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Scaf1 promotes respiratory supercomplexes and
metabolic efficiency in zebrafish
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Abstract

The oxidative phosphorylation (OXPHOS) system is a dynamic
system in which the respiratory complexes coexist with super-
assembled quaternary structures called supercomplexes (SCs). The
physiological role of SCs is still disputed. Here, we used zebrafish
to study the relevance of respiratory SCs. We combined immun-
odetection analysis and deep data-independent proteomics to
characterize these structures and found similar SCs to those
described in mice, as well as novel SCs including III2 + IV2, I + IV,
and I + III2 + IV2. To study the physiological role of SCs, we gener-
ated two null allele zebrafish lines for supercomplex assembly
factor 1 (scaf1). scaf1�/� fish displayed altered OXPHOS activity
due to the disrupted interaction of complexes III and IV. scaf1�/�

fish were smaller in size and showed abnormal fat deposition and
decreased female fertility. These physiological phenotypes were
rescued by doubling the food supply, which correlated with
improved bioenergetics and alterations in the metabolic gene
expression program. These results reveal that SC assembly by Scaf1
modulates OXPHOS efficiency and allows the optimization of
metabolic resources.
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Introduction

In the last 2 years, the focus of investigation on the structure of the

mitochondrial electron transport chain (ETC) has shifted from the

dispute over the existence of supercomplexes (SCs) to their putative

functional role. In mammals, the best understood mechanism of

respiratory complex super-assembly is the interaction between

complexes III (CIII) and IV (CIV) mediated by supercomplex assem-

bly factor 1 (SCAF1/COX7A2L) [1]. The carboxy-terminus of SCAF1

is very similar to that of the CIV subunit COX7A2 and replaces it in

the subset of CIV molecules that super-assemble with CIII [2]. After

some initial doubts [3], which were later dispelled [4,5], the role of

SCAF1 in the super-assembly of CIII and CIV is now generally

accepted [2]. The process of super-assembly between CI and CIII

and CI and CIV to form the respirasome is unknown, but the

proposed existence of I + IV SCs [6] suggests that CI-CIII and CI-CIV

super-assembly might occur independent from CIII and CIV assem-

bly [7,8]. So far, the interaction between CI and CIV has been

mostly studied in SCs containing CI, CIII, and CIV (also named

respirasomes). Several forms of respirasomes (SC I + III2 + IV)

migrate closely together in blue native gel electrophoresis (BNGE),

although the reason for their different apparent molecular weights

remains unknown. Even though SCAF1 loss of function abolishes

the interaction between CIII and CIV, the current consensus is that

the absence of functional SCAF1 does not completely disrupt SC

I + III2 + IV formation. However, SCAF1 loss of function strongly

reduced the stability and variety of respirasomes [1,2,4].

The super-assembly between CI and CIII was proposed to allow

partitioning of coenzyme Q (CoQ) into two communicated func-

tional pools: one trapped in SCs and the other free within the inner

mitochondrial membrane [9]. The super-assembly between CIII and

CIV allows the control of available CIV through compartmentaliza-

tion. Both functions optimize the metabolic flux, preventing an elec-

tron traffic jam [1] and minimizing reactive oxygen species (ROS)

production [10] while maintaining an efficient energy production

[9]. However, studies performed on fragmented sub-mitochondrial

particles generated by disruption of mitochondrial membranes with

detergents challenged this model [11]. These studies concluded that

CoQ pools are continuously intermixed at a rate that rules out the

possibility of preferential use of CoQ within SCs. Accordingly, these
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studies defended the notion that the super-assembly between CI and

CIII in the form of SC I + III2 or SC I + III2 + IV would lack any

bioenergetic role [5]. A very recent publication analyzing isolated

SC I + III2 also supports the model were partitioning of CoQ into SC

I + III2 has functional implications in the oxidation of NADH [12].

In vivo, the functional role of SCs has been supported by the

positive correlation of the proportion of respirasomes (SC

I + III2 + IV) with exercise [13] and with lower mitochondrial ROS

production [14–16]. Interestingly, some common mouse strains,

such as C57BL/6, have a non-functional SCAF1 protein (SCAF1111)

lacking two amino acids as compared with functional SCAF1

(SCAF1113). SCAF1111 mice do not assemble SC III2 + IV, and the

formation of respirasomes is affected [1,2]. Since SCAF1111 mice do

not present apparently any specific phenotype compared to

SCAF1113 mice, this has contributed to the arguments against a

physiological role for the super-assembly of CIII and CIV. Further-

more, a recent study performed in cultured cells suggested that the

ablation of SCAF1 has no bioenergetic relevance [17], a conclusion

that was later refuted by the demonstration that SCAF1 was critical

for the cellular metabolic adaptation to the increase in energy

demands associated with endoplasmic reticulum and nutrient

stresses [18]. In addition, tumorigenic capacity, mediated by

enhanced hypoxia resistance in human cancer models, has been

proposed to be dependent on CIII and CIV super-assembly [19].

Controversy over the bioenergetic role of CIII and CIV super-

assembly thus remains, and a physiological role is still unclear.

Here, we studied respiratory SCs in zebrafish (Danio rerio) and eval-

uated the super organization and plasticity of the oxidative phos-

phorylation (OXPHOS) system. We identified SCs as those

previously described in mice, such as SC I + III, SC III2 + IV, and SC

I + III2 + IV, but also novel SCs, including SC III2 + IV2, SC I + IV,

and SC I + III2 + IV2. With the aim of studying the bioenergetic and

physiological consequences of impaired super-assembly, we gener-

ated scaf1 null mutant zebrafish lines. scaf1�/� fish showed a

disrupted interaction of CIII and CIV, and presented a prominent

phenotype, including a smaller size and decreased fertility. Bioener-

getics analysis revealed that scaf1 ablation promotes an inefficient

OXPHOS capacity due to the disruption of the compartmentalization

of CIV. Strikingly, phenotypic alterations in scaf1�/� animals are

fully corrected by doubling the food supply but not by changing the

regime to a high-fat diet. The phenotypic rescue occurred in the

absence of a recovery of OXPHOS super-assembly and correlated

with alterations in the metabolic gene expression program.

Overall, these results confirm a role for SCs in the efficiency of

the respiratory chain in a vertebrate animal model and reveal that

SCs provide an advantage in the optimization of metabolic

resources.

Results

OXPHOS super-assembly in zebrafish

To re-evaluate whether the disruption of SCs formation has any

impact at the organismal level, here we used the zebrafish animal

model. OXPHOS genes have been reported to be highly conserved

along evolution [20], and respiratory complexes have been shown

to super-assemble during zebrafish development [21]. Thus, we first

characterized the pattern of respiratory complex super-assembly in

adult zebrafish using 1D and two-dimensional (2D) BNGE as well as

Blue-DiS-based proteomics. Purified zebrafish skeletal muscle mito-

chondria were run in parallel with mitochondria from mouse skele-

tal muscle of either functional SCAF1113 (CD1) or non-functional

SCAF1111 (C57BL/6J) mice (Fig 1A–D). As expected, the SC III2 + IV

SC was absent in SCAF1111 mitochondria and the abundance of the

respirasome (SC I + III2 + IV) was low. The BNGE pattern of zebra-

fish CI and CIII was similar to that of SCAF1113 mice, where free I,

III2, and SC I + III2 could be easily identified (Figs 1A and EV1A and

B to see the split channels of Fig 1A). The migration pattern of

zebrafish CIV paralleled that of mice and revealed the presence of

free CIV, IV2, and SC III2 + IV in zebrafish. It also confirmed the

presence of the respirasome, which migrated faster than that of mice

(Figs 1B and EV1C to see CIV split channel of Fig 1B). We also

noted some conspicuous differences between the pattern in zebra-

fish and the classical mouse pattern. Specifically, we observed a co-

migration of CIII and CIV just above free CI (Figs 1B and EV1C to

see CIV split channel of Fig 1B), as well as co-migration of CI and

CIV just below SC I + III2, which is compatible with the interaction

of CI and CIV. The CI and CIV interaction was barely visible by

immunodetection (Fig EV1A and C), but could be clearly revealed

by CI (Fig 1C) and CIV (Fig 1D) in-gel activity, which also con-

firmed the observations based on immunodetection.

The novel band containing CIII and CIV is compatible with the

presence of a dimer of CIII with two molecules of CIV. Two alterna-

tive structural arrangements could generate this band—the interac-

tion of two dimers, III2 and IV2 (SC III2 + IV2), or the interaction of

one dimer of III with two monomers of IV (SC IV + III2 + IV or SC

2IV + III2). To distinguish between these possibilities, we

performed 2D BNGE using digitonin as a detergent in the first

dimension to preserve the integrity of SCs, and n-dodecyl-b-D-malto-

side (DDM) in the second dimension to disaggregate SCs while

substantially preserving the integrity of the complexes [22]

(Fig EV1D and E). This analysis allowed us to differentiate between

co-migration and true DDM-sensitive interactions and to discern

whether CIV was in a monomeric or dimeric form. Although DDM

partially disassembled IV2 into its monomers, we were still able to

▸Figure 1. OXPHOS super-assembly in zebrafish.

A–D Blue native gel electrophoresis (BNGE) of mouse (M) C57BL/6J (111), CD1 (113), and zebrafish (ZF) skeletal muscle digitonin-solubilized mitochondria. (A, B)
Immunodetection of the indicated proteins after BNGE, (C) in-gel activity for CI and (D) CIV (shown is a representative gel from two technical and two biological
replicates).

E–H BNGE of whole-body zebrafish digitonin-solubilized mitochondria of scaf1D1/D1 (�/�) and its respective scaf1+/+ counterpart. (E, F) Immunodetection of the
indicated proteins, (G) in-gel activity of CI and (H) CIV (representative gel from two technical and three biological replicates).

I 2D BNGE/SDS electrophoresis: 1st dimension with digitonin (Dig) and 2nd dimension with SDS, followed by immunoblotting with the indicated antibodies to
identify the proteins detected by the commercial anti-SCAF1 antibody. Asterisks indicate missing bands in scaf1D1/D1.
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detect a considerable proportion of IV2. Indeed, we found a dimer

of CIV (IV2) present in the novel high molecular weight band

containing CIII and CIV, indicating that this co-migration is due to

the physical interaction between III2 and IV2 (Fig EV1D and E). In

addition, 2D-BNGE analysis demonstrated that CI and CIV co-migra-

tion was due to a physical interaction between them in the form of

SC I + IV, which could be disrupted by DDM (Fig EV1D and E).

Interestingly, this assay also revealed the presence of CIV dimers in

high molecular weight structures associated with CI and CIII (puta-

tive SC I + III2 + IV2) or with CI alone (putative SC I + IV2;

Fig EV1D and E).

These observations were confirmed in mitochondria purified

from whole zebrafish (Fig EV2A–E). Of relevance, the pattern of

zebrafish BNGE bands was stable at 4 and 10 g/g proportion of digi-

tonin, whereas 1 g/g proportion was unable to sufficiently solubi-

lize the mitochondrial membranes (Fig EV2F).

To evaluate whether the proposed role of respiratory complex

super-assembly plasticity during the adaptation to variations in

metabolic resources applies to zebrafish, we fed adult zebrafish for

6 weeks with a low-protein/low-fat (LP/LF) diet, which leads to

malnutrition (Fig EV2G–I). LP/LF-fed fish showed a decrease in

weight, which was accompanied by an increase in SC I + III2 and SC

I + III2 + IV1–2 and a decrease in SC III2 + IV1, while SC III2 + IV2

remains stable (Fig EV2I). These results confirm that the organiza-

tion of the ETC is modulated in response to metabolic changes also

in zebrafish.

Given the similarities with mice and the possibility to study

novel SCs such as I + IV and those containing IV2, we conclude that

the zebrafish is a valuable model to study SC assembly and

function.

Role of Scaf1 in zebrafish respiratory complexes super-assembly

To assess structural and physiological effects of alterations in

complex super-assembly, we generated a zebrafish scaf1 null

mutant model. Zebrafish scaf1, also known as cox7a2l and cox7a3,

is highly conserved compared with mammals (Appendix Fig S1A).

We generated two independent scaf1 zebrafish null allele lines using

CRISPR/Cas9 technology (D1 and D2; Appendix Fig S1B and C). We

introduced premature STOP codons after amino acids 43 and 51,

respectively, which, according to sequence information, lead to a

short non-functional protein (Appendix Fig S1D and E). As antici-

pated, we could not detect Scaf1 protein by Western blotting of

scaf1Δ1 and scaf1Δ2 homozygous fish (Appendix Fig S1F). We next

extracted mitochondria from whole scaf1+/+ and scaf1�/� fish and

compared SC formation by BNGE (Fig 1E–H). The lack of Scaf1

completely eliminated the two bands of SCs containing CIII and CIV

(SC III2 + IV, SC III2 + IV2). It also strongly diminished the SC

I + III2 + IV2 band, whereas the SC I + III2 + IV was only slightly

decreased in intensity. Immunodetection of CIII, CIV, and Scaf1

(Fig 1E and F) as well as CI and CIV in-gel activity assays (Fig 1G

and H) confirmed these observations.

Scaf1 was immunodetected in BNGE in a greater number of

bands than those reported in mammals, from which three comple-

tely disappeared in scaf1�/� samples (Fig 1F). We found that this is

due to the use of a new Scaf1 antibody generated against the entire

protein, as the previously well-established antibody generated

against a Scaf1-specific peptide was discontinued. The new antibody

caused the appearance of strong non-specific immunoreactive

bands. To distinguish between Scaf1-specific and non-specific

immunodetected signals, we performed 2D-BNGE/SDS–PAGE elec-

trophoresis of scaf1+/+ and scaf1�/� samples (Fig 1I). This analysis

revealed that the antibody recognized four proteins of different

molecular weight. Two of them remained present in the scaf1�/�

sample, indicating that they correspond to spurious signals. From

the two specific signals that disappeared in scaf1�/� samples, one

matched with the expected size of Scaf1 and migrated in 5 different

spots corresponding to complexes IV, IV2, SC III2 + IV, SC III2 + IV2,

SC I + III2 + IV, and SC I + III2 + IV2. Unexpectedly, a second speci-

fic protein with lower molecular weight was present in two spots

(IV, IV2), suggesting the presence of a shorter form of Scaf1 (Fig 1I).

To further study the effect of Scaf1 loss of function on SC assem-

bly, we performed high-throughput Blue-DiS-based proteomics of

the entire BNGE run of scaf1+/+ and scaf1�/� samples. This

allowed the detection of around 9,000 UNIPROT entries (Dataset

EV1). In the currently annotated zebrafish proteome, most of the

UNIPROT entries are unreviewed, a large proportion is referred to

as fragments, and a great number of entries correspond to unidenti-

fied proteins (Dataset EV1). Therefore, some entries may correspond

to the same gene and would not accurately report the number of dif-

ferent proteins within the gel. Proteins were detected at a very vari-

able concentration covering six orders of magnitude, from which

mitochondrial proteins, and in particular the inner membrane

proteins, were the most abundant (Dataset EV1). Proteomic analysis

confirmed the pattern of OXPHOS complexes obtained by immune

analysis and in-gel activity (Figs 2A and EV3C and D). It also

revealed the high reserve of the CI N-module retaining its NADH

dehydrogenase activity (Figs 1G and EV3C and D). This accumula-

tion was paralleled by a significant amount of CI subcomplex lack-

ing NADH activity that co-migrated with SC III2 + IV (Figs 1G and

EV3C and D). Of note, proteomic analysis also confirmed the loss of

Scaf1 protein in scaf1�/� (Fig EV3C and D).

The proteomic analysis also allowed a more quantitative estima-

tion of the changes induced by Scaf1 ablation (Fig EV3E–G). It con-

firmed that the absence of functional Scaf1 impaired the super-

assembly of CIII with CIV (Fig EV3E) and showed that both CIII and

▸Figure 2. Blue-DiS proteomics of scaf1+/+ and scaf1�/� isolated mitochondria.

A Quantitative data-independent scanning (DiS) mass spectrometry protein profiles for CI, CIII, and CIV. Vertical numbers indicate the BNGE gel slices. Left and right
profiles correspond to scaf1+/+ and scaf1D1/D1 animals, respectively. Red heatmap corresponds to the E-score from two proteotypic Scaf1-derived tryptic peptides
spanning sequences ascribed to the CIII-interacting site (in green) and to the CIV-interacting site (in yellow) in scaf1+/+ fish. Thick blue line, marked with an asterisk,
indicates the putative proteolytic site in Scaf1.

B Sequence alignment of Scaf1 protein in mouse and zebrafish. Structural and functional regions previously described in mouse are indicated in shaded gray boxes.
Thick blue line indicates the proteolytic processing site in the mouse sequence.

4 of 20 EMBO reports e50287 | 2020 ª 2020 The Authors

EMBO reports Carolina García-Poyatos et al



E-score x 106

scaf1+/+

20140

Complex IV

Complex I

Sl
ic

e
III2+IV

LTGAASSTAYSPQGLR

IFQASDNIPVHLK

IV
III2/IV2

20 140

Scaf1

Iinactive

III2/IV2

IV

6
2

10

E-
sc

or
e

x 
10

6

11

6I+III2+IV 

Iactiv
Iinactive

Iactive

*

31

36

21

26

16

I+III2+IV
I+III2

20 100100 20
20 100100 20

III2+IV2

scaf1-/-

Complex III

I+III2

Zebrafish MYYKFSGFTQRLTGAASSTAYSPQGLRANVPSESPAMIFGTPTKLV 
Mouse MYYKFSSFTQKLAGAWASEAYTPQGLKP-VSTEAPPIIFATPTKLT 

SESSATVEYMGKNR 60
SS-VTAYDYSGKNK 58

******.***:*:** :* **:****:  * :*:* :**.*****. *.  :: :* ***:

Zebrafish VPDLQRIFQASDNIPVHLKRGVPDRLLYRSTMALTVGGVLYCLVALYLAAQPKKK 115
Mouse VPELQKFFQKADGVPIHLKRGLPDQMLYRTTMALTLGGTIYCLIALYMASQPRNK 113

**:**::** :*.:*:*****:**::***:*****:**.:***:***:*:**::*

12 27

67 79

Scaf1 Interaction with complex III

Interaction with complex IV

Processing point

B

A

Figure 2.

ª 2020 The Authors EMBO reports e50287 | 2020 5 of 20

Carolina García-Poyatos et al EMBO reports



Females length

scaf1

+/+ -/- +/+ -/-
1.5

2.0

2.5

3.0

[c
m

]

********

Males

Females
Δ1

+/+

-/-

Females weight

+/+ -/- +/+ -/-
0.0

0.1

0.2

0.3

0.4

0.5

[g
]

**

Males length

1.5

2.0

2.5

3.0 ******

Males weight

0.0

0.1

0.2

0.3

0.4

0.5

Mature ovarian follicles

scaf1
Δ1

+/+

-/-

+/+ -/- +/+ -/- +/+ -/- +/+ -/-

+/+ -/- +/+ -/-
0

100

200

300

400
Eggs per clutch

*** **

n°
 o

f e
gg

s 
/c

lu
tc

h

+/+ -/- +/+ -/-
0

20

40

60

80
**

n°
 o

f m
at

ur
e 

fo
lli

cl
es

[c
m

]

[g
]

Ovary           Example of mature ovarian follicle

ns ns

0

2

4

6

8

Females 
adipose tissue area

%
 o

f a
di

po
se

 ti
ss

ue
 *** ***

0

2000

4000

6000

8000

Females
adipocyte size

* ***

+/+ -/- +/+ -/- +/+ -/- +/+ -/-

Females ventral adipose tissue

]  
mμ[

2

Males 
adipose tissue area

Males
adipocyte size

* ** *** **

0

2000

4000

6000

8000

]  
mμ[

2

+/+ -/- +/+ -/-+/+ -/- +/+ -/-
0

2

4

6

8

%
 o

f a
di

po
se

 ti
ss

ue
 

F

G H

A

B

C

D

E

I J

K

L M

N

scaf1

scaf1

scaf1 scaf1

scaf1scaf1

scaf1 scaf1

scaf1 scaf1

sc
af

1 
W

T1
 +

/+
sc

af
1 

Δ1
 -/

-

sc
af

1 
W

T1
 +

/+
sc

af
1 

Δ1
 -/

-

Figure 3.

6 of 20 EMBO reports e50287 | 2020 ª 2020 The Authors

EMBO reports Carolina García-Poyatos et al



CIV completely disappeared from SC III2 + IV2 and SC III2 + IV

bands, with the concomitant increase in III2 and IV. Conversely, the

electrophoretic mobility of the full and partially assembled forms of

CI was unaffected, demonstrating that they co-migrate but do not

interact (Fig EV3E–G). Nevertheless, we noticed a significant quan-

titative shift from the full CI to the partially assembled form of CI

and a parallel increase in the amount of the free CI N-module.

Proteomic analysis also confirmed that the different forms of respi-

rasomes were still present in the scaf1�/� samples. However, it

revealed quantitative differences when comparing scaf1�/� and

controls, with a reduction in SC I + III2 + IV and in the putative SC

I2 + III2 + IV2, as well as an increase in SC I + III2, the putative SC

I2 + III2, and the amount of SC I + IV (Fig EV3E–G).

Proteomic analysis confirmed that the smaller protein co-

migrating with IV and IV2 was indeed a version of Scaf1 missing its

amino terminus (Fig 2A). By monitoring the presence of two

proteotypic peptides for zebrafish Scaf1 located either at the amino-

(CIII-interacting domain) or carboxy- (CIV-interacting domain)

portions of the protein (Fig 2B), we were able to determine

whether Scaf1 was present in full or truncated forms. We found

that the proportion of the two peptides was similar (slice 15, red-

scaled heatmap in Fig 2A), demonstrating the presence of full-

length Scaf1 only in the bands where CIII and CIV interact. By

contrast, when Scaf1 was found in free CIV (slice 25, red-scaled

heatmap in Fig 2A), the abundance of the amino-peptide was

severely decreased and only the carboxy-peptide was detected in

significant amounts. We speculate that the short Scaf1 form might

derive from the proteolytic cleavage of full-length Scaf1 in a posi-

tion located in the sequence of interaction with CIII (processing

point Fig 2B), disrupting the interaction between CIII and CIV and

giving rise to the free complexes. This interpretation is consistent

with the fact that the Scaf1 amino terminus appeared at the bottom

of the gel (Fig 2A) and with the observation of a similar phenom-

enon in mouse mitochondria [23].

scaf1 loss of function leads to non-pathological physiological
changes in zebrafish

Interestingly, the ablation of Scaf1 caused a prominent phenotype in

zebrafish (Fig 3). Both males and females were significantly shorter

(Fig 3A–D), and females weighed significantly less (Fig 3E and F).

We further observed that scaf1�/� animals accumulated more

adipose tissue and showed increased adipocyte cell size (Fig 3G–K),

indicating an altered metabolism. In addition, scaf1�/� females

showed a decrease in fertility, with a lower number of eggs per

clutch (Fig 3L), possibly due to delayed oocyte maturation (Fig 3M

and N). Despite the observed defect in fertility, embryonic develop-

ment was normal in scaf1�/� (Appendix Fig S2A–D). Change in

length, as seen in adults, became apparent at 3 days post-fertilization

(dpf) and reached a stable value at 3 months post-fertilization (mpf)

(Appendix Fig S25E–G). Changes in body weight between

scaf1�/� and wild-type sibling reached significance after 3 mpf in

females and 5 mpf in males (Appendix Fig S2G). Length and body

weight alterations, as well as a loss of super-assembly between CIII

and CIV, were observed in both scaf1�/� zebrafish lines, D1 and D2
but not in heterozygous scaf1+/� siblings (Appendix Fig S2H–M).

Moreover, scaf1+/� offspring from homozygous scaf1�/� females did

not present any phenotype, showing that there is no maternally

contributed role for Scaf1 (Appendix Fig S2H–L).

To fully confirm that the observed phenotype is directly caused

by the absence of Scaf1, we generated a transgenic Scaf1 gain of

function model in the scaf1�/� background (Fig EV4). This trans-

genic zebrafish line Tg(ubi:scaf1) expresses Scaf1 under the control

of the ubiquitin promoter (ubi), which drives an ubiquitous expres-

sion in the whole zebrafish throughout all developmental stages.

scaf1�/�, Tg/� recovered the SC III2 + CIV1–2 super-assembly

(Fig EV4B) and presented increased body size when compared to

their non-transgenic scaf1�/� siblings under regular feeding. No dif-

ferences in size of scaf1�/�, Tg/� fish were observed compared to

scaf1+/+ fish (Fig EV4C–F), and scaf1�/�, Tg/� fish were signifi-

cantly larger than scaf1�/� siblings. This result confirms that the

lack of CIII and CIV super-assembly as well as the effect on organis-

mal growth observed in scaf1�/� is specific to loss of Scaf1 function.

In sum, the lack of Scaf1 leads to phenotypes resembling

malnourishment in zebrafish (reduced growth and reproduction effi-

ciency) [24,25] when they are fed in equal conditions as scaf1+/+

fish. Therefore, Scaf1 loss of function impairs the proper energy

conversion from nutrients, storing them in abnormally high

amounts at the adipose tissue instead of using them for energy

production. Importantly, these results reveal a physiological role for

Scaf1 as an OXPHOS supercomplex assembly factor at the orga-

nismal level.

Mitochondrial consequences of scaf1 loss of function

To determine whether the observed phenotypes could be directly

related to OXPHOS function, we first used transmission electron

microscopy (TEM) to establish whether the absence of Scaf1

induced any ultrastructural alterations in zebrafish mitochondria

(Fig 4A). We observed more fragmented mitochondria (Fig 4B) with

◀ Figure 3. Phenotype consequences of Scaf1 loss of function.

A, B Representative images from scaf1+/+ and scaf1�/� (A) female and (B) male adult zebrafish.
C–F Size of scaf1D1/D1 and scaf1D2/D2 (scaf1�/�) fish in comparison with their respective scaf1+/+ wild type (WT) lines, (C) length and (E) weight of females (D1 +/+

n = 10, D1 �/� n = 12, D2 +/+ n = 24, D2 �/� n = 18); (D) length and (F) weight of males (D1 +/+ n = 16, D1 �/� n = 13, D2 +/+ n = 13, D2 �/� n = 23).
G–K Adipose tissue measurements on hematoxylin–eosin (H&E)-stained adult zebrafish sagittal sections. (G, I) Adipose tissue area per total section area (average of 3

sections/biological replicate) and (H, J) adipocyte size (average of 20–30 adipocytes of ventral adipose tissue per biological replicate) of females (G, H) (D1 n = 5, D2
n = 8, same number of animals for homozygous mutants and controls) and males (I, J) (D1 n = 8, D2 n = 7, same number of animals for homozygous mutants and
controls). (K) Representative images of ventral fat deposits in females (dotted lines).

L–N Effect of Scaf1 loss of function on female fertility. (L) Number of eggs per clutch (D1 +/+ n = 12, D1 �/� n = 13, D2 +/+ n = 13, D2 �/� n = 10). (M) Quantification
of mature ovary follicles per ovary section (average of three sections/biological replicate; D1 n = 5, D2 n = 8; same number of animals for homozygous scaf1+/+ and
scaf1�/�). (N) Representative images of H&E-stained ovaries. Dotted lines delineate adipose tissue.

Data information: One-way ANOVA. Outliers are shown in gray and were not considered for the statistical analysis. Data are represented as mean � SD. *P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001. Scale bars = 500 lm.
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wider cristae (Fig 4C). Increased cristae lumen width has previously

been associated with the reduction of super-assembly of respiratory

complexes in models of cristae junction disruption [26,27]. No dif-

ferences in mitochondria content were noted, as measured by the

ratio of mitochondrial DNA to nuclear DNA (Fig 4D and E).

To further assess whether OXPHOS function was affected, we

determined the susceptibility of 4 dpf scaf1+/+ and scaf1�/� larvae

to pharmacological inhibitors of the respiratory complexes I, II, III,

and IV, as well as inhibitors of H+-ATPase (CV) and mitochondrial

coupling (Fig 4F) [28,29]. Notably, scaf1�/� embryos were signifi-

cantly more sensitive than scaf1+/+ embryos to the inhibition of CI,

CIII, and CIV, which participate in the formation of SCs, but were

more resistant to the inhibition of CII (Fig 4F), which does not

super-assemble. In addition, the inhibition of CV (ATP synthesis)

and the coupling between the ETC and ATP synthesis with FCCP

were both insensitive to the presence of Scaf1 (Fig 4F).

To gain direct insight on the impact of the Scaf1 ablation in mito-

chondrial respiration, we estimated the oxygen consumption capac-

ity (OCR) of live mutant and wild-type zebrafish larvae using the

Seahorse XFe24 analyzer [30]. Whereas the ablation of Scaf1 had no

impact on the basal respiration, maximum oxygen consumption

was significantly lower in zebrafish larvae lacking Scaf1 (Fig 4G

and H). Notably, mitochondrial respiration of scaf1�/� larvae was

more sensitive to antimycin and rotenone (Fig 4G), providing a

plausible explanation for the higher lethality of these drugs on

scaf1�/� larvae (Fig 4F).

The impact of Scaf1 ablation on mitochondrial respiration perfor-

mance was also assessed in isolated mitochondria from adult zebra-

fish (Fig 4I–K). Both respiratory control ratio (RCR) and phosphate/

oxygen ratio (P/O ratio) were unaffected by the loss of Scaf1 (Fig 4J

and K). However, we again observed that maximum respiration was

significantly lower in scaf1�/� zebrafish mitochondria than in wild-

type counterparts (Fig 4I). We measured oxygen consumption in the

presence of site I (pyruvate/glutamate and malate) or site II (succi-

nate) substrates, finding that the decrease in maximum respiration

was due to a decrease in site I substrate respiration, with site II respi-

ration unaffected (Fig 4I). Additionally, we observed that the respira-

tion of wild-type zebrafish mitochondria with the combination of site

I and site II substrates was higher than that obtained with only site I

or site II substrates. This phenomenon was described previously in

mouse [1] and bovine mitochondria [31]. Of note, site II substrates

alone allowed a respiration level similar to that with combined site I

and site II substrates in zebrafish scaf1�/� mitochondria, reproduc-

ing our observations in SCAF1-deficient mouse mitochondria [1].

These analyses demonstrate that the loss of Scaf1 has a direct

functional impact on both OXPHOS performance and mitochondria

structure.

Diet determines scaf1�/� physiological phenotypes

The overall phenotype of scaf1�/� animals suggests metabolic ineffi-

ciency due to non-pathological decrease in mitochondria perfor-

mance. We wondered whether increasing food availability could

ameliorate the phenotype of scaf1�/� animals. We fed scaf1+/+ and

scaf1�/� fish with the double amount of food, which was distributed

in more doses per day to ensure complete intake. Strikingly, this

treatment was sufficient to eliminate the differences in growth

(Figs 5A–C and EV5A–C) after only 4 weeks. As expected, scaf1+/+

animals fed with double diet showed a prominent increase in

adipose tissue area and adipocyte size, but these changes were not

as evident in scaf1�/� animals that already presented elevated accu-

mulation or fat at standard diet (Fig 5D–F). The increase in food

also rescued female fertility in scaf1�/� fish (Fig 5G–I).

To understand the underlying adaptation of mutants and the

positive effect of the double diet, we tested whether this phenom-

enon could be reproduced by feeding the animals with a diet with

double the amount of fat (high-fat diet, HFD), which increases the

caloric content to 141% (Appendix Table S1). Under HFD, the dif-

ferences in growth and fertility induced by the lack of Scaf1

remained, showing that it is the double caloric intake mostly

provided by proteins rather than fats which is responsible for rescu-

ing growth and body weight in scaf1�/� animals (Fig 6A–H). HFD

still led to an increase in adipose tissue area in zebrafish, being

more prominent in scaf1�/� than scaf1+/+, while there were no dif-

ferences in adipocyte size (Fig 6I–L). Thus, the additional caloric

intake upon HFD regime, instead of allowing restoration of normal

growth, increments body fat in scaf1�/� zebrafish. This suggests

that the rescue in size observed upon double diet regime is due to

extra amount of protein content in the diet.

We next aimed to analyze whether diet could influence complex

assembly or bioenergetics in the absence of Scaf1 (Fig 7). As

expected, the comparative analysis of BNGE gels from mutant fish

under double diet and standard revealed that double diet did not

restore the super-assembly between CIII and CIV (Fig 7A).

◀ Figure 4. Scaf1 loss of function leads to alterations in mitochondrial structure and performance.

A–C Transmission electron microscopy image of cardiac muscle from scaf1D1/D1 (n = 3) and scaf1+/+ fish (n = 3). (A) Representative images showing mitochondria.
(B) Mitochondria size (100–150 mitochondria per biological sample). (C) Cristae lumen width (average of three cristae per mitochondria, 20 mitochondria per
biological sample). Different biological replicates are represented with different color tones.

D, E Mitochondrial DNA copy number per nuclear copy number in muscle in females (D) and males (E) (D1 n = 6, D2 n = 6 and same number for their respective
controls).

F Survival curve of 4 days post-fertilization embryos treated with different concentrations of the indicated OXPHOS inhibitors (three experimental replicates per
biological replicate and three biological replicates).

G, H Oxygen consumption of 48 h post-fertilization embryos using the XFe24 Seahorse analyzer, (G) representative oxygen consumption rate (OCR) profile along time,
and (H) maximum OCR (D1 n = 11, D2 n = 11, n = 10, n = 11, respectively, for their controls).

I Maximum uncoupled (FCCP) OCR in isolated mitochondria from adult fish (male and females D1 n = 4 and D2 n = 4, and same number for their respective
controls) with the indicated site I [pyruvate (Pyr), glutamate (Glu), malate (Mal)] or site II [succinate (Succ)] substrates.

J, K Respiratory control ratio (RCR; State 3/State 4) (J) and P/O ratio (K) in isolated mitochondria from adult fish (male and females D1 n = 4, and same number for
their respective controls) with the indicated substrates.

Data information: (B–E, G, H, J, K) Unpaired t-test, (F) two-way ANOVA, and Sidak’s multiple comparison test. (I) Two-way ANOVA, post hoc Fisher’s LSD test. ns P > 0.05,
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Data are represented as mean � SD, or (G) as � SEM. Scale bars = large image 1 lm, small image 50 nm.
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Interestingly, the double diet significantly increased the maximum

respiration (site I + II) capacity of isolated adult mitochondria from

scaf1�/� animals, although it remained below wild-type respiration

levels (Fig 7B). Therefore, despite the phenotype recovery, OXPHOS

capacity in double diet is not fully normalized.

Since in the absence of scaf1�/� the ETC assembly is not recovered,

the phenotypic rescue upon double diet must be underlying a compen-

satory metabolic adaptation. To gain molecular insight into this

process, we performed RNAseq on skeletal muscle under the different

diet regimes. Most of the OXPHOS genes were slightly downregulated

in scaf1�/� muscle compared with scaf1+/+ muscle, both in standard

diet (Fig 7C) and in double diet (Fig 7D) conditions. In double diet,

skeletal muscle showed an increase in the expression of OXPHOS

genes both in scaf1+/+ (Fig 7E) and scaf1�/� (Fig 7F) animals,

although this increase was not sufficient to match OXPHOS gene

expression levels of scaf1+/+ animals (Fig 7D). Consistent with these

findings, gene set enrichment analysis (GSEA) revealed that OXPHOS

genes were downregulated in scaf1�/� when compared with wild-type

muscle, independently of the diet, although it is always enhanced by

double diet with respect to standard diet (Fig 7G). In contrast, ß-oxida-

tion, TCA cycle, and catabolism of branched amino acids appeared

downregulated only in standard diet (Fig 7G, Dataset EV2). Double

diet induced a general upregulation of metabolic gene expression

programs in scaf1�/� (Fig 7G). In agreement with the observed reduc-

tion in size and body weight, under standard diet scaf1�/� fish

revealed changes in the enrichment scores of pathways related to

growth and myogenesis, such as KRAS, IL6, JAK/STAT3 signaling

[32] and E2F targets. In agreement with the diet-induced recovery of

body length and size, upon double diet, IL6 and JAK/STAT3 and

mitotic spindle pathways were higher in scaf1�/� compared to wild

types and the myogenesis pathway was now presenting no differences

between scaf1�/� and wild types (Fig 7H).

To sum up, the transcriptomic analysis suggests that double diet

activates OXPHOS capacity accompanied by the enhancement of

diverse metabolic pathways allowing the rescue of growth in

scaf1�/� zebrafish in spite that the super-assembly of respiratory

complexes and OXPHOS efficiency could not be restored.

Food restriction in SCAF1-deficient mice mimics zebrafish
phenotype

Given that C57BL/6 mice sub-strains, which harbor a non-functional

SCAF1 (SCAF1111/111), lack any apparent phenotype, it was

assumed that SCAF1 loss of function and CIII + CIV super-assembly

have no bioenergetic relevance. The observation that scaf1�/�

zebrafish do not show any evident phenotype when overfed and the

fact that mice are regularly feed ad libitum prompted us to investi-

gate whether the lack of functional SCAF1 in mice would reveal a

higher sensitivity to long-term food restriction. Therefore, we

analyzed weight gain during a period of starvation in C57BL/6

mice, SCAF1�/� mice harboring the full ablation of SCAF1, and

SCAF1113/113 mice carrying a functional SCAF1 gene [23]. Mice were

fed ad libitum for 24 h every 3 days followed by a fasting period

with restricted feeding regime for 12 weeks (Fig EV5D). During the

first days, SCAF1113 males were able to maintain or even increase

their weight, suggesting an initial adaptive response (Fig EV5E). On

the contrary, SCAF1111 and SCAF1�/� males showed the opposite

trend and lost rapidly weight (Fig EV5E). After this initial period,

mice in all three groups started gaining weight. The sensitivity to

weight changes under starvation was not observed in females

(Fig EV5E), suggesting gender-specific mechanisms of adaptation to

fasting in mice [33].

Overall, our results show that the effect of Scaf1 on organismal

physiology is not restricted to zebrafish but is also shared in a

mammalian model.

Discussion

Here, we show that a lack of Scaf1-mediated CIII-CIV super-

assembly impairs the bioenergetic efficiency of the ETC and leads

to non-pathological physiological alterations at the organismal

level.

Our findings show that overall the organization pattern of

respiratory SC is well conserved among vertebrates. Nonetheless,

zebrafish revealed some unique features. Compared to mammals,

there is a higher proportion of super-assembly of the dimer CIV

(IV2), both in the form of SC III2 + IV2 and SC I + III2 + IV2 SCs.

SCs containing dimers of CIII and CIV had also been described

in yeast [34]. However, there, heterodimers are formed by SC

III2 + 2IV, instead of SC III2 + IV2, as observed here in the zebra-

fish. We also provide confirmation of the existence of the SC

I + IV and SC I + IV2 in vertebrates, for which there is only one

report in mammals based on mass spectrophotometry [6]. The

presence of this association is intriguing since the lack of CIII

precludes a role in respiration. We suggest that these SC might

◀ Figure 5. Diet-induced recovery of scaf1�/� phenotypes.

Data from females.

A Representative images of scaf1�/� and scaf1+/+ fish fed with the indicated diets.
B, C Changes in (B) length and (C) weight over time (D1 +/+ n = 10, D1 �/� n = 10, D2 +/+ n = 10, D2 �/� n = 12–13).
D–F Adipose tissue measurements on hematoxylin–eosin (H&E)-stained adult zebrafish sagittal sections. (D) Adipose tissue area per total section area (average of three

sections/biological replicate) and (E) adipocyte size (average of 20–30 adipocytes of ventral adipose tissue per biological replicate; standard diet D1 +/+ n = 3, D1
�/� n = 3, D2 +/+ n = 3, D2 �/� n = 3, double diet D1 +/+ n = 3, D2 +/+ n = 3, D1 �/�n = 4, D2 �/� n = 4). scaf1D1 and scaf1D2 are represented with circles and
squares, respectively. (F) Representative images of ventral fat deposits (dotted lines).

G Number of eggs per clutch (standard diet D1 +/+ n = 8, D1 �/� n = 8, D2 +/+ n = 7, D2 �/� n = 12, double diet D1 +/+ n = 7, D1 �/� n = 8, D2 +/+ n = 8, D2
�/� n = 9).

H Representative images of H&E-stained ovaries. Black dotted lines outline the ovaries, and blue dotted line indicates a mature follicle.
I Quantification of mature ovary follicles per ovary section (average of three sections/biological sample; D1 n = 2–3, D2 n = 6).

Data information: (B, C) Two-way ANOVA, (D, I) unpaired t-test, and (E, G) one-way ANOVA. Data are represented as mean � SD. *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001. Scale bars = 500 lm.
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have a structural role. Interpretation of BNGE data should take

into account the herein provided identification of SC I + IV SC

without CIII. Indeed, given that SC I + IV2 and SC I + III2 have

similar mass and co-migrate, they may be wrongly identified as

a respirasome. Finally, we describe here a truncated form of

Scaf1, which we also found in the mouse, and that is generated

by the proteolytic digestion by calpain 1 [23]. Again, its identifi-

cation is crucial for correct interpretation of BNGE profiles. The
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Figure 6. Lack of recovery of Scaf1�/� phenotypes after high-fat diet.

A, B Representative images of scaf1�/� and scaf1+/+ females (A) and males (B) fed with the indicated diets.
C, D Length of females (C) and males (D) after the indicated diets (D1 +/+ n = 5, D1 �/� n = 5, D2 +/+ n = 5, D2 �/� n = 5).
E, F Weight of females (E) and males (F) after the indicated diets (D1 +/+ n = 5, D1 �/� n = 5, D2 +/+ n = 5, D2 �/� n = 5).
G Number of eggs per clutch (control diet: D1 +/+ n = 4, D1 �/� n = 3, D2 +/+ n = 3, D2 �/� n = 2, high fat diet: D1 +/+ n = 5, D1 �/�, n = 5 D2 +/+ n = 1, D2

�/� n = 2).
H Quantification of mature ovary follicles per ovary section in hematoxylin–eosin (H&E) histological sections (average of three sections/biological sample; D1 n = 3,

D2 n = 3).
I–L Adipose tissue quantification in H&E sections (D1 n = 3, D2 n = 3) in females (I, K) and males (J, L): adipose tissue area (I, J) and adipocyte size (K, L).

Data information: (C–F) Two-way ANOVA. (G–L) Unpaired t-test. Data are represented as mean � SD. ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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fact that this precise processing is observed both in

zebrafish and mouse Scaf1 calls for further investigation of this

phenomenon.

Zebrafish Scaf1 also acts as a SC assembly factor responsible for

CIII-CIV interaction, and its role is therefore conserved in a non-

mammalian vertebrate. Moreover, overnight fasting also leads to
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changes in OXPHOS super-assembly [1]. Thus, the plasticity model

of mitochondrial ETC organization [35] is also valid in a fish model.

While in the absence of Scaf1 the bands containing SC III2 + IV1–2

disappeared, a substantial amount of SC I + III2 + IV remained. We

suggest that, similar to what has been described in mammals [2,8,

23], in scaf1�/�animals SC I + III2 + IV is preserved through the

independent interaction of CI with CIII or CVI. However, the interac-

tion between CIII and CIV within the SC I + III2 + IV is lost due to

the lack of Scaf1.

While the role of Scaf1 in supercomplex assembly is now

accepted, its impact on mitochondrial bioenergetics is still not fully

understood. A first study reported changes in substrate-dependent

electron flux in mitochondria isolated from mouse liver from a

SCAF1 mutant strain compared to a strain with a fully functional

SCAF1 protein [1]. A second report on a human cellular model lack-

ing SCAF1 could not confirm a change in mitochondrial bioenerget-

ics [17]. However, a third study on human cells shows a change in

the bioenergetic profile in SCAF1 mutants upon stress [18]. There-

fore, the role of SCAF1 on bioenergetics is, at this point, still

disputed. Here, using the zebrafish as a whole animal model, we

found that under physiological conditions, Scaf1 loss of function

impacts bioenergetics in the substrate-dependent electron flux and

maximum respiration capacity, corroborating a role of Scaf1 on

mitochondrial bioenergetics.

The zebrafish model has allowed to assess the physiological role

of Scaf1 and OXPHOS super-assembly at a whole organism level.

Our assessment of the impact of Scaf1 ablation unequivocally

demonstrates its physiological role and, by extension, a role of

respiratory SCs in organismal physiology. However, we cannot

exclude an unlikely possibility that the physiological consequences

of Scaf1 loss of function are due to unknown functions independent

on its role as a SC assembly factor. The lack of SC formation due to

Scaf1 ablation reduces the efficiency of conversion of nutrients into

energy, mimicking some features associated with malnutrition in

zebrafish [24], such as impaired growth and fertility. It might seem

paradoxical that there is an increase in adipose tissue deposits in

normal diet-fed scaf1�/� zebrafish compared with controls. We

hypothesize that the mild reduction of OXPHOS performance leads

to an inefficient use of nutrients to promote tissue grow with the

consequence of their storage in form of fat. In agreement, overfeed-

ing protein content but not fat restored growth and fertility in

scaf1�/� animals. Indeed, this rescue in organismal physiology

occurs in the absence of a restored assembly between CIII and CIV

and therefore requires metabolic adaptations to overcome the loss

of metabolic efficiency. Our transcriptomic data provide important

first hints on the underlying mechanisms. The specific molecular

and metabolic pathways and the determination of the key organs

controlling metabolic adaptation merit further investigation. Impor-

tantly, our data also show that the effect of Scaf1 on weight gain is

not restricted to zebrafish, but also becomes evident in mice models,

when studied in a condition of caloric restriction.

In sum, we conclude that the incorporation of CIV into SCs

through Scaf1 provides metabolic fitness allowing the organism to

adapt to changing environmental energy supply or energy demands.

Materials and Methods

Zebrafish husbandry

Experiments were approved by the Community of Madrid “Direc-

ción General de Medio Ambiente” in Spain and the “Amt für Land-

wirtschaft und Natur” from the Canton of Bern, Switzerland. All

animal procedures conformed to EU Directive 86/609/EEC and

Recommendation 2007/526/EC regarding the protection of animals

used for experimental and other scientific purposes, enforced in

Spanish law under Real Decreto 1201/2005. Experiments in

Switzerland were conducted under the licenses BE95/15 and

BE11/17. Experiments were conducted with adult zebrafish aged

5–10 months and raised at 13 fish per 2-l tank. Housing conditions

were 28°C temperature, 650–700 ls/cm conductivity, and pH 7.5;

10% water exchange per day and lighting conditions were 14:10 h

(light: dark). To guarantee a stable fish density between groups,

occasionally scaf1�/�, scaf1+/�, or scaf1+/+ fish were grown in

the same tank as transparent Casper fish [36]. Standard feeding

schedule was during weekdays: three times per day, once artemia

(Ocean Nutrition) and twice dry food (ZM-000, Gemma Micron

150 and 300 for larvae, juveniles, and adults stages, respectively),

during weekend: one time per day dry food. All zebrafish used

had an AB genetic background, and original parental mice were

purchased from ZIRC. The newly generated fish lines scaf1D1 and

scaf1D2 are deposited in Zfin as cox7a3brn1 and cox7a3brn2, respec-

tively. The transgenic line was deposited as Tg(ubi:scaf1)brn3.

Mouse husbandry

As with zebrafish, all animal procedures conformed to EU Directive

86/609/EEC and Recommendation 2007/526/EC regarding the

◀ Figure 7. Molecular basis for diet-induced recovery of scaf1�/� phenotypes.

A Immunoblot of the indicated proteins of BNGE from female scaf1+/+ and scaf1�/� whole zebrafish mitochondria for the indicated diet (representative of n = 2).
B Maximum uncoupled (FCCP) oxygen consumption rate in whole zebrafish mitochondria (females D1 n = 4 and D2 n = 4, and same number for their respective

controls) with glutamate (Glu), malate (Mal), and succinate (Succ).
C–G RNAseq data from scaf1+/+ and scaf1�/� skeletal muscle for the indicated diet (standard diet scaf1+/+ and scaf1�/� n = 4, double diet scaf1+/+ n = 3, scaf1�/�

n = 4). (C-F) Volcano plots of differentially expressed genes (DEGs). (C) Comparison between scaf1�/� and scaf1+/+ zebrafish in standard diet. (D) Comparison
between scaf1�/� and scaf1+/+ zebrafish in double diet. (E) Comparison of scaf1+/+ zebrafish in double diet and standard diet. (F) Comparison of scaf1�/� zebrafish
in double diet and standard diet. In blue, significant DEGs (Padj < 0.05, log2FC > |1|); in gray, not significant DEGs; red circles represent non-significant
differentially regulated OXPHOS genes, green circles represent significant differentially regulated OXPHOS genes, and purple circle represents scaf1 (cox7a2l).
(G) Heatmap of metabolic pathways differentially regulated according to gene set enrichment analysis (GSEA) in the indicated comparisons.

H Heatmap of differentially regulated growth hallmarks according to GSEA analysis in the indicated comparisons.

Data information: (G, H) White squares Padj > 0.05, colored squares Padj < 0.05. Color scales goes from blue (downregulated) to red (upregulated) gene sets. (B) T-test
analysis. Data are represented as mean � SD. *P < 0.05, **P < 0.01.
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protection of animals used for experimental and other scientific

purposes, enforced in Spanish law under Real Decreto 1201/2005.

Four-month-old mice from the strains C57BL/6JOlaHsd and CD1

were used as a source for mitochondria purification of scaf1111 and

scaf1113 mice, respectively. Original parental mice were purchased

from Harlan Laboratories.

Mouse generation

C57BL/6JOlaHsd mice with the functional version of SCAF1 were

generated as previously described [2]. C57BL/6JOlaHsd mice knock

out for SCAF1 were generated by microinjection of ES cells knock

out in the first alleles from EuMMCR repository in a C57BL/

6JOlaHsd blastocysts. Further, the blastocysts were implanted in a

pseudopregnant female C57BL/6JOlaHsd.

Protein sequences alignment

FASTA files of amino acids sequences of Scaf1 were obtained from

the public NCBI databases for mouse Cox7a2l113 and Cox7a2l111.

The zebrafish paralog (named cox7a2l or cox7a3) was identified in

Ensembl, and its amino acid sequence was aligned to mouse

sequences using the Clustal Omega platform.

Generation of Scaf1 loss of function fish and genotyping

CRISPR/Cas9 sgRNAs (sgRNA 1: GATCATAGCAGGGGATTCGG

AGG, sgRNA2: GGAGTACATGGGTAAAAACA GGG) were designed

using the CCTop tool [37], cloned in the plasmid MLM3636

(Addgene #43860), and synthesized and purified as described else-

where [38].

The two sgRNAs were co-injected at 120–150 ng/ll together with

homemade 6.5 lM Cas9 protein-produced from the pCS2-nCas9n

plasmid (Addgene #47929) in NEB Cas9 buffer (NEB #B0386A) into

zebrafish 1-cell-stage embryos.

Founder animals were identified at 3 months post-fertilization

(mpf) by fin clip PCR analysis using the primers 50TCCACTCT
GCTTACTTCACAC30 and 50TTTGCTTTGTCTGTATGTCCTG30 and

were crossed with AB wild-type fish to generate F1 progeny. PCR

products from the mutant allele of the F1 heterozygous were purified

from gel bands (NEB #T1020S) and analyzed by Sanger sequencing.

Two lines derived from different injection rounds and progenitors

with two different deletions were established: scaf1D1 and scaf1D2

(deposited in Zfin as cox7a3brn1 and cox7a3brn2, respectively).

Genotyping during line maintenance used the described primers.

All experiments were performed comparing scaf1D1/D1 and scaf1D2/

D2 with their respective wild-type sibling lines coming from the

same founder and AB mating. A maximum of four in-cross genera-

tions were used for the experiments.

Generation of Scaf1 gain of function model in scaf1�/� fish

A transgenic line for scaf1 gain of function was generated using the

cDNA sequence of scaf1 (cox7a2l/cox7a3) and the ubiquitin

promoter (ubi) to drive ubiquitous expression: Tg(ubi:scaf1) (Fig

EV4). The construct was generated by Gibson Assembly (NEB

#E2611) of four fragments: iTol2Amp-Cryst:GFP cassette [39], ubi

promoter from ubi:switch [40], cox7a2l cDNA and beta-globin intron

from GFP-5xUAS-wt1bDN;cryaa:eCFP [41]. Correct Gibson Assembly

was corroborated by Sanger sequencing. The final purified plasmid

was injected at 25 ng/ll into one-cell-stage embryos of scaf1�/�

(scaf1D1/D1) together with 25 ng/ll Tol2 recombinase mRNA. F1 of

heterozygous transgenic fish were compared with their siblings not

positive for the transgenic construct and scaf1+/+ fish born the

same day.

Mitochondria isolation

Whole fish or lateral skeletal muscle was cut into small pieces and

rinsed using PBS and homogenization medium A (0.32 M sucrose,

1 mM EDTA, and 10 mM Tris–HCl, pH 7.4) at 4°C. Clean minced

tissue was transferred to a manual Dounce tissue grinder containing

homogenization medium A supplemented with fatty acid-free 0.1%

bovine serum albumin (BSA-FFA; Sigma A7030). Occasionally, a

motor-driven Teflon pestle with six up and down strokes at 650 rpm

was used to replace the manual tissue grinder. The homogenate was

centrifuged twice for 10 min at 800 g and 4°C. The supernatant was

then centrifuged for 10 min at 10,000 g and 4°C. The pellet from this

step was resuspended in 1 ml of MAITE buffer (0.25 mM sucrose,

75 mM sorbitol, 100 mM KCl, 0.05 mM EDTA, 5 mM MgCl2, 10 mM

Tris–HCl, and 10 mM orthophosphoric acid, pH.7.4) supplemented

with 0.1% BSA-FFA and centrifuged for 10 min at 10,000 g at 4°C.

The clean pellet was resuspended in 0.5–1 ml MAITE + BSA-FFA

buffer, and the concentration was quantified using the Bradford

assay (Sigma-Aldrich). Mitochondria were stored at �80°C in

MAITE + BSA-FFA buffer or centrifuged for 10 min at 10,000 g and

4°C and subsequently resuspended in the buffer required for the

following analysis. All steps were performed on ice.

For functional mitochondria assays, clean minced tissue was

homogenized in homogenization buffer (67 mM sucrose, 50 mM

Tris, 50 mM KCl, 10 mM EDTA, 0.1% BSA-FFA, pH 7.4) [42] and

centrifuged twice for 10 min at 800 g and 4°C. The supernatant was

centrifuged 10 min at 8,000 g and 4°C and washed with MAITE

buffer as described above.

Mouse mitochondria were isolated from soleus skeletal muscle

or liver as described [2], solubilized in 4 g/g digitonin and run in

parallel with zebrafish samples.

SDS and blue native gel electrophoresis

A total of 100–200 lg of whole fish mitochondria were resuspended

in loading buffer (50 mM Tris–HCl pH 6.8, 2% SDS, 10% glycerol,

1% b-mercaptoethanol, 12.5 mM EDTA, 0.02% bromophenol blue)

at a final concentration of 2 lg/ll, and 30 lg was loaded onto 12%

hand-cast sodium dodecyl sulfate (SDS) acrylamide gels.

BNGE was performed as described [43] using 4 g/g digitonin-

treated mitochondria; 30 lg of muscle or whole fish mitochondria

or 20 lg of mouse soleus muscle or liver mitochondria was loaded

onto 15 well 3–13% hand-cast native gels.

For 2D-BNGE, the first dimension used 125 lg whole-body

zebrafish mitochondria treated with 4 g/g digitonin in 10-well 3–

13% hand-cast native gels. The second dimension was performed in

native 3–13% gels adding 0.02% DDM in the electrophoresis cath-

ode buffer [43].

Two-dimensional denaturing electrophoresis (2D-BNGE/SDS–

PAGE) was performed using 125 lg whole-body zebrafish
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mitochondria treated with 4 g/g digitonin in 10-well 3–13% hand-

cast native gels as the first dimension. The second denaturing

dimension with SDS was performed as described [43].

BNGE in-gel activity assays

After electrophoresis, BNGE gels were incubated for CI (0.1 mg/ml

NADH and 2.5 mg/ml nitroblue-tetrazolium in 2 mM Tris–HCl pH

7.4 buffer) or CIV (1 mg/ml cytochrome C and 0.5 mg/ml in 3,30-
diaminobenzidine in phosphate buffer pH 7.4) activity [44].

Immunoblotting

Blue native gel electrophoresis or SDS gels were electroblotted onto

Hybond-P-polyvinylidene fluoride (PVDF) membranes (Immobilon-FL,

IPFL00010) and immunoblotted with antibodies against the different

subunits of the OXPHOS complexes: anti-Ndufs3 mouse monoclonal

(Abcam, AB14711), anti-Uqcrc2 rabbit polyclonal (Proteintech, 14742-

1-AC), anti-Co1 mouse monoclonal (Thermo Fisher, 459600), and anti-

Cox7a2l rabbit polyclonal (St John’s laboratory, STJ110597). Anti-

Vdac1 (Abcam, AB15895) was used as loading control.

Secondary antibodies used were anti-rabbit IgG (H+L) Alexa

Fluor 680 conjugate (Life Technologies, A-21076) and anti-mouse

DyLight 800 (Rockland, 610-145-121), and images were acquired

with the ODYSSEY Infrared Imaging System (LI-COR). Immunoblot-

ting of 1-dimension SDS using COX7A2L antibody was analyzed by

the ECL detection system using polyclonal goat anti-rabbit (Dako,

P0448) as the secondary antibody.

Low-protein/low-fat diet experiment

One experiment was performed with eight wild-type fish at 7 mpf per

group at a density of five fish/l. Transparent Casper fish [36] were used

to reach equal tank density when necessary. Fish were randomly

selected, and measured at the beginning of the experiment and

assigned to one diet group. The control group was fed with Sparos

control diet, and the experimental group was fed with Sparos LP/LF

diet (Appendix Table S1) three times/day during weekdays and one

time/day during weekends (15 mg/tank per dose). Fish were

measured and sacrificed after 6 weeks. Mitochondria were freshly

isolated in pools of two animals/sample.

Blue-DiS proteomics

Three replicates of 200 lg of 4 g/g digitonin-treated whole fish

mitochondria from scaf1�/� and scaf1+/+ animals were run in a 3–

13% hand-casted native gels, which were then stained with

Coomassie Brilliant Blue R-250 and cut in 36 slices. The slices were

processed and analyzed by data-independent mass spectrometry as

previously described [2].

Fish size, length, and fertility assessment

Anesthetized adult fish were measured in length with a millimetric

ruler and weighed on a precision balance. Larvae and juvenile fish

length was measured using ImageJ/Fiji from pictures obtained in a

Nikon SMZ25 stereo microscope. For fertility assessment, one

female was crossed with one male of the same genetic background

and eggs were collected 20 min after direct mating. The number of

live eggs was manually counted. To analyze embryo development,

animals were staged at one-cell stage. Embryo development was

then checked at different time points. The number of embryos in a

determined developmental stage was counted at each time point

and represented as %.

Zebrafish histology

Whole fish were fixed in 4% paraformaldehyde for 24 h, washed

three times in PBS for 10 min, and decalcified in Immunocal (Amer-

ican MasterTech) at room temperature (RT) for 24 h. Tissues were

dehydrated and embedded in paraffin blocks. Histological sections

(7 lm) were used for hematoxylin–eosin staining. Three sagittal

sections of representative areas per biological replicate were

analyzed in ImageJ/Fiji, and the average was represented for each

biological sample. Adipose tissue area was measured in the dorsal,

ventral, visceral, and intramuscular areas, and summarized and

divided by the total tissue area. The area of 20–30 adipocytes in the

ventral fat was measured per biological sample.

Transmission electron microscopy

Hearts from 5 mpf zebrafish were fixed with 2.5% glutaraldehyde

(Agar Scientific, Stansted, Essex, UK) and 2% paraformaldehyde

(Merck, Darmstadt, Germany) in 0.1 M Na-cacodylate-buffer (Mer-

ck), pH of 7.33. Samples were fixed for 24 h before further

processing. They were then washed with 0.1 M Na-cacodylate-

buffer three times for 5 min, post-fixed with 1% OsO4 (Electron

Microscopy Sciences, Hatfield, USA) in 0.1 M Na-cacodylate-buffer

at 4°C for 2 h, and then washed in 0.05 M maleic acid (Merck,

Darmstadt, Germany) three times for 5 min. Thereafter, samples

were dehydrated in 70, 80, and 96% ethanol (Alcosuisse, Switzer-

land) for 15 min at RT. Subsequently, cells were immersed in

100% ethanol (Merck) three times for 10 min, in acetone (Merck)

twice for 10 min, and finally in acetone-Epon (1:1) overnight at

RT. Next, samples were embedded in Epon (Sigma-Aldrich, Buchs,

Switzerland) and left to harden at 60°C for 5 days. Sections were

produced with an ultramicrotome UC6 (Leica Microsystems,

Vienna, Austria): Semithin sections (1 lm) were used for light

microscopy and stained with a solution of 0.5% toluidine blue O

(Merck); ultrathin sections (75 nm) were used for electron micro-

scopy. The sections, mounted on 200-mesh copper grids, were

stained with uranyl acetate (Electron Microscopy Sciences) and

lead citrate (Leica Microsystems) with an ultrastainer (Leica

Microsystems). Images were taken in a blinded manner using an

FEI Tecnai Spirit electron microscope and analyzed on ImageJ/Fiji,

also in a blinded manner.

Mitochondrial DNA content

Genomic DNA was extracted from muscle and heart of 8 mpf fish

with the DNeasy Blood & Tissue Kit (Qiagen). Three nanograms of

DNA were used for qPCR using primers (nDNA: 50ATGGGCTGGG
CGATAAAATTGG30, 50ACATGTGCATGTCGCTCCCAAA30; mtDNA:

50CAAACACAAGCCTCGCCTGTTTAC30, 50CACTGACTTGATGGGGG
AGACAGT30) and method described before [45]. Data are repre-

sented with the formula 2*2(nDNA CT � mtDNA CT).
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Embryo OXPHOS toxicity

Embryos (4 dpf) from in-crosses of scaf1�/� (scaf1D1/D1 and scaf1D2/D2)

fish and their respective scaf1+/+ counterparts were treated for 4 h at

28°C with 3–4 concentrations of OXPHOS inhibitors: CI, rotenone

(Sigma-Aldrich, R8875); CII, 3-nitroproionic acid (Sigma-Aldrich,

N5636); CIII, antimycin A (Sigma-Aldrich, A8674); H+-ATPase

oligomycin (Sigma-Aldrich, O4876); coupling inhibitor, carbonyl

cyanide 4-trifluoromethoxyphenylhydrazone (FCCP; Sigma-Aldrich,

C2920), in 0.05% ethanol E3 medium; and CIV, sodium azide (Sigma-

Aldrich S2002) in E3 medium. Ten embryos were placed in a 12-well

plate and treated in a final volume of 2 ml [29]. Nine biological repli-

cates in three technical replicates per fish group, which make a total of

90 embryos per condition, were analyzed and represented as a propor-

tion of survival. Cardiac arrest was used as lethality parameter.

Whole embryo oxygen consumption rate

Mitochondrial function was determined with an XFe24 extracellular

flux analyzer (Seahorse Bioscience). OCR was measured in dechori-

onated 48 hpf embryos. Embryos were staged (same size was

corroborated) and placed one per well on an islet capture microplate

filled with E3 egg water. The plate was incubated in an incubator

without CO2 at 28°C for 30 min. After measuring baseline OCR as

an indication of basal respiration, OCR was measured after an injec-

tion of 2 lM of FCCP to determine maximal respiration. Finally,

0.5 lM of antimycin A and 0.5 lM of rotenone were added to block

mitochondrial respiration.

Oxygen consumption in isolated mitochondria from adult fish

Fresh isolated mitochondria (100 lg/ml) were analyzed using a Clark-

type electrode (Oxygraph O2k; Oroboros Instruments, Innsbruck,

Austria) at 28°C in MirO5 medium [46]. CI-dependent oxygen

consumption (site I) was measured with 10 mM pyruvate or 10 mM

glutamate and 5 mM malate. CII-dependent oxygen consumption (site

II) was measured with 10 mM succinate and 0.2 lM rotenone. CI- and

CII-dependent oxygen consumption (site I + II) was measured with the

same concentrations of pyruvate or glutamate, malate, and succinate.

The uncoupled state was reached with the inhibition of CV (H+-

ATPase) with 4 ng/ml oligomycin and a titration of FCCP in 0.1–

0.5 lM intervals until reaching the stable maximum OCR. Respiration

was stopped with 30 mM sodium cyanide. The RCR (State 3/State 4)

and P/O ratio were measured at 28°C in a Clark-type electrode

(Hansatech) with the aforementioned substrates plus 0.5 mM ADP.

State 3 was calculated at the maximum OCR after ADP addition, and

State 4 was calculated when ADP was consumed. The P/O ratio was

calculated from the same measurement.

Double diet experiments

Three independent diet experiments were performed with 7–9 mpf fish

control siblings, and scaf1�/� fish in each experiment were born the

same day and were grown in the same conditions. Experiments one

(starting at 8.5 mpf) and two (starting at 7 mpf) were performed with

scaf1D2 and their respective scaf1+/+ fish (n = 10 fish per experimen-

tal group, per experiment). Experiment three (starting at 7 mpf) was

performed with scaf1D1 and their respective scaf1+/+ fish (n = 20 fish

per experimental group). Fish were randomly selected, and length and

weight were measured. They were then distributed in equal groups

according to their measurements. Ten fish from mixed sex were placed

per tank (five fish/l in 2 l-tanks) and assigned to a diet category. Stan-

dard diet (Appendix Table S1) (weekdays: two times/day dry food

15 mg/tank Gemma Micro 300, one time/day artemia, weekends: one

time/day dry food 15 mg/tank Gemma Micro 300) and double diet

(weekdays: four times/day dry food 15 mg/tank Gemma Micro 300,

one time/day artemia, weekends: one time/day dry food 15 mg/tank

and one time/day 30 mg Gemma Micro 300). Fish were maintained

under these conditions for 6 weeks, measuring length and weight

every 2 weeks during the four first weeks of the experiment. At week

5, fish were in-crossed, and the number of eggs laid per female was

counted. Data from the three different experiments are represented

together. Fish were sacrificed after 6 weeks. Fish from experiment two

were used for histological analysis and BNGE. Fish from experiment

three were used for histological analysis, BNGE, and RNAseq.

High-fat diet experiments

Two independent diet experiments were performed with 7 mpf fish,

one with scaf1D1 and the other with scaf1D2 (n = 10 per experimental

group, five females, five males). Fish were randomly selected, length

and weight were measured, and they were distributed in equal groups

according to their measurements. Ten fish from mixed sex were placed

per tank (five fish/l in 2-l tanks) and assigned to a diet category. The

control group was fed with Sparos control diet (14.1% fats). The high-

fat diet group was fed with a customized diet by Sparos modified from

their control diet containing double the amount of fats (30.1%;

Appendix Table S1). Both groups were fed three times/day on week-

days and one time/day on weekends. Fish were maintained in these

conditions for 6 weeks measuring length and weight every 2 weeks

during the four first weeks of the experiment. At week 5, fish were in-

crossed and the amount of eggs laid per female was counted. Data

from scaf1D1 and scaf1D2 were plotted and analyzed together. Fish were

sacrificed after 6 weeks.

Food restriction in mice

Starting from weaning, 4-week-old mice of the indicated genotype

mice went through 48 h of fasting alternated with 24 h of controlled

feeding, both with free access to water for 40 days. The weight was

recorded at the end of each feeding phase.

RNA isolation and sequencing

Muscle from females scaf1D1 after 6 weeks on the diets (standard

diet scaf1+/+ and scaf1�/� n = 4, double diet scaf1+/+ n = 3,

scaf1�/� n = 4) was dissected and stored at �80°C. RNA was

isolated using TRIzol and purified (Zymo RNA Clean & Concentrator

kit). RNA purity was evaluated using the Agilent Fragment Analyzer

and used for the bar-coded library generation. Libraries were

sequenced on the Illumina HiSeq 2500 System.

RNAseq bioinformatic analysis

Sequencing reads were pseudo-aligned to D. rerio cDNA database

(Ensembl build 11, release 94) using Kallisto [47] version 0.45.0.
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Quality control was assessed using FastQC. Downstream analysis

was performed in RStudio, and differential expression between

design groups was tested using DESeq2 [48], with log2 fold change

shrinkage. Volcano plots and heatmaps were generated using the

base graphics and ggplot2 package.

Danio rerio Gene Stable IDs were translated to Mus musculus

Gene Stable IDs using biomaRt package [49], and the overall

gene expression was analyzed with GSEA [50] using the KEGG

pathway, the Hallmarks collection, or a customized gene list as

biological insight. Gene list from KEGG database was used for

biogenesis of amino acids; Val, Leu, and Ile degradation; Arg

and Pro metabolism; and glutathione metabolism (Dataset EV3).

The list of genes used for the rest of pathways in Fig 7G is

included in Dataset EV3. Growth pathways were analyzed using

the Hallmark database (Dataset EV4). Only data with adjusted P-

value and FDR < 0.05 were considered significant and repre-

sented.

Quantification and statistical analysis

Randomization of samples and blinding was performed when

needed, and it is indicated in the corresponding method detail.

Image analysis was performed in a blind manner. Sample size is

indicated in each figure legend. Normal distribution was tested

using D’Agostino-Pearson omnibus and Shapiro–Wilk normality

tests. Outliers were identified using the ROUT test (Q = 1%), and

when identified, they were not used in the statistical test. A t-test

was used when comparing two groups, and one- or two-way analy-

sis of variance (ANOVA) was used when more than two groups

were analyzed. ANOVA multiple comparison was performed by

Sidak’s multiple comparison test when not indicated or Fisher’s LSD

test when indicated. Statistical parameters are specified in each fig-

ure legend. All data representations and statistical analyses were

performed using GraphPad Prism 7.

Data and code availability

RNAseq raw data and related information have been deposited in

the Gene Expression Omnibus database with accession nos.

GSE133487 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE133487). Proteomic data have been deposited at: http://www.

peptideatlas.org/PASS/PASS01560. We deposited zebrafish line

information at ZFIN: ZFIN ID: ZDB-TGCONSTRCT-200310-2, ZFIN

ID: ZDB-ALT-200327-11 and ZFIN ID: ZDB-ALT-200327-12. Raw

data leading to figures have been deposited at Mendeley with the

following DOI https://doi.org/10.17632/rjhxf9wsc2.1; https://doi.

org/10.17632/fzyyz6gm5n.1; https://doi.org/10.17632/f3nhz9rp28.

1; https://doi.org/10.17632/t2fcsh6c27.1; https://doi.org/10.17632/

f37md5b388.1; https://doi.org/10.17632/jfvcwx9677.1; https://doi.

org/10.17632/7dkm6ss6c2.1.

Expanded View for this article is available online.
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