
the cost of a limited displacement. The consideration of groups of
opportunities therefore presupposes an alteration of the basic hypotheses
pertaining to the two-dimensional (rather than one-dimensional) character
of geographical space. The most promising solution seems to reside in the
elaboration of embedded models that study interactions between locations
at different aggregate levels, thus allowing for the inclusion of
concentrations of opportunities for relations at different levels.

The statuses of the theoretical hypotheses upon which the models of
geographical interaction are based extend well beyond the fact of a simple
analogy with Newtonian physics. And it seems difficult to overlook, at least
as a hypothesis, how they might influence the constitution of social
networks at different levels. In conclusion, | would insist on the fact that the
division of spatial analysis between analysis of location and analysis of
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interaction is certainly useful for pedagogical reasons (I follow generally
the division proposed in the two volumes of the manual published by
Pumain & Saint-Julien (1997, 2000) for teaching at the undergraduate
level) but it can be also an obstacle for deep understanding of linkage
between positions, distances and interactions’.

LINKING TOBLER’S FIRST LAW OF GEOGRAPHY WITH BLAUS’S
MULTILEVEL STRUCTURAL ANALYSIS

The paradigm of multilevel structural analysis and macro sociological
theory of social structure elaborated by the American sociologist P.M. Blau
(1918-2002) provides in our opinion a useful theoretical framework for the
analysis of the impact of territorial grids and of geographical proximities
more generally on the constitution of relations or networks at different
levels of social reality (Blau, 1977b, 1993, 1994). While it can hardly be
said to overlook the individual determinants of social interaction, Blau’s
work focuses more specifically on effects of structure and context, i.e. the
mid-level analysis of social forms of association or integration (Lizardo,
2006; Scott & Calhoun, 2004). In this respect, Blau’s perspective is an
extension of Durkheim’s work on social integration and social morphology
but introduces also Simmel’s ideas on crosscutting circle. Although Blau
does not explicitly envisage the role of the geographical proximity of
individuals as a factor of social integration (Ethington, 1997; Park, 1924),
given some readjustments his theory and its central concepts are
sufficiently broad to be applicable not only to the study of the impact of
sociological positions but also to the study of geographical positions.

Blau's work is therefore especially pertinent in the present context
because it is based on a distinction between quantitative and qualitative
variables of sociological positions, which is analogous to the distinction
used in my own work between distance and barrier effects (Grasland,
1997) for the description of geographical positions or interactions. This
study will therefore presently examine how Blau’s theory might be
extended by considering, in addition to the two kinds of position commonly
used by sociologists, two other positions aimed at describing the
geographical properties of the location of individuals or groups that interact
within a given society. The present analysis refers mostly to a synthesizing
article by Blau (1993). This paper is one of Blau’s last publications (at the
age of 75) and can be considered as a summary of the part of its work
devoted to structural analysis of society. It is more or less equivalent to
Chapter 1 of his final book published in 1994 (Blau, 1994). We refer also to
earlier papers where Blau elaborated the first version of a macro

Y generally try to introduce an integrated approach at the graduate level.
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sociological theory of social structure (Blau, 1957, 1977a).

Four elementary types of geographical and sociological positions

Blau’s structural analysis begins by defining a multidimensional space by
way of describing the social position of individuals according to a range of
properties known as structural parameters. According to (Blau, 1993),
structural parameters belong to either one of two elementary kinds that
may combine to form more complex combinations.

(1) Nominal parameters pertain to the qualitative attributes of individuals
and define social categories such as ethnic group, religious affiliation,
professional activity, etc. The degree of differentiation of nominal positions
is a reflection of the heterogeneity defined by Blau in the simplest sense of
the term as the probability for two members of a given population to
belong to different groups.

(2) Graduate parameters refer to quantitative attributes, i.e. continuous
distributions of differences of resources and statuses such as income,
education, etc. that serve to define social strata. The degree of
differentiation of graduate parameters reflects inequality, defined most
simply as the coefficient of variation (or Gini index) of differences between
levels.

Applied to the study of geographical positions, Blau’s distinction overlaps
with the distinction made in my own work and discussed in the previous
section between territorial parameters and spatial parameters of location.

(3) Territorial parameters pertain to qualitative variables of the location of
individuals such as their affiliation with different territorial grids, which
operate an exhaustive partition of space and society. Every individual
belongs to one or several territorial grid; the status of these parameters is
formally equivalent to the status of the nominal parameters defined by
Blau. In its paper of 1977 on ‘Macro sociological theory’ Blau includes
‘places’ as a particular case of nominal parameter and proposes some
specific theorems related to the effect of place location and distance. But
he does not think it useful to distinguish this parameter from other
categorical variables like sex or religion, even if he recognizes that they
produce specific effects on social integration and organization of
heterogeneity and inequalities.

(4) Spatial parameters refer to quantitative variables of location such as a
system of coordinates including latitude (X) and longitude (Y). This two-
dimensional space may be characterized by a metric structure with the
usual properties of mathematical distance (identity, symmetry, triangular
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inequality). Note the significant difference with Blau’s level variables;
insofar as spatial parameters commonly operate in pairs (a system of
coordinates within a metric structure) and, in most cases, they are not
oriented. Admittedly there may be cases where the spatial configuration of
positions is one-dimensional (such as location on a highway or on a hill) or
oriented (distance from the town-center). But these are particular
situations and the more general case, which the remainder of this study
will examine, is the two-dimensional space characterized by a Euclidean
metric structure devoid of any particular orientation. It is also important to
notice that some geographical distances cannot be directly derived from
metric systems of coordinates and are related to network organization
(e.g. accessibility by road in time). But it is not necessary, in our opinion, to
introduce a third category for this situation as it can be considered that it is
a network location producing quantitative measures of distances (time,
cost...) that is the formal property of interest here. We have also seen in a
previous section that, following Tobler’s first law of geography, we can
reverse the gravity model and transpose network distances into metric
structures by multidimensional scaling (eventually with some loss of
information).

MATHEMATICAL PROPERTIES
NOMINAL / Area of GRADUATE /
QUALITATIVE uncertainty QUANTITATIVE
(-> Heterogeneity) (-> Inequality)
SOCIOLOGICAL
SOCI| POSITIONS Social category Social level
ETAL] (-> Social (ex. religion) (ex. Cast, (ex. income)
PRO | distances) social class or
PERT] professional
IES category)
Area of (ex. ethnical (ex. distance from a
uncertainty (ex. nationality) Group) center)
GEOGRAPHICAL
POSITIONS Territorial location (ex. position in  Spatial location
(-> Geographical (ex. administrative units) ~ urban network) (ex. latitude,
distances) longitude)

Figure 4: Four types of sociological and geographical positions with areas of uncertainty

Parameters of sociological position will be used to refer to the attributes of
individuals that are theoretically independent of their location on the
earth’s surface or that are not at the very least directly altered in the short
term by the movement of an individual in space. By contrast, parameters
of geographical position refer to the attributes of individuals that serve to

136



Grasland, C.

describe their present location on the earth’s surface and that undergo
complete or partial modifications every time an individual moves. The
distinction is not a straightforward one and will require further refinements
in due course with the more explicit consideration of the time scales that
underlie the suggested definition. Indeed, the past geographical position of
an individual (such as their birthplace) is often liable to become a
parameter of sociological position, i.e. a lasting attribute of an individual
(ethnic identity, nationality). But this particular point would require a more
extensive account well beyond the limits of the present study.

The four types of positions thus defined primarily constitute a formal
conceptual framework capable of clarifying a whole range of models and
hypotheses. But they only define a partial schema (what, for instance, of
economic or historical positions) containing many areas of uncertainty
(Figure 4). While a number of attributes may be easily assigned to one of
the four categories of propositions outlined above, other attributes are
more difficult to assign unambiguously. A whole range of categorical
(qualitative) sociological variables refers implicitly or explicitly to a
hierarchy (casts, social or professional categories) and may also be
interpreted as level variables. Similarly, in geography, the notion of
neighborhood may refer either to a common affiliation with the same
territorial grid (a person living in the same neighborhood or commune) or
to a criterion of geometrical proximity or temporary accessibility (a person
living less than 5 km or 10 minutes away). The distinction between
sociological and geographical positions is no clearer. Thus, nationality
leans towards the realm of sociology (an attribute that is independent of
spatial location) in the case of rights of kinship, while it will tend to function
as a geographical concept in the case of territorial rights. The distance
from a symbolic place of social life (church, monument, sanctuary, town
center) often relates to both types of sociological and geographical
categories. Note also that ethnic identity may be viewed as implying all
these categories, which it incorporates to varying degrees... An excellent
discussion of the danger of fuzzy ethnic categories as compared to
objective census categories (like administrative province of birth) is
presented in Bopda’s analysis (2003) of the role of the political capital
Yaoundé in the building of Cameroon. A comparative analysis of internal
migration and regional integration in multi-national states (Belgium,
Cameroon, Czechoslovakia) (Bopda & Grasland, 1994; Bopda et al.,
2000) also reveals how difficult it can be to isolate the respective effects of
physical distance, administrative borders, linguistic regions and inherited
historical divisions. Though imperfect, the four provisional categories
outlined above may help to refine and widen the content of Blau’s theory.
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The focus will now turn to the principal axioms, theorems and corollaries of
the theory and to an examination of the implications of the theory for the
study of sociological and geographical positions.

Positions, distances and reductions of relation opportunities

The fundamental hypothesis of Blau’s structural theory is that positions
constitute structures that have a weak determining effect on the relations
forged by individuals (Blau, 1993). This weak determinism implies that the
structure in question may not necessarily exert a direct pressure on
individual choices (by ruling out certain relations or making others
compulsory), but rather exerts an indirect pressure based on the restriction
of opportunities for relations resulting from differences in position and the
correlative increase in sociological or geographical ‘distances’ between
individuals (Park, 1924). This point is crucial for the connection we
propose to establish with Tobler’s first law of geography. As Tobler, Blau is
not directly interested in the analysis of structures but in the analysis of the
relation between structures and interaction through the intermediate but
crucial concepts of distances and opportunities. Therefore they are not
subject to the classical criticism of structuralism as they do not try to
explain structure by structure but rather try to link macroscopic emerging
social and geographical organization with interactions that take place
between social units at local level (Boudon, 1984; Degenne & Forsé,
1994). However, this in no way means mean that this approach refers only
to individual determinations, on the contrary.

The precise nature of the psychological or sociological mechanisms
determining this restriction of opportunities for relations between
geographically or sociologically ‘distant’ individuals varies greatly:
internalization of norms, lack of information, preferences, material or
immaterial cost, budget-time restriction, etc. But, strictly speaking, such
mechanisms do not constitute the object of structural analysis, which
focuses less on the individual determinants of relations than their
aggregated result. The object therefore is to examine how the structure of
positions (distance(s) between the full range of individuals or groups that
constitute a society) determines the structure of interactions (relation(s)
between individuals or groups constituting a given society) according to a
specifically probabilistic approach. However, the primary focus of Blau’s
structural theory is not to isolate the impact of a specific position (a specific
distance), but rather to study the global consequences of the compatibility
or incompatibility of the various positions that individuals occupy
simultaneously. Therefore the primary focus of his analysis is the internal
structure of the multidimensional space of positions. Blau formulates the
hypothesis that the internal structure to a certain extent determines
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tendencies for integration or anomy within a given society. His theory is
thus situated in a direct line of descent from both Durkheim’'s social
morphology (Durkheim, 1895, 1897) and Simmel’'s geometry of social life
(1925, 1894, 1896). Simmel draws a distinction between societies founded
on concentric social circles where the affiliations of individuals are based
on successive inclusions within ever-widening groups, and societies
founded on crosscutting social circles in which individuals participate
simultaneously in different categories of affiliation that do not include the
same members. For Simmel, the former case corresponds to traditional
societies, whereas the latter is characteristic of modern societies
displaying a high degree of social complexity.

Note that Simmel’s distinction concerning social circles is directly
applicable to the case of territorial grids. The administrative divisions within
a given state may thus abide by a strict interlocking, with each grid
containing a finite number of N-1 grids corresponding to Simmel’s
concentric social circles. But it may also be the case that the state uses
specific grids for every control issue or for every problem that it has to
resolve. In this case, there are no embeddings but rather a partial
overlapping between different grids.

Nonetheless Blau’s primary focus is on crosscutting social circles because
they are more frequent in the societies which he studies, notably the large
American metropolis in which individuals tend to belong simultaneously to
ethnic, religious or professional groups defining systems of positions that
operate more or less independently of one another and which seldom
overlap (Blau & Schwartz, 1984; Schwartz, 1990). Still his theory is just as
applicable to concentric social circles, which Blau analyzes indirectly
through his study of the percolation of heterogeneity within the various
organizational strata of social life. The theory is based on two propositions
that may be viewed as axioms and that constitute the premise for a series
of theorems (1977b, 1993, 1994):

e Axiom 1: the probability of a relation between two individual depends
on the number of opportunities for contact between them.

e Axiom 2: the proximity of two individuals within the multidimensional
space of social positions increases the number of opportunities for
contact.

From the point of view of a geographer, the two axioms clearly define a
system of models of individual interaction in which the hypotheses
correspond exactly to the gravity models of spatial interaction used in
geography at a more global level. Models of spatial interaction may be
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viewed as an aggregated articulation of Blau’s theory in the specific case
where the position of an individual is described solely in terms of their
spatial location. The number of relations between two locations is
proportional to the product of their respective populations (a consequence
of axiom 1 at the level of population aggregates); the intensity of relations
between two locations decreases in accordance with the distance that
separates them (reduction of axiom 2 to the case of the geographical
position of the individuals constituting the population aggregates). It is
hardly necessary to add that these two axioms are more or less equivalent
to Tobler's first law of geography as the axiom 1 implies that ‘every
individual is related to every individual’ with more or less opportunities and
axiom 2 can be written as ‘near individuals are more related than distant
individuals’.

Blau’s first theorem

The first theorem inferred by Blau from his two basic axioms is that the
probability of inter-group relations is a direct function of the heterogeneity
of the population in question. On the face of it, the first theorem has very
little use given that it merely appears to articulate the notion that the
macroscopic diversity of a given population has an impact on the diversity
of relations potentially forged between the members of the population.
However, the underlying idea is that the processes of segregation that
may disrupt the development of relations between individual members of
different groups are even less likely to appear as social groups are
numerous and of similar size. The idea also rests on the assumption that
individuals wish to have a minimal number of opportunities of forging
relations to make their choice and that, when they are unable to find a
satisfactory number of such opportunities within their own group, they are
more willing to consider opportunities for relations with other groups. More
generally, the value given to an opportunity for a relation is presumably not
a parameter that operates independently of the social context in which
relations are forged. What this implies is that the microscopic rule for the
evaluation of opportunities for relations between groups depends in some
cases on the macroscopic structure of the society in question and of the
geographical context of the locations where such relations are forged.

Blau's first theorem pertaining to the impact of qualitative position
variables is directly applicable to the domain of political geography, where
it has often been used to describe the impact of the number and
population of administrative units composing a given state. As the number
of constitutive elements of a state increases and remains of roughly equal
size, so the degree of autonomy of the latter is potentially reduced in
relation to central power. The disintegration of the administrative grid
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multiplies the opportunities for relations between two individuals located in
different territorial grids and reduces in the same proportions the
probability that social relations are structured or concentrated within the
same territorial unit. Therefore it reduces in theory the risk of one of the
territorial grids being erected into an autonomous political entity liable to
oppose the power of the central state and to claim its independence as
explained by C. Raffestin (1980) and empirically validated by M.C. Maurel
(1982a, 1982b, 1984) and V. Rey (1984, 1987) in the case of socialist
countries. More generally, the multiplication of territorial grids increases
the relative weight of relations that may be subject to the control of central
power (such as a declaration of change of address). The degree of
territorial fragmentation, defined as the probability that two inhabitants are
located in different territorial grids, is thus formally equivalent to the social
heterogeneity defined by Blau concerning categorical variables. In the
context of a political theory of the kind devised by Ratzel (1897), this
degree of territorial fragmentation operates as a measure of global
territorial integration, which measures the degree of coalescence of
territorial segments and is equivalent to the social integration defined by
Durkheim as the degree of coalescence of social segments (1895, 1897).

Blau’s second theorem

Blau’s second theorem states that the development of inequalities within a
given population increases the probability of relations between partners at
different levels. An ostensibly paradoxical suggestion, the theorem is
based on the same observation as the first theorem, namely that the
diversity of social levels (a quantitative attribute) implies an excessive
restriction of opportunities for relations if partners choose only to foster
relations with individuals at a similar level. However, Blau’s theory (1977b,
1993, 1994) is incomplete because it does not examine the highly diverse
forms of social inequality, particularly in view of the existence of
discontinuities in the distribution of social levels (Figure 5).
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Figure 5: Three theoretical situations of distribution of social levels according to a given
criterion (income, education, etc.)
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According to this theorem, a society that includes two moderately different
middle classes (situation B) is less unfair but probably far more closed
than a society consisting of a continuum of individuals at different levels
(situation A). In situation B, every individual will have many opportunities
for relations with individuals at the same level, whereas in situation A an
individual will need to develop relations with other individuals at different
levels if they are to have a sufficient number of opportunities. However,
Blau's argument is not altogether convincing since we might easily
conceive of a situation C in which levels are highly differentiated (variation
coefficient comparable to the variation coefficient of situation A) but where
there are discontinuities in terms of distribution (as in situation B).
Differences of level may not therefore necessarily result in an increase in
relations between partners at different levels. The result is a situation that
is comparable to situation B if the number of opportunities is adequate in
every group separated by discontinuities of the higher and lower groups. It
would appear therefore that Blau’s second theorem applies specifically to
unimodal strata distributions and is more debatable in the case of
multimodal distributions. The theorem is still worth applying at a social
level. Note also that the more a given population is concentrated in space
around a limited number of poles, the more likely it is that long-distance
relations will be forged between the inhabitants of this space.

By analogy with the situation of the various strata described above, in
situation A the probability of two spatially-distant individuals actually
meeting is probably smaller than in situation B. In the first case, every
individual situated at a given location will have enough opportunities if they
gradually widen their circle of spatial relations. With the exception of
individuals in marginal positions (within the space under study), the rule
describing the average distance of contact is isotropic. In the second case,
every individual is located within the field of a common density gradient
that incites them to move to the point of maximum density by way of
finding the maximum number of opportunities for relations. The spatial
structure therefore potentially favors relations between distant individuals
who may nonetheless be subject to a common field of attraction (the town-
centre in the case of a town). The most challenging case to interpret is
Situation C because the existence of multiple cores provides a large
number of opportunities for close-range contacts. On the other hand,
individuals who wish to have a number of opportunities higher than the
size of the population core of which they are a member are forced to
establish relations at a greater distance than in the two previous cases
because of the presence of interstitial voids (discontinuities). The result is
a situation where there are strong analogies between the theories
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articulated in geography pertaining to the organization of urban networks
(‘Rhenan’ and ‘Parisian’ models) and the distinction drawn in sociology by
Granovetter (Philips, 2004) between strong ties that create heavily
redundant relation networks (near relations) and weak ties enabling the
development of the previous networks (near relations). At a more global
level, we have demonstrated in different papers that the spatial distribution
of population and wealth can be measured in terms of potential at different
scales of neighborhood, providing a good description of macroscopic
economic inequalities and flows of migrants and investments that are
related to the gradients of this structure (Harvey, 1969; Hagerstrand,
1953).

[ [
[ [
Situation A Situation B Situation C
POPULATION DENSITY
| || | | | | |
Very Low Low Medium High Very High

Figure 6: Three theoretical situations of distribution of spatial location of individuals

Blau’s third theorem

Blau’s third theorem postulates that the number of relations between
groups varies directly as a function of the degree to which differences in
social position function independently (Blau, 1977b, 1993, 1994).
Conversely, the degree to which relations are confined within the same
groups varies directly as the degree to which differences between
positions are correlated. This central theorem is premised on the
assumption that the multiplicity of independent factors determining
opportunities of relation weakens their effect. An individual may wish to
foster a relation with another individual from the same ethnic background,
with a similar level of income, belonging to the same religion, or sharing
the same political views. But if these criteria are weakly correlated within
the society in question, the individual will necessarily have to sacrifice one
of them unless it accepts a significantly reduced number of opportunities.
The individual will therefore have to forge relations with individuals
belonging to other groups defined by a range of different criteria. The third
theorem is still only valid if we take account of the effects of the
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independence of the various social positions at the level of the entire
population. As with the first theorem, we need to start from the idea that
the norms governing relations between different social groups are not
individual determinants that function independently of the global context of
society. Therefore the systemic effect of the impossibility of applying the
entire range of norms governing relations between particular positions
(effects of specific barriers) is the emergence of a new global norm based
on the weakening of all the norms described above. In other words, a
series of independently and randomly distributed discontinuities eventually
re-establishes a form of continuity within society.

The same reasoning applies to the study of geographical positions, where
it can be shown that a series of discrete obstacles (barriers) eventually
defines a continuous distribution of relations (distance) by virtue of their
combination. The process may be construed metaphorically as one that
involves the closure of a homogeneous plain and by predicting its effect on
the relations between individuals situated within the plain (Figure 7). The
cost of displacement is essentially a function of the number of obstacles
that need to be overcome, with the cost of the trajectories between two
obstacles presumed to be minimal. Clearing the obstacle reduces the
opportunity for a relation by a factor of two.

time t1 time t2 time t3

time t4 time t5 time 16

Figure 7: The multiplication of discontinuities re-introduces continuity

At the beginning of the process of closure (t1), the first barrier causes a
major discontinuity within the space in question; relations tend presumably
to be concentrated within each territorial grid. But the emergence of a
barrier that is orthogonal to the previous barrier (t2) causes a reduction in
the number of opportunities for relations within each new territorial grid
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and proportionally increases the opportunities for relations with the
inhabitants of contiguous territorial grids. As new barriers that are
orthogonal to the previous barriers are established (t3, t4, t5), the weight of
opportunities for infra-grid relations becomes minimal and the
opportunities for relations with the immediately contiguous territorial grids
are reduced in turn. At the end of the process (t6), the opportunities for
relations may be entirely described with the help of the measurement of
rectilinear distance, which takes no account of the presence of different
barriers and depends only on the spatial position of individuals. There has
therefore been a gradual shift from a logic of territorial relation (the
interaction between individuals depends on their affiliation with different
spatial partitions) to a logic of spatial relation (the interaction between two
individuals depends on a decreasing and almost continuous function of the
distance between them). In mathematical terms, the demonstration can be
made as follows:

The rectilinear distance (or Manhattan distance) between two position
(xi,yi) and (xj,yj) is defined by:

DR, =[x, - x |+]y,-y|

It is immediately apparent that the first term is proportional to the number
of barriers crossed latitudinally and the second term is proportional to the
number of barriers crossed longitudinally. When there is a high quantity of
randomly distributed barriers, the distance is therefore proportional to the
total number of barriers crossed on the path between i and j

DR, ~ay B,,
k=1
with
By =1 if the path cross the barrier
and
B, =0 if the path do not cross the barrier

If every barrier Bx produces a division by A¢ of the opportunities for
relations, the function that gives the opportunity of relation between two
locations i and j can be derived as follows:

# / 1 3
0,= exp[Eln(i—JE%
k=1 %

Assuming that all the barriers have an equivalent effect (A =... Ak...= An =
), the result is an estimate of the opportunities for relations that depends
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only on an exponential function of the rectilinear distance:
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with o=

This result ought to be applicable to the more general case of Euclidean
distance if the direction of the barrier lines is random and does not
automatically follow the trajectory of the longitudes and latitudes. But |
have not been able to provide the formal mathematical demonstration of
this hypothesis.

Blau’s theorems in relation to the percolation of social heterogeneity

However, the most significant consequences of Blau’s structural theory for
geography and the study of territorial grids pertain less to the first three
theorems (described in different ways) than to their consequences for the
analysis of social forms at different aggregate and observational levels.

Blau argues that the integrating effects of social heterogeneity, social
inequality and the absence of correlation between social positions are all
the more marked since they appear at every organizational level of social
life (1977b, 1993, 1994). Because differences that appear at the level of
individuals necessarily have an impact at the level of groups or social
classes, the main problem is to measure the highest level of the
percolation of differentiations within the different levels that constitute any
given society. If for instance the object is to study the potential for relations
between two groups of students (white/black, men/women) in a given
university, then we will need to take account not merely of the relative
frequency of each group within the institution, but also of these relative
frequencies respectively in each of the disciplines, subject areas and
seminar groups within the university. Every level corresponds to specific
opportunities for relations (on Campus, in the secretary’s office of a given
department, in the lecture hall, within classrooms) that reduce
opportunities for relations. Heterogeneity at one level (50% of students
from every group in the entire university) may indeed conceal a perfect
homogeneity across all or part of the lower levels (segregation according
to subject matter, seminar groups, etc.).

Blau’s analysis of heterogeneity percolation is applicable to a strictly
sociological hierarchy of different organizational levels. Schwartz (1990)
applied directly Blau’s theoretical framework when he studied the
percolation of social heterogeneity with a survey of 29,000 Californian
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students in 1360 classrooms, 362 grade levels, 245 institutions and 18
school districts. The social position of students was described by means of
three categorical indicators (sex, ethnic group, parents’ profession) and
two indicators of level defined by the teachers (school results and behavior
in the same classroom). The dependent variable was an inquiry into those
individuals whom they ‘like to do things with “each other” always’. The
results tended to confirm the theory (with the exception of sex ): the higher
the percolation of heterogeneity at every level, the higher the frequency of
positive appreciations pertaining to the opportunity of forging contacts with
students occupying different positions.

But the analysis of percolation may also focus on the hierarchy of spatial
or territorial levels. Indeed, a hierarchy of sociological levels is only seldom
compounded to varying degrees by a hierarchy of geographical levels,
because of the spatial constraints inherent in any form of social life. This
argument probably constitutes the strongest defense for the simultaneous
integration of sociological positions and geographical positions in the study
of social forms and social relations. One of the best demonstrations of
such a common approach is provided by a book on residential segregation
and school segregation published in 2009 by a geographer (J.C. Frangois)
and a sociologist (F. Poupeau). But as explained by J.C. Francois, such
collaboration was the result of more than 10 years of negotiations between
researchers having initially very different practices, vocabulary and
disciplinary challenges...

In the context of a structural and multiscalar analysis of social relations,
the use of variables describing individuals’ geographical position is
formally possible without making any adjustments to the basic hypotheses.
Still, its significance will depend on the possibility of demonstrating at a
theoretical level that, for the kind of relation under study, there are spatial
or territorial determinants of individual or collective action that operate
independently of strictly sociological determinants.

A FRAMEWORK FOR SPATIAL ANALYSIS OF SOCIAL FACTS AND
AN APPLICATION TO THE CASE OF EURO COINS DIFFUSION

The advantage of a theoretical framework linking sociological and
geographical interaction (societal models) is that it provides a global
formalization of the potential effect of geographical and sociological
positions on the development of opportunities for relations between
individuals or groups at different observational or organizational levels.
The problem is that it tends to focus too exclusively on the determination
of relations by structures. It therefore tends to underestimate the
importance of two fundamental factors that intervene over time and which
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have been highlighted (among others) by sociologists working on social
networks, by geographers researching urban networks and demographers
studying migrations. The individual determinants of the relation take no
account of the processes of mediation, absorption or indirect relations that
may occur within a given social system. Two individuals occupying distant
geographical or sociological positions may come into contact as a result of
a third individual acting as an intermediary or of a series of intermediaries
that combine to form a ‘path’. The same reasoning applies to the level of
groups, where a distinction between strong ties and weak ties is in order
(Philips, 2004). A limited number of individuals can thus guarantee the
circulation of information between large groups, provided they occupy a
strategic position within the system of sociological or geographical
positions. This articulation is often facilitated by a hierarchical organization
in which every group delegates representatives to a higher-level group,
thus guaranteeing a connection between different social segments.

By contrast, we can say following Stouffer (1940, 1960) that two
individuals or groups occupying near positions within a geographical or
social space can nonetheless forge very weak ties because of the
interposition between them of a significant number of intermediary
opportunities for relations. The inhabitants of two oases a hundred
kilometers apart in a desert probably have more contact than the
inhabitants of two suburbs located on opposites sides of the same town or
city. Indeed the inhabitants of the two oases have no other option but to
cross an expanse of desert if they wish to extend their network of
acquaintances; the material obstacle of physical distance will be all the
more easily reduced. Conversely, in the case of suburbs, physical distance
is not an important obstacle, but the concentration of opportunities for
relations at close range (town centre) will tend to absorb a large part of the
relations that could potentially be established between inhabitants located
on either side of the city. Both examples show that the opportunity for
relations between two individuals depends not merely on their respective
positions but also on the positions of the other individuals with whom they
could potentially forge relations. The estimation of the potential of relations
between pairs of individuals (between pairs of positions) is therefore one
step in the modelization of interactions that could be established and
which are subject to a range of systemic constraints and regulations. As
demonstrated by L. Sanders (2007), neither macroscopic, mesoscopic or
microscopic models can solve the contradiction and it is only by a
combination of levels that it is possible to produce efficient models of
social and spatial interactions, irrespective to the mathematical and
computing tools used to do it.
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Assuming that the entire range of potential interactions between positions
has been taken into account at different scales (macro, meso, micro) there
still remains the issue of measuring the impact of effective interactions on
the formation of opportunities of relations at a given moment. For social
systems are not purely Markovian systems in which the state of positions
at any given moment helps to predict the relations that could be forged at
later times. Assuming that the relations forged between t0 and t1 were
entirely determined by the initial structure of the system at time t0, its
subsequent evolution will depend both on the new structure at time t1
(altered by the interactions) and the memory of earlier relations that the
system is likely to acquire. The relations effectively forged within a given
system may modify an earlier structure of positions (social mobility,
geographical mobility). But in themselves they also constitute a structure
that impacts heavily on the development of future relations. The fact that
two individuals i and j enter into a relation with the same individual k
increases the probability of them meeting, even if their respective positions
have not been modified. In the same way, the fact that two groups A and B
that did not wish to enter into contact are nonetheless compelled to forge a
relation (for example as a result of their geographical proximity) will
change the rules of mutual appreciation, either by reinforcing mutual
hostility (conflict) or by lessening such feelings (integration). The relation
can modify not merely the structure of positions but also the rules of
mutual appreciation entailed by differences of position.

Our contribution is not to solve such big questions (scales, dynamics) but
to describe in an approximate way how it could be done in order to link
individual positions (discussed in the previous section) with upper levels of
organization and changes through time. To illustrate this abstract
formalization, we present some examples based on our research on euro
coin diffusion with F. Guerin Pace. This example is not chosen by chance
but because it can be easily related to Tobler’s first law (remember that
Tobler was very interested in banknotes diffusion in USA and used it for a
theoretical demonstration of analysis of movement (Tobler, 1981) and also
to Blau’s macro sociological theory and multilevel structural analysis (as
euro coin diffusion can be analyzed at very different scales and can reveal
very complex combination of factors, both geographical and sociological).

The structure of a particular observational or organizational level

The internal structure of sociological, economic or geographical systems
(individuals, companies and places respectively) invariably contains two
main sub-systems describing respectively the elements of the system (the
structure) and the interactions between these elements (relations). The
positions correspond to different groups of attributes of the elements,
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according to whether they are quantitative or qualitative, geographical or
sociological, etc. Every type of position may of course correspond to
several variables and not just a single variable as in the examples cited
above. In cases where the elements of the system are not individuals that
are deemed to be identical, it is often necessary to draw on another
category of indicators that describes the weight or size of the social
aggregates (population), their activities (added value) or the space in
which they are distributed (surface area).

The differences of position across the full range of criteria define
opportunities for relations between pairs of elements. These opportunities
correspond to a rate of potential interaction ranging between 0 and 1 when
the elements are individuals of equal weight. By contrast, they correspond
to a potential volume of relation in cases involving aggregates of different
sizes. These opportunities for relations correspond to an offer of relation
that is the product of elementary constraints connected with the
differences of position and which result from a whole range of economic,
psychological and informational factors. The offer of relation is then
subject to a number of systemic constraints that result from the total
energy available within the system and to its distribution between the
different individuals located therein. Every individual may wish to establish
a minimum number of relations, but they may not be able to forge an
infinite number. Individuals occupying a central position will therefore
probably have fewer relations than might have been predicted on the basis
of their total number of opportunities for relations.

The relations effectively observed within the system therefore correspond
to the effective realization of opportunities for relations relayed to positions
under different constraints. They can be analyzed by means of different
grids according to the hypotheses made about the position determinants
that have the greatest impact. Territorial interaction may correspond for
instance to the fact that individuals belonging to the same territorial grid
have a higher number of exchanges than individuals belonging to different
territorial grids. Spatial interaction corresponds to the fact that the
probability of relation decreases with the geographical distance between
individuals (measured in time, cost or kilometers). Social heterogeneity
implies that individuals with the same affiliation to a given social category
generally have more intense relations than individuals belonging to
different groups. Social inequality implies that two individuals with identical
social positions will forge relations more easily than individuals with
different social positions. But these laws of interaction can in some
instances be reversed, especially when individuals developing a relation
do so on the basis of complementarities rather than affinity or identity.
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Furthermore, it is important to bear in mind that the different forms of
interaction distinguished here operate simultaneously and that combined
effects of varying complexity may appear, as described in Blau's
theorems.

Whatever the precise operative mode of the sub-system of interaction, it is
at any rate liable to generate two kinds of systemic modification. First of
all, relations may cause mobility, i.e. a modification of sociological or
geographical positions of individuals who have entered into a relation. The
first effect of such mobility is to alter the position of individuals who have
entered into direct contact and thus to increase their future opportunities
for relations. But mobility can also generate a modification of the
opportunities for relations related to the development of networks that
facilitate or hinder opportunities for relations between individuals, all other
things being equal in relation to their positions (Wasserman & Faust,
1994). A second consequence of relations relates to the memory of past
relations, which bring about an alteration of the rules governing the
elementary and systemic constraints of the entire system. Two individuals
who have forged an initial relation may for instance enter into contact more
easily in the future (self-maintenance of relations). Two hostile groups who
have entered into contact may see their hostility increase or attenuate. It is
therefore not merely the state of the system but also its parameters of
operation that are liable to change over time. The resulting framework for
analysis can be presented in Figure 8.
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Figure 8: relation between positions and interactions through distances and opportunities

The analysis of euro coin diffusion that we decided to engage with F.
Guerin in 2002 is a perfect example of the dilemma that researchers face
when trying to analyze complex interactions. We demonstrated very early
that the mobility of euro coins at medium and long distances was mainly
the product of individual mobility (contrary to banknotes which may be
transported over long distance, coins are redistributed on a local scale by
the regional bank agencies). Conceiving of euro coin circulation as
epidemic disease diffusion (Gould, 1992) could therefore be considered as
a global output of the whole geographical moves of people and provide a
resulting picture of very different types of movement in space. We decided
to focus our analysis on representative surveys of the French population,
with samples of 2000 persons chosen randomly according to age, sex,
social status, settlement type and of course geographical location. Regular
surveys were conducted in France between 2002 and 2008, 3/year at the
beginning and 1/year in the most recent period. As these surveys were
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very expensive, it was not possible to launch a complete survey on the
whole countries of the Euro zone, but we were able at least one time to
conduct equivalent surveys in Belgium, Germany and Luxembourg,
making it possible to benchmark results on both sides of the border.

The important point with such surveys at the individual scale is that the
dependent variable (i.e. number of coins of foreign origin in the moneybag)
could be explained both by structural attributes (total number of coins,
value of coins), by geographical position (place of residence where the
survey was realized) and by the person’s social attributes (sex, age,
activity, income, etc.). It was therefore potentially possible to cross all
explanatory factors in the explanation of the number of foreign coins
present in the moneybag of individuals and to induce from these results
different hypothesis on capital mobility (sociological perspective) or global
rules of mobility in the Euro Zone (geographical perspective). But in
practice, it appeared very difficult to immediately proceed to such a
complex analysis and the first publications were rather analytical, focusing
on one scale (individual or territorial units) and one type of attribute
(geographical or sociological).

As an example of geographically aggregated model, we can present here
a very simple example: a modelization of the diffusion of German coins in
France according to distance from the shared border. Individual data was
aggregated into spatial administrative units (départements) and a
topological distance was introduced (shortest path to the border according
to contiguity of départements). Due to the fact that the survey was
representative only at the level of French macro-regions (ZEAT), the
choice of départements as level of analysis was not fully representative of
the territory (Figure 9) and results should be interpreted only after
aggregation by classes of topological distance.
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Figure 9: Distance to German border and sample size of euro surveys (2002-2004)

The dependent variable was the proportion of people having at least one
German coin in their moneybag, which we considered initially as a better
indicator than the proportion of German coins in the total coins of an
aggregate of individuals. Indeed, one single person could have a lot of
German coins and produce an artificially high proportion for the group that
would not reflect the social factor of interest (“how many people have been
directly or indirectly in relation with Germany by a social network of coin
transportation?”).
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Source : ESDO, hup:/wivw.esdo pr.fr

Figure 10: Map of German coins diffusion in France (2002-2004)
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Figure 11: Modelization of German coins diffusion in France by gravity model (2002-
2004)

Looking at the maps (Figure 10), it is clear that the initial diffusion of
German coins in France followed a classical diffusion model by proximity
even if some anomalies appeared (like peaks in Paris and along the
Mediterranean coast). We therefore decided to apply a gravity model of
the form p(D)=a. D P (with a negative friction parameter ). The probability
p for an individual to have one German coin in its moneybag is expressed
as a function of the topological distance to the German border D according
to a negative Pareto function. As the minimum distance is 1 (départements
along the border), no problem appears with the distance zero. The
parameter a indicates the maximum intensity of diffusion at a very short
distance from the border and the parameter B is the distance decay
function i.e. the gradient of decrease in the probability to have a German
coin (Figure 11).
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Even if the size of the samples introduced some noise in the analysis, the
model apparently nicely supported classical hypothesis on spatial
diffusion, with an early concentration of coins along the border (high value
of a reached in June 2003), followed by progressive reduction of the
gradient when German coins spread all over the French territory (decrease
of B from -0.8/-0.7 to -0.6/-0.5). In other words, exactly what is normally
expected by the manual of spatial analysis about spatial diffusion of
innovation (Pumain & Saint-Julien, 2000; Saint-Julien, 1985).

This was a nice confirmation of Tobler’s first law of geography, but at the
same time some doubts appeared because, out of the German case, the
situation was not so clear and did not followed the gravity assumptions. In
particular, we were very surprised by the fact that Spanish coins were
most frequently found in French moneybags than German ones, even after
we had removed a bias related to the diffusion of 50cts euro coins by
French national bank at the beginning of the process. Belgian coins were
also more frequently found in France than German coins. These
exceptions could not be explained by simple effects of physical distance
and size of the countries as we demonstrated in our presentation at the
13" ECTQG in Lucca in 2003 (Grasland & Guerin-Pace, 2003).

A first way to improve our results was to use more sophisticated
modelization of geographical position, and to combine for example
continuous effects of distance with discrete effects of barriers. When it was
possible to obtain data on diffusion of foreign coins in Belgium, we tried
immediately to analyze if the probability to have a French coin depended
on distance only or was also related to location in Flemish and Walloons
parts of the country (with the specific case of Brussels). The improvement
of the model was not only related to the choice of a more complex effect of
distance but also to the use of a more disaggregated model at the
individual level, making it possible to take into account the effect of the
size of the moneybag which follows a very specific statistical distribution
(Nuno et al., 2005), not necessarily constant across social groups and
which can therefore modify the probability to have foreign coins in one’s
pocket.

Combining size of moneybag, distance to border and belonging to a
linguistic region of Belgium (excluding Brussels), a Poisson regression
model of spatial interaction provided a clear demonstration that both
spatial interaction (decrease with distance) and territorial interaction
(difference of level of diffusion according to linguistic area) accounted for
the explanation of the diffusion of French coins in Belgium (Berroir et al.,
2006).
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Once again, it was nice confirmation of geographical hypothesis and, in
my personal case, of the necessary combination of spatial and territorial
parameters. But the social dimension was missing. The addition of social
parameters (income, age, gender) in the Poisson regression model
apparently did not significantly improve the model of diffusion of foreign
coins in Belgium, but the sample size was in fact not sufficient to cross so
many explanatory variables. In the very early steps of the diffusion process
(March and June 2002) we had been able to capture at least one social
effect. In the border area of N.E France the probability of having one
foreign coin (German, mainly) was significantly higher for active people
working in low-level activity groups than for those with higher status. The
reverse was observed for internal parts of the territory far from the border.
We propose an interpretation of this result related to the mobility of
workers across the border in relation with their professional activity. In
cross-border areas, people working in Germany or Luxembourg are
generally manual workers while people with higher qualifications generally
work more in France. In the internal part of the territory, we observe on the
contrary a classical situation of higher mobility of people with high level
professional activity, inducing regular trips abroad both for work and for
leisure. This fascinating result seemed to open the door for an integration
of sociological and geographical factors (Grasland et al., 2002a, 2002b).
But unfortunately it was not confirmed by further study where this social
differentiation of coins apparently disappeared and was not visible in 2003
and following years.

The difficulties that we faced were in fact related to the fact that all of our
analysis focused on one level of aggregation (territorial units, individuals)
and did not analyze the systemic constraints that were involved in the
dynamics of the procedure of diffusion through time. The complexity of the
phenomena was related to the fact that different processes of space-time
mobility were acting together but with very different characteristics. They
could not be captured separately and the resulting picture could not isolate
particular effects like tourism contribution to mixture of coins without
controlling also the effects of monthly or daily mobility of workers
(Grasland & Guerin-Pace, 2004; Grasland et al., 2005). Looking back at
the picture of diffusion of German coins between 2002 and 2004 (Figure
10), it is immediately visible that the peak observed along the
Mediterranean coast is not related to the same process of diffusion as the
gradient observed along the border. And the mystery of domination of
Spanish coins can be solved if we enlarge the model to the whole
European territory and notice the effect of the intermediary position of
France for tourist of northern Europe going on holiday to Spain. British
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people who are normally not concerned by euros will contribute to the
diffusion of French coins in Spain and Spanish coins in France when they
go on for holidays by car.

The articulation of observational and organizational levels

The external structure of social or spatial systems (Figure 12) also needs
to be taken into account theoretically in order to understand its dynamics.
The interactions observed between elements correspond to a precise
moment (T) and a specific level of organization (L) of spatial or social
reality. Yet the reality that is amenable to observation at this level and at
this given time is not independent of entrances and exits from other
systems occupying different positions in time and within the hierarchy of
organizational levels (Durand-Dastés, 1999; Sanders, 2007).

By remaining confined to relations of immediate proximity, the state of the
system (L, T) obviously depends first of all on its previous state (L, T-1),
which has generated a number of legacies. But it also depends on its
future state (L, T+1) to the extent that agents’ decisions take account of a
range of anticipations pertaining to the future evolution of the system. As
for organizational levels, the state of the system (L, T) is the emerging
effect of interactions forged between elements at a lower level (L, T-1), but
it is also subject to a range of constraints and determinations related to the
impact of systems of interaction at a higher level (L, T+1). However, the
successive analysis of different organizational levels is not the only
possible approach. Increasingly, studies in the field seek to apprehend
simultaneously several levels with new statistical instruments of
information, especially in the context of multilevel models.

In the case of the analysis of euro coin diffusion, it is only very recently
that we were finally able for the first time to demonstrate the existence of
social effects related to age, qualification and social status. As explained
before, the sample used for Belgium was not sufficient to cross a sufficient
number of parameters and the effect of geographical proximity was so
strong that other effects were difficult to perceive. But in the case of
France, we had the possibility to compile more than 14 surveys. The
problem was that, as we had seen in Belgium, the spatial effects of
distance were so important in the explanation that it was difficult to depict
other social effects when both were introduced in the same model.
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Figure 12: Scale and time levels of analysis

Yet again it was Waldo Tobler who provided indirectly the solution through
his distinction between flows and movement (Dorigo & Tobler, 1983). We
had tried to analyze the probability to have at least one foreign coin or the
number of foreign coins in the moneybag. But we had not taken into
account the distance of this foreign coin to its origin and the physical
quantity of energy necessary to transport these coins from their origin
(abroad) to their current location in France. It is for example important to
consider that the discovery of a German coin in a moneybag in Strasbourg
(border with Germany) is not exceptional and can be related to a very
short distance (less than 5 km). But the discovery of a German coin in
Toulouse is something more interesting because, whatever the exact
travel, the minimum distance necessary to carry this coin from Germany is
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at least 800 km and probably more. Considering this idea of movement,
we proposed a new variable that evaluates the minimum quantity of
movement (energy of transportation) necessary to obtain a given
distribution of coins in a moneybag. To do this, we determined the different
foreign countries represented in a given moneybag and computed the sum
of minimum distance between the place of survey and the nearest border
of these countries. French coins were counted as 0 and only foreign coins
contributed to the definition of the quantity of movement (minimum number
of kilometers) present in the moneybag of a given individual.

In the example presented in Table 1 two moneybags are considered.
Moneybag A is made of 15 coins with 9 French, 3 German, 2 Belgian and
1 Spanish coins, which is a rather common distribution. In our previous
analysis, this moneybag was considered as equivalent whatever the
location of the survey. But now we propose to take into account this
location and we will therefore provide different evaluations of this
moneybag if it is observed in Strasbourg (coins average distance to origin
is equal to 76 km), in Paris (129 km) or Nice (189 km). In the second
example, the moneybag involves only 8 coins but with a very exceptional
distribution including 5 French coins, 1 from Ireland, 1 from Greece and 1
from Finland. In this case, we can consider that the average distance of
origin of coins is very high, whatever the location in France (between 488
and 556 km).

Many improvements can be added to this measure of movement, taking
into account the size of the country of origin, the possible clustering effects
in coin transportation and, last but not least, the value of coins as we have
demonstrated very early that the smallest the value, the lowest the
probability of long distance circulation (Grasland et al., 2002).
Nevertheless, we will demonstrate that a simple modelization of the raw
number of kilometers involve in a moneybag makes it possible to obtain
very interesting results on social inequalities in terms of international
mobility in the Euro area.
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Minimal distance Moneybag A Moneybag B

(km, grand circle) (3AL, 2BE, 1ES, 9FR) |(1FIl,1IR, 1GR, 5FR)
Country [Stras. Paris  Nice Stras. Paris  Nice Stras. Paris  Nice
IAUT 191 555 394 0 0 0 0 0 0
BEL 166 179 633 332 358 1267 |0 0 0
IALL 15 299 402 46 897 1207 |0 0 0
ESP 766 680 359 766 680 359 0 0 0
FIN 1493 1665 1982 |0 0 0 1493 1665 1982
FRA 0 0 0 0 0 0 0 0 0
GRE |1349 1679 1107 |0 0 0 1349 1679 1107
IRL 1060 715 1359 |0 0 0 1060 715 1359
ITA 247 477 25 0 0 0 0 0 0
LUX 131 262 619 0 0 0 0 0 0
NLD 265 276 765 0 0 0 0 0 0
POR |1322 1031 1117 |0 0 0 0 0 0

1

PKM: sum of distances 145 1935 2834 [3901 4059  |4448
KM: average distance of coins |76 129 189 488 507 556

Table 1: Estimation of the internationalization of a moneybag by minimum quantity of
movement

The model used in this analysis is a Poisson regression model describing
the total number of kilometers involved in the moneybag of an individual
(PKM) according to the size of moneybag (Nbcoins), the date of survey
(Time) and various social parameters describing age and sex structure
(AgeSex), level of standing of the household based on a synthesis of
various parameters (Standing), level of education of the individual
(Education) and finally field of activity with a simple distinction between
inactivity, manual workers and others (Activity). A scale parameter (Scale)
is introduced and automatically estimated in order to avoid biases
introduced by the unit of measurement of distance. Without this scale
parameter, the significance of parameters would be biased and depend on
the choice of units in kilometers, miles, etc.

4
+a, log(Nbcoins)

+a, Time, + ...+ a,,_Time,_,
KM, = scale x exp|+a, AgeSex, + ...+ a, , AgeSex, , +E,
+a, Standing, + ...+ a, ¢ Standing,_,.

+as, Education, + ...+ as _ Education_,

|+ ACHIVITY + ...t Qg ActiVityy,

In the case of qualitative variables with N modalities, only (N-1) are
introduced in the model as dummy variables and the remaining one
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defines the effect of the intercept parameter (a0). In our application, the
intercept therefore refers to a position which is chosen as reference and is,
in this particular case, the moneybag opened in December 2007 and
belonging to a man more than 65 years old with high socio-professional
status and high level of education, retired (the characteristics of W. Tobler,
if he had been living in France in 2007...). We could have chosen any
other position as reference without changing the result of the model and it
is only for empirical comments of the results that this reference is useful.

Before we analyze the detailed results for each position (Table 2), we
would like to underline the main discovery which is that all parameters of
social position introduced in the model are statistically very significant
which means that all contribute to introducing significant differences in the
internationalization of moneybags, all things being equal with the number
of coins, the time period and the other social parameters introduced as
competitor for explanation. More precise results are the following ones:

The number of coins is less than proportional to the number of
kilometers (0.93 <1) which means that individuals with big moneybag are
generally less likely to have a high proportion of coins coming from long
distance than people with small moneybag. The size of moneybag is
indeed an interesting topic that can be described by a mathematical model
(Nuno et al., 2005) and can reveals interesting variations from one country
to another or between social groups.

The internationalization of moneybags increases through time but
with some seasonal fluctuations. The value of the time parameter
indeed increased from -1.999 to 0 between March 2002 and December
2007, but the trend is not linear and some positive residuals appears
generally in September (due to the effect of great holyday migration) and
negative residuals in December or January (when fewer contacts are
observed).

Gender differences are observed in favor of men, but with variations
according to age. Whatever the age group considered, the degree of
internationalization of a moneybag is higher for men than for women,
suggesting that men are more in contact with international networks or
internationalized areas than women. At the same time, we notice that all
things being equal with gender, the internationalization of a moneybag is
highest for young adults (probably students) and then decreases until 45
years old. A second peak is observed around 60 years old (probably
young retired people), followed by a decrease for the older people. As a
summary, the highest probability to have an internationalized moneybag is
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observed for young men (+31% as compared to the reference) and the
lowest probability is observed for middle-age women (-11%).

Social inequalities between households are correlated with
international mobility. Even if the standing variable is not very clearly
defined by the Institute that conducted the survey (a mixture of parameters
including income, property, etc...), the analysis clearly demonstrate that
the internationalization is lower for people with lowest standing (-6.3% for
the lowest level as compared to the highest). But there are no differences
with the middle group that has in fact the highest level of
internationalization (+1.1%). The level of education displays exactly the
same conclusion with clear differences for people with the lowest level (-
6.0%) and a small advantage for the middle group (+1.1%). In both cases,
we can suspect that the observed effect could be partly ecological and
related to the place where people are living (and where they have more or
fewer probabilities to find foreign coins). It is not necessarily their own
mobility that is responsible for the internationalization of their moneybag.

There are strong differences between blue collars and white collars
but not between working and not working people. The categories are
of course very fuzzy and subject to criticism, but it is nevertheless very
clear that blue collars are less likely to be in contact with international
coins (-14.1%) than the others. On the other hand, white collars are not
characterized by higher probability of internationalization as compared to
non-working people, despite the facts that we controlled the effect of age
and sex.
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Par t IParameter estimate Significativity
name category DF value effect |Standard error| Khi2  |Pr > Khi 2
Intercept 1 4,811 0,073 4391,17 <.0001***
Nbcoins 1 0,936 0,017 2911,97 <.0001***
time 2002_03 1 -1,999 -86,5% 0,117 289,86 <.0001***
time 2002_06 1 -1,715 -82,0% 0,075 527,39 <.0001***
time 2002_09 1 -1,095 -66,5% 0,059 339,07 <.0001***
time 2003_01 1 -1,155 -68,5% 0,062 343,02 <.0001***
time 2003_06 1 -1,155 -68,5% 0,062 345,29 <.0001**x*
time 2003_09 1 -0,776 -54,0% 0,055 201,91 <.0001***
time 2003_12 1 -0,723 -51,5% 0,051 200,80 <.0001***
time 2004_06 1 -0,539 -41,7% 0,050 115,46 <.0001***
time 2004_09 1 -0,310 -26,7% 0,047 43,85 <.0001***
time 2004_12 1 -0,369 -30,9% 0,045 66,40 <.0001***
time 2005_06 1 -0,273 -23,9% 0,047 34,38 <.0001***
time 2005_12 1 -0,130 -12,2% 0,044 8,86 0.0029***
time 2006_06 1 -0,074 -11% 0,045 2,63 0.1046-
time 2007_01 0 0,000 - 0,000 - .
IAge structure W15-24 1 0,042 4,3% 0,058 0,53 0.4678-
IAge structure W25-34 1 0,025 2,6% 0,051 0,24 0.6215-
IAge structure W35-44 1 -0,026 -2,6% 0,052 0,25 0.6145-
IAge structure W45-54 1 -0,117 -11,0% 0,055 4,46 0.0346*
IAge structure W55-64 1 0,049 5,0% 0,053 0,84 0.3582-
IAge structure W65 + 1 -0,031 -3,1% 0,050 0,38 0.5356-
IAge structure M15-24 1 0,271 31,2% 0,060 20,64 <.0001***
IAge structure M25-34 1 0,116 12,3% 0,059 3,95 0.0470*
IAge structure M35-44 1 0,076 7,9% 0,059 1,67 0.1964-
IAge structure M45-54 1 0,089 9,3% 0,058 2,41 0.1208-
IAge structure M55-64 1 0,117 12,4% 0,056 4,37 0.0366*
IAge structure M65 + 0 0,000 - 0,000 - .
Standing Low 1 -0,066 -6,3% 0,029 5,02 0.0251%*
lztanding Medium 1 0,011 1,1% 0,026 0,16 0.6882
tanding High 0 0,000 - 0,000 - .
Diplom Low 1 -0,062 -6,0% 0,031 4,17 0.0411*
Diplom Medium 1 0,011 1,1% 0,036 0,09 0.7659
Diplom High 0 0,000 - 0,000 - .
IActivity White collars 1 0,037 3,8% 0,028 1,75 0.1863
IActivity Blue collars 1 -0,152 -14,1% 0,043 12,58 0.0004***
IActivity Inactive 0 0,000 - 0,000 - .
cale
Earameter 0 41,087 0,000

Source of data: Euro Spatial Diffusion Observatory — http://www.esdo.prd.fr

Table 2: A poisson regression model of social diffusion of international foreign coins in
France (2002-2007)

These fascinating results - presented here for the first time - have many
consequences in both empirical and theoretical fields. For example, in
political sciences, they could provide a better understanding of the attitude
of French citizens toward the European Union, according to their social
and spatial position.

The categories that rejected the Lisbon Treaty in France are more or less
exactly the one that have been described here as the less in contact with
internationalized networks. We will discuss it in further publications, but we
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hope that this example will at less convince the reader of the interest of the
theoretical framework that we have elaborated here, thanks to Waldo
Tobler and Peter Blau.

CONCLUSION: SPATIAL ANALYSIS AND SOCIAL MORPHOLOGY

In conclusion, | would like to enlarge my point of view to the more general
question of the borders between academic disciplines, with a particular
focus on Geography and Sociology. In my view, a great opportunity of
progress for a unitary Social Science appeared at the end of the 19"
century when E. Durkheim elaborated the concept of social morphology.
But unfortunately, this opportunity was not realized at this moment of
history where each discipline was trying to build its own identity. One
century later, | suggest that it could be time to rediscover this idea of
Social Morphology, which is very near to many practices of Spatial
Analysis.

Spatial analysis may be defined as the body of statistical, mathematical,
cartographic and IT methods that aim to describe, measure, analyze or
modelize spatial configurations and the evolution and movements of
objects or events (men, animals, plants, cultures, volcanoes,
temperatures, altitudes, roads, activities, etc.). As a realm of theoretical
research, spatial analysis provides measuring instruments that apply to
abstract geometrical objects (points, surfaces, lines, networks) and which
are characterized by qualitative and quantitative properties that are liable
to change over time. The instruments of spatial analysis thus define
general forms of distribution and measurements that are independent of
the content of the particular objects they are designed to describe. On the
face of it, the abstraction of spatial forms enabled by the instruments of
spatial analysis does not pertain to any particular disciplinary sphere. But
some geographers, notably W. Bunge (1966), have construed spatial
analysis as the methodological core of a general theoretical geography
(Systematic Geography) that aims to describe the totality of forms and
processes that occur on the earth’s surface, whether they pertain to the
natural world or to the social world. Bunge argues that spatial analysis is
not merely a descriptive instrument adapted to categories of objects or
heterogeneous phenomena, but that it helps to discover general laws in
their distribution at the earth’s surface. On the basis of previous research,
Bunge has shown for instance that the process governing the successive
courses of the Mississippi was not merely analogous to the process that
helps to describe the successive itineraries of the Seattle-Tacoma
highway, but that both processes are subject to the same account by
strictly spatial determinants. According to Bunge, similar arguments apply
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to the growth of punctual objects such as towns or volcanoes that grow in
successive accumulations around a centre, with their density gradient
governed by mathematical and to a certain extent predictable rules. Close
in this respect to the position later defended by H. Reymond (1981),
Bunge sees in the problem of spacing the core of geographical method
and the only approach ever likely to provide the foundations of a genuinely
scientific domain of inquiry.

According to Durkheim, social morphology is the study of the material
substrate of social life, i.e. the human milieu, and of the social structures
that function simultaneously as the causes and the consequences of the
macroscopic evolution of human societies. In The Rules of Sociological
Method, social morphology is defined briefly as “the number and nature of
elementary parts that constitute any given society, the way in which such
elements are organized, their degree of coalescence, the distribution of
population throughout the territory in question, the number and nature of
communication routes, the forms of habitats, etc.” (Durkheim, 1895).
Durkheim proposed a more precise definition in 1899 when the
‘miscellaneous’ section of L'’Année Sociologique was renamed ‘social
morphology’: “Social life is based on a substrate determined in size and
form. It is constituted by the mass of individuals that compose it, the way in
which they occupy its territory, and by the nature and configuration of the
range of determinants affecting collective relations. The social substrate
varies according to the size and density of the population, the degree to
which the population is predominantly urban or rural, the way in which
towns and houses are built, the size of the territory effectively occupied by
the population, the degree to which the territory is delimited by borders,
the nature of its communication routes, etc. On the other hand, the
constitution of the substrate directly or indirectly affects all social
phenomena, in the same way that mediate and immediate psychological
phenomena are related to the state of the brain. We thus have a broad
range of issues that are clearly of interest to sociologists and which, since
they refer to a common object of inquiry, must pertain to a common realm
of scientific inquiry. Such is the core of the science that | propose to call
social morphology” (Mucchielli & Robic, 1996).

A number of studies in the epistemology and history of geography and
sociology have observed that the idea of creating a multidisciplinary field
of research that brings together sociologists, geographers, demographers
and economists was not without ulterior motives on the part of Durkheim
and his disciples (Mucchielli & Robic, 1996; Rhein, 1982). In many ways,
social morphology was conceived by Durkheim as a ‘war machine’
designed to counter the almighty power of history, a means for sociology
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of asserting itself (by means of a critique of geography, which had been
unable to integrate its questions) and an attempt to occupy a promising
field of research before other subjects could stake a claim to the very
same disciplinary terrain. Though other disciplines responded positively to
Durkheim’s appeal (which was not the case of geographers in the tradition
of Vidal), sociologists could rightfully claim to be the first occupants and
thus cement their hold over the research carried out in other disciplines. A
century later, the significance of these quarrels has nonetheless
considerably weakened. A more productive approach would be to construe
Durkheim’s proposition literally by reflecting on the usefulness of
resurrecting a multidisciplinary field of research centered on social
morphology, at the cost of making some minor adjustments to Durkheim’s
original definition.

According to our theoretical framework, social morphology could be
defined as the study of the impact of the position of individuals or groups
on the constitution of bonds that may develop between them within a given
society. The notion of position is sufficiently broad to include the
contributions of sociology and geography within the domain of social
morphology. But it also implies other disciplines in the social sciences
capable of making a significant contribution of their own (economics,
history, and demography). Still, even if social morphology is provisionally
restricted to the study of geographical and sociological positions, it is clear
that the definition outlined here overlaps to a significant degree with
Durkheim’s own definition. The notion of geographical position includes
phenomena of concentration, dispersion, and accessibility, as well as the
role of territorial grids, whether political (borders) or administrative
(regions, communes). In theory the concept of sociological position helps
to define the elements that constitute any given society, i.e. ‘the number
and nature of its elementary parts’, in Durkheim’s earliest definition. An
inquiry into the specific contribution of geographical analysis to Durkheim’s
social morphology outlined over a century ago therefore raises the
question of the current connections between geography and sociology. It
also raises the question of the identity of geography within the human and
social sciences generally (Rhein, 2002).
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ABSTRACT

This chapter presents an introduction to machine learning
models/algorithms and their potential applications to
geospatial data. The main attention is paid to widely used
models which are based on artificial neural networks
(multilayer  perceptron, general regression neural
networks, self-organizing maps) and statistical learning
theory (support vector machines). The main ideas of
spatial classification, spatial predictions/mapping including
automatic algorithms, nonlinear dimensionality reduction
and visualization of high dimensional multivariate socio-
economic data, treatment and classification of remote
sensing images by applying machine learning are
illustrated using real data case studies.

KEYWORDS

Machine learning algorithms, Geospatial data, Mapping and classification,
Dimensionality reduction, Remote sensing

INTRODUCTION

Machine learning (ML), in a general framework, can be considered as a
subfield of artificial intelligence that is concerned with the design,
development, and application of algorithms and techniques that allow
computers to learn from data. Machine learning has a close connection
with statistics (especially nonparametric and computational statistics) and
theoretical computer science. Since the middle of twentieth century
machine learning has evolved from the imitation of a simple neuron and
artificial neural networks to a solid interdisciplinary field of basic and
applied research having an important influence on many topics: pattern
recognition, bio-computing, speech recognition, financial applications,
analysis and modeling of high dimensional and multivariate geo- and
environmental spatio-temporal data, etc. (Agarwal & Skupin, 2008;
Cherkassky & Mulier, 2007; Hastie et al., 2009; Izenman 2008; Kanevski,
2008; Openshaw & Openshaw, 1997; Vapnik, 1998).
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In recent years there has been an explosive growth in the development of
adaptive and data-driven approaches. Among successful and widely used
models of ML artificial neural networks (ANN) of different architectures and
support vector machines have attracted great attention. Both have
demonstrated important and successful applications for geospatial data
modeling tasks: spatial predictions (classification and mapping); natural
hazards and environmental risk assessments; renewable resources
estimates; analysis, modeling and visualization of multivariate socio-
economic data; environmental time series predictions; hydroinformatics;
treatment and classification of remote sensing images, assimilation of data
and science based models; etc. (see references below).

The key feature of the ML models/algorithms is that they learn from data
and can be used in cases when the modeled phenomena is not very well
described, which is the case in many applications of geospatial data.
Machine learning models are adaptive tools, which at present are widely
used to solve prediction, characterization, optimization and many other
problems.

There exist many kinds of ANN to be used for different problems and
cases. Among the most common in geo- and environmental sciences let
us mention multilayer perceptron (MLP), radial basis function (RBF)
networks, general regression neural networks (GRNN), probabilistic neural
networks, Kohonen networks (self-organizing maps, SOM) (Agarwal &
Skupin, 2008; Cherkassky & Mulier, 2007; Hastie et al., 2009; Izenman
2008; Openshaw & Openshaw, 1997; Haykin, 2009).

Let us remind that other approaches of geospatial data analysis and
treatment (not data-driven) can be considered as model dependent ones.
In this case an expert develops a model (e.g., models of spatial
correlation) which is then used for the modeling and prediction purposes.

For example, traditional geostatistics can be considered as a well-known
model-dependent approach for spatial data and one based on
variography, which deals with the analysis and modeling of spatial
correlations (Chiles & Delfiner, 1999).

At present, one of the most efficient data-driven approaches is based on
statistical learning theory (SLT) (Vapnik 1998). The theory is based on the
Structural Risk Minimisation (SRM) principle and has a solid statistical
background. When applying SRM one tries not only to reduce training
error — to fit the available data with a model, but also to reduce the
complexity of the model and to reduce generalization (prediction) error.
Many nonlinear learning procedures recently developed in neural networks
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and statistics can be understood and interpreted in terms of the structural
risk minimization inductive principle. A methodology based on SRM is
called Support Vector Machines (SVM). At present SLT is still under
intensive development and SVM have been finding new areas of
application. Many classical models, for example principal component
analysis (PCA), were generalized to kernel PCA using so-called “kernel
trick” (see details below).

SVM develop robust and non linear data models with excellent
generalization abilities that are very important both for monitoring and
forecasting. SVM use only support vectors (part of the measurement data
points) to derive decision boundaries. They open a way to sampling
optimization, estimation of noise in data, quantification of data
redundancy, etc. More detailed presentation of SVM application for
spatially distributed environmental data is given in Kanevski & Maignan
(2004), Kanevski (2008) and Kanevski et al. (2009).

In general, geospatial data are not only data in a geographical low
dimensional (2d, 3d) space but rather data embedded into a high
dimensional geo-feature spaces, which consist of geographical
coordinates and features generated from, for example, digital elevation
models, science based models, remote sensing images, etc. In such
cases an important problem is the “curse of dimensionality” — an
exponential growth (with the dimension of space) of measurement data
necessary to fill the space. Therefore dimensionality reduction methods
have gained great popularity. Recently, many efficient nonlinear
dimensionality reduction techniques were proposed and are efficiently
used in many real life applications (Lee & Verlaysen, 2007; Guyon et al.,
2005).

In terms of patterns/structures the following main problems closely related
to the main problems of learning from data can be considered:

e pattern recognition/pattern detection,
e pattern modeling,
e pattern predictions/pattern completions.

The problem of pattern recognition is closely related to the contemporary
exploratory data analysis when the main topic is to find/detect structured
information in data without making restrictive hypotheses about data
distributions. An important question is how to construct the criteria able to
detect and separate “useful” structured information from the noise. For
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example, geostatistics widely uses the variography — spatial anisotropic
correlations analysis in order to detect and to characterize spatial
patterns/structures.

Pattern modeling is a task of developing models capable to correctly
model structured information taking into account available data, expert
knowledge, and science-based models, when these are available. Finally,
pattern prediction is a process of forecasting/prediction in space and in
time at the points where there are no measurements.

Other traditional topics where machine learning has contributed are
problems of optimization and control, calibration of science-based
(meteorological, physical) and empirical (cellular automata, multi agent
systems) models, modeling/imitation of processes and events, etc. Some
recent developments in ML applications for environmental modeling are
considered in Cherkassky et al. (2006, 2007). More geographical
applications - cellular automata calibration and land-use modeling are
presented in Pijanowski et al. (2002) and Almeida et al. (2008). As a
universal tool ML can be efficiently integrated with Geographic Information
Systems in order to build modeling and data treatment modules.

Geospatial data processed by ML can be of different types:
categorical/discrete data — classes (e.g., land use, soil types, geological
units), continuous data (concentration of pollution, temperature, river
levels, wind fields), and distributions — probability density distribution
functions. Different models and tools were developed in machine learning
to treat these classes of data and corresponding problems.

Let us consider briefly more formal definitions of the problem of “learning
from data”.

Learning from data. Setting of the learning problem

ML models are based on the statistical treatment of data. The main
hypothesis is that data are generated from some unknown processes
which can be characterized by the joint probability distribution function
p(x,y) describing connection between input(=x) and output(=y). Input-
output modeling can be considered as a general problem of mapping.

Statistical interpretation is quite general and covers also deterministic
approaches of data description and modeling. Learning machine or
machine learning model tries to model the relationship between input and
output in order to recognize and to model patterns. Then, the model
developed can be used for the prediction purposes.
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The general framework of learning from data can be visualized in the
following way (Vapnik, 1998; Cherkassky & Mulier, 2007):

X .
G S

LM

Figure 1: The flow-chart of a generic problem of machine learning from data

In Figure 1: G is a generator of i.i.d. (independent and identically

distributed) data/vectors xeR!" drawn from a fixed but unknown probability
distribution function F(x); (S) is a supervisor who returns an output value y
to every input vector x, according to a conditional distribution F(y|x), also
fixed but unknown; (LM) is a learning machine capable of implementing a
set of functions f(x,a), Aea, where A is a set of parameters.

In general the learning process can be considered as a process of
inferring from data and expert knowledge. Usually this process is a two
step procedure (Figure 2): induction — development of a general
probabilistic model and then deduction — using a developed model to
make predictions at specific points. In many cases this two-step process
can be replaced by a direct, so-called transduction process or “from
particular to particular”. The latter can be more efficient in real-life
applications when there usually are not enough data in order to develop a
generic inductive model and then use it during the deduction process to
make predictions.

Induction Deduction

Training
samples ——

(i, yi)

Transduction

Figure 2: Learning processes: induction, deduction, transduction
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In almost all real-life case studies an introduction of statistical model to
data is non-trivial because usually only one realization of the phenomena
is available: spatial data on pollution, time series of monitoring data, soil
and land-use data etc. Statistical treatment of data can be introduced in
this case as well under some hypotheses and assumptions. Therefore
there are important hypotheses and assumptions that have to be checked
(usually it is not a trivial task!) and accepted in order to make statistical
(machine learning) inference based on one realization of the phenomena
under study: iideness of data, ergodicity (loosely speaking, the
convergence of the averaging over space to the averaging over
realizations), spatial or temporal stationarity, i.e. absence of trends when
important parameters of the model do not change in space/time. In case of
geospatial data spatial clustering is an important topic which complicates
both treatment of data (representativity of data) and interpretation of the
results. The problem of non-stationarity (spatial or temporal) partly can be
overcome by using locally adaptive models. Like in statistics these topics
are also important in machine learning data treatment and modeling.

Learning from data. Basic learning algorithms and techniques

Taking into account the definition of learning machine the procedure of
learning in general can be considered as a process of the selection of a
set of functions f(x,a) and tuning/fitting of the corresponding parameters
(a). Most of machine learning algorithms use wide and flexible libraries of
functions capable to model real life data (ML are universal modeling tools).

Common ML models include the following types of learning widely used in
practice:

e supervised learning — where the algorithm generates a function that
maps inputs to desired outputs. In this case output data are available
at some (many) input data points. This information is used to train
machine in a supervised manner by minimizing a well-defined criterion
describing the discrepancy between data and modeling results. Usually
this kind of problems falls into the optimization problems in high-
dimensional spaces composed of machine’s parameters.

e unsupervised learning — which models a set of inputs: labeled
examples are not available. This is a typical problem of data clustering,
data classification, and manifold learning.
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¢ reinforcement learning — where the algorithm learns a policy of how
to act given an observation of the world. Every action has some impact
in the environment, and the environment provides feedback that guides
the learning algorithm.

e In recent years a semi-supervised learning, which combines both
labeled and unlabeled examples to generate an appropriate function or
classifier (in fact a “mixture” between supervised and unsupervised
techniques) has gained much attention (Chapelle et al., 2006).

The performance and computational analysis of machine learning
algorithms is a branch of statistics known as computational learning
theory.

The generic procedure of learning can be visualized as flow-charts
(Figures 3 and 4).

Supervised learning algorithms can be synthesized in the following
diagram:

Supervisor

A 4

Data: Training
Examples

Machine Learning ML Response

Algorithm
\ Evaluation
of ML Response

Modifications
to ML Model

A 4

4
Machine Learning
Algorithm

A

Figure 3: Supervised learning

Unsupervised learning algorithms are a modification of the supervised
approach:
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Data: Training Examples

»| Machine Learning Model —— Response

\

Modifications
to ML Model

A

Machine Learning
Algorithm

\ 4

Figure 4: Unsupervised learning

Let us remind that an important property of almost all of the machines is
that they are universal tools, loosely speaking they are able to learn any
data with a desired precision (Haykin, 2009; Hastie et al., 2009;
Cherkassky & Mulier, 2007).

The process of learning usually is quantified by applying a principle of risk
minimization.

Risk minimization
An important fundamental question is how to describe the quality of
learning, i.e. the description of the similarity/dissimilarity between data and
a ML model. This quantification is important both during learning and
prediction phases.

In order to choose the best available model to the supervisor’s response,
one measures the LOSS or discrepancy L(y,f(x,a)) between the response
y of the supervisor to a given input x and the response f(x,a) provided by
the loss measure which describes the dissimilarity between desired
outputs and ML model. Finally, the problem of learning is to minimize the
difference between desired and modeled outputs. In case of unsupervised
problem the task is to group similar objects into separate classes.

Consider the expected value of the loss, given by the risk function
described by the following formula:

R(@)= [ L(y, f(x.))dF (x,y) (1)

where L is a loss function and F is a joint (input-output) distribution
probability function.
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The goal is to find the function f(x,ag) which minimizes the risk in the

situation where the joint probability distribution function (pdf) is unknown
and the only available information is contained in the training set.

Loss function for the classification problem:
0 if y=f(no) )
1 if  y#f(xa)

For the regression/mapping problem (modeling of conditional mean value)
the risk is a well known mean-square-error:

L(y’f(xaa))z{

L(y’f(xaa)) :(y_f(x’a))z (3)

Finally, consider the problem of density estimation from the set of
densities p(x,a), Aea. For this problem the following loss-function is
usually considered:

L(p(x,@)) =~log p(x,a) (4)

The criteria presented above are very general. Unfortunately the joint
input-output distribution function is not known. Moreover, only a finite
number of data measurements (N training data) is available. Therefore
most training algorithms for learning machines implement Empirical Risk
Minimisation (ERM), i.e. they minimize the empirical error

Ray (@) =2 S L0 f () )

Minimization of empirical risk does not consider the capacity of the
learning machine which can result in over-fitting, i.e. using a learning
machine with too much capacity for a particular problem. The problem of
over-fitting in this case is treated by using different regularization
techniques (Bishop, 1995; Bishop 2007; Haykin, 2009): weight decay,
early stopping, noise injection, etc.

Structural risk minimization (SRM) was introduced by Vapnik &
Chervonenkis in 1974. It is an inductive principle for model selection used
for learning from finite training data sets (Vapnik, 1998; Cherkassky &
Mulier, 2007). It describes a general model of capacity control and
provides a trade-off between hypothesis space complexity (the Vapnik-
Chervonenkis dimension of approximating functions) and the quality of
fitting the training data (empirical error) (Vapnik, 1998; Cherkassky &
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Mulier, 2007). The SRM principle is illustrated in Figure 5. X-axis
corresponds to the complexity of the model and Y- axis to the error.
According to the SRM principle prediction error is a sum of training error
(empirical risk minimization) and complexity term which takes into account
penalization of too complex models. In this way a bound on prediction
error can be derived which gives an upper limit. This limit does not depend
on the distribution of data and therefore is rather pessimistic (too high). In
reality, for particular data limits are lower and can be estimated by splitting
the data or by using cross-validation technique.

An optimal solution corresponds to the minimum on the curve describing
the testing error (= sum of training error and complexity term). The solution
with low complexity (oversmoothing/underfitting) is biased - not complex
enough to explain the structure in the data. The solution with higher that
necessary complexity over-fits data, i.e. noise in data is also modeled. The
intermediate complexity solution models structure/patterns and ignores
noise, thus following Occam’s razor principle: “The more simple
explanation of the phenomena is more likely to be correct’” or "entities
must not be multiplied beyond necessity" (the law of parsimony).

Bound on prediction error

AOoOxmAam

Complexity term

Training error

COMPLEXITY

>
>

Low complexity Optimal complexity High complexity

Figure 5: Structural risk minimization principle (Vapnik, 1998)

An important question of data ML modeling is that the main objective is to
develop a good model that is a model which has good generalization
properties — prediction of new outputs at unknown input points which were
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not used for modeling purposes. It means that the developed ML model
has learned only structured information and ignored a noise present in
data. In this case over-fitting is avoided.

Bias-variance dilemma is a step towards the understanding and
quantification of this problem.

Bias-Variance Dilemma

Let us consider a regression/mapping problem as an example. In general,
we can assume that data can be decomposed into unknown function and
noise:

YX)=f(X,a)+¢

where

E(e)=0,

Var(s) = Gf (7)

where Y(X) are measured data, f(X,a) is an unknown function and ¢ is a
noise present in the data.

The following expression for the expected prediction error of a regression
at an input point X=x, using squared-error loss can be derived (Hastie et
al., 2009):

Err(x,) = EI(Y = f(x,))" | X =x,]=

7 +[E f(ipr00) ~ (o )] + ELf (xy00)~ E f (30, )T =
O'j + Bias* (}(xo, a))+ Var(;’(xo, a)) =

IrreducibleError + Bias® + Variance

One of the most serious problems that arises in connection with learning
by neural networks is over-fitting of the provided training examples. This
means that the learned function fits very closely the training data and yet
does not generalize well, that is it cannot model sufficiently well unseen
data from the same phenomena.

Solution: Balance the statistical bias and statistical variance when doing
neural network learning in order to achieve the smallest average
generalization error.

The following two processes are important in making a decision about the
quality of the model and its generalization ability (Hastie et al., 2009):
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A. Model Selection is a process of “estimating the performance of different
models in order to choose the (approximate) best one”.

B. Model Assessment is a process of "having chosen a final model,
estimating its prediction error (generalization error) on new data”.

There are many different techniques developed in statistics and the ML
community for model selection and model assessment. If we are in a data-
rich situation, the best solution is to split data into three data subsets
which will be used for 1) training (training data), 2) model selection (test
data) and 3) model assessment (validation data). Typical splitting is: 60%
is used for training, 20% for testing and 20% for validation purposes.

How can geospatial data be split? Usually random splitting of data is
applied. In case of geographically distributed data, especially when spatial
clustering is important, declustering procedures can be used as well in
order to split data into representative subsets (Kanevski & Maignan,
2004).

Let us give some general comments on ML applications to geospatial
data:

¢ A machine learning model is only as good as the training data. The
results depend on the quality and quantity of data.

e Poor training data inevitably leads to unreliable and unpredictable
neural networks and support vector machines. Control of the quality of
hyper-parameters tuning by using a testing data set is necessary.

e Exploratory Data Analysis and data pre-processing including
visualization tools are extremely important! Pre-processing of data can
include data transformation as well. Despite the fact that ML are
nonlinear tools intelligent data pre-processing can improve learning
and make it faster.

e Analysis of the residuals is necessary and helps in understanding the
quality of modeling and results.

e If possible, prior to training, add some noise or other randomness to
the training examples. This helps to account for noise and natural
variability in real data, and tends to produce a more reliable network.
This is a well known technique of noise injection which in many cases
prevents an over-fitting of data and is equivalent to regularization
(Grandvalet et al., 1997; Kanevski et al., 2009).
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o Criteria of early stopping are widely used to avoid over-fitting of data
when multilayer perceptron is used for modeling purposes. Complex
model is iteratively trained (one training pass using all data is called an
epoch) until the testing error starts to grow (Figure 6). The model with
minimum testing error is fixed as an optimal model and then the
validation set is used to estimate the generalization properties of the
model developed (see above). If noise in data can be estimated
independently, for example, using variography (nugget) or so-called
delta- or gamma-tests (Pi & Peterson, 1994; Jones, 2004) splitting of
data into training-validation is not necessary because the training
procedure can be stopped at the level of the noise. As usual the goal of
training is to extract patterns and not a noise.

waNo YW

Testing

Training

Epochs

Figure 6: lllustration of an early stopping principle

In the following section unsupervised and supervised learning algorithms
are presented and applied to real data case studies.

UNSUPERVISED LEARNING

Unsupervised techniques are aimed at the exploratory analysis of data.
They provide insight into the structures and dependencies hidden in the
datasets. This is achieved by finding a simplified representation of a
dataset handful for visualization, feature extraction, or descriptive analysis
purposes. The main problems encountered here are the problems of
clustering and dimensionality reduction (also called embedding).

Most of the methods require defining a distance measure between data
samples. Both clustering and dimensionality reduction results depend
heavily on this choice, as this is the step when the inherent similarities in
data are encoded.
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CLUSTERING

Clustering can be defined as partitioning the dataset into subsets of typical
entries such that the samples in each subset share some common
characteristics. The commonness is implied by the pre-defined similarities
between data samples, and usually requires one to define a problem-
specific distance measure in the input space of features. The general
types of similarity measures that are used to compare data samples allow
distinguishing the groups of typical approaches in unsupervised methods.

There is a vast body on literature on clustering problems, comprehensively
reviewed in Jane et al. (1999). Another criteria allowing to distinguish
between different groups of the clustering methods include the type of
outputs provided by the method (hard assignation to a cluster or fuzzy
measures like cluster membership probability), deterministic or stochastic
nature of the method (whether the algorithm converges to the same
solution in the same initial setting), and the agglomerative or divisive
approach to clustering.

K-means algorithm

Probably the most popular clustering algorithm is known as k-means.
Given the dataset {x1,...xn}, it operates as follows:

o K centers p are initialized randomly in the input space;

e Each sample x; is assigned to the closest centre with respect to
some (usually Euclidean) distance. It is considered as belonging to
the cluster Cy;

R
¢ New centers are computed as ;" = N Z X, .
k i€Cy

The last two steps are iterated until convergence. As the centers are
updated using all the data at once, this version of the algorithm is known
as batch k-means, opposed to the online or stochastic k-means when the
update is done by randomly iterating through the samples of the dataset.
The stochastic k-means can be faster and less sensitive to the initialization
of the centers. K-means methods are aimed at minimization of the intra-
cluster variance and demonstrate good performance if the data face
distinctive “clouds” and there is no significant correlation between the input
features (Figure 7).
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k-means centre 1

° k-means centre 2
° [ ]

Figure 7: K-means algorithm searches for well-shaped cloud-like clusters in data. It
performs poorly if data have correlated (linearly or non-linearly) inputs

Self-organizing maps

Self-organizing maps (also known as Kohonen maps (Kohonen, 2000))
are a popular method extending the functionality of k-means. SOM places
the centers (also called units or neurons) in the data space aiming to
“cover” all data points to fit to the topology of the dataset optimally and
present it in a two-dimensional map. That is, the centers are not drawn
and fitted independently as in the case of k-means, but organized in a two-
dimensional map. There exist two common designs of this map:
rectangular (every unit has four neighbors) and hexagonal (every unit has
six neighbors), shown in Figure 8.

The map is initialized either by random placement of the centers of the
map in the data space or by sampling them evenly in the input data
subspace spanned by the two largest principal component eigenvectors.
This method can increase the training speed significantly as the initial
weights may already give a good approximation of the structures in the
data. SOM is sensitive to the initialization and may require several runs.

Figure 8: Two different SOM structures with cells in the map space: rectangular (a), and
hexagonal (b). The nearest cells (4 for rectangular and 6 for hexagonal, except borders
and corners) are connected by the edges

The training process for updating the positions of centers is an online
iterative procedure. Samples are presented to the SOM one by one, and
the positions of centers are updated. The key point here is that not only
the closest centre is updated, but also the centers in its closest (on the
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map) surrounding. The closeness on the map is defined with the
neighborhood function which is responsible for the “cooperation” of
centers and their self-organization. This neighborhood influence is then
gradually decreased through every iteration epoch. The last epoch of SOM
adaptation with no cooperation between centers is the same as in the
case of simple k-means.

The last step in SOM training is a post-processing of the obtained map. It
is usually done by analyzing the so-called U-matrix, that is the matrix of
the distances (in the input space) between the neighboring nodes of the
trained SOM structure. With this matrix, one can detect that a group of
SOM centers appears far from the rest of the map thus revealing that the
data samples captured by these centers form a distinctive cluster. This
step can be performed manually but usually an automated procedure such
as k-means or hierarchical clustering is used. More detailed description of
SOM models and their application for geospatial data can be found in
Kohonen (2000), Agarwal & Skupin (2008) and Kanevski et al. (2009).

Spectral clustering

The method of spectral clustering originates from a graph-based
perspective of the clustering problem (see e.g. Hagen & Kahng, 1992; Ng
et al., 2001; Shi & Malik, 2000). Spectral clustering considers the data
samples as the nodes of a weighted graph and applies the methods of
spectral graph theory to study its inner structure (Figure 9). To describe
the affinity between the nodes of the graph, the vertices connecting the i-th
and j-th nodes (the data samples x; and x;) are entitled with the weights w;;
that form the matrix W. To separate the graph into clusters one has to find
the “cut” that minimizes the sum of weights that would need to be removed
in order to split it. If the weights are attributed according to the distance
measure between the data samples x; and x;, it leads to the clustering of
data in the input space. Two common approaches are the n-nearest
neighbor one, where w;=1 iff the i-th and j-th samples are amongst the n-
nearest neighbors of each other, and the one which uses the Gaussian
RBF function of the distance between samples as the value for the weight.
The last case implies a parameter to be defined by a user, that is, the
width of the Gaussian. The way one attributes the weights can also
account for some problem-specific knowledge.

To approach the problem of finding the cut of the graph one needs to
analyze the matrix known as graph Laplacian. It is defined as L=W-D
where D is the diagonal matrix with element formed by the column-wise
sums of elements of W, di=j[w;]. The normalized graph Laplacian L=D
2\ D2 is often used as well. The foundations of spectral clustering lie in
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the fact that the eigenspace of the (normalized) graph Laplacian has a
particular well-defined structure related to the number of the connected
components of the graph. Or, intuitively, if the Laplacian matrix is
essentially block-diagonal, it can be easily detected from its eigenspace.
While there are many possible approaches that implement this idea, the
most popular formulation of the spectral clustering is as follows (Ng et al.,
2001):

o Form the affinity matrix W and compute the normalized graph
Laplacian;

e Solve the eigenvalue problem of finding the {), f} such that Lf=Af;

e To detect k clusters: find the k eigenvectors with largest
eigenvalues of L and stack them in columns to form the N-by-k
matrix U, normalize it.

e Perform ordinary k-means on the columns of U. Assign the obtained
cluster labels to the original N data samples.

Cluster 1
Cluster 2

Figure 9: Spectral clustering builds a graph connecting data samples in a local
neighborhood and analyses its structure in a search for weakly connected components.
Simulated data
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CLUSTERS IN SOCIO-ECONOMIC DATA

To illustrate the use of clustering methods, let us explore the socio-
economic data on the region of Lausanne, Switzerland. The dataset was
obtained from the population census and includes about 250 different
entries defining the social, cultural (mother tongue, nationality, etc.) and
economic (employment rate, household type, etc.) characteristics of the
population. The data are spatially aggregated from the regular grid cells of
100x100 meters covering the populated area of the region. There are a
total of 3359 samples. Population density, which is one of the most
important input features, is presented in Figure 10.

Clustering methods may be exploited to provide useful insight into data
and to identify structures in the space of socio-economic parameters.
Visualization of the obtained clusters on the map can shed some light on
the spatial structure of the region. The results of the described methods
obtained on the dataset assuming a priori 6 clusters are shown in Figures
10-13. These maps can give rise to interpretations and insight into the
spatial agglomeration of the different social groups populating the region
at study.

0.056-012
013-021
022-03
0.32-0.44
0.45-053
0E0-1.0

Lac Leman

Figure 10: Population density in the region of Lausanne. The values are normalized to the
maximum value of density in the region
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Figure 11: Clusters obtained with k-means method

Lac Leman

Figure 12: Clusters obtained with SOM
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Figure 13: Clusters obtained with spectral clustering

DIMENSIONALITY REDUCTION

Dimensionality reduction is usually involved while aiming at two goals: first,
to produce the low-dimensional representation of data to visualize them,
and, second, to extract low numbers of features for further analysis. Here
one distinguishes the feature selection and feature extraction, where the
latter rather than selecting already existing variables, tries to select a
linear or nonlinear combination of the input variables which suits best the
problem at hand. An example of a linear method is a well-known principal
component analysis. There is a popular and rapidly growing domain of
modern nonlinear dimensionality reduction methods known as manifold
learning (Lee & Verleysen 2007).

Principal Component Analysis

The method of principal component analysis (PCA) is a well established
statistical method (Pearson, 1901). It searches a linear combination of the
input variables (or a linear transformation of the input space) that accounts
for maximum variability observed in data (Figure 14). It is provided with the
following algorithm:

o Standardize the data and compute the covariance matrix S = XX'

e Compute the eigenvectors and eigenvalues of S, sort them by
decreasing values, arrange the eigenvectors in matrix U

e The transformed data set is F=XU
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PCA enables to reduce the dimensionality of the data that include linearly
correlated inputs. For visualization, the first two principal components span
the projection plane providing the most informative (in the sense of
variability) viewpoint on the original dataset. The amount of accounted
variance can be computed to assist in the choice of the number of
components.

xl‘

Figure 14: Principle Components form a new orthogonal coordinate system, with the first
components spanning along the directions of maximum variance of the data

Laplacian Eigenmaps

The large variance along a straight line is not necessarily the main
characteristic of interest with respect to analyzing the complex structures
in the data. A linear projection cannot help unfolding the non-linear
structures as the one of the “Swiss roll”, or even a simpler one as shown in
Figure 15. It is the local relationships between data samples that may help
discover these complex structures. Laplacian eigenmaps (Belkin & Niyogi,
2003) are one particular approach of manifold learning aimed at
preserving the local neighborhood relations between the data samples.
Here we briefly name the other methods of descriptive manifold learning:
locally linear embedding (Roweis & Saul, 2000), ISOMAP (Tenenbaum &
De Silva, 2000), maximum variance unfolding (Weinberger & Saul, 2005).

Laplacian eigenmaps operate with the above-mentioned affinity matrix W
and its graph Laplacian L and can be summarized as follows:

e Form the affinity matrix W and compute the graph Laplacian L=D-
w;

e Solve the eigenproblem Lv=\Dy;
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e Present data in projections on v starting with the smallest
eigenvalues.

This representation keeps the data samples proximate in the input space
(according to the affinity matrix) close in the embedded coordinates.
Hence the step of constructing the affinity matrix is very important as it
should encode the similarities that one desires to keep on the low-
dimensional map. Spectral clustering (described above) is essentially a
related method that only includes one additional step of clustering the
obtained representation using a conventional k-means.

There are some problems encountered when dealing with non-linear
dimensionality reduction methods of manifold learning. The first one is the
so-called out-of-sample problem. As the embedding is based on the graph
built on the training samples, it is not very straightforward to apply the
obtained embedding for a new data sample. Then, it is based on the
eigenvectors problem and requires matrix computations which are difficult
for very large datasets.

Figure 15: Graph-based non-linear dimensionality reduction methods, including the
Laplacian eigenmaps, seek for a “direction” in the graph that carries maximum variance.
As the directions found are based on the graph structure, it is not straightforward to
represent new samples in the obtained embedding

DIMENSIONALITY REDUCTION OF SOCIO-ECONOMIC DATA

The approaches for linear and non-linear dimensionality reduction are
illustrated using the socio-economic data briefly described above. The
methods were applied to the 250-dimensional dataset of 3359 samples.
Analysis of variance of PCA components showed that 95% of variance is
accounted with more than a hundred components. The first 4 components
(accounting for 55% of variance) are shown in Figures 16, 17.
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Lac Leman

Lac Leman

Figure 16. First and second PCA components. The first one clearly follows population
density
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Figure 17. Third and fourth PCA components. The interpretation of these is not
straightforward, though one can notice that the two neighbouring towns (Renens and
Lausanne) differ

The method of Laplacian Eigenmaps was applied to the same dataset.
The first 4 components are shown in Figures 18, 19. For this method, the
interpretation of the amount of “accounted variance” is not evident. Some
approaches can be based around the analysis of eigenvalues. However,
the components revealed clearly the socio-economic diversity of the
regions, highlighting more detailed and distinctive features.
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Lac Leman
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Figure 18. Spatial representation of the first and second components obtained with
Laplacian eigenmaps
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Figure 19. Spatial representation of the third and fourth components obtained with
Laplacian eigenmaps
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SUPERVISED LEARNING

In supervised learning, the machine takes advantage of knowledge about
the outputs to develop a predictive model. Contrary to the unsupervised
methods discussed in the previous section, the algorithm is trained over a
set of samples x = {x1, X2, ..., Xn} with associated known outputs y = {y1,

y2’ wey yn}

In a regression problem, outputs are continuous values and in a
classification problem the outputs are discrete values corresponding to
classes.

The aim of a supervised method is to build a predictor that

1. Minimizes the error of prediction over known examples, i.e. the
couples (x,y). The predictor minimizes a certain loss function
depending on the task. Empirical or structural risk principles are
applied.

2. In general the model must be capable of predicting new unknown
examples, i.e. should have good generalization properties.

In this chapter, supervised models are considered in detail both for
classification, through the Support Vector Machine (SVM) and for
regression, through Multilayer perceptron (MLP) and the General
Regression Neural Network (GRNN).

Supervised learning for classification

As introduced above, the outputs of classification are discrete values
corresponding to a given class of interest. For instance, in the example
shown below, the outputs are land-use classes such as forest, roads or
buildings. From now on, we will refer to known outputs as labels.

The principle of supervised classification is demonstrated in Figure 20:

a) A set of features (=variables) is selected to form the input space. In
the figure the input space is a 3-dimensional space defined by the
three bands of an image in the Red, Green and Blue regions of the
visible spectrum. For each pixel that has been labeled we have a
couple (x,y) = (X%, x%, X, y). Unlabeled pixels only possess the
values of x;.

b) The labeled pixels can be visualized in the feature space. The
coordinates for each pixel correspond to the values on each band.
By assigning a different marker to each class, it is possible to
visualize the separability of the classes.
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c)

d)

The aim of the supervised model is to find the best separation
between the classes. In this example, most of the labeled pixels are
separated correctly, only three pixels are misclassified. Most of the
time, misclassification is a necessary trade-off to maintain a low
complexity. For instance, if the classification is performed on an
aerial photography using RGB values only, green roofs will have a
spectral signature which is identical to meadows. Therefore,
confusion between the classes has to be admitted.

Once the separation between the classes has been defined, all the
unlabeled pixels can be classified according to these boundaries by
computing their position in the feature space. If they fall in one of
the green areas of Figure 20.c, they will be classified as 'green’' as
well, and so on. Once all the pixels of the image have been
classified, a classification map is provided.

() | (b
| Feature 2
| TargetsY i
| [ ]
LI n e L
e" . o Sef
> pel L .
™ [ X ]
° ° L
Features X (ex:RGB) R
° ®
%
Feature 1
A4
Y
(@
Feature 2
Attribute labels
< to new points <

Feature 1

Figure 20: Principle of supervised learning for remote sensing data. (a) Each pixel is
associated to features (ex: the spectral bands) AND known labels Y. (b) Knowledge
about class membership is used in the feature space to train a learner and (c) define a
decision boundary. (d) Finally, the unknown pixels are classified with respect to the

decision boundary found and a classification map is provided
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There are many algorithms including machine learning that offer solution
models to classification tasks: k nearest neighbors (k-NN can be
considered as a benchmark model), decision trees, probabilistic neural
networks, multilayer perceptron, radial basis functions, support vector
machines (Duda et al., 2001; Bishop 2006; Vapnik 1998). SVM have
demonstrated excellent efficiency on classification tasks in different fields
from remote sensing images to biocomputing and finance.

In the following section basic concepts and ideas concerning support
vector machines first introduced in Boser et al. (1992) are presented in
detail.

Support Vector Machines

First, let us consider the most simple two-class classification problem in a
two-dimensional space (Figure 21.a) when data are linearly separable.

The task is to develop a decision boundary which will discriminate the
circles {y°; = -1} from the squares {y°; = 1}. Several planes can be drawn to
separate correctly these two classes (Figure 21.b). According to Statistical
Learning Theory and SRM principle the best solution is (Figure 21.c) a
decision boundary (line) which separates two classes with a maximal
margin (Vapnik, 1998). In a multidimensional space (where multiple
variables are considered simultaneously), the line is replaced by a hyper-
plane. By finding the margin with maximal width, we find the best way to
linearly separate the labeled samples. This solution has the best
generalization properties.

Since only the points lying on the margin are necessary to define the
separating hyper-plane, all the other labeled points are not considered by
the model.

O 0
Oo

O
598

(a) (b) ©

Figure 21: Linear classifiers for a two-class problem. (a) the problem; (b) several linear
classifiers separating the two classes; (c) the SVM
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Mathematically, this results in the following classifier for the prediction of
an unlabeled pixel q:

S () =sign(} 0 y,(x;.4)+b) ®8)

where o; are coefficients that are i) nonzero and ii) equal to 1 when the
labeled sample lies on the margin and (x;,q) is a dot product defining the
similarity between the unlabeled pixels and the labeled samples and b is
the bias. Since the o; = 0 for each sample not lying on the margin, class
membership of an unseen point is assessed by the similarity (~ distance)
between the labeled pixels and the samples that lie on the margin only.
These samples are called the support vectors.

Recalling the example of Figure 21, since circles have negative label (y°;=
-1) and positive squares (y°; = 1), if the new point g is globally closer to the
support vectors of the class “circles”, solution of Eq. (8) will result in a
negative value and g will be labeled as a circle.

The SVM presented so far can solve only linear separable problems.
Slack variables can be considered to allow small errors (see, for instance,
Cristianini, 2000), but the algorithm will fail if the data are not linearly
separable (Figure 22.a). In order to handle linearly non-separable
problems, we might use the so-called kernel trick. If a problem is not
linearly separable in the input space, it may be linearly separable in a
higher dimensional space H (Figure 22.b). If such a space exists, we can
map the labeled samples in the new space and then apply a linear
classifier. A linear classification in a higher dimensional feature space
(Figure 22.c) will correspond to a nonlinear classification in the input space
(Figure 22.d).
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Figure 22: the kernel trick. (a) a linearly non-separable problem in the input space; (b)
mapping in a higher dimensional space H; (c) the decision function in H is linear; (d) in
the input space it is not

The mapping (computation of the new coordinates) in the new space of all
the labeled samples can be solved analytically. For instance, a two-
dimensional sample x = {xs, x2} mapped into a 3-dimensional space by a
quadratic transform can take the coordinates ¢(x) = {x1%, ¥2Xixz, X2?}. But
by looking at Eq. (8) again, we can notice that the explicit mapping of x;is
not required, rather only the similarity between x; and q. Therefore, there is
no need to compute the entire mapping of x in H, but only the distances
between the mapped x and q. Such distances can be represented by
kernel functions. For instance, a polynomial function of degree 2 encodes
a nonlinear similarity K(x;,q) = ((Xi,q))? = x1°G1> + 2X1X2G1G2 + X2°q2° = (d(X),
¢(q)). Therefore, K returns the value of the dot product between the
mapped samples! Using the kernel trick, the nonlinear SVM solution
becomes:
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Summing up, we can compute the SVM solution in a higher dimensional
space (where the problem is linearly separable) without knowing explicitly
the position of the samples in that space, but only by assessing the
distance between them using a kernel function K.

3.1.2 Application to aerial photography for land use characterization

In this section, we will train a SVM for the classification of land use in a
neighborhood of the city of Lausanne, Switzerland (Figure 23.a). In
particular, we would like to use an aerial photography to discriminate
different types of habitat, in particular individual versus collective habitat.
This is a very challenging problem, because the spectral information is
rather poor (each pixel is only considered by its color coordinates in the
RGB space) and roof colors are mixed for the same type of habitat.
Moreover, asphalt objects such as roads or parking lots can be easily
confused with roofs.

In the first experiment, that we will call MS (Multi-spectral), we use the
spectral bands x¢ = (x*, x® xB). Therefore in this case pixels are
classified by their colors only.

(a) (b) (c)

Figure 23: data considered. (a) aerial photography of the NW of Lausanne; (b) feature ,
x°"; (c) feature x°*°
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In order to resolve the confusion discussed above, information about the
spatial neighborhood of the pixels has been extracted. This way, size and
shape of the objects are taken into account and, for instance, thickness of
the roads will help to discriminate road pixels from roof pixels.

Several ways of extracting spatial features have been proposed, going
from the simple computation of local means to more advanced feature
extraction based on mathematical morphology or texture. In this example,
multi-scale morphological filters (Soille, 2004) have been applied to the
image. These filters produce features showing the objects that are brighter
or darker than their spatial surroundings. In this example, we have added
to the three spectral bands 14 morphological features, accounting for
morphological opening and closing using diamond-shaped structuring
elements of size going from 9 to 21 pixels. Morphological opening filter
objects that are brighter than the neighborhood defined by the structured
element; morphological closing filter objects that are darker. Two features,
obtained by applying opening and closing with a 15 pixels structuring
element, are reported in Figure 23.b and 23.c. To know more about these
filters for greyscale images, please refer to (Pesaresi, 2001; Benediktsson,
2003). The filters have been applied to the first principal component (see
section 2) extracted from the RGB image. In the second experiment, that
we will call MM (Mathematical Morphology), we use the spectral bands of
the MS experiment plus the morphological features in a stacked vector
only X" = (x® x® xB x°° x°"" .., x°% x° x°" .. x°¥), where x%°
stands for an opening with a structuring elements of 9 pixels diameter.

As introduced above, the dataset considered (Figure 23.a) is a
neighborhood in the North-West of Lausanne and shows mixed residential
structures, with individual houses surrounded by apartment blocks and
towers, both showing higher urban density. The image was taken in 2004
and has a 1m spatial resolution. Six classes of interest were selected by
visual inspection of the image y = {Trees, Meadows, Individual habitat,
Collective habitat, Roads, Shadows} and 157’723 labeled pixels were
highlighted for the analysis. 5'000 randomly selected pixels were used for
the training of the model, 10'000 for the tuning of the free parameters and
the remaining 142’723 pixels were used to evaluate the performance of
the model on unseen data. A multi-class SVM developed using the Torch
3 library (Collobert, 2004) was used for the experiments. Gaussian kernel
was used in all the experiments.
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In order to compare model performance on new data, the confusion
matrices of the predictions of the 142723 test pixels for both the MS (Table
1) and the MM (Table 2) experiments were analyzed. Confusion matrices
show the results in terms of predicted pixels (columns) versus ground truth
pixels (rows); pixels on the diagonal are correctly classified. The
percentage of pixels correctly classified by the SVM is given in the last
column, while the last row shows the percentage of pixels correctly
classified with respect to the total number of pixels predicted for that class.
The visual inspection of the classified images was also carried out to
detect improvements in the classification of specific objects. Let's remind
that the dimension of the input vector is 3 for the MS model and 17 for the
MM model.

For the MS experiment, the global accuracy is 72.7%. Considering
accuracies per class, the class Shadow is completely neglected by this
model and mainly classified as Trees because of the color similarity. That
means that the model minimizing both the loss function and the
generalization term is a model accounting only for 4 classes. That can be
explained by the small number of pixels composing the class Shadow. The
classes which are best classified are Trees and Meadows. Roads are
often classified as Individual habitat and Collective habitat. The color of
some roofs is the main reason of such confusion. The same problem is
encountered when classifying Individual and Collective habitats. Here, the
similarity in the color of the roofs causes several misclassifications.

Model output
MS Trees | Meadows | I. habitat | C. habitat | Roads | Shadows | Accuracy

Trees 22019 2364 5 105 279 0 89%
o | Meadows | 1037 33984 126 410 169 0 95 %
2 | I habitat 55 425 15157 1047 9660 0 58 %
% C. habitat | 288 765 1348 6214 2847 0 54 %
;a;» Roads 370 1521 9606 2572 26375 0 65 %
Shadows | 3931 3 0 0 46 1 0%

Accuracy | 79 % 87 % 58 % 60 % 67 % 0% 72.7 %

Table 1: confusion matrix for MS

The confusion matrix of MM experiment is shown in Table 2. The global
accuracy is of 86.1%. Inclusion of morphological features, i.e. including
information about the neighboring pixels, has increased performances of
the model by 13.4%. The class Shadow is not neglected anymore and it is
classified at about 90% of accuracy. This is due to the different shape
(mainly squared) and size (forest areas are larger than shadows) of
shadow areas. The greatest improvement is visible on the classes Roads,
Individual and Collective Habitats. For them, the average increase in
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accuracy is about 17-18%. The classifier can better discriminate these
objects, because the morphological features provide information about the
size of the object in which the pixel is located.

Model output
MM Trees | Grass | |. habitat | C. habitat | Roads | Shadows | Accuracy
Trees |23715| 532 12 82 188 243 96%
o | Or@sS | 436 |34281| 149 440 420 0 96%
g | I.habitat | 50 | 233 | 19688 985 5384 4 75%
S [C. habitat| 264 | 304 | 1354 8278 | 1151 21 72%
8| Roads [ 244 | 789 | 5223 | 764 |33413] 11 83%
Shadows | 472 0 0 2 4 3503 88%
Accuracy | 94% | 95% | 75% 78% | 82% | 93% 86.1%

Table 2: confusion matrix for MM

Figure 24 shows the classification maps. For the MS model, two buildings
with the roof of the same color are often misclassified (see marker 1a: the
collective building is classified as an individual house). This problem is
greatly solved by the MM SVM (marker 1b). As mentioned above, the MM
model takes into account the information about the structure of the objects
and it is therefore able to detect their size and shape. Marker 2a highlights
the absence of the class Shadow by the MS model, correctly handled by
the MM model (2b). The roofs of the Collective habitat are sometimes
made of concrete and are therefore confused with roads by MS (3a). On
the contrary, the MM model can better discriminate these objects, even if
some confusion is still visible (3b). Green roofs, which are classified as
Meadows by MS (4a) are better handled by MM (4b). Finally, the MM
model proposes a classification which is less contaminated by high spatial
frequencies of the initial image. Therefore, homogeneous surfaces such
as Meadows and Trees (the forest) are more homogeneous (markers 5a
and 5b).

The classified results reported have great value when analyzing the urban
structure of a city (in our case the spatial distribution of collective and
individual habitats). The problem of urban sprawl is strictly related to the
question of urban density. Remote sensing images can be used to
discriminate automatically between different types of habitat. Machine
learning algorithms, used with features that are discriminative for the
problem to solve, allow achieving reliable results and provide effective
maps for the visualization of urban density.
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Figure 24: Classified image with RGB (top); classified image with RGB and MM (bottom);
Trees = dark green, Meadows = light green, Individual habitat = orange, Collective habitat
= red, Roads = black and Shadows = yellow
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Supervised learning for regression

Multilayer perceptron

Multilayer perceptron (MLP) is a “workhorse” of artificial neural networks. It
can estimate a dependence function without giving explicitly a
mathematical model of how outputs depend on inputs (Haykin, 2009;
Bishop, 1995, 2006). It means that there is no prior model of a studied
phenomenon whose algorithm should tune to data. MLP “learns from an
experience” (or from data).

The following important mathematical result concerning MLP should be
mentioned: “MLP with two layers of neurons and non-constant non-
decreasing activation function at each hidden neuron can approximate any
piecewise continuous function from a closed bounded subset of Euclidean
N-dimensional space to Euclidean J-dimensional space with any pre-
specified accuracy, provided that sufficiently many neurones are used in
the single hidden layer” (Hornik et al., 1989; Cybenko, 1989). This
theorem establishes that for any mapping problem, which includes
regression and classification, properly trained MLP can find a solution.

The basic unit for information processing, as considered in biological
neuroscience, is a neuron. An artificial neuron has inputs that are
analogous to dendrites in a biological neuron. It combines these inputs,
usually by simple weighted summation, to form an internal activation level.
The higher the activation level, the stronger the signal that it will send out
to other neurons in the network. The links are called synaptic connections
and the bias is known as the activation threshold.

An artificial neuron is a mathematical model that simulates a biological
neuron. The simplified model of an artificial neuron is presented in Figure
25. An MLP is a model that simulates a biological neural network, that is, a
structured set of interconnected neurons.
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Figure 25: Simple model of artificial neuron

Mathematically, the neuron is the following computational unit
K .
Z= f(z wx' +b)
=1 (10)

which takes the input features X (components of some input vector x),
makes the summation with weights w;, adds a bias b and passes it with a
transfer function f(-).

Examples of the activation (transfer) functions are the following S-shaped
(sigmoid) functions:

Logistic (Figure 26, left):

1
JS(x)=—= (11)
I+e
Hyperbolic tangent (Figure 26, right):
£(x) = tanh(x) = =5 (12)

€ +e

The choice of transfer function is a technical issue due to the stated
theoretical properties, and other S-shaped functions are acceptable.
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Figure 26: Transfer functions: logistic (left) and hyperbolic tangent (right)

A graphical presentation of MLP structure is given in Figure 27 with a
network consisting of 3 inputs, 2 hidden layers with 7 neurons in each and
2 outputs. The network, which solves practical non-linear problems, has
hidden (intermediate) layers between the input and output layers.

The power and capabilities of multilayer perceptron stem from the non-
linearity used within nodes. An MLP can learn with a supervised learning
rule using the backpropagation algorithm. The backward error propagation
algorithm (backpropagation) for ANN learning/training caused a
breakthrough in the application of multilayer perceptron (Haykin 2009).
The backpropagation algorithm gave rise to the iterative gradient
algorithms designed to minimize the quadratic error cost function between
the actual output of the neural network and the desired output. The error is
computed during the forward pass of information flow through the network.

Figure 27: Feed-forward neural network: Multilayer perceptron with 3 input neurons, 7
hidden neurons in the first hidden layer, 7 hidden neurons in the second hidden layer and
2 output neurons (symbolic definition of the net 3-7-7-2). Blue circles are bias neurons
(with constant value 1)

Backpropagation algorithm

Let us consider briefly the backpropagation algorithm. Although often
referred to as a training algorithm, the backpropagation is essentially a
method to compute the gradients of the error function with respect to the
network weights. These gradients can then be used in any gradient-based

213



optimization algorithm, either of the first- or second-order, online or batch.
As usually, for the regression problem the error to be minimized is
considered to be a mean squared error (MSE). This error is easily
computed, has proved itself in practice and, as shown later, its partial
derivatives with respect to individual weights can be computed explicitly.

The outputs of MLP trained with a MSE error function can be interpreted
as the conditional mean of the target data, i.e. the regression of a
dependent variable (output) conditioned on independent variables (input)
(Bishop, 1995; 2006). To simplify the notations, we consider below the
model with a single output . It can be easily extended to several outputs
by considering the mean squared error averaged over them. For an
inputs-output pair (x, t) the error is simply:

Eyge (W) :%[I—F(x, w)| (13)

Notice that here we are interested in MSE as a function of a set of weights
w, since these are the values to be optimized in order to reduce the
network error on the training samples.

The basic backpropagation algorithm consists of the following steps:

1) Initialization of weights. Usually it is recommended to set all weights
and node offsets (biases) to small random values. In many practical
studies, the use of simulated annealing to select starting values is more
efficient (see Masters, 1993).

2) A pair (input x; desired output f) is presented to the network. The actual
output of the ANN is computed and the outputs of all the neuron nodes are
stored. This completes the forward pass.

3) The derivatives of Eysg for a single pair (x, t) are computed with respect
to the weights in each layer, starting at the output layer with the backward
move to the inputs. The derivatives provide information on how much the
error depends on the particular weight in the vicinity of a current model,
and will be used to optimize its value in order to reduce the error, at least
locally. This completes a backward pass.

The key point here is to compute the derivatives of the transfer functions
of the neuron nodes with respect to its arguments. Here the smart choice
of an activation function comes into play. Since for the logistic function and
hyper-tangent, they can be computed through the values of the functions
themselves, and the latter are computed and stored after a forward pass,
the algorithm simplifies and fastens significantly.
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For example, for the logistic function:

1 d e I+e -1
. o e

= = = =(L-DF*=71- 14
l+e™’ dr (I+e™)? (+e™)? G-D/7=70=1) (14)

Gradient-based MSE minimization

To minimize the MSE error for the training set, let us construct an iterative
procedure of gradient descent. The weights w are updated iteratively by a
gradient rule, with n denoting the iteration number:

W ) = w ()~ 28 (15)
‘ owy
that is,
Wi (n+1) =W (n) +n8" 20" (16)

where 7 is called the rate of learning (0 < < 1).

A variation of the gradient-based minimization that is often used deals with
the addition of a momentum term to the equation for updating weights. In
this case one has:

Wi (n 1) = W () +0 8" 20+ adw () (17)

where 0 < o < 1 is called a momentum parameter, and Aw(n) is an

increment of the weight v/’ at the previous iteration.

The effect of the momentum term is to magnify the learning rate for flat
regions of the error surface where gradients are more or less constant (or,
strictly speaking, were constant at the last iteration). In steep regions of
weight space, momentum focuses the movement in a downhill direction by
dampening oscillations caused by alternating the sign of the gradient.

Note that it is difficult to define an optimal momentum parameter in
advance. In practice, there are more complex algorithms that try to
optimize it automatically during the training procedure.

Batch vs. on-line learning

There is an important practical question: whether to estimate gradients
from a single training example (leading to the so-called stochastic or on-
line updating) and make an optimization step at every presented training
sample, or first to compute gradients for all training examples (for the
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epoch) and update the weights once with an averaged gradient (the batch
mode). Both approaches are widely used and different recommendations
on their efficiency can be found in the literature. In the online case, the
order in which the training patterns are presented may affect the direction
of the search on the error surface. Some authors (Masters, 1993) prefer
using the entire training set for each epoch, because this favors stability in
convergence to the optimal weights.

First, all the training samples are presented to the network and the
average gradient is computed, that is, the vector containing all the
derivatives of MSE and whose dimensionality is equal to the number of
weights in the network:

VEMSE<w>=<aEMSE> (18)

owj/
where the average is taken over all the training samples.

The optimization step to modify the vector of weights w in the batch mode
then becomes:

w(n+1)=w(n)—nVEyg (w(n)) (19)

The practical aspects of learning the weights (i.e. the optimization
algorithm) was an important issue in the development of neural network
models. Some popular MLP training approaches deal with the combination
of conjugate gradient methods in order to find the local minimum of the
error surface, and simulated annealing and/or genetic algorithms in order
to escape from the local minima.

Some recent research trends, motivated by the huge size of data sets to
be processed, are coming back to the on-line learning scheme, bringing
some stochastic elements into the learning process (Bottou, 2003).
Interestingly, this sometimes allows both processing of large data and
helps in avoiding over-fitting.

Muiltiple local minima

Error surfaces of neural network models are discussed in many textbooks
and research papers (see e.g. Hecht-Nielsen, 1990; Haykin, 2009).
Because of combinatory permutations of the weights that leave the
network input-output function unchanged, these functions typically have a
large number of local minima. Therefore the error surfaces can be highly
degenerated and have numerous “troughs”. Error surfaces may have a
multitude of areas with shallow slopes in multiple dimensions
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simultaneously. Typically this occurs because particular combinations of
weights cause the weighted sums of one or more hidden layer (with
sigmoid outputs) to be large in magnitude. When this occurs, the output of
that sum (and therefore the value of Emse(w) is insensitive to small
changes in weights, since these simply move the weighted sum value
back and forth along one of the shallow tails of the sigmoid function. It has
been experimentally established that local minima do actually exist.
However, in many problems, convergence to a non-global minimum is
acceptable if the error is nevertheless fairly low. The presence of multiple
minima does not necessarily presents difficulties in training nets, and a
few simple heuristics can often overcome such problems.

Case study: sediments contamination of lac Léman, Switzerland

In this real case study, multivariate data on sediments contamination of lac
Léman (Geneva lake, Switzerland) are used. The data show the
contamination of the lake sediments by heavy metals, from a total of 200
measurements.

The data were divided into two datasets: for training (168 points) and
testing (32 points). The structure of MLP was 2-10-10-1 (two inputs - X,Y
coordinates, two hidden layers with ten neurons in each hidden layer, and
one output — the level of contamination). On the first step of the training
procedure, simulated annealing was used to initialize the weights. Then
second-order training algorithm Levenberg-Marquardt was used during the
main step of the training. The training was stopped as the testing error
was increasing. So the model with the minimum test error was selected as
a resulting model. The described procedure was repeated 5 times and the
model with the lowest test error was adopted as a result.

In Figures 28 (top) the measurements of the level of sediment
contamination by zinc (Zn) are presented. In Figure 28 (bottom) the result
of MLP mapping is shown. Similarly, the same maps for the sediment
contamination by titan (Ti) are given in Figures 29.
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Figure 28: Sediments contamination of lac Léman, Zn: measured (training) data (top),
MLP mapping (bottom)
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Figure 29: Sediments contamination of lac Léman, Ti: measured (training) data (top),
MLP mapping (bottom)

Both MLP have correctly reconstructed spatial structures of pollution
patterns. As it was mentioned above, in general, the original data set has
to be divided into three parts: training, testing, and validation. The
validation subset can be used to estimate the generalization abilities of the
model. In the present subsection the main attention was paid only to
training of MLP and not to the validation.
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Supervised learning for automatic mapping of geospatial data

MLP is really a powerful tool for performing regression tasks on data of
different complexity. But it has one important drawback: difficult and long
training procedure.

Automatic modeling technique requires a method which has two important
features. First, parameters of the training (tuning) of the algorithm should
be selected automatically, and not by the user. Second, the result of
mapping should be unique and not dependent on any initial conditions of
the training algorithm. One of the possibilities satisfying these conditions is
based on General Regression Neural Networks (GRNN) (Kanevski &
Maignan, 2004).

General Regression Neural Network

GRNN is another name for a well-known statistical nonparametric method
- Nadaraya-Watson Kernel Regression Estimator. It was proposed
independently in 1964 by Nadaraya (1964) and Watson (1964). In 1991 it
was reinterpreted by Specht in terms of neural networks (Specht, 1991).
This method is based on kernel nonparametric density estimation
proposed by (Parzen, 1962). Details on nonparametric statistics can be
found in Hardle (1989) and Fan & Gijbels (1997). See also Fotheringham
et al. (2000, 2002) for specific method — Geographically Weighted
Regression (GWR), developed in quantitative geography. In fact, the latter
is closely related to the local polynomial modeling using a kernel-based
approach.

Omitting the details of the mathematical background, let us present the
final formula for the regression estimation of Z(x) using available
measurements Z;.

(20)

where N is a number of training points, Z; is a function value of the i-th
training point having coordinate x;.

The core of this method is a kernel K(-). It depends on two parameters:
distance to the predicted point and model dependent parameter o — which
is a positive number called bandwidth or simply a width of the kernel. Note
that x;, in fact, is a centre of the i-th kernel.
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Different kinds of kernels can be selected from the kernels’ library (Hardle,
1989; Fan & Gijbels, 1977). Gaussian is the most widely used kernel

2
g (- R S B el i=1,2...,N
o Qrc*)"? 207

where p is a dimension of the input vector x.

(21)

Gaussian kernel is a standard kernel of GRNN as well. Finally, the GRNN
prediction using Gaussian-type of kernel is given by the following formula:

]

j (22)

ZM{ x|

i=1

Z(x)= "
Zexp[ [

Note that GRNN is a linear estimator (prediction depends on weights
linearly), but weights are estimated non-linearly according to the non-linear
kernel.

The model described above is the simplest GRNN algorithms. One of the
useful improvements is to use multidimensional kernels instead of one-
dimensional ones. In a more general setting parameter ¢ may be
presented by a covariance matrix. This matrix is a squared symmetrical
with dimension p by p and with the number of parameters equals to
p(p+1)/2.

A model with an anisotropic kernel is much more flexible to model real-
world data. It is especially useful in case of complex multidimensional
data. For example, for 2D spatial mapping we can use the following
parameterization o=(oy, oy, oxy).

Kernel bandwidth is the only hyper-parameter of the GRNN model. There
is an optimal value of kernel bandwidth: application of kernels with larger
than optimal value of o leads to over-smoothing of data (biased solution);
and smaller than optimal value of o produces over-fitting of data.
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GRNN training using cross-validation

As it was mentioned earlier, the only adaptive (free) parameter in the
GRNN model is the kernel bandwidth. For its estimation, cross-validation
procedure may be applied. In order to find an optimal value of kernel
bandwidth usually a grid search is used. It is necessary to define an
interval of o values and the number of steps. Then the cross-validation
procedure is performed for all o values from the selected interval.

The final result (optimal o value) corresponds to the model with the
smallest cross-validation error. The interval and the number of steps have
to be consistent in order to catch the expected optimal (with minimum of
the error) value. Reliable limits are the minimum distance between points
and size of the area under study. In fact, really effective interval is much
smaller and can be defined in accordance with the monitoring network
structure and/or by using prior expert's knowledge about studied
phenomenon.

In case of general anisotropic GRNN model an optimization procedure is
performed in a p(p+1)/2-dimensional cube in order to find corresponding
optimal o -values.

Case study: mapping of transportation data, Switzerland

The Swiss Federal Population Census of the year 2000 includes a matrix
of commuter flux between all the 2896 Swiss communes, with the number
of commuters for several means of transportation. The commuters which
live and work in the same commune are also available. Only the main
mean of transportation has been taken into account for each commuter. In
Figures 30 (left) the measurements of the number of inhabitants using
motorcycles or scooters to reach the job is presented. In Figure 30 (right)
the result of GRNN mapping is presented. Similarly, the same maps for
habitants using buses or trams are presented in Figures 31.
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Figure 30: Number of habitants in communes using moto or scooter to reach the job
(normalized by population): initial data (left), GRNN mapping (right)

Figure 31: Number of habitants in communes using bus or tram to reach the job
(normalized by population): initial data (left), GRNN mapping (right)

Training of GRNN were carried out using cross-validation techniques.

An important generalization of GRNN models can be done by taking into
account their similarity with nonparametric statistics: estimation of higher
moments, calculation of confidence and prediction intervals, locally
adaptive modeling, etc.

CONCLUSIONS

At present machine learning models/algorithms play a great role in many
fields dealing with data analysis modeling and visualization. They are
flexible, adaptive, nonlinear, and universal modeling tools based on solid
mathematical and statistical background. Despite of some external
simplicity, especially taking into account the availability of easy to use
software tools, their correct use and interpretation of the results obtained
need deep expert knowledge in the corresponding fields. They seem to be
indispensable tools when multivariate data are embedded in high
dimensional geo-feature spaces and corresponding phenomena are
nonlinear, multi-scale and contaminated by noise which is quite a typical
situation in real-life applications.
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In the present chapter some basic principles of ML models and their
efficient applications for geospatial data were considered. After a short
general introduction unsupervised and supervised learning techniques
were presented with some details and by using real case studies. The
future research is foreseen in the directions of applying active learning
techniques in order to improve efficiency and quality of data processing
using supervised techniques, semi-supervised and manifold learning
taking into account unlabeled data and real life constraints. An important
research topic is to quantify the uncertainties of the results obtained which
will help in decision-making processes. Finally, the problem of spatio-
temporal data and science-based models assimilation/integration is still a
hot topic of research.
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ABSTRACT

This contribution aims to highlight the importance of Social
Accounting Matrices (SAMs) for the study of regional-
economic interactions. After a conceptual review of SAMs,
the attention is focused on the empirical meaning of SAMs
for economic impact assessment. The potential of SAMs is
illustrated by an extensive pedagogical treatment of this tool
on the basis of several town-hinterland interactions in 5
different European countries.
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INTRODUCTION

The Social Accounting Matrix (SAM) has a respectable history in economic
research. It comprises a comprehensive, disaggregated, consistent and
complete data collection that captures the interdependences that exist within
a socio-economic system (Isard et al., 1998). If, for example, households had
to pay less tax, they could spend more money on fresh food or beverages.
They might then go to a supermarket and spend a larger share of their
income there. As a result, the supermarket -or the retail sector in general-
would have to obtain more products from the food production sector, which
would raise its demand for agricultural products. Because of this increasing
demand, more labour input would be needed which would further increase
the income of certain households, which again could spend more money.
This kind of interdependency between sectors and households can very well
be captured within a SAM.

SAMs were initially developed because of growing dissatisfaction with the
distributional effects of conventional growth policies, especially in developing
countries (see, e.g., Adelman & Robinson, 1978; Pyatt & Round, 1977). In
these countries income redistribution is often an important concern.
Therefore, researchers in the late 1970s were eager to learn more about the
processes and mechanisms dealing with the production of goods and
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services as well as with the associated income formation and income
distribution. Traditionally, input-output models (developed by Leontief already
in 1951) were used to analyse production linkages in an economy. Input-
output analysis is an established technique in quantitative economic
research. It belongs to the family of impact assessment methods and aims to
map out the direct and indirect consequences of an initial impulse into an
economic system across all economic sectors. It is essentially a method that
depicts the system-wide effects of an exogenous change in a relevant
economic system (van Leeuwen et al., 2005).

Input-output models are based on the idea that any output requires a
corresponding input. Such input may comprise raw materials and services, all
coming from other sectors but also labour from households or certain
amenities provided by the government. The output consists of a sectoral
variety of products and services. Most input-output models are structured to
trace changes in the flows of capital and labour between industries in
response to a change in final demand; they are demand-driven. However, a
conventional input-output model does not take into account the link between
increased output, the factorial and household income distribution and
increased consumption. Therefore, a new kind of model had to be developed.
SAMs combine data on production and income generation, as can be found
in input-output tables, together with data about incomes received by different
institutions and on the spending of these incomes. Therefore, a SAM allows
us not only to analyse (regional) production linkages but also to focus on
production-income and income-expenditure relations in a given area, so that
distributional effects of a change in final demand can be analysed.

Nowadays, a natural extension of a SAM, a static framework with fixed
prices, is a computable general equilibrium (CGE) model, which can be
considered dynamic with endogenized prices (Isard et al. 1998). CGE models
use a SAM as the base-year but they include also a number of behavioural
and structural relationships to describe the behaviour of various actors over
time. The CGE approach permits prices of inputs to vary with respect to
changes in output prices and, thus, allows the behaviour of economic agents
to be captured (van den Bergh & Hofkes, 1999). Notwithstanding the
advantages of CGE models, we will address SAMs in this chapter. An
important reason for this is that SAMs are able to handle a very
disaggregated sector structure. In our empirical analysis, the economic
linkages between town and hinterland actors will be described. It is generally
thought that towns are important concentration points of economic activities
in rural areas, thereby having the capacity to act as a focal point of trade and
services for the hinterland. Our analysis will focus on the current economic
structure of towns and hinterland, and on existing linkages between those
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areas using 30 European SAMs describing the local town and hinterland
economy (see Appendix A.l for a list of the towns, their population and
number of jobs).

In this chapter, we will first describe the SAM framework, including examples
of existing SAM-based studies, the structure of a SAM, and its advantages
and disadvantages. Next, we will focus on regional SAMs, including the
development of a SAM at town level. Then, multiplier analysis will be
explained followed by a section with empirical results, describing
interregional SAM multipliers at the town-hinterland level. Finally, conclusions
are formulated.

THE SAM FRAMEWORK
Examples of SAM-based studies

The SAM methodology has been used extensively to analyse a variety of
different questions at different levels of geographical aggregation (Isard et al.,
1998).

In developing countries, it has been used widely to explore issues such as
income distribution (Adelman & Robinson, 1978), the role of the public sector
(Pleskovic & Trevino, 1985), and the impact of inter-sectoral linkages on
(rural) poverty alleviation (Thorbecke, 1995; Khan, 1999).

In developed countries, SAMs at the national level have been used to
analyse the effect of different taxation or subsidy schemes on income
distribution (e.g. Roland-Holst & Sancho, 1992; Psaltopoulos et al., 2006). In
addition, at present, much emphasis is put on environmental flows, instead of
monetary flows. These SAMs are able to integrate, for example, physical
water circular flows or emissions into the atmosphere by greenhouse gases
(GE), together with the economic flows sourced from the National Accounting
(see e.g. Morilla et al., 2007). Another example is the study of Sanchez-
Chdliza et al. (2007). Their objective was to assess the environmental impact
of the lifestyle enjoyed by the population of Spain; and to estimate the total
and per capita pollution associated with household activity. The use of a SAM
model facilitated the understanding of how the pollution associated with
household activity and consumption patterns “circulates” throughout the map
of an economy. The SAM accounts were expressed in terms of different
kinds of pollution, such as waste water, NOy, or COs.

Furthermore, examples can be found of applications at regional or town level.
Most of them deal with towns in developing countries (see e.g. Adelman et
al., 1988; Parikh & Thorbecke, 1996). Lewis (1991) describes a SAM
application on town level of the Kenyan town Kutus. The SAM encompasses
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both the town of around 5,000 inhabitants, and the 8 km zone around it
(hinterland) with a population of 42,000. The SAM was used to test the
governmental assumption of agriculturally-driven regional economies and to
evaluate non-agricultural production sector activities in the Kutus region.
According to the Lewis’s multiplier analysis, agricultural activities were indeed
very important for the stimulation of regional output and income.

The SAMs used in the present chapter are also developed for spatially
disaggregated levels, such as town-hinterland interactions. They are able to
make a distinction between the town, a hinterland zone, and the rest of the
world (ROW); they are typically interregional SAMs. They will be used to
explore the relative economic importance of towns and hinterlands and to
distinguish which sectors can be identified as key sectors.

Structure of a SAM table

A SAM can be described as a general equilibrium data system of income and
expenditure accounts, linking production activities, factors of production, and
institutions in an economy (Courtney et al., 2007).

Figure 1 shows the economic flows and interrelations captured by a SAM.
The industrial production generates value added which is used to pay for
primary inputs. These primary inputs consist of profits, wages, and payments
to the government. Next, these incomes or receipts, generated in production,
are handed over to households or the government. After a redistribution
process, incomes are either used for (final) consumption or they are saved.
The final consumption leads to new production by industries, and the whole
process starts again.

From Figure 1 it becomes clear that input-output tables, which only focus on
production linkages, ignore the effects arising from other linkages, as exist,
for example, between households’ income and the production sectors (final
demand).

Production
Payments for goods and sectors
services

Payments for
factors

Households | Factors

Redistribution of
income

Figure 1: The direction of income flows between the three main types of accounts in a SAM.
Source: based on Roberts (2005)
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Similar to an input-output table, a SAM presents a series of accounts
together in one matrix. It contains a complete list of accounts describing
income, expenditure, transfers and production flows (Cohen, 1989). In input-
output models, usually only the production accounts are endogenous
(implying that changes in the level of expenditures directly follow a change in
income), and the factor and household accounts are exogenous (implying
that expenditures are set independently of income changes). In a SAM, the
production factors, as well as the households’ accounts, are endogenous.
The exogenous or independent accounts can consist of payments to, and
receipts from, the government, actors outside the research area, and
investments, value added or savings. Table 1 shows the elements of a
(general) SAM.

The first account is the production accounts which are rather similar to an
input-output table. The columns of the production accounts describe how
firms buy raw materials and intermediate goods from other firms (A).
Furthermore, a SAM includes information about the costs of hiring factor
services (A) to produce commodities (Y;). The exogenous part of the first
column includes expenditures in the ROW, and value-added, part of which is
paid to the government. The rows, which show the receipts, describe the
sales to domestic intermediate industries (Ay), to final consumption of
households (As;), and to exports to the ROW (X;). The sales to firms or
households in the ROW form the exogenous accounts.

Endogenous accounts
From Exogenous Total
To Production Factors Households accounts

Production Aﬁ A13 X1 Y1
Endogenous Factors Azq X2 Y2
accounts

Households Az X3 Y3
Exogenous accounts Residual balance*
Total Y’y [ Y2 ] Y3

Table 1: The elements of a SAM table. * Used to meet the assumption that Y1=Y’1. Source:
Based on Cohen (1989)

The factor accounts include labour and capital accounts. The rows show
received payments in the form of wages (Ay). Factor revenues, such as
labour income and part of the profits, are distributed to households (As,), after
paying the corresponding taxes to the government.
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The exogenous part of the factor accounts includes payments to households
in the ROW from town or hinterland industries, as well as wage payments of
ROW industries to local households.

Finally, the households’ accounts include the factor incomes described above
(As2), as well as household expenditures on the local market (A;). The
exogenous part (X;) describes direct taxes and the savings from households,
as well as their consumption in the ROW.

A SAM is balanced when savings is equal to receipts minus expenditure for
all actors (firms and households). Because we do not have information about
savings, we use the residual balance to make sure that the row and column
sums are the same.

Advantages and disadvantages of SAM analysis

A SAM is an analytical and predictive tool to represent and forecast system-
wise effects of changes in exogenous factors. A great advantage of a SAM is
its ability to capture a wide variety of developments in a (macro-) economy,
as it links production, factor and income accounts. A large share of economic
interactions takes place within the household sector and a SAM
disaggregates the cells involving ‘returns for labour’ and the household sector
into smaller groups (such as different income groups) to show the effect of
the different behaviour of these groups. Furthermore, it is a relatively efficient
way of presenting data; the presentation of data in a SAM immediately shows
the origin and destination of the various flows included. Another advantage is
its usefulness as a tool to reconcile different data sources and fill in the gaps.
This enables the reliability of existing data to be improved and
inconsistencies in data sets of different nature and origin to be revealed
(Alarcon et al., 1991).

Most of the disadvantages of a SAM are similar to the disadvantages of
input-output tables and concern the production activities accounts. Important,
and sometimes restrictive, assumptions made in the input-output model, as
well as in the SAM, are that all firms in a given industry employ a constant
production technology (usually assumed to be the national average of input,
output and labour for that industry), and produce identical products. Because
the tables are produced only for a certain period, the model can become
irrelevant as a forecasting tool when production techniques change. Other
disadvantages are that the model assumes that there are no economies or
diseconomies of scale in production or factor substitution, and that they do
not incorporate the existence of supply constraints. In a rather static situation,
these ceteris paribus conditions are a perfectly acceptable position which has
demonstrated its great relevance in a long (spatial-) economic research
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tradition. However, in a highly dynamic context, with complex space-time
system interactions, stable solution trajectories are less likely to occur
(Nijkamp, 2007). Finally, the production accounts are essentially based on a
linear production technology; doubling the level of agricultural production will
in turn double the inputs, the number of jobs, etc. This reveals something of
the inflexibility of the model. Thus, the model is entirely demand-driven,
implying that bottlenecks in the supply of inputs, or increasing efficiency
effects are largely ignored (van Leeuwen et al., 2005).

There are also some practical problems in the development of a (local) SAM.
The statistical estimation of a new matrix is very labour-intensive and
expensive. This is mainly because much of the information is gathered with
help of micro-survey questionnaires. A related problem with this method is
that interviewees, firms, or households, are not able to give perfect answers.
Sometimes they do not understand the question, or they do not want to tell
the truth, and therefore -as a result of a response bias- the results are not
always perfect. However, a SAM is still a very useful tool in that it shows
effects throughout the whole economy, linking the different accounts.

A REGIONAL SAM
From a national to a regional model

The construction of a SAM always involves the integration of data from
different data sets. Data required for production accounts often come from
input-output tables (which are more widely available) and the distribution
flows to institutions come from national income and expenditure accounts.
Therefore, the majority of studies using SAMs concern the economies of
single countries. Although an economic unit does not necessarily have to be
a country, the national borders do provide a natural and artificial boundary for
defining a macroeconomic unit (Round, 1988). Often information is available
at the national level, which makes it a lot easier to develop a national input-
output table or SAM. However, many economic processes on a regional level
are very different from those at the national level. Regional, spatial or
institutional differences can bring about important economic differences.
Smaller regions, for example, are more dependent on trade with other areas,
both for the sales of outputs (export) and for the purchase of inputs (import)
(Miller & Blair, 1985). Therefore, it can be necessary to develop a regional
SAM.

There are several ways to regionalize a national input-output table or a SAM.
According to Isard et al. (1998), the more disaggregated a SAM needs to be,
the more extensive are the data requirements. They state that the best way
to build a regional SAM is to start with the regionalization of the production
activities’ account using a national input-output table. The simplest way is to

235



use a ‘non-survey method’. Another way is to use the GRIT method:
Generating Regionalized Input-output Tables. The GRIT method, developed
by Jensen et al. (1979), has the advantage that it combines non-survey
methods with survey methods. The GRIT system is designed to produce
regional tables that are consistent in accounting terms with each other and
with the national table. Therefore it uses location quotients, which describe
the regional importance of an industry compared with its national importance,
by using output-ratios. However, the developer is able to determine the
extent of interference with the statistical processes by introducing primary
(e.g. from questionnaires) or other superior regional data. In the next section
we will describe the development of SAMs at the local, town-hinterland level.

Interregional SAMs at town-hinterland level

Data collection

For our study, we used data that was collected as part of a trans-national
project, the European Union research project ‘Marketowns’!. This project
focused on the role of small and medium-sized towns as growth poles in
regional economic development. For this purpose, it was necessary to
measure the flow of goods, services and labour between firms and
households in a sample of 30 small and medium-sized rural towns in five EU
countries. The participating countries reflect the varied conditions of the
existing and enlarged European Union, viz. France, Poland, Portugal, the
Netherlands and the UK. In each of the participating countries, six small and
medium-sized towns were selected with reference to a set of relevant,
predefined criteria: for instance, the condition that no other town with more
than 3,000 inhabitants should be located in a hinterland with a radius of
approximately 7 km.

In order to compare the nature and strength of linkages throughout the wider
economy, we defined three different zones for each town: town, hinterland
and the rest of the world (ROW). These were designed to facilitate
comparisons between the different areas. As a result, the study area from
which households and firms were sampled comprised the town and the
hinterland, a 7 km radius around it.

Primary data were collected using self-completion survey techniques to
measure the spatial economic behaviour of households and firms. The

' The information contained in this chapter is drawn from the MARKETOWNS project funded by the European
Commission under the Fifth Framework Programme for Research and Technology Development, Contract QLRT -
2000-01923. The project involves the collaboration of the University of Reading (UK), the University of Plymouth
(UK), the Joint Research Unit INRA-ENESAD (France), Agricultural Economics Research Institute LEI (The
Netherlands), the Polish Academy of Sciences (Poland) and the University of Tras-os-Montes and Alto Douro
(Portugal).
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household questionnaire focused on spatial patterns of consumer purchases
by distinguishing between different categories of goods and services and
expenditure patterns across the three pre-defined geographical zones.
Furthermore the place of work was identified. The firm questionnaire dealt
with spatial patterns of input and output transactions, including labour costs.
Surveys were carried out between September 2002 and May 2003 (Terluin et
al., 2003).

Developing an interregional SAM

A specific classification and disaggregation of a SAM depends on the
questions which the SAM methodology is expected to answer. In this case,
the aim is to focus on the spatial interdependency of town and hinterland
actors (see also Mayfield et al., 2005). This means that a bi-regional SAM
has to be developed, describing both the town and its hinterland, which
results in four systems of endogenous accounts (see also Appendix A.ll):

¢ Linkages within the town;

e Linkages within the hinterland;
e Flows from town to hinterland;
e Flows from hinterland to town.

For the generation of the interregional SAM, the most important data are the
national input-output table and secondary data, such as number of firms or
number of jobs, obtained from government institutions, as well as primary
data from (local) surveys (see Figure 2). Once this information has been
collected, the next step is to develop a regional input-output table by the use
of the earlier described GRIT method. The GRIT method uses location
quotients, which describe the regional importance of an industry compared
with its national importance, by using output-ratios. Together with additional
secondary data on commuting patterns and on production values, value
added, employment level, savings, investments, imports, and exports, a
regional input-output table describing the town and a table describing the
hinterland can be generated.
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As mentioned earlier, the most structural difference between a (regional)
input-output table and a (regional) SAM is the information on household
expenditures, wages, employment, etc. Therefore, secondary data, together
with information from the surveys on household groups and firm groups,
need to be added and combined with the two regional input-output tables.
After the regional SAM has been generated, expert opinions® can be
requested to verify the cell values of the matrix.

Although the development of the SAMs should take place with great care, it
is important to keep in mind that the local focus of the models that have been
built results in its own limitations. One of the major problems is the relatively
small proportion of the total inputs and outputs from firm production that is
retained within the local economy, resulting in small coefficients, making
them more liable to statistical error. Another limitation is that the secondary
data collected in the five countries (especially in Portugal and Poland) is not
exactly the same (sometimes there even was no data available at all)
(Mayfield et al., 2005), resulting in various creative solutions.

However, finally, 30 SAMs were developed (see Appendix A.1 for a list of
towns), each consisting of 17 production accounts, 4 production factor
accounts, 4 household accounts and an exogenous ROW account (see
Appendix A.lll). Together, they form a very interesting and unique database,
especially because they enable us to perform a thorough analysis and
comparison of the economic structure of a set of towns located in five
different European countries.

2 In this case, local stakeholders (policy makers and persons who are acquainted with the local economy) were
asked to verify the results.
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Figure 2: Procedure to construct interregional SAMs (Mayfield et al., 2005)

MULTIPLIER ANALYSIS
Introduction

SAMs, as I-O tables, can be used to construct multipliers based on the
estimated re-circulation of spending within the region: recipients use some of
their income for consumption spending, which then results in further income
and employment. This ‘multiplier effect’ appears at three levels. First, the
direct effect of (production) changes: for example, an increase in retail
demand because of a growing population will directly increase the output of
the retail industry. Indirect effects result from various rounds of the re-
spending of, for example, retail receipts in linked industries, such as
wholesale or the food sector. This will have an indirect effect on these
industries. The third level of effects is the induced effect. This effect only
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occurs when the household accounts are endogenous (which means that it
responds to a change in income) as in a SAM. The induced effects include
changes in economic activity resulting from household spending of income
earned directly or indirectly. These households can, for example, be
employees of supermarkets, who spend their income in the local economy
(van Leeuwen et al., 2005). The three most frequently used types of
multipliers are those that estimate the effects on: (1) outputs of the industries;
(2) income earned by households because of new outputs; and (3)
employment generated because of the new outputs. In this section, we look
at the composition of those multipliers and identify important sectors for the
town and hinterland economy.

Variations in multiplier values in the literature

The values of the multipliers can differ because of different factors. The size
of the multipliers depends, first of all, on the choice of the exogenous and
endogenous variables which, in turn, depend on the problem studied (Cohen,
1999). Furthermore, the size depends on the overall size and economic
diversity of the region’s economy. Regions with large, diversified economies
which produce many goods and services will have high multipliers, as
households and businesses can find most of the goods and services they
need in their own region. Smaller regions, such as cities or towns, will need
to import more products and labour (imports can be considered as leakage),
resulting in lower multipliers. Regions that serve as central places for the
surrounding area will have higher multipliers than more isolated areas.
Besides this, the level of economic development is important. Economic
theory predicts a higher share of government and more foreign trade at
higher levels of economic development, leading to an expected lower output
multiplier at a higher development level (Cohen, 1999). Furthermore, the
nature of the specific industries concerned can have a significant effect.
Multipliers vary across different industries of the economy based on the mix
of labour and other inputs and the tendency of each industry to buy goods
and services from within the region (less leakage to other regions) (van
Leeuwen et al., 2005). The value of SAM multipliers is higher compared with
input-output multipliers because, besides capturing effects from production
activities, they also include effects on factor and household incomes. The
range of values of SAM output multipliers on a national scale lies between
2.1 and 4.5 (see Vogel, 1994; Blane, 1991; Cohen, 1999; Archarya, 2007).
As expected, SAM output multipliers at a local or regional scale are usually
lower, and have values between 1.3 and 2.3 (see Roberts, 1998; Cohen,
1996; Psaltopoulos et al., 2006). The income multipliers are generally lower
compared with output multipliers: at a local scale the values typically range
between 1.2 and 1.6.
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INTERREGIONAL SAM MULTIPLIERS AT TOWN-HINTERLAND LEVEL

As described earlier, the town-hinterland SAMs include four systems of
endogenous accounts: town-town, hinterland-hinterland, town-hinterland, and
hinterland-town flows. The total SAM multiplier is a product of three matrixes:
M1, M2 and M3 (see Mayfield et al., 2005). First of all, M1 is the intraregional
multiplier matrix, depicting the linkage effects between endogenous accounts
wholly within the actors’ ‘own region’ (town or hinterland). Secondly, M2 can
be interpreted as the multipliers for all the cross-flows between the town and
hinterland. It captures the effects from the town on the hinterland, and vice
versa. Thirdly, M3 indicates the ‘closed loop’ multiplier matrix. This matrix
shows the effect that a shock in the town (or hinterland) has on itself through
the endogenously defined linkages within the hinterland (or town). Table 2
shows the M1 and M2 multipliers for a shock in the production sector, factor
accounts, or household income.

Production Factor Household | Production | Factor ‘ Household
Town Hinterland
Production
Fact g M1Iown M1lown M1|own Mzhimerland M2hin|er|and Mzhinlerland
actor |2 (output) (factor) (income) (output) (factor) (income)
Household
Town Hinterland
Production | 2
Factor % M2town M2t0wn M2town M1 hinterland M1 hinterland M hinteriand
z (output) (factor) (income) (output) (factor) (income)
Household | T

Table 2: M1 and M2 output multipliers for town and hinterland (shock to production, factors,
or household income)

Evidently, this methodology results in a great number of (sub-) multipliers
(output, factor, and income) as well as the possibilities to show linkages
between town and hinterland. Our aim is to use the interregional SAMs to
find out, for towns in 5 European countries, what important sectors in both
town and hinterland economies are, and how strong are the linkages
between production and households and between town and hinterland.

SAM income multipliers

SAM household income multipliers (summation of the My, Mz and M; effects)
reflect the impact on the regional economy of a shock into household
incomes. In the interregional SAMs, the households are divided into four
income groups (25 per cent groups). Income group 1 receives the least
income, income group 4 the most.
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The exact amount of income per household group differs between the five
countries because the division is based on the average level of income in a
specific country.

Table 3 shows the average SAM income multipliers per country, and Table 4
the average value for the 4 different income groups per country. From the
literature, we know that the values of income multipliers are generally lower
compared with output multipliers. For England, France and the Netherlands,
Table 3 shows values in line with values found in the literature (between 1.2
and 1.6). However, in Portugal and Poland, the values are higher, even 2.11
for the low incomes in the Polish towns. From the data, it appears that
particularly the Polish and Portuguese (town) households buy a large amount
of necessities in the local economy. Furthermore, more than two-thirds of
these households have a job in the zone of residence, which means that they
also profit from the induced effects. The reason why there is a higher income
multiplier for the town households is that, in all countries, these households
buy more products and services locally.

England  France Netherlands Poland Portugal Average

Town 1.30 1.44 1.39 1.58 1.71 1.48
Hinterland 1.28 1.35 1.35 1.48 1.69 1.43
Table 3: Average household income multipliers in town and hinterland for 5 European
countries
England France Netherlands Poland Portugal Average

Town

Income group 1 1.40 1.63 1.57 2.1 1.78 1.70
Income group 2 1.34 1.50 1.44 1.56 1.97 1.56
Income group 3 1.28 1.30 1.30 1.23 1.70 1.36
Income group 4 1.18 1.31 1.22 1.41 1.39 1.30
Hinterland

Income group 1 1.40 1.37 1.59 1.83 1.83 1.60
Income group 2 1.30 1.47 1.36 1.76 1.79 1.53
Income group 3 1.26 1.31 1.27 1.24 1.77 1.37
Income group 4 1.18 1.27 1.17 1.07 1.37 1.21

Table 4: SAM Household income multipliers in town and hinterland for 5 European countries

Interestingly, from Table 4 it appears that, in all countries, both in town and
hinterland, the lower the income, the higher the multiplier effect. Households
with high income more often have a job outside the local area (outside the
town-hinterland area). Furthermore, it appears that richer households are
less likely to shop in town or hinterland.

Summarising, it appears that especially in Poland and Portugal the
household income multipliers are relatively high. This is mainly because of
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strong effects on the production output. Furthermore, we can conclude that
the higher the level of income of households, the lower the SAM income
multiplier. Finally we found that, in general, most of the impact of a shock to
the income of households, living either in town or hinterland, goes to town
production output. The only exception is the Netherlands where a shock to
the income of hinterland households also results in a strong effect on the
production output in the hinterland.

SAM output multipliers

SAM output multipliers show the adjustment in the towns’ and hinterlands’
total output that would be associated with a change of one unit of output from
a certain sector. When, for example, the final demand for manufacturing
products increases in towns, this results in an effect in the production sectors
in towns, as well as in the production sectors in the hinterlands. But these are
not the only effects: there will also be an effect in labour factors, as well as in
household incomes in town and hinterland. All these effects together, plus
the ‘closed loop’ effect® sum up to the ‘industry SAM output multiplier’.

AGGREGATED OUTPUT MULTIPLIERS

For each town, the output multiplier of 17 sectors in the town and hinterland
has been derived. Table 5 shows the average SAM output multiplier values
of the aggregated agricultural, manufacturing and service related sectors per
country (average of 6 towns). First of all, we can see that the hinterland
multipliers have higher values than the town multipliers. In many areas, the
total economic output in town is larger than in the hinterland. Furthermore, it
appears that local inputs are more important for hinterland firms (higher
indirect effects). The service multipliers have relatively high values; only in
England, is the output multiplier for the manufacturing sector in town higher
than the service multiplier. The explanation for this is that in England (and to
a lesser extent in France), the share of exogenous accounts in the total
output of the manufacturing sectors is lower than for the service sectors®.
Especially in the Netherlands and Portugal, the multiplier for the service
sector is relatively high (both in the town and the hinterland). The most
important reason for this is the stronger effect on factor income and
household income in the Netherlands; in Portugal, a stronger effect on the
intermediary deliveries also plays a role.

® For example, the effect of hinterland households who receive more income because of a shock to the town and
who spend this extra income in a shop in town.

* In the other three countries, the share of exogenous accounts (which includes payments to the ROW) in the
service sectors is lower compared with those in the manufacturing sectors, resulting in higher service multipliers.
However, in general, the share of exogenous accounts is very high in England and France (around 82 per cent)
compared with the other three countries (70 per cent in the Netherlands and Poland and 65 per cent in Portugal).
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England France Netherlands Poland Portugal | Average**
Town
Agriculture* - - - - - -
Manufacturing 1.39 1.36 1.29 1.26 1.20 1.30
Services 1.32 1.41 1.56 1.45 1.51 1.45
Hinterland
Agriculture*** 1.25 1.28 1.52 1.94 1.65 1.53
Manufacturing 1.42 1.30 1.35 1.35 1.62 1.39
Services 1.44 1.44 1.57 1.50 1.66 1.52

Table 5: Aggregated SAM output multipliers for five European countries. * Agriculture is not
part of the town economy. ** Average of the five country multipliers. *** Without forestry and
fishing

In Poland and Portugal, the agriculture multipliers are relatively high.
Especially in Poland this sector is still important; it produces 31 per cent of
the total output of the Polish hinterland compared with around 12 per cent in
the other four countries (see van Leeuwen, 2008). However, also in Portugal
and the Netherlands, the agriculture multipliers are larger than the
manufacturing multipliers. This can be explained by the relatively large share
of local inputs.

The hinterland multipliers are generally higher and more heterogeneous
compared with the town multipliers. This holds especially for Poland and
Portugal. In Poland the effect on factor income is stronger in the hinterland.
In Portugal, the main reason for higher multipliers in the hinterland is the
stronger interregional effect on production activities located in the town.

SECTORS WITH HIGH MULTIPLIER VALUES

After this general exploration of multiplier values in the five countries, we can
focus more on sectors with relatively high multipliers, for the town and
hinterland economy. Table 6 shows the disaggregated SAM output
multipliers for 13 sectors in the towns (in a town the agricultural sectors are
usually not present) and 17 sectors in the hinterland.
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England France Netherlands Poland Portugal \ Average

Town
Arable farming* - - - - - -
Dairy and intensive farming - - - - - -
Horticulture - - - - - -
Mixed farming - - - - - -
Forestry and fishing 1.39 1.00 1.00 1.23 1.47 1.22
Coal, oil and gas, metal ore, 148  1.37 1.00 110 1.01 1.19
electricity
Food, drink and tobacco 1.34 1.44 1.22 1.22 1.06 1.26
Textiles, leather, wood, furniture 1.48 1.36 1.36 1.24 1.21 1.33
Chemicals, rubber, plastics, glass 1.43 1.44 1.19 1.38 1.10 1.31
Metals, machinery, electrical, 146 1.31 1.33 125 125 | 132
computing, transport equipments
Construction 1.13 1.27 1.64 1.38 1.57 1.40
Transport Services 1.36 1.66 1.55 1.55 1.31 1.48
wholesale/retail 1.10 1.34 1.58 1.51 1.27 1.36
Hotels and catering 1.19 1.62 1.89 1.55 1.78 1.61
Banking and financial services 2.12 1.61 1.43 1.19 1.24 1.52
Other Business services 1.02 1.07 1.31 1.28 1.56 1.25
public administration, education,
health, other services 1.14 1.16 1.61 1.65 1.92 1.50
Hinterland
Arable farming 1.27 1.13 1.48 1.76 1.89 1.51
Dairy and intensive farming 1.22 1.17 1.73 1.81 1.74 1.53
Horticulture 1.1 1.64 1.45 1.83 1.89 1.58
Mixed farming 1.40 1.19 1.41 2.37 1.07 1.49
Forestry and fishing 1.08 1.00 1.18 1.36 1.62 1.25
Coal, oil and gas, metal ore, 144 129 1.06 113 133 | 1.25
electricity
Food, drink and tobacco 1.43 1.42 1.44 1.62 1.36 1.45
Textiles, leather, wood, furniture 1.43 1.40 1.58 1.36 1.68 1.49
Chemicals, rubber, plastics, glass 1.47 1.16 1.36 1.17 1.45 1.32
Metals,lmachlnery, electr_lcal, 155 122 1.29 1.46 1.45 139
computing, transport equipments
Construction 1.17 1.32 1.40 1.35 1.87 1.42
Transport Services 1.29 1.60 1.47 1.67 1.79 1.57
wholesale/retail 1.31 1.31 1.51 1.39 1.30 1.36
Hotels and catering 1.15 1.54 1.81 1.57 1.86 1.59
Banking and financial services 2.44 1.65 1.44 1.60 1.28 1.68
Other Business services 1.20 1.39 1.47 1.30 1.85 1.44

ublic administration, education,
Eealth, other services 1.27 1.14 1.72 1.49 1.88 1.50

Table 6: SAM output multipliers for sectors in town and hinterland in 5 European countries.

Agriculture is not part of the town economy

First we focus on multipliers of sectors located in town. From Table 6, it
becomes clear that in the English towns the industry sectors have higher
multiplier values than in the other countries; an exception is the construction
sector. However, the banking and financial service sector has the highest
multiplier, with a value of 2.12. This is due to strong linkages with ‘other
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services’ and public administration. Also an important part of the multiplier is
related to wages paid to managers and (non) skilled non-manual employees.

The French towns show a rather similar picture; with relatively high industry
multipliers (compared to the other countries). However, here the transport
sector has the highest multiplier of the towns, together with hotels and
catering and (again) the banking and financial services sector.

In the Netherlands, the situation is slightly different. Among the industry
sectors, the construction sector seems to be especially important, with the
highest multiplier for this sector of all five countries. This also holds for the
hotels and catering service sector, with a high multiplier of 1.89. This last
sector has a relatively strong impact on the income of local households.
Other important service sectors in the Dutch towns are wholesale and retail,
as well as public administration. In Poland and Portugal the key-sectors are
rather similar to those of the Dutch towns: the construction sector has the
highest multiplier value of the industry sectors and the hotels and catering
and the public administration sector are important service sectors.

On average, in the towns of the five European countries, the construction
sector is the key-industry sector and the hotels and catering the key-service
sector; the sectors with the greatest output impact on the local economy from
an exogenous shock. These sectors, together with the agricultural sectors
and public administration, also have the strongest impact on local household
income.

Secondly, we look at the hinterland sectors. We already saw that the
agriculture sector in general can have high multiplier values, especially in
Poland and Portugal and to a lesser extent in the Netherlands (see Table 2).
According to Table 3, in Poland the agricultural sector with the highest
multiplier is mixed farming with a value of 2.37. In Portugal, the horticulture
and arable farming have the highest multipliers. This is because of strong
effects on both factor income as well as on the household income accounts.
Horticulture is also in France, by far, the most important agriculture sector,
with a multiplier of 1.64. Also here, strong linkages exist with factor income
as well as with deliveries of the arable farming sector. In the Netherlands, the
agricultural sector with the highest SAM multiplier is the dairy and intensive
farming sector. In these hinterland areas, the intermediate deliveries affect
the multiplier, deliveries to the own sector, the energy sector, for machinery
or public administration.

Furthermore, in the hinterland, not the construction sector but the ‘textiles,
leather, wood and furniture’ sector has on average the highest multiplier,
especially in the Netherlands and Portugal. Another important sector is the
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‘food, drink and tobacco’ sector, with an especially high value in Poland. Also
in France, this is an important industry sector.

The service sector with on average the highest SAM output multiplier is the
banking and financial services sector; especially in England and France this
is the key-service sector. Another important sector in the hinterland as well,
is the hotel and catering sector.

To summarise, we found that in general, in all five countries, both in town and
hinterland, the sectors with the highest multiplier values are the service-
related sectors. In England and France this is the banking and financial
service sector, in Poland (and also in France) the transport sector, and in the
Netherlands and Portugal this is the hotel and catering, as well as the public
administration sector.

INTER-REGIONAL EFFECTS

Apart from level of redistributive effects (size of the multiplier), multipliers can
also show the interdependencies between town and hinterland. The inter-
regional effects, obtained through the M, multiplier, show the linkages
between town and hinterland and how strong they are; is the town more
dependent on the hinterland, or the hinterland on the town?

Table 7 shows which part of the (redistributive) multiplier effect descends in
the other region because of a shock in production activities in the town or
hinterland, thus showing the level of interdependency. The inter-regional
effects are calculated by dividing the effect of a shock in output in the ‘other’
region by the total effect from the shock minus the initial shock. When the
total output multiplier is 1.58 and the effect in the ‘other’ region 0.19, the
intra-regional effect is 0.19/0.58*100.

It appears that, on average, the inter-regional effect in the hinterland of a
shock in the town is around 22 percent (both for industry as for services). The
largest effects appear in the textiles and in the banking sectors in the
Netherlands (both 36 per cent); the smallest effects appear in England and
Poland. In these two countries the towns are less dependent on the
hinterland.

When focusing on the effects in town from a shock in the hinterland, we see
that the shares are almost always higher, only in the Netherlands, the hotel
and the construction sector in the hinterland are less connected to the town
than vice versa. For the hinterland, the linkage with the town is between 30
and 39 per cent. This implies that, in general, the hinterland is more
connected to the towns and thus more dependent on intermediary deliveries
as well as on labour form the towns.
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In the agricultural sectors the linkages seem to be slightly weaker; however,
in the Netherlands the horticulture sector depends for 56 percent on the
town, both for intermediate deliveries and for labour. In the industrial sectors,
on average the strongest inter-relationships exist; 39 percent of the multiplier
effect. In France the strongest linkage exists in the construction sector.
These construction firms in the hinterland are especially dependent on the
intermediary deliveries of the towns. Finally, the interregional effects in the
service sector are highest in Portugal, especially in the hotel sector. Also in
Poland and England the interregional relationship is strong in this sector. In
Poland and Portugal, almost all necessary goods and services are bought in
town; apparently these are not available in the hinterland. In England also
part of the factor income is paid to town households. The linkage between
town and hinterland in the banking sector seems to be very strong in the
Netherlands. Besides this dependency on intermediary deliveries, also labour
is acquired from the towns.

England France Netherlands Poland Portugal |Average
%

Effect on hinterland from a

shock in town

Agriculture® - - - N N N
Dairy and intensive - - - - - -

Horticulture - - - - - -
Industry 13 24 26 18 27 22
Textiles 15 20 36 21 28 24
Construction 12 17 28 18 25 20
Services 18 23 25 17 20 21
Hotels 17 16 24 9 23 18
Banking 16 27 36 18 20 24

Effect on town from a shock

0,
in the hinterland %

Agriculture 24 36 38 28 24 30
Dairy and intensive 29 40 32 25 29 31
Horticulture 16 36 56 41 25 35

Industry 18 29 54 47 49 39
Textiles 15 23 60 44 39 36
Construction 39 44 20 33 41 36

Services 30 42 29 37 39 35
Hotels 42 26 16 43 42 34
Banking 23 40 49 32 31 35

Table 7: Inter-regional effects of aggregated and key-sectors: effect in the hinterland from a
shock in output in town and vice versa.* Agriculture is not part of the town economy

To summarise, it appears that in general the interrelationships between
hinterland and town are stronger than vice versa. Although the differences
between the sectors are very small, on average the strongest links are found
in the industry sectors, both in town and hinterland. Furthermore, the
strongest links are found in the Netherlands, because of intermediary
deliveries, but mostly because of labour. In Poland and Portugal the
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hinterland is especially dependent on intermediary deliveries from the towns.
In England we find the weakest links.

SAM employment multipliers

The employment multipliers indicate the additional employment generated in
the regional employment due to an initial employment increase in a particular
sector. The employment multipliers are derived from a combination of output
multipliers and direct employment coefficients (employment per sector
output, see Mayfield et al., 2005: 57).

Table 8 shows the aggregated multipliers for the agricultural, industrial and
service related sectors in the five countries. The multiplier values are far
more homogeneous compared to the output and household income
multipliers: they range between 1.10 and 1.36. On average, the employment
multipliers for the town and hinterland sectors seem to be equal in size.
Furthermore it appears that, in both areas, the industrial sectors generate the
largest effects in employment when a new job is added. In the agricultural
sectors the effect is relatively small.

England France Netherlands Poland Portugal Average**
Town
Agriculture* - - - - - -
Industry 1.32 1.33 1.27 1.14 1.16 1.24
Services 1.31 1.17 1.12 1.1 1.21 1.19
Hinterland
Agriculture*** 1.1 1.07 1.18 1.1 1.10 1.1
Industry 1.36 1.26 1.18 1.12 1.23 1.23
Services 1.32 1.20 1.09 1.10 1.24 1.19

Table 8: Aggregated SAM employment multipliers for 5 European countries * Agriculture is
not part of the town economy ** Average of the five country multipliers *** Without forestry
and fishing

Although both the output and the income multipliers for the English and
French towns are relatively small, the employment multipliers are rather
large. Moreover, particularly the Polish employment multipliers are relatively
small. This can be explained by the fact that both in England and France, the
local number of jobs (per household) is rather small, thus an increase of 1 job
has a stronger effect. On the other hand, in Poland, the number of jobs is
rather large.

IMPORTANT EMPLOYMENT SECTORS

Table 9 shows the disaggregated employment multipliers of the sectors with
the largest employment multipliers, as well as the sectors that have high
output multipliers. Interestingly, some of the sectors have both high output
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and employment multipliers. This holds for dairy and intensive farming and
for banking and financial services. However, other sectors with high output
multipliers, such as horticulture, construction and hotel and catering, do not
have high employment multipliers, possibly because these sectors are
already labour intensive. In all countries, the food, drink and tobacco sector,
as well as the banking and financial services sector have relatively high

employment multipliers.

England France Netherlands Poland Portugal | Average
Town
Dairy and intensive farming* - - — - - -
Mixed farming - - - - - -
Horticulture - - - - - -
Food, drink and tobacco 1.41 1.34 1.29 1.18 1.09 1.26
Metals, machinery, electrical, 132 136 1.29 1.10 137 | 129
computing, transport equipments
Construction 1.09 1.11 1.22 1.19 1.17 1.16
Transport Services 1.48 1.34 1.22 1.10 1.21 1.27
Hotels and catering 1.09 1.08 1.12 1.15 1.12 1.1
Banking and financial services 2.09 1.37 1.28 1.12 1.19 1.41
Hinterland
Dairy and intensive farming 1.03 1.10 1.28 1.12 1.15 1.14
Mixed farming 1.28 1.06 1.21 1.06 1.04 1.13
Horticulture 1.06 1.07 1.09 1.06 1.14 1.08
Food, drink and tobacco 1.59 1.54 1.43 1.14 1.25 1.39
Metals, machinery, electrical, 141 113 112 1.06 128 | 1.20
computing, transport equipments
Construction 1.13 1.09 1.10 1.07 1.21 1.12
Transport Services 1.17 1.29 1.1 1.1 1.39 1.21
Hotels and catering 1.05 1.16 1.05 1.13 1.14 1.1
Banking and financial services 2.21 1.49 1.18 1.10 1.09 1.41

Table 9: Disaggregated SAM employment multipliers of the key-output sectors and the

sectors with the highest employment multiplier. * Agriculture is not part of the town economy

INTER-REGIONAL EFFECTS

The level of inter-regional effects of a shock in employment is quite
comparable to the effects of a shock in production output; in town the
interregional effects are around 20 percent, in the hinterland around 35
percent (see Table 10).
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England France Netherlands Poland Portugal | Average

Effect on the hinterland from a % o

shock in town ° °
Agriculture® - - - - - -

Dairy and intensive farming - - - - - -

Mixed farming - - - - - -

Industry 10 18 26 16 21 18
Food, drink and tobacco 19 30 26 18 32 23
Metals, machinery... 3 21 44 19 19 22
Services 13 15 31 12 14 18
Transport Services 13 10 22 1 10 14
Banking and financial services " 18 49 7 14 21
Effect on town from a shock in the o o

hinterland ° °
Agriculture 12 20 34 41 43 26
Dairy and intensive farming 20 32 32 27 42 28
Mixed farming 29 27 33 39 22 32
Industry 9 27 63 57 59 39
Food, drink and tobacco 2 16 68 49 49 34
Metals, machinery... 4 39 49 70 57 40
Services 20 38 44 55 61 39
Transport Services 18 16 44 59 37 34
Banking and financial services 12 30 59 49 54 38

Table 10: Inter-regional effects of aggregated and key-sectors: effect in the hinterland from
shock in employment in town and vice versa.* Agriculture is not part of the town economy

Although the English and French employment multipliers are relatively high
compared to the other countries, still the linkages between town and
hinterland are relatively small. In the Netherlands, these effects are much
stronger: especially the town-hinterland linkages are strong compared to the
other countries; with almost half of the impact of a new job in the banking and
financial service sector in town affecting the hinterland. However, the
strongest linkages appear between hinterland and town, both in the service
and industry sectors in most countries.

CONCLUSIONS

This chapter has focused on the different possible applications of SAMs.
After a conceptual exposition, various results derived from 30 interregional
(town and hinterland) SAMs in 5 European countries were presented. The
aim was to find out in which countries strong linkages, and thus high
multiplier values, appear, what are sectors with large redistributive effects on
town and hinterland economies and to what extent are town and hinterland
linked.
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As well as analytical results, the SAM analysis also generates multipliers
which can be used as a more predictive tool. Multipliers show the system-
wide direct and indirect effect of the recirculation of spending within the
region; recipients use some of their income for consumption spending, which
then results in further income and employment, and so forth.

Obviously, households are also part of the macro-economy. In Poland and
Portugal, the income multipliers are significantly higher than in the other three
countries. This is because Polish and Portuguese (town) households buy a
large amount of necessities in the local economy. Furthermore, more than
two-thirds of these households have a job in the local area, which means that
they also profit from the induced effects.

In all countries, we found a higher multiplier for town-households than for
hinterland households. The explanation for this is that, in all countries, these
town households buy more products and services locally. Furthermore, it
appears that both in town and hinterland, the lower the income, the higher
the multiplier.

We also found that, in general, the highest output (measuring the effect of
extra demand in output) and income (measuring the effect of increasing
income) multipliers are found in Poland and Portugal. In these countries,
strong linkages exist between local production activities, as well as between
households and local production. This is an indication that in less developed
countries rural areas are still relatively isolated, leading to smaller leakages in
rural economies. In England and France, the multipliers are relatively low,
and in the Netherlands in-between. In all five countries, the service-related
sectors generate the highest output multipliers. Only in the English towns (not
in the hinterland) are the manufacturing multipliers higher, and in the Polish
hinterland the agriculture multipliers.

Furthermore, the hinterland multipliers are in general higher than the town
multipliers. An important reason for this is the stronger linkage between
hinterland and town than vice versa: the hinterland firms obtain a relatively
larger part of their inputs from the towns. This implies that investments (or
subsidies) in hinterland activities, preferably in service-related activities, lead
to relatively large local effects.

We also find that there are significant national differences. In England, and to
a lesser extent in France, the linkage between town and hinterland is weaker,
as well as the production-income linkage; these firms have more employees
from outside the local area. In the Netherlands, the linkages between town
and hinterland are much stronger but the towns are relatively less important.

252



van Leeuwen, E. & Nijkamp, P.

However, both town and hinterland are especially important for the provision
of labour.

We may conclude that SAMs are a powerful tool in (spatial-) economic
research, as they are able to map out the complexities of intersectoral and
interregional interactions in a manageable format, based on a strict economic
methodology. Their wide-spread use illustrates that the use of SAMs greatly
enhances an understanding of impacts of shocks or interactions in (multi)
regional systems, and hence may be seen as important vehicles for a solid
policy analysis.
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Appendix A.l: List of European towns included in the analysis together with information about
the population in town, hinterland and the total area, as well as the number of jobs in the

total area.
Country Town Population (# inhabitants) # Jobs
Location | Town |Hinterland | Total Total
England Leominster 7,316 6,147 | 13,463 4,964
Swanage 8,571 3,667 | 12,238 3,741
Towcester 6,771 13,949 | 20,720 6,507
Tiverton 9,257 8,582 | 17,838 6,781
Burnham-on-Sea 16,344 14,909 | 31,253 8,925
Saffron Walden 10,331 22,564 | 32,895 | 23,168
France Brioude 3,131 1,969 5,100 5,771
Prades 3,632 1,352 4,984 3,170
Magny-en-Vexin 2,296 1,994 4,290 3,573
Mayenne 6,548 2,428 8,976 | 11,177
Douarnenez 7,302 1,615 8,917 7,601
Ballancourt-sur-Essonne 6,169 10,900 | 17,069 | 10,990
The Netherlands | Dalfsen 6,570 16,895 | 23,465 6,791
Bolsward 9,378 18,5655 | 27,933 9,184
Oudewater 7,745 51,705 | 59,450 | 30,576
Schagen 17,214 24,116 | 41,330 | 13,198
Nunspeet 19,215 27,410 | 46,625 | 17,630
Gemert 14,815 41,245 | 56,060 | 17,119
Poland Glogowek 6,251 12,975 | 19,226 5214
Duzniki 5,471 1,846 7,317 4,728
Ozaréw 7,144 16,956 | 24,100 7,694
Jedrzejow 16,667 9,076 | 25,743 | 16,354
Ultsron 14,585 6,632 | 21,217 | 10,554
Lask 20,587 11,104 | 31,691 8,018
Portugal Mirandela 11,186 14,633 | 25,819 9,148
Tavira 12576 12,421 | 24,997 | 10,221
Lixa 5490 52,105 | 57,595 | 27,790
Vila Real 32,644 17,313 | 49,957 | 20,511
Silves 18,836 14,994 | 33,830 | 14,945
Esposende 10,401 22,924 | 33,325 | 15,531
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Appendix A.lll: List of accounts in inter-local SAMs of Marketowns
Production account:

. Arable farming

. Dairy farming

Arable farming Intensive farming

. Horticulture-open ground

. Horticulture-glass

. Forestry and fishery

. Mining of coal, oil and gas

. Other mining (sand, clay, salt etc)

Chemical products

. Food manufacturing

. Textile, leather

. Wood, furniture

. Paper, offset printing

. Rubber, plastic, glass

. Metals, machines

. Electric apparatus, computers, optical equipment
. Transport equipment

. Electricity, water

. Construction

. Wholesalers

. Retailers

. Hotels, restaurants and catering

. Transport services

. Bank, finance and insurance services

. Real estate, other business services

. Public administration, education, health, recreation, culture
27. Personal services

Production factor account:

1. Labour income management/professional

2. Labour income skilled/partly or unskilled non-manual
3. Labour income skilled manual

4. Labour income partly or unskilled manual
Households account:

1. 1 25%-income group

2. 2™ 25%-income group

3. 3 25%-income group

4. 4" 25%-income group

Exogenous account:

1. Sum of rest of world account (imports/exports), government account (taxes/subsidies) and capital
account (savings/investments).
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INTEGRATING MORPHOLOGY IN URBAN
SIMULATION THROUGH RETICULAR AUTOMATA

SCHELLING’S MODEL OF SEGREGATION AS USED WITH REMUS

Diego MORENO’, Dominique BADARIOTTI” and Arnaud BANOS™

“Laboratoire Société Environnement Territoire, ~Laboratoire Image Ville et Environnement, ~Laboratoire
Géographie-cités, France

The representation of space through graph formalism
permits to integrate the anisotropy of urban space in
cellular automaton models. In order to analyze the
influence of a graph structure in simulation dynamics we
study here a segregation model implemented in a graph-
based cellular automaton. The Remus model calculates
neighborhood graphs in a city and integrates them to the
segregation model proposed by Thomas Schelling.

In the first part we present a state of the art of graph-
based cellular automatons and of morpho-dynamic
research in urban studies. We present also the Remus
methodology as used to create neighborhood graphs
based on network accessibility between buildings as a
way to integrate complex urban forms in simulation. In the
second part we analyze the structure of the neighborhood
graphs calculated by Remus for the town of Pau. Finally,
in the third part, we study the impact of this structure on
the simulation of spatial segregation as described in
Schelling’s model.

This application demonstrates the possibilities offered by
graph formalism. On the one hand it permits the analysis
of urban forms through graph indicators. On the other it
allows one to integrate the heterogeneity of urban space
in simulation. This approach is obviously an interesting
way to explore the relationship between form and
dynamics in urban studies.

KEYWORDS

Urban morphology, Graph theory, Cellular automata, Schelling’s
segregation model
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INTRODUCTION

The aim of urban cellular automaton models is to explain the dynamics
that control the behavior of urban systems. They allow one to study the
way these dynamics shape towns and cities, the influence of function on
form. But what about the influence of form on function?

The purpose of this chapter is to study the effect of urban morphology on
the dynamics of a reticular automaton, the Remus model. Firstly, we
present the state of the art of cellular automata, the possibilities offered by
graph formalism and the thematic and methodological context that
oriented the conception of the Remus model. Afterwards we analyze the
urban structure resulting from Remus. Finally, Schelling’s classical
segregation model is used to test the influence of the urban structure on
the automaton behavior.

FROM CELLULAR TO GRAPH-BASED CELLULAR AUTOMATA

The Remus model concerns cellular automata, urban modeling and graph
formalism to represent urban forms. We present here the background of
urban morpho-dynamic modeling, cellular automata, graph theory and
urban morphology applications and, finally, a definition of graph-based
cellular automata.

Urban form, mobility and morpho-dynamic modeling

Urban morpho-dynamics developments concern the old-age question of
the form and function of a town or a city. Nowadays this relation between
form and function has become topical again. In the conception of the
Remus model, form and function are related through intra-urban mobility.

The relation between mobility and urban forms is highlighted in urban
planning researches (Newmann & Kenworthy, 1989; Dupuy, 1995;
Dubois-Taine & Chalas, 1997; Wiel, 2002). These studies explain how
mobility has contributed to shaping the morphology of cities. The increase
in mobility has contributed to urban sprawl and conditioned urban patterns.
Some researchers have also inquired about the role that morphology
might play on urban mobility (Vernez-Moudon et al., 1997; Gourdon, 2001;
Genre-Grandpierre, 2001).

Urban planning has often modified city forms to promote mobility. This
relation can be formalized through the accessibility concept.

Accessibility represents an interaction potential which can be used to
characterize urban morphology regarding mobility. Geographers, but also
economists, have been interested in studying accessibility and proximity
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within the city (Burmeister & Colletis-Wahl, 1997; Meunier, 1999). Several
approaches have been developed to study this urban “hybrid space”,
made of physical space separation based on geographical distances, and
of virtual space separation based on an economic and social logic
(Muhammad et al., 2008). The concept of accessibility has been used in
different ways and its measure can be grouped into three types :
infrastructure-based measures, activity-based measures and utility-based
measures (Geurs & van Eck, 2001, 2003).

But the accessibility concept also permits to integrate urban morphology in
modeling approaches. Inequalities in accessibility in urban space have a
strong influence on the social behavior of urban systems. Social and
mobility fields are closely connected because mobility is generated by the
need of people to have social interaction within the city. In an attempt to
relate urban forms to social logics, Bill Hillier and Suzan Hanson
developed a formal concept called “space syntax” (Hillier & Hanson,
1984). In this approach urban space is conceived of as an emergence of
forms controlled by global random processes and regulated by local town-
planning rules. The method uses graph formalism to describe the
interactions between the morphologic and the social elements of a city. In
doing so, it helps integrate the reticular dimension of urban space, rarely
considered in urban models.

In most morphological analyses urban space is considered as anisotropic,
and proximities between elements are generally represented on a
topological (contiguity, connectedness) or a metric (Euclidean) basis. But
an understanding of network structures that shape cities is necessary to
describe the relation between morphology and urban processes.

Mobility in a street network can be compared to a fluid flow in a
constrained milieu. This idea is actually renewed in physics and
engineering by the “constructal” approach of Adrian Bejan (Bejan, 1997;
Bejan, 2007). In a “constructal” flow, the general frame of the flow network
is designed by the constraints of the environment and the fluid dynamics.
For example, river basin morphology is obtained by the combination
between the physical characteristics of the flow and the obstacles from the
relief. Bejan’s constructal theory has been applied to city plans to explain
their morphology or to optimize them (Beja & Ledezma, 2007; Reis, 2008).

The confluence of these methods inspired the conception of the Remus
model. The use of graph formalism to represent social interactions within
the city is inspired from Space Syntax, but also from recent developments
on social networks. The idea that there is a strong relationship between
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urban flows and urban form influenced the choice of network accessibility
as a criterion to define the proximity of spatial units.

Fractal analysis has been introduced by Benoit Mandelbrot in his famous
article on the length of the coast of Britain (Mandelbrot, 1967). The first
applications of this new geometric concept were mainly developed to
characterize natural forms (Mandelbrot, 1975, 1977, 1982), but they have
also been used in various other fields like mathematics (Bélair, 1987),
physics (Schroeder, 1991), computer sciences (Pickover, 1990) or
esthetics (Peitgen & Richter, 1986). The computation and study of
theoretical fractals and the measure of observed fractals were the two
main approaches developed in these early years. Afterwards, the
application of fractal computations and measures to urban form studies
was developed by geographers and town-planners (Batty & Longley,
1986; Frankhauser, 1990, 1991): it constitutes a different approach in
relating form and function. The computation of the fractal dimension of
built-up elements through scaling behavior showed the auto-similar
characteristic of urban forms on different scales. This fractality may be
interpreted as the result of a maximization of the accessibility to local
amenities accompanying urban growth (Frankhauser, 1994). These
computations can be done for a whole city or for its different morphologic
units, with its districts or quarters, all dating back to different periods and
resulting from different processes (Badariotti, 2005).

Remus aims also to develop morphologic indicators to characterize urban
morphology on different scales. This method permits to reveal the auto-
similar characteristics of the urban network structure, just as the fractal
dimension measures the auto-similarity of built-up elements of the city.

However, the main particularity of the method exposed here is the
integration of the network accessibility criterion in urban simulation. The
first urban simulation models (Berry & Lobley, 1964; Forrester, 1969)
applied the system theory (Bertalanffy, 1950) to urban modeling. But
dynamic systems modeling in the 70’s and the more recent developments
in complex systems theory were more focused on dynamics than in
morphology, considering their lack of tools to analyze urban forms. Even if
the influence of transportation networks was early introduced in urban
cellular automata (White & Engelen, 1997; Engelen et al., 2002; Barredo
et al., 2003), it was not used to define their spatial structure.

In the Remus model, network accessibility is included in the neighborhood
definition of cellular automata. This methodology is explained further
below.
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From cellular to graph-based cellular automata

A cellular automaton is a mathematical object embodying a lattice of
contiguous cells. Cell state changes are controlled by a transition function,
which depends on the states of the neighboring cells and on the state of
the cell itself. Thus the dynamics of the system are the result of the
dynamics of cell states.

The history of Cellular Automata is related to the history of computation.
Turing’s and Von Neumann’s works on self-reproducing machines (Turing,
1950; Von Neumann & Burks, 1966) set down the basis of computing. The
self-reproducing Von Neumann’s machine was in fact a cellular
automaton. In the Hedlund’s synthesis of the works on symbolic dynamics
(Hedlund, 1969), the mathematical formalism of cellular automata was
described for the first time. Cellular automata models were subsequently
applied to many disciplines, like linguistics, economics, transportation and
urban planning. They are important tools for modeling complex spatial
systems, because they permit to simulate the emergence of forms in
space as a non-linear response to the aggregation of individual dynamics.
This property helps to describe social phenomena based on the
combination of individual behaviors.

In geography, the principle of reciprocal influence between a given
position and its neighborhood existed in the first geographical models, like
the diffusion models developed in the 1950s. The idea of a cell
representation of space was employed in Chapin & Weiss (1968) and
Lathrop & Hamburg (1965) models of land use change. But in these
models, the neighborhood effect is just one of many factors affecting cells.

Tobler (1979) proposed to use cellular automata to study geographical
processes. The idea of a Cellular Geography, based on the influence of
each spatial unit’s land use upon its immediate neighbors, was further
expanded by Codd (1968), Albin (1975), Nakajima (1977) and Couclelis
(1985, 1988, 1989). Their contributions paved the way for the
development of urban cellular automaton models in the 1990s: White &
Engelen (1993), Batty & Xie (1994, 1997), Xie (1996), Clarke et al. (1997),
Phipps & Langlois (1997), Papini et al. (1998) are only a few of those who
applied cellular automaton models to the study of urban change.
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White & Engelen (1993) introduced the effect of road-network and
infrastructural elements as constraints in their model. This notion of
constrained cellular automata was employed in subsequent models
(Engelen et al., 2002; Barredo et al., 2003) to integrate the role of
accessibility, but also the role of suitability and planning in the transition
functions.

Although these models tried to take into account the impact that
infrastructure elements have on urban evolution, the effect of networks
and transportation modes is difficult to define with cellular structures. Even
if the integration of spatial constraints has introduced some space
heterogeneity in urban cellular automaton models, their main spatial
structure is based on assumptions about isotropy and stationarity of
space. Those assumptions may be relaxed to fit more complex
relationships in the city. All the same, O’Sullivan (2001a) showed that re-
examining the formulation of cellular automata was necessary because of
the significant sensitivity that spatial processes have to even small
changes in underlying spatial structures.

Couclelis (1997) opened the discussion of the relation between proximal
space, Cellular Automata, and a formalization of those models through
Geo-algebra (Couclelis, 1997; Takeyama, 1996; Takeyama & Couclelis,
1997). This discussion constituted an attempt to solve the problem of the
relation between structure and processes in geographical models, and
resulted in the formalization of a geocomputational theory (Couclelis,
1998). Then the proposition emerged to integrate complex neighboring
relationships between cells in cellular automata based on graph formalism.
O’Sullivan’s thesis (2000) proposed a graph-based cellular automaton and
explored the effect of non-stationary neighborhoods on the behavior of the
system.

Graph theory and urban applications

At this point it is necessary to consider briefly graph theory and its
developments. A graph is defined as a finite set of vertices (or nodes) and
a finite set of edges (or links) that connect pairs of vertices.

Several graph indicators exist, but the indicators that are usually used to
describe graph structures are the main degree, the path length and the
clustering coefficient (Watts & Strogatz, 1998; Jiang, 2007).

266



Moreno, D. et al.

The degree of a vertex is the number of edges that are incident to it.
The degree of a vertex v;is denoted deg(v)). It can be used to measure
the centrality of a vertex in a graph. The average degree of a graph
having n vertices, D(G) = X; deg(v;) / n, can be used to measure the
density of links in a graph for a fixed number of vertices.

A path is a sequence of vertices such that from each of its vertices
there is an edge to the next vertex in the sequence. The path length
between a pair of vertices is the smallest number of edges necessary
to go from a vertex to another. Thus the average path length indicates
if the graph structure connects well distant nodes between them or not.

The clustering coefficient of a vertex is the ratio between the number of
edges incident to it (its degree) and the number of possible edges in a
given neighborhood. This measure reflects the probability for two
neighbors to be connected. The average clustering coefficient can thus
be used to describe the connection between closer nodes.

These measures are often used to characterize different types of
networks. Six types of graphs have a particular interest for our analysis.

Tree graphs, defined as graphs in which any pair of nodes is
connected by exactly one path, without cycles. This type of graphs is
used to describe hierarchical structures.

Random graphs, representing ER (Erdés-Rényi) networks, defined by
Erdds & Rényi (1959). These graphs are constructed by starting with a
fixed number of vertices and connecting them through a random
process. The existence of an edge is controlled by a probability p.

Regular networks, in which each node possesses the same number of
incident edges.

Scale-free networks, or BA (Barabasi-Albert) networks, defined by
Barabasi & Albert (1999). These graphs have a large degree
distribution that follows a decreasing power law. These graphs can be
constructed from an existing graph by adding new vertices with a
preferential connection to the existent well-connected vertices.
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e Small-world networks, or WS (Watts-Strogatz) networks, first described
by Watts & Strogatz (1998). These graphs are highly clustered, like
regular graphs, yet have small path lengths, like random graphs. In
these graphs each node is well connected locally to its neighborhood
and there are some shortcuts that connect distant nodes, like social
networks.

e Urban networks, or NG (Newman-Gastner) networks, characterized by
Newman (2003a, 2003b) and Gastner (Gastner & Newman, 2004).
These networks have been defined by the geometrical analysis of the
properties of actual urban networks. The number of nodes is not
known, the structure is more or less cellular, as in a lattice, and the
maximum degree of any vertex is quite small, no more than 6 in
general.

Jiang (2007) demonstrated that urban dual street networks, perceived as
graphs whose edges represent street segments and vertices represent
segment intersections, usually have scale-free or small-world properties.

Graph-based Cellular Automata: a new space formalization

Spatial relationships in cellular automata can be addressed
advantageously via an approach based on mathematical graphs. Graph
formalism can be used to describe the complexity of proximity
relationships, and can be integrated in cellular automaton models for
urban simulation purposes (O’Sullivan, 2000, 2001a, 2001b). The
theoretical framework of graphs offers a set of methods and tools, beyond
the accepted formulation, that facilitates the exploration of the
relationships between urban forms and their functions.

From a formal point of view (Takeyama & Couclelis, 1997) a geographic
cellular automaton is defined by the quadruplet (U, N, S, F), with:

o U=1{U, Us,...,U,..., Uy}, a finite set of spatial units (one notices that
this finite collection of spatial units may be situated in an unbounded
space, a torus, with the West units being related to those of the East,
and the North units to those of the South), most often laid out in a
regular grid;

e N = {N;, Ny..,N,..., Ny}, the set of the spatial units’ neighbors, as
defined by a topologic criterion (contiguity) or a geometric criterion
(distance between centroids). Each neighborhood N; is a list of all the
spatial units deemed to be neighbors of a unit /i on the basis of a
chosen criterion: N; = {U;, Uk,..., Un};
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e S, the cells’ possible states, as defined by qualitative or quantitative
variables, either discrete or continuous;

e F local transitional functions, probabilistic or deterministic, by which a
cell may evolve stepwise over time, depending both on cell state and
neighbors states: S/*' = f(S}; Sni)

With this architecture, a structural component {UN} and a dynamic
component {S,F} can be usefully distinguished in a typical cellular
automata:

CA=({U,N},{S,F}) (1)

The spatial units and their neighbors thus constitute the skeleton upon
which the dynamics will be able to play themselves out at the heart of the
automata. The first couple of arguments are of particular interest in
geography, since they deal with the way in which the underlying spatial
structures are defined. Despite that fundamental specificity, geographic
automata have nevertheless been most often developed in reference to
the formal definition according to which “cellular automata are automata
distributed on vertices of a periodic network, i.e. a discrete geometric
structure that is preserved by certain operations of translation and rotation”
(Weisbuch, 1989). The majority of those referring to it (Nakajima, 1977;
Xie, 1996; Batty & Xie, 1994; White & Engelen, 1997; Langlois & Phipps,
1997; Phipps & Langlois, 1997; Engelen et al., 2002; Barredo et al., 2003)
adopt that perspective, the limitations of which we shall demonstrate.

Table 1 shows standard representations of the structural component {U,N}
of a geographic cellular automaton. Space is divided into square cells, of
uniform size, arranged evenly over the domain. The neighborhood of each
cell is thus stated, for its topologic version, according to two definitions of
adjacency:

e Von Neumann’s adjacency, whereby two cells are neighbors if they
share at least one common boundary;

e Moore’s adjacency, in which two cells are neighbors if they share at
least one common vertex.

That representation, as intuitive as it is, still has a limited scope. A slightly
different interpretation of the structural couple {U,N} helpfully overcomes
this limitation. In fact, like the display in Table 1, it is possible to view the
spatial units U; as vertices of a mathematical graph, such that the
neighboring relationships between vertices can be depicted as the edges
of that graph, designated G(U, N).
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Table 1: A representation of a cellular automata and related neighboring graphs
(Badariotti et al., 2007)

Such a portrayal is at the root of the neighboring graph, comprising all the
neighboring relationships (Table 1). From this perspective, the couple
{U,N} may be rendered as a graph G=(U,N), altering in one stroke the
definition of a geographic cellular automaton of equation (1):

CA=(G(UN),{S,F}) (2)

Moreover, one can note that the neighboring graph thus obtained is not
necessarily planar, since two edges do not necessarily intersect at a node.
Such a remark may seem trivial. However, its implications are not always
grasped by geographers, as was rightfully emphasized by O’Sullivan
(O’Sullivan, 2000, 2001a, 2001b), for the graph representation
immediately highlights the fundamental hypothesis of stationarity on which
the majority of geographic cellular automata rest, namely that:

e Spatial units are arranged uniformly across the domain;

¢ Neighbor relationships are strictly identical for all spatial units (provided
units located at the limits of a finite domain are disregarded);

e Transition functions are themselves most often stationary, applying
equally to all units of the structure.

In order to take into account the spatial relationship between units,
O’Sullivan proposed irregular graph-based cellular automata (O’Sullivan,
2000, 2001a, 2001b). These models go beyond stationarity by focusing on
the structural component of cellular automata, which lacked adequate
realism as regards urban environments.
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Graph-based cellular automata allow one to give a better explanation of
the impact of morphology on the behavior and evolution of urban systems.

At this point, we have introduced the common background knowledge that
it is useful to position our model, as well as its results, in the thematic
urban field, and the current state of art in graph-based automata.

About cellular automata, we have in particular seen that it is an important
tool for modeling complex spatial systems, because it permits to simulate
the emergence of forms in space like a non-linear response to the
aggregation of individual dynamics. This property is useful to describe
social phenomena based on the effect of combination of individual
behaviors. In fact, the dynamics of each cell state depends on its
neighborhood and the definition of the neighborhood is related to the
topological relationships between cells. Therefore, the dynamics of the
whole system is related to the pattern structure of the lattice and this
structure is the result of cell formalism used in cellular automata.

INTEGRATING MORPHOLOGY IN A RETICULAR AUTOMATON: THE
REMUS MODEL

In spite of important contributions that the community of geographers have
made to mathematical and computer formalizations of cellular automata
for the purpose of better accounting for the specificities of geographic
spaces and processes (Ménard et al., 2004), an essential characteristic is
still lacking. Usually, neighborhood relationships between cells in
geographical automata are most often determined on the one hand by
topological (contiguity) or geometric (Euclidean distance) criteria, and on
the other hand, on a stationary basis: two options that depict poorly, if at
all, the spatial differentiations that arise from the anisotropy of
geographical space.

The Remus methodology

It is necessary to define a method to calculate neighboring graphs to
represent anisotropic spaces in graph-based automata. The method used
in the Remus model consists in calculating network accessibility in urban
environments to build these neighboring graphs.

Inspired by the work of Chua & Yang (1988), Schonfish (1997) and
O’Sullivan (O’Sullivan, 2000, 2001a, 2001a), Badariotti et al. (2006) and
Banos (2009) developed a methodology to construct graph-based
automata integrating intra-urban accessibility. These automata treat the
built elements as the basic urban units, and replace strict contiguity with a
neighborhood distance. Two spatial units are neighbors if the Euclidean
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distance between their centroids is less than a specified threshold
distance: d(Ui(x,y); Ui(x;y}) < dinreshord

This being done, the layout of the spatial units becomes irregular, with
spatial discontinuities between buildings imposing themselves as
significant structural elements. The graph of the underlying relationships is
thus strongly influenced by this non-stationarity, in that minor changes in
the neighboring distance dmresnoid may have broad overall repercussions,
due to the sudden connection of partial sub-graphs that are not related at
lower values of diresnoia (Figure 1).
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Figure 1: The introduction of heterogeneous spatial structures and its effect on the
neighboring graph at various thresholds of Euclidean distance (Badariotti et al., 2007)

To work like this on the basis of Euclidean distances means, however, that
one must accept, in addition to the technical advantages that it accrues,
the hypothesis that space is fundamentally isotropic: for a given dimreshord,
the neighboring graph depends solely on the spatial layout of units U;. Yet
it is evident that the presence of transportation networks with differentiated
flow capacities greatly affects this hypothesis. Thus, thinking in terms of
network accessibility for a given mode of transportation means introducing
into the very structure of the cellular automata the fundamental anisotropy
of geographic space.

The many possible relationships between spatial entities, and the spatial
and temporal variability of these relationships stemming from the nature
and evolution of urban movements and modes of transportation, compel to
better specify spatial relationships. In particular it is possible to define for
each cell a specific neighborhood capable of evolving over time and which
permits to take into account all the complexity of spatial relationships in
the city. This dynamic of relationships enables the cells to communicate
well beyond their immediate adjacencies for the purpose of fulfilling given
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functions, much the same as neurons in the brain do. Thus these
neighboring relationships are fundamentally functional, not simply
geometric ones.

The size and shape of buildings influence the way the geometry of urban
pockets forms and how the roadway pattern develops, especially in
adjacent built-up areas. When we look at a cadastral view of developed
urban areas, we can discern the circulation channels flowing from their
buildings. Such traffic channels are as important to the functioning of the
city as the buildings themselves are: it is thereby helpful to study the
shape of the built-up areas in conjunction with the shape of the network of
urban roads. For this reason the model start from a representation of the
city that takes into account its morphology from the standpoints both of its
buildings (a buildings database) and of its road network (a public
thoroughfares database).

For this approach, the construction of the relationship graph involves:

e First, constructing an urban graph G(V,E), the vertices of which include
the buildings and the nodes of the road network, and the edges of
which comprise the thoroughfares and road-to-building connectors
(Figure 2a). The urban graph G(V,E) is one that can be termed
“Euclidean” or “physical”, in that it corresponds to a “geographic” graph
that can be displayed as a diagram or map, and is based on Euclidean
spatial distances. This graph is not planar because edges crossing at
different levels (e.g. shafts, tunnels, bridges) may or may not entail an
intersection.

e Executing shortest path algorithms on the urban graph in order to
calculate minimal travel time, by a given mode of transportation,
between each pair of vertices {V|; Vj} of the graph G(V,E). This process
results in the creation of a functional graph, complete and non-planar
G'(U /Uucv, K), comprised of vertices, representing the buildings,
and edges representing the shortest travel times over the network
between all possible pairs of buildings, for a specified mode of
transportation (Figure 2b). The graph G’(UK) may be called a
functional graph, as it displays the functional linkages that exist on the
basis of time-distance between buildings. Since reciprocal (but non
symmetric) time-distances inherently exist for any pair of points, this
depiction corresponds mathematically to a complete graph, because
any two such points are always adjacent (Kaufmann, 1968).
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e Constructing a neighboring graph G (U , N; /Ny c K), a sub-graph of
the functional graph, in which the vertices represent the buildings and
the edges represent the neighboring relationships falling within a given
threshold of travel time freshors, such that {(U;; U) < tinresnos (Figure 2c).

44 e

P—.Il

s
.
TS

Figure 2: (a) Urban Graph G(V,E); (b) Functional Graph G'(U,K); and (c) Neighboring
Graph via the network Gt”(U,N) (Badariotti et al., 2007)

The very structure of the neighboring graph that is thus generated is
significant, since it does not depend solely on the arrangement of the
spatial units, but equally on their spatial relationships via road access.
Each neighboring graph thus reflects a specific mode of transportation and
a specific threshold time, and is the product of a series of abstracting
procedures whose aim is to create a display of the structure of intra-urban
accessibility (Figure 3). The neighboring graph thus allows irregular
neighborhood relationships to be defined in a dynamic way, reflecting
urban dynamics.
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Figure 3: Stages in the construction of neighboring graphs (Badariotti et al., 2007)

Application to the development of the Remus model

The Remus model, designed in collaboration with researchers in computer
science at LIUPPA (Laboratoire d’Informatique de I'Université de Pau et
des Pays de I'Adour), allows various graphs to be generated (urban,
functional and neighboring graph) so as to establish the foundations for an
anisotropic and non-stationary cellular automata that is ultimately capable
of taking a more realistic account of spatial relationships when simulating
urban dynamics.

Generating the urban graph entails importing geometric data from a
Geographic Information System (GIS). Such data, generally available from
cadastral and transportation network databases, do not necessarily
include the topology needed to generate a graph.

Because of this fact, it is necessary to modify the geometry of the road
network beforehand for it to adhere, to adhere to the topology of the urban
graph. To do this, Remus creates intersections at the junctions of the road
segments, grouping the various arcs that comprise a segment of road
between intersections and generating a road graph that displays the
intersections as well as the vertices, and the road segments as well as the
component edges.

Next, Remus incorporates into the graph the built-up data, generating the
buildings’ access to the road network. To do this, the software:
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e determines the road segments closest to each building’s centroid (the
search-distance around each building can be calibrated);

e eliminates road segments that are inaccessible due to obstacles (e.g.,
other buildings);

¢ elects from the remaining segments the one segment with the shortest
geometric distance from the building’s centroid; and

e generates the access routes between the buildings and the road
segments.

Together these two operations generate the urban graph, representing the
entire collection of buildings and their best inter-connections via the road
network.

During a second stage, the urban graph makes it possible to create the
functional graph, reflecting varied threshold distances. This stage involves
a preliminary assignment of values to the urban graph, the transit times for
each segment being derived from its geometric length and average speed.
The average speed may be estimated indirectly from various fields in the
roadway database, such as the type of road, or its width, or authorized
speed limit.

For this stage, a path-search strategy was applied with the help of the
Floyd-Warshall algorithm (Floyd, 1962). This algorithm calculates the
shortest possible path between any pair of vertices. However, in light of
the complexity of the algorithm and in order to reduce its computation
time, a simplification was adopted to help prune the number of possible
paths. Thus the urban graph has two levels: the sub-graph of building-to-
road connectors G(B,C) (Figure 4a) and the sub-graph of roads G(I,T)
(Figure 4b). The Floyd algorithm is initially applied solely to the road sub-
graph; then, secondarily, the best paths are extended by joining the
building-to-road connector of every building to a roadway intersection.
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a Building-road

b Road network / /

e Urban graph / / / 4/} / /'

Figure 4: Diagram of the structure of an urban graph: a) Sub-graph of connectors linking
the buildings to roads G(B,C); b) Sub-graph of the road network G(l,T); c) Urban graph
G(V,E) composed of elements of the sub-graphs (Badariotti et al., 2007)

This innovative two-tiered strategy for exploring routes allows one to
process very large databases, such as cadastral databases, by reducing
the number of vertices traversed and thus drastically decreasing the
number of iterations of the algorithm (Table 2).

Graph Numt?er Number lTenl1ploraI Cqmplgxity
of Vertices of Edges (in millions of iterations)
Theoretical Urban Graph G(V,E) 86,336 98,362 643 540 333
Urban Road Graph G(/,T) 7,590 19,616 437 245
Functional Graph G'(U,K) 39,373 775,096,878 61037 329

Table 2: Comparison of the complexity of various graphs used for greater metropolitan
Pau (Department of Pyrénées Atlantiques, France)

At the end of the shortest-path operation, a matrix is generated of the en-
route times between every pair of buildings. This matrix corresponds to the
functional graph G’(U,K) in which the vertices U depict the building units,
and the value assigned to each edge Kis the distance-time of the shortest
path between buildings via the urban road network.

In order to study the structure of the functional graph thus defined, Remus
allows for visual exploration of each building’s neighborhood via the road
network, regrouping the buildings hierarchically in terms of their
accessibility at variable distance-times (Map 1).
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Map 1: Using the REMUS program for visual exploration: neighborhoods within 100, 200,
and 300 meters of a selected building in greater metropolitan Pau-Pyrénées

Hierarchically ordering the paths’ distance-times makes it possible to
select each building’s neighbors for a given distance-time threshold.
Finally the neighboring graph is generated for a selected time-distance
threshold (Figure 5). A localized visualization is thus obtained, showing the
proximities of buildings, not as the crow flies, but via the road network.

REMUS Mag [a]a]

5]
e @oleEn®

Figure 5: Example of a neighboring graph generated by the Remus program, showing
neighbors within 100 meters of a selected building
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APPLICATION OF THE REMUS MODEL TO THE CITY OF PAU

It is now time to propose an application of the Remus formalization in
order to study neighborhood graph structures.

In a first global approach, the Remus model was applied to the
Communauté d’Agglomération de Pau-Pyrénées to test the concrete
applicability of the model on a real space situation and to explore its
possibilities to calculate morphological indexes. Pau-Pyrénées has been
chosen because of the variety of patterns existing in it. This city is situated
in the French south-west and it had the typical evolution of European
cities. But the main urban growth occurred in the second half of the
twentieth century, in a lapse of time which is very short in the French
context. The result is a small town with heterogeneous patterns, which is
adequate for our analysis.

The analysis of the general neighborhood graph structure has been made
for the whole space of the town to characterize the distribution of the
distances between buildings. Other indexes, whose interest for the
characterization of different morphologies has been demonstrated, have
been tested on specific quarters with a specific morphology: they include a
neighborhood average degree analysis on each quarter, an analysis of the
scaling behavior of their distance structure and a specific degree
distribution analysis.

Distribution of the distances between buildings in the entire network space

In order to analyze the generated neighborhood graphs, the average
degree D(G) was calculated for different threshold distances, as:

D(G) = Zideg(v) /n

At low threshold distances, just a few buildings are connected to a
neighbor and the D(G) value tends to zero. As the threshold distance
increases, more buildings connect to their neighbors and the average
degree increases too. The results were compared with neighborhood
graphs based on Euclidean metrics, for random and real distribution of
spatial units (buildings). Chart 1 shows the differences in integration of the
new neighbors when the threshold distance increases. The irregular
growth of the two real-based curves, compared to the random curve,
shows clearly that the urban structure is anisotropic.
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Chart 1: Comparison of neighborhood graphs average degree: a) real spatial distribution
of buildings and Euclidean-defined neighborhoods; b) real spatial distribution of buildings
and network-defined neighborhoods; ¢) random distribution and Euclidean-defined
neighborhoods

More precisely, we can notice that the growth of the real-based curves is
not always regular: at some local threshold points the curves change their
direction. So it is obvious that the actual distribution of buildings and the
introduction of network accessibility in urban metrics induce an important
anisotropy in urban space at local scales.

This anisotropy is due to the urban pattern structure, which permits
neighbor integration at three different rates:

e Below a limit of 5 meters, neighbor integration is insignificant because
of the distance between building entries which makes neighbor links
rare. This limit is determined by the size of spatial units and constrains
neighborhood structure at low distances.

e Between 5 and 20 meters, neighbors are integrated faster when
distance increases. The urban pattern permits sudden connections
around crossroads that increase the number of neighbors easily.

e Around 20 meters, neighbors integration slows down with distance
increase. This threshold corresponds to other types of patterns in
which the distance between buildings is greater.
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Chart 1 suggests that the urban spatial distribution permits buildings to be
distant at a local level and to stay connected at a global level. The
observed thresholds can be compared to transition phases and critical
thresholds in network percolation (Erdés & Rényi, 1960; Aizenman &
Barsky, 1987; Janson et al., 2000). The analysis of percolation threshold
in networks is useful to study epidemic dynamics (Barthélemy et al., 2004;
Eubank et al., 2004; Keeling, 2005; Serrano & Bogufia, 2006; Meyers,
2007). Urban patterns could be characterized by the way in which they
integrate neighbors, in the same way that phase transitions characterize
thermodynamic systems.

Neighborhood graph average degree analysis

In order to confirm these statements, different urban patterns were
analyzed in the Communauté d’Agglomération de Pau-Pyrénées (Figure
6): a) the Downtown pattern corresponding to the medieval city,
characterized by contiguous buildings and tight streets; b) the Saragosse
neighborhood, the product of a functional urbanism; c¢) Induspal, an
industrial and commercial facilities area; and d) the Jurangon suburbs in
the southern sloping area.
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Figure 6: The four neighborhoods maps

The average degree of neighborhood graphs was calculated for different
distances and for these different patterns, and the results are shown in
Chart 2. The neighbor integration is very different from one pattern to
another. Downtown the number of neighbors is greater than in the other
zones, because of the density heritage from periods when mobility was
technologically restricted. The Saragosse area integrates neighbors in an
intermediate way, because of its loose pattern, which is the result of a
vertical urbanism that liberated space for public zones. The Induspal and
Jurangon areas have a similar behavior in terms of neighbor integration,
but their patterns are dissimilar. In Induspal the spatial distribution of
buildings is homogeneous and greater distances between buildings are
explained by space needed for industrial activities, but at Jurangon the
spatial distribution is concentrated and a large distance between
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residential houses is required for the inhabitants to benefit from the natural
environment offered by the sunny hills in the south. In these two final
cases, the distance between buildings explains neighbor integration, even
if urban patterns significantly differ.
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Chart 2: Comparison of neighborhood graphs average degree for four different urban
patterns

Thus, variations in neighbor integration graphics correspond to
heterogeneous composition in urban patterns, and they permit to
characterize different structures through the analysis of their specific
response to distance variations.

Scaling behavior of distance structure

Furthermore, we computed the fractal dimension and the scaling behavior
within our network model for the four patterns selected. This was done
because the fractal dimension computation is a recognized technique to
characterize and to discriminate morphologies: it will give us another
indicator to compare the morphodynamics of our panel of urban quarters.

The computation is based on a radial analysis approach, putting into
relation the degree of the resulting graph, representing the 