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1.  INTRODUCTION 

Knowledge of the spatial distribution of hydraulic conductivity (K) within an aquifer is 

critical for reliable predictions of solute transport and the development of effective 

groundwater management and/or remediation strategies. While core analyses and hydraulic 

logging can provide highly detailed information, such information is inherently localized 

around boreholes that tend to be sparsely distributed throughout the aquifer volume. 

Conversely, larger-scale hydraulic experiments like pumping and tracer tests provide 

relatively low-resolution estimates of K in the investigated subsurface region. As a result, 

traditional hydrogeological measurement techniques contain a gap in terms of spatial 

resolution and coverage, and they are often alone inadequate for characterizing heterogeneous 

aquifers. Geophysical methods have the potential to bridge this gap. The recent increased 

interest in the application of geophysical methods to hydrogeological problems is clearly 

evidenced by the formation and rapid growth of the domain of hydrogeophysics over the past 

decade (e.g., Rubin and Hubbard, 2005). 

 Perhaps the greatest challenge in using geophysical measurements in a hydrogeological 

context is the fact that the underlying physical properties governing nearly all geophysical 

responses do not exhibit any straightforward link with the hydraulic conductivity. Indeed, 

petrophysical relationships between K and geophysical parameters such as the electrical 

conductivity or seismic wave velocity are notoriously difficult to establish, and are most often 

site, scale, and/or facies specific. To deal with this issue, a number of strategies have been 

proposed for local-scale (~10 to 50 m) aquifer characterization, involving a combination of 

borehole and high-resolution crosshole tomographic geophysical methods (e.g., Hyndman and 

Gorelick, 1996; Chen et al., 2001; Singha and Gorelick, 2005; Paasche et al., 2006; Dafflon et 

al., 2009). How to effectively utilize geophysical methods for larger-scale (>100 m) 

hydrogeological characterization, however, remains a major challenge. In this case, the large 
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domain to be characterized, the lack of closely spaced boreholes for effective crosshole 

tomographic imaging, and a scarcity of hydraulic test data make direct application of the 

established local-scale approaches problematic. What is critically needed are practical 

methodologies for the medium-to-regional-scale integration of geophysical and hydrological 

data to understand subsurface hydrogeological heterogeneity. Such methodologies must allow 

for the assessment of uncertainty in the results obtained because of the strong lack of 

information that exists at such scales as compared to local-scale studies. 

 Geostatistics provides a proven framework for integrating diverse sources of information 

for the purpose of characterizing spatial heterogeneity. Geostatistical methods are routinely 

applied to large regional-scale parameter fields in the petroleum and mining industries, and 

they naturally lend themselves to the assimilation of data having different degrees of 

resolution and hardness. In addition, through conditional simulation, such methods allow for 

an assessment of model parameter and prediction uncertainty. In this paper, we summarize 

recent work on the integration of hydrological and geophysical data at larger, flow-relevant 

scales through the application of a geostatistical technique known as Bayesian sequential 

simulation (Ruggeri et al., 2013). The overall objective of this work is to generate, in a 

computationally efficient manner, conditional stochastic realizations of the hydraulic 

conductivity field that allow for assessment of flow and transport uncertainty over medium-

to-regional-scale distances.  

 

2.  METHODOLOGY 

2.1.  Bayesian sequential simulation 

The Bayesian sequential simulation (BSS) technique was originally developed by Doyen and 

Boer (1996) for the interpolation and extrapolation of lithological data. The goal of this 

method is to generate multiple feasible realizations of the spatial distribution of some variable 
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of interest, referred to as the primary variable, conditional to (i) measurements of a secondary 

variable, which are available extensively throughout subsurface and are statistically related in 

some way to the primary variable, and (ii) a smaller number of generally sparsely distributed 

measurements of the primary variable. As with all geostatistical sequential simulation 

approaches, the generation of each stochastic realization is accomplished iteratively, whereby 

previously simulated values for the primary variable at points along a randomly chosen path 

through the model space are treated as known “data” when simulating the primary variable at 

subsequent points (Goovaerts, 1997; Deutsch, 2002).  

The following parameterization of Bayes’ theorem forms the basis for the BSS 

technique: 

p(An Bn ,A1,...,An−1) = c ⋅ p(Bn An ) ⋅ p(An A1,...,An−1) , (1) 

where A and B denote the primary and secondary variables, respectively, p(•) denotes a 

probability distribution, and c is a normalization constant. The conditional distribution  

p(An ⎢A1,…,An-1) represents the prior for the primary variable in a chosen cell n in the model 

space. This prior is conditional to the measured and previously simulated values of the 

primary variable in cells 1 through n-1, and is obtained by kriging of these values to yield a 

Gaussian mean and variance at the chosen location. The distribution p(Bn ⎢An) is the 

likelihood function, which expresses the range of values for the primary variable in cell n that 

is consistent with a particular measured value of the secondary variable at the same location. 

Finally, the distribution p(An ⎢Bn,A1,…,An-1) represents the posterior for the primary variable in 

cell n, which represents an updated state of knowledge that takes into account both the prior 

information and likelihood. 

For our work, we determine the likelihood function p(Bn ⎢An) by first estimating the 

joint probability density for the primary and secondary variables p(A,B). This is accomplished 
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using collocated measurements of these variables under the assumption that, within a given 

hydrological unit, the relationship between them is statistically stationary and thus does not 

depend on the chosen cell location. To this end, we calculate p(A,B) using a non-parametric 

density estimation approach (Silverman, 1986): 

p(A,B) = 1
N l1 l2

k A − Ai
l1

⎛
⎝⎜

⎞
⎠⎟i=1

N

∑ k B − Bi
l2

⎛
⎝⎜

⎞
⎠⎟

,
 (2) 

where N is the number of collocated measurements, k(•) is a positive kernel density function, 

l1 and l2 denote the chosen kernel bandwidths for the primary and secondary variables, 

respectively, and Ai and Bi are the collocated data. Uncertainties in the secondary variable can 

be accounted for in determining p(Bn ⎢An) by taking a weighted sum of the marginal 

distributions from p(A,B). Full details can be found in Ruggeri et al. (2013). 

 Multiplying the likelihood function with the prior distribution yields the posterior 

probability for cell n. Within the framework of sequential simulation, a value for the primary 

variable can be drawn from this posterior distribution and treated as a known or reference 

value in subsequent iterations of the procedure involving different cells until all unknowns 

have been simulated. Multiple stochastic realizations of the primary variable can then be 

generated by repeating the entire process. It is important to note that the BSS procedure as 

described above is highly flexible with regard to the relationship that exists between the 

primary and secondary variables, in the sense that this relationship is estimated empirically 

based on collocated data, and the quality of the relationship is thus reflected in the variability 

of the stochastic realizations. 

 

2.2.  Application to aquifer characterization 

In hydrogeophysical studies at the medium-to-regional scale, it is relatively common to have 

access to locally highly resolved but spatially sparse borehole logs of a variety of geophysical 
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parameters and the hydraulic conductivity, as well as to surface-based and/or airborne 

regional geophysical data having extensive spatial coverage but with greatly reduced spatial 

resolution (e.g., Goldman et al., 2005). Motivated by the availability of such a database, we 

have developed an aquifer characterization approach based on two applications of the BSS 

procedure outlined above.  

In the first step of our approach, we use the high-resolution borehole geophysical 

measurements (primary variable) and low-resolution geophysical parameter estimates 

(secondary variable) to generate fine-scale realizations of the underlying geophysical 

parameter field. The aim of this step to quantify the uncertainty in the fine-scale field 

conditional to these two data sets, thus effectively downscaling the low-resolution 

geophysical parameter estimates. Note that, for inclusion into the BSS procedure, the low-

resolution geophysical data are considered in the form of an already-inverted tomographic 

image, which can be regarded as a set of uncertain measurements of the spatially averaged 

“true” geophysical parameter. The likelihood function is estimated from values in this image 

that are collocated with the high-resolution measurements at the borehole locations. 

In the second step of our characterization approach, we again perform BSS, but this 

time based on the borehole measurements of the hydraulic conductivity (primary variable) 

and point-by-point statistics of the high-resolution geophysical parameter field derived from 

the realizations obtained above (secondary variable) in order to generate high-resolution K 

realizations. In other words, after stochastically downscaling the low-resolution geophysical 

measurements, we aim in this step to use the geophysical information to condition the fine-

scale hydraulic conductivity field. In this case, the likelihood function is determined from the 

collocated borehole measurements of K and the geophysical parameter.   

Although the discussion above has been general with regard to the low- and high-

resolution geophysical data considered, it is important to note that arguably the most effective 
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and common geophysical parameter in large-scale hydrogeological investigations is the 

electrical conductivity σ, which can be readily constrained through borehole logs at the local 

scale and through the inversion of geoelectric and/or electromagnetic survey data at the 

medium-to-regional scale (Goldman et al., 2005; Siemon et al., 2009). With reference to σ as 

the governing geophysical parameter, Figure 1 is a flowchart summarizing our two-step BSS-

based aquifer characterization approach. Details regarding its application will become clear 

through the following synthetic and field examples. 

 

3. SYNTHETIC DATA EXAMPLE 

3.1.  Subsurface model and data 

We first show the application of our approach to a synthetic data example where there exist 

high-resolution borehole logs of the hydraulic and electrical conductivities, as well as low-

resolution estimates of σ obtained from the inversion of surface-based geoelectrical data. 

Figure 2a shows the “true” heterogeneous K field considered for this example. The field is 

240 m long by 20 m deep and is discretized on a 0.20 m grid, yielding a total number of 

120,000 model parameters. It was generated geostatistically assuming an exponential 

variogram for log10(K) having horizontal and vertical correlation lengths of 27 m and 2.7 m, 

respectively, and can be regarded as a realistic first-order abstraction of many surficial 

alluvial aquifers. The aquifer sediments are assumed to be fully saturated. In Figure 2b, we 

show the corresponding “true” distribution of the electrical conductivity. This was obtained 

by first simulating the spatial distribution of porosity φ throughout the subsurface region 

assuming a linear relation with log10(K) of the form 

log10 (K ) = 6.66φ − 4.97 . (3) 
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After adding correlated zero-mean Gaussian random noise to simulate more realistic 

conditions, σ was then calculated using Archie’s (1942) equation for saturated media 

σ =σ wφ
m

, (4) 

where σw = 43 mS/m and m = 1.4 were used as typical values for the pore water conductivity 

and Archie cementation exponent in alluvial sediments, respectively (Schön, 2004). Again, 

correlated random noise was added to the obtained conductivity field, resulting in a 

significant amount of uncertainty in the overall relationship between σ and K throughout the 

model domain. 

Having specified the detailed distribution of the hydraulic and electrical 

conductivities, we next simulated the acquisition of high-resolution σ and K measurements 

along four boreholes located at lateral positions of 0, 80, 160, and 240 m (Figure 2). The 

vertical resolution of the borehole measurements was set equal to one grid cell, or 0.2 m. 

Surface-based geoelectrical measurements were then simulated over the model domain using 

a dipole-dipole acquisition geometry with an electrode spacing of 2.4 m. After adding 5% 

uncorrelated noise to the resulting apparent resistivity values, they were tomographically 

inverted on a coarse grid having a horizontal discretization of 2.4 m and a vertical 

discretization ranging from 0.8 to 3.2 m with increasing depth. The inversion was carried out 

using least-squares data fitting and model smoothness constraints. A comparison of the 

resulting image (Figure 2c) with the “true” σ structure in Figure 2b clearly illustrates the 

noticeable smoothing and decrease in model resolution with increasing depth that are typical 

of surface-based tomographic geoelectrical reconstructions. To estimate the uncertainty in the 

inverted values, we used the method of Alumbaugh and Newman (2000) based on the 

diagonal elements of the model covariance matrix. The estimated uncertainties, expressed as a 

percentage of the corresponding σ values, are shown in Figure 2d. 
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3.2.  Data integration procedure 

In the first step of our large-scale data integration procedure, BSS was used to generate 

multiple high-resolution realizations of the σ field that are consistent with the borehole 

electrical conductivity logs and low-resolution surface-based geoelectrical image. Figure 3a 

shows the joint distribution of high- and low-resolution electrical conductivity estimated from 

the collocated measurements of these variables at the borehole locations. Uncertainty 

associated with the tomographic estimates (Figure 2d) was accounted for during the 

evaluation of the likelihood function, thus ensuring that the realizations generated through 

BSS were not too strongly conditioned by the tomographic image in regions poorly informed 

by the data. In Figure 4, we show nine random σ realizations that were obtained. A 

comparison of these realizations with the “true” field indicates that the BSS procedure has 

provided reasonable estimates of both the local- and large-scale electrical conductivity 

structure, in the sense that the overall large-scale patterns are well reproduced and the style of 

small-scale variability has been adequately represented. The realizations are tied to the 

logging measurements at the borehole locations, and they are less constrained at depth where 

the tomographic image is less reliable.  

Next, using the collocated, high-resolution borehole logs of the hydraulic and 

electrical conductivities as well as the point-by-point statistics of the ensemble of downscaled 

σ realizations, a second application of BSS was performed to generate high-resolution 

stochastic realizations of the hydraulic conductivity field. Figure 3b shows joint distribution 

of σ and K that was estimated from the borehole data.  Nine random K realizations that were 

obtained are shown in Figure 5. The results are largely comparable with those observed for 

the electrical conductivity, and suggest that the two-step BSS procedure has properly captured 

the “true” statistics of the underlying K field. This is confirmed in Figures 6a and 6b, which 
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compare the histogram and vertical experimental variogram for the borehole hydraulic 

conductivity measurements with those calculated globally from 20 stochastic K realizations.  

To further validate the characterization results, we simulated the transport of a conservative 

tracer through the original K field in Figure 2a and compared the behavior with transport 

predicted through 20 stochastic realizations. For the simulations, steady-state groundwater 

flow was assumed with no‐flow boundary conditions at the top and bottom of the model 

domain and fixed head conditions on each side, providing a lateral hydraulic gradient of 

0.013. The transient advection-dispersion equation was solved assuming a fixed tracer 

concentration in the left-most borehole. The values for the longitudinal and transverse 

dispersivity in each grid cell were specified to be 0.02 and 0.002 m, respectively. 

Measurements of the average tracer concentration in the right-most borehole as a function of 

time were simulated. Figure 6c shows the tracer breakthrough curves that were obtained. 

Quite importantly, we see that the first-arrival times for the tracer predicted by our stochastic 

realizations are in good agreement with the “true” tracer breakthrough time, which suggests 

that our large-scale data integration procedure allows for adequate predictions of this key 

characteristic of the transport behavior and its uncertainty. We do, however, observe a gradual 

deterioration in the match between the curves as time increases. Analysis has shown that this 

is because the obtained K realizations do not adequately capture the poorly hydraulically 

conductive zone located in the lower part of the model between lateral distances of 160 and 

240 m (Figure 2a). Please see Ruggeri et al. (2013) for further details.    

 

4. FIELD STUDY 

4.1. Field site and available data 

We now show the application of our proposed characterization approach to field data. The 

considered study region is located in the municipality of Saint-Lambert-de-Lauzon, 
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approximately 40 km south of Québec City, Canada (Figure 7). It consists of a ~12 km2 

surficial aquifer upon which there exists a sanitary landfill. The aquifer is semi-confined and 

consists of Quaternary sediments ranging in thickness from 5 to 20 m. The water table is 

located at a depth of ~1-2 m. A detailed description of the surficial geology of the site can be 

found in Paradis et al. (2011). 

 The data considered for our analysis were acquired in the eastern part of the study 

region and, as in our synthetic example, consist of low-resoluiton σ estimates inferred from 

surface-based geoelectrical measurements along with borehole measurements of σ and K. The 

geoelectrical data were collected using a dipole-dipole acquisition geometry and an electrode 

spacing of 2 m. Figure 8a shows the corresponding tomogram, which is 267 m long by 9 m 

deep and discretized on a 1 m grid, whereas Figure 8b shows the estimated uncertainties. The 

borehole σ measurements were acquired at five locations along the considered section using a 

cone penetrometer system (Figure 8a). Collocated flowmeter measurements of K were only 

available in one of these boreholes (CPT1). However, these data were kept for model 

validation purposes and were not used in the characterization effort. Instead, collocated 

measurements of σ and K at nearby off-profile locations were used to establish the joint 

distribution between these parameters. 

 

4.2. Data integration procedure 

As in the synthetic example, BSS was used to first stochastically downscale the tomographic 

electrical conductivity estimates, and then to generate realizations of the hydraulic 

conductivity field. Figures 9 and 10 show ten stochastic realizations obtained for σ and K, 

respectively. As expected, the electrical conductivity realizations appear to honor the large-

scale structure imposed by the geoelectrical image along with the fine-scale structure 

provided by the borehole measurements. With regard to K, the realizations were intentionally 
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not conditioned to the data from borehole CPT1, such that these data could be used to assess 

the different stochastic realizations obtained. In Figure 11, we compare the K profile 

measured along CPT1 with a single prediction provided by one of the stochastic realizations, 

as well as the overall statistics regarding K versus depth at this location from a collection of 

1000 realizations. We see that the key characteristics of the small-scale variability have been 

adequately captured, and that the measured K profile is well within the uncertainties 

expressed by the realizations. Note that the variability between the different K realizations in 

Figure 10 is significantly higher than that seen in our synthetic example (Figure 5). This 

results because the empirical relationship established between σ and K based on the high-

resolution borehole measurements exhibits greater uncertainty for the case of the field data, as 

well as because no borehole measurements of K along the profile were used to condition the 

output stochastic realizations. 

 

5.  CONCLUSIONS 

We have developed a two-step aquifer characterization procedure based on Bayesian 

sequential simulation that is targeted to the common case where there exist low-resolution, 

but spatially exhaustive, surface-based and/or airborne geophysical measurements over a 

large region and high-resolution, but spatially sparse, borehole measurements of the 

governing geophysical parameter and the hydraulic conductivity. Testing on a realistic 

synthetic aquifer model as well as field data has indicated that, given adequate prior 

information, the proposed approach allows for faithful estimates of the large-scale hydraulic 

conductivity structure and reliable characterization of solute transport. Future work will 

explore the application of this methodology to even larger domains, as well as 3D scenarios.  
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Figure 1: Schematic outline of the two-step Bayesian sequential simulation (BSS) aquifer 

characterization procedure. 
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Figure 2: (a and b) “True” spatial distribution of the hydraulic and electrical conductivities 

considered for the synthetic example, respectively. (c) Electrical conductivity tomogram 

obtained from the inversion of surface-based geoelectrical measurements simulated over (b). 

(d) Estimated percentage uncertainty in the values in (c). 
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Figure 3: (a) Joint probability distribution estimated between the low- and high-resolution 

electrical conductivity from collocated data at the borehole locations. (b) Joint probability 

distribution estimated between the high-resolution electrical and hydraulic conductivities 

from borehole logs. 
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Figure 4: (a)  “True” electrical conductivity distribution from Figure 2b. (b-j) Nine stochastic 

realizations of the electrical conductivity field obtained using Bayesian sequential simulation. 

The realizations are conditioned to the geoelectrical inversion results in Figure 2 (c and d) and 

to the high-resolution σ measurements at the four borehole locations.  
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Figure 5: (a)  “True” hydraulic conductivity distribution from Figure 2a. (b-j) Nine stochastic 

realizations of the hydraulic conductivity field obtained using Bayesian sequential simulation. 

The realizations are conditioned to the point-by-point statistics of the high-resolution 

electrical conductivity field (Figure 4) and to the measurements of σ and K at the four 

borehole locations. 
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Figure 6: (a) Histogram and (b) experimental vertical variogram for the K measurements at 

the borehole locations (red) versus those corresponding to 20 stochastic realizations obtained 

using Bayesian sequential simulation (blue). (c) Breakthrough curves showing the normalized 

average tracer concentration in the right-hand borehole as a function of time for the “true” K 

field (red), and for the 20 stochastic realizations (blue). 
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Figure 7: Location of the St-Lambert study area and the geophysical surveys and borehole 

logging that have been conducted there. The geoelectrical profile circled in black is the focus 

of our field application of the Bayesian sequential simulation aquifer characterization 

procedure. Positions marked “CPT” denote locations where borehole σ measurements were 

taken. Collocated measurements of K are available at locations marked “CPT & Well”. 
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Figure 8: (a) Electrical conductivity tomogram obtained from the inversion of surface-based 

dipole-dipole geoelectrical measurements along the chosen profile (Figure 7). The boreholes 

are shown in white. (b) Estimated percentage uncertainty in the values shown in (a). 
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Figure 9: Ten stochastic realizations of the electrical conductivity field obtained using 

Bayesian sequential simulation. The realizations are conditioned to the geoelectrical inversion 

results in Figure 8 and the high-resolution σ measurements at the five borehole locations. 
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Figure 10: Ten stochastic realizations of the hydraulic conductivity field obtained using 

Bayesian sequential simulation. The realizations are conditioned to the point-by-point 

statistics of the high-resolution electrical conductivity field (Figure 9) and the relationship 

between σ and K established from collocated borehole measurements. 
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Figure 11: Measured hydraulic conductivity profile along borehole CPT1 (red) and one 

simulated profile at the same location extracted from a stochastic K realization (yellow). Also 

shown in black and white is the probability density image of K versus depth at this location 

based on 1000 stochastic realizations.   
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