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Abstract—A large variety of pairwise measures of similarity or dissimilarity have been developed for comparing
phylogenetic trees, for example, species trees or gene trees. Due to its intuitive definition in terms of tree clades and
bipartitions and its computational efficiency, the Robinson-Foulds (RF) distance is the most widely used for trees with
unweighted edges and labels restricted to leaves (representing the genetic elements being compared). However, in the
case of gene trees, an important information revealing the nature of the homologous relation between gene pairs (orthologs,
paralogs, and xenologs) is the type of event associated to each internal node of the tree, typically speciations or duplications,
but other types of events may also be considered, such as horizontal gene transfers. This labeling of internal nodes is usually
inferred from a gene tree/species tree reconciliation method. Here, we address the problem of comparing such event-labeled
trees. The problem differs from the classical problem of comparing uniformly labeled trees (all labels belonging to the same
alphabet) that may be done using the Tree Edit Distance (TED) mainly due to the fact that, in our case, two different
alphabets are considered for the leaves and internal nodes of the tree, and leaves are not affected by edit operations. We
propose an extension of the RF distance to event-labeled trees, based on edit operations comparable to those considered for
TED: node insertion, node deletion, and label substitution. We show that this new Labeled Robinson—Foulds (LRF) distance
can be computed in linear time, in addition of maintaining other desirable properties: being a metric, reducing to RF for
trees with no labels on internal nodes and maintaining an intuitive interpretation. The algorithm for computing the LRF
distance enables novel analyses on event-label trees such as reconciled gene trees. Here, we use it to study the impact of
taxon sampling on labeled gene tree inference and conclude that denser taxon sampling yields trees with better topology

but worse labeling. [Algorithms; combinatorics; gene trees; phylogenetics; Robinson-Foulds; tree distance.]

Gene trees, usually derived from gene sequence align-
ments, represent the phylogenetic relationships between
the genes labeling the leaves of the tree. From such rep-
resentation, we can infer the most plausible scenarios of
evolutionary events leading to the observed gene family
from an ancestral gene. For this purpose, reconciliation
methods (reviewed in Boussau and Scornavacca 2020)
embed a given gene tree T into a known species tree
S. This process results in the labeling of the internal
nodes of T with the type of events which gave rise
to them. In this article, we address the problem of
comparing such event-labeled trees, that is, trees with
inner nodes labeled with the type of event at the origin
of the bifurcation. Note that such an event-labeled
tree does not fully represent a “reconciliation” R as
defined in the literature, as it should also be indicated
for each node of R the position in the species tree
where the event took place. However, the event-labeling
of T is sufficient to determine the orthology (genes
related through speciation), paralogy (genes deriving
from a duplication), or xenology (genes related through
a horizontal gene transfer) relations between genes,
with important functional implications (Gabaldon and
Koonin 2013). For example, information on duplication
and speciation node labeling is provided for the trees of
the Ensembl Compara database (Vilella et al. 2009).

A large variety of pairwise measures of similarity
or dissimilarity have been developed for trees with

no labels on internal nodes. Among them are the
methods based on counting the structural differences
between the two trees in terms of path size, bipartitions
or quartets for unrooted trees, clades or triplets for
rooted trees (Estabrook et al. 1985; Critchlow et al.
1996; Cardona et al. 2010), or those based on minimiz-
ing a number of rearrangements that disconnect and
reconnect subpieces of a tree such as nearest neighbor
interchange (NNI), subtree-pruning-regrafting (SPR), or
Tree-Bisection-Reconnection (TBR) moves (Jiang et al.
2000; Allen and Steel 2001; Hickey et al. 2008). While
the latter methods are NP-hard (Lin et al. 2012), the
former are typically computable in polynomial time. In
particular, the Robinson-Foulds (RF) distance, defined in
terms of bipartition dissimilarity for unrooted trees and
clade dissimilarity for rooted trees (Mittal and Munjal
2015), can be computed in linear (Day 1985), and even
sublinear time (Pattengale et al. 2007). For trees with
unweighted edges, the RF distance is the most widely
used distance, not only in phylogenetics but also in
other fields such as in linguistics, for its computational
efficiency, intuitive interpretation and the fact that it
is a true metric. To address the distance’s drawbacks,
such as lack of robustness (a small change in a tree
may cause a disproportional change in the distance)
and skewed distribution, improved versions of the RF
distance have also been developed (Lin et al. 2012; Moon
and Eulenstein 2018), among them methods allocating
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similarity scores between bipartitions rather than simply
counting the bipartitions that are different in the two
trees (Smith 2020).

Classically defined in terms of bipartition or clade
dissimilarity, the RF distance can also be defined in
terms of edit operations on tree edges: the minimum
number of edge contraction and extension needed to
transform one tree into the other (Robinson and Foulds
1981). This formulation is closely related to the Tree Edit
Distance (TED) defined on labeled trees (usually rooted,
and sometimes with an order on nodes), that is, trees
with nodes (including leaves) labeled on the same given
alphabet %, arising from many different applications
in various fields (parsing, RNA structure comparison,
computer vision, genealogical studies, etc). TED (Zhang
and Shasha 1989) is defined in terms of a minimum
cost path of node deletion (resulting in the deletion of
the edge linking this node to its parent), node insertion
(resulting in the creation of a new edge), and node
change (label substitution). The general version of the
problem on unordered labeled trees with a non-constant
cost function on edit operations is NP-complete (Zhang
etal. 1992), while most restrictions and variants that have
been defined for that distance are solvable in polynomial
time (Zhang 1993, 1996; Bille 2005; Schwarz et al. 2017).

However, the variants that have been considered for
TED do not include the type of event-labeled trees we
consider in this article with two different alphabets: an
alphabet £ for the leaves corresponding to the genes,
and an alphabet A for the inner nodes corresponding
to the events. Moreover, leaves are not affected by edit
operations. Notice that the problem is different from
that of comparing two reconciliations of a gene tree.
Exploring the reconciliation space of a given tree or
comparing two different reconciliations, for example,
with or without horizontal gene transfers, has been
largely addressed in the reconciliation literature (Doyon
etal. 2009, 2011; Chan et al. 2015; Huber et al. 2018). Here,
we address the problem of comparing different event-
labeled trees for the same gene family, in the sense that
the trees can differ, not only in labels but also in topology.

We formulate our distance as an extension of the
RF distance to inner node-labeled trees. Although the
RF distance is not based on biological events, it is the
most widely used distance for comparing phylogenetic
trees for its intuitive definition in terms of clades or
bipartitions of the trees, and its computational efficiency.
Therefore, an extension of the RF distance to inner
node-labeled trees is not expected to represent true
evolutionary events, but should allow capturing the
topological and labeling difference between two trees,
and should be computable efficiently.

In Briand et al. (2020), we have presented ELRF, a
first extension of RF for comparing inner node-labeled
gene trees, expressed in terms of trees with a binary
node labeling. ELRF is obtained by including a node flip
operation, alongside edge contractions and extensions.
While remaining a metric, ELRF turned out to be much
more challenging to compute. As a result, we were only
able to propose a heuristic to compute it efficiently.

In this article, we explore a different extension of RF
in terms of edit operations on tree nodes rather than
on tree edges, which is closer to the TED formulation.
We show that, in contrast with ELRF, this new distance
is computable in linear time, not only for two but for
an arbitrary number of label types. We show that the
new distance compares favorably to RF and ELRF by
performing simulations on labeled gene trees of 182
leaves. Finally, we use our new distance in the purpose of
measuring the impact of taxon sampling on labeled gene
tree inference, and conclude that denser taxon sampling
yields better predictions at the topological level but leads
to worse evolutionary event labeling.

NOTATION AND CONCEPTS

Let T be a tree with node set V(T) and edge set E(T).
Givenanode x of T, the degree of x is the number of edges
incident to x. We denote by L(T) C V(T the set of leaves
of T, that is, the set of nodes of T of degree one. Given a
set L (species or genes), a tree T on L is a tree with a one-
to-one relationship between L(T) and L. For simplicity
of presentation, in this article, we make no difference
between a leaf and the associated element of L.

A node of V(T)\L(T) is called an internal node. A tree
with a single internal node x is called a star tree, and x is
called a star node. An edge connecting two internal nodes
is called an internal edge; otherwise, it is a terminal edge.
Moreover, a rooted tree admits a single internal node (T
considered as the root.

The root is said to be binary if it is of degree 2; any other
internal node is said to be binary if it is of degree 3. The
trees considered in this article are such that all internal
nodes are of degree at least 3, except the root in the case
of rooted trees, which is of degree at least 2.

We call N(x)={y:{x,y} € E(T)} the set of neighbors of
an internal node x of T.

A subtree S of T is a tree such that V(5) C V(T), E(S) C
E(T) and any edge of E(S) connects two nodes of V(S).

The bipartition of an unrooted tree T corresponding to
an edge e={x,y} is the unordered pair of clades L(Ty)
and L(Ty), where Ty and T, are the two subtrees rooted,
respectively at x and y obtained by removing e from T.
We denote by B(T) the set of nontrivial bipartitions of T,
that is, those corresponding to internal edges of T.

The Robinson—Foulds distance (RF)

Itis defined for both rooted and unrooted trees. Notice
however that computing the RF distance for two rooted
trees can be reduced to computing the RF distance
for the two corresponding unrooted trees obtained by
grafting an edge linking the root to a dummy leaf (Briand
et al. 2020). Conversely, the problem of computing the
RF distance for two unrooted trees can be reduced to
computing it for the rooted trees using an arbitrarily
chosen leaf as the root (Day 1985). Notations and
theoretical results of this article are given for unrooted
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trees (notice however that the algorithm presented below
is implemented in terms of rooted trees). We denote by
T the set of unrooted trees on L. Given two unrooted
trees T and T’ of 7., the Robinson-Foulds (RF) distance
between T and T" is the size of the symmetric difference
between the bipartitions of the two trees. More precisely,

RE(T,T")=B(T)\ B(T")|+|B(T")\ B(T)|.

The RF distance is equivalently defined in terms
of an edit distance on edges (Robinson and Foulds
1981). However, as for node-labeled trees an additional
substitution operation on node labels will be required,
for the sake of standardization, we reformulate the edit
operations to operate on nodes rather than on edges.

Definition 1 (Node edit operations). Two edit operations
on the nodes of a tree T are defined as follows:

* Node deletion (Del): Let x be an internal node of T
which is not a star node and y be a neighbor of x which is
not a leaf. Deleting x with respect to y means making the
neighbors of x become neighbors of y. This is equivalent
to deleting y with respect to x and can be seen as
contracting the edge {x,y}. More precisely, Del(T ,x,y)
is an operation transforming the tree T into the tree T’
obtained from T by removing the edge {x,z} for each
z€N(x), creating the edge {y,z} for each ze N(x)\{y},
and then removing node x.

* Node insertion (Ins): Let y be an internal node of V(T)
of degree at least 4. Inserting x as a neighbor of y entails
making x the neighbor of a subset Z C N(y) such that
|Z| > 2. This can be seen as an edge extension operation
creating a new edge {x,y}. More precisely, Ins(T, x,y,Z)
is an operation transforming the tree T into the tree T’
obtained from T by removing the edges {y,z;}, for all
z; € Z, creating a node x and a new edge e={x,y}, and
creating new edges {x,z;}, for all z;e Z.

Now, the Robinson—Foulds distance RF(T,T’) between T
and T’ is the size of a shortest path of edge edit operations
(i.e., node insertion and node deletion) transforming T
into T".

Call a bad edge of T with respect to T” (or similarly of T’
with respect to T; if there is no ambiguity, we will omit
the “with respect to” precision) an edge representing
bipartitions which are not shared by the two trees, that
is, an edge of T defining a bipartition of B(T) which is
not in B(T’). An edge which is not bad is said to be good.
Terminal edges are always good.

GENERALIZING THE ROBINSON—-FOULDS DISTANCE TO
LABELED TREES

We are interested in comparing trees with information
on internal nodes, which is the label of interest in this
article. Therefore, in this article, we say that a tree T is
labeled if each internal node x of T has a label AM(x) € A, A
being a finite set of labels. We denote by 7  the set of
unrooted and labeled trees on £ with labels from A. For
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FIGURE 1. The transformation of a tree T into a tree T’ depicting
the three edit operations on nodes. From top to bottom: node label

substitution (the neighbor of A and B, circle to square), node deletion
(theneighbor of D and E), and node insertion (the neighbor of D and C).

gene trees, labels are reasonably the type of eventleading
to the bifurcation, typically duplications, speciations, or
horizontal gene transfers, but may also represent the
mapping to the nodes of the species tree. Moreover, we
mean by an “unlabeled tree” a tree with no labels on
internal nodes (but yet with the labels £ on leaves).

We generalize the RF distance to labeled trees by
generalizing the edit operations defined above. This is
simply done by introducing a third operation for node
labels editing (Fig. 1).

Definition 2 (Labeled node edit operations). Three edit
operations on internal nodes of a labeled tree T are defined as
follows:

* Node deletion: Del(T,x,y) is an operation deleting an
internal node x of T with respect to a neighbor y of x
which is not a leaf, defined as in Definition 1.

* Node insertion: Ins(T,x,y,Z,\) is an operation
inserting an internal node x as a new neighbor of a
nonbinary node y, and moving Z C N(y) such that |Z| >
2, to be the neighbors of x, as defined in Definition 1. In
addition, the inserted node x receives a label \ € A.

* Node label substitution: Sub(T,x,\) is an operation
substituting the label of the internal node x of T with
rEA.

For two trees T, T’ of 77 A, we call the Labeled
Robinson—Foulds distance between T and T’ and denote
by LRF(T,T’) the size of a shortest path of labeled node
editoperations transforming T into T'. The two following
lemmas state that, similarly to RF, LRF is a true metric.
Moreover, LRF is exactly RF for unlabeled trees.

In the following, the unlabeled version of a tree T € Tz A
is simply T ignoring its node labels.

Lemma 1. The function LRE(T,T’) assigning to each pair
(T, T")eT, Lz A the size of a shortest path of node edit operations
transforming T into T’ defines a distance on Ty .

Proof for this lemma is available in the Appendix.

The next lemma directly follows from the fact that
node substitutions are never applied in case of a label
set A restricted to a single label (i.e., for unlabeled trees).
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FIGURE 2. The transformation of a tree T7 into a tree T> (respectively T3) depicting where the equality (respectively the inequality) is strict

between LRF(T,T>) and ELRF(T1, T3) (respectively LRF(Tq,T3) and ELRF(Tq,T3)).

Lemma 2. If A is restricted to a single label, then for each
pair (T, T')eT# ,, LRE(T, T')=RE(T,T').

A previous extension of RF to labeled trees, based
on edit operations on edges rather than on nodes, was
introduced in Briand et al. (2020). This distance, which
we call ELRF, was defined on three operations:

¢ Edge extension Ext(T,x,X) creating an edge {x,y}
and defined as a node insertion Ins(T,y, x, X, \(x))
inserting a node y as a neighbor of x and assigning
to y the label of x;

* Edge contraction Cont(T, {x,y}) is equal to a node
deletion Del(T,y,x) deleting y, but requires that
Mx)=2\(y), a condition which is not requested for

7

¢ Node flip Flip(T, x, }.) assigning the label X to x. We
use the term “flip” to emphasize the fact that ELRF
only supports two kinds of labels, unlike LRF.

Given two labeled trees T and T’ of 7 5, ELRF(T,T")
is the size of the shortest path of edge extension, edge
contraction, and label flip required to transform T to T".

The following lemma makes the link between LRF and
ELRFE

Lemma 3. For any pair (T,T") e TLZ A7
LRE(T,T")<ELRK(T,T).
The proof for this lemma is available in the Appendix.

We now turn our attention to computing the edit
distance LRF(T,T") for a pair (T,T’) of trees of 7 .

Reduction to Islands

We define a subdivision of the two trees into pairs of
maximal subtrees that can be treated separately.

While a good edge ¢ in T has a corresponding good
edge ¢ in T’ (the one defining the same bipartition),
a bad edge in T has no corresponding edge in T’.

However, those bad edges may be grouped into pairs
of corresponding islands (called maximum bad subtrees
in Briand et al. (2020)), as defined below.

Definition 3 (Islands). An island of T is a maximal subtree
I such that all its internal edges are bad edges of T, and all its
terminal edges are good edges of T. The size of 1, denoted €(I),
is its number of internal edges.

Notice thatanisland I of T may havenointernal edge at
all, i.e. it may be restricted to a star tree (if €(I) =0). Notice
also that each bad edge of T belongs to a single island,
while each good edge belongs to exactly two islands of
T if it is an internal edge of T, or to a single island if it is
a terminal edge of T.

The following lemma (similar to Lemma 3 in Bri-
and et al. (2020)) shows that there is a one-to-one
correspondence between the islands of T and those
of T'.

Lemma 4. Let I be an island of T with the set {e;}1<j<k of
I-terminal edges, and let {e}} ;< be the corresponding set of
edges in T'. Then the subtree I of T', containing all e; edges
as I'-terminal, is unique. Moreover, it is an island of T'.

The proof for this lemma is available in the Appendix.

For any island I of T, let I’ be the corresponding island
of T'. We call (I,I') an island pair of (T, T’) (Fig. 3).

Now, let Zir 1y ={(I1.1}). (I2.I). ... (In.I},)} be the set
of island pairs of (T, T’). For 1 <i<mn, let P; be a shortest
path of labeled node edit operations transforming I; into
I’. Then the path P obtained by performing consecutively
P1,Pa,..., Py (that we represent later as P1.P;.....Py)
clearly transforms T into T’. Therefore we have

n
LRF(T.T') <> "LRF(I;.I).
i=1
As described in Briand et al. (2020), one major

issue with ELRF is that good edge contractions may
not be avoided in a shortest path of edit operations
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FIGURE 3.  Two trees T and T on 7  for L={A,B,C,D,E,F,1,]},
with a binary labeling of internal nodes (squares and circles). Dotted
lines represent good internal edges, solid lines represent bad edges,
and thin lines represent terminal edges (which are good edges).
This representation highlights the subdivision of the two trees into
the island pairs Zr 1y ={(I1,17), (I2.1}). (I3, 13), (I, I})}. Notice that each
dotted line is a terminal edge of its two adjacent islands.

transforming T into T’, resulting in island merging. In
other words, treating island pairs separately may not
result in an optimal scenario of edit operations under
ELRF, preventing the above inequality from being an
equality. Interestingly, the equality holds for the LRF
distance, as we show in the next section.

Computing the LRF Distance on Islands

We require an additional definition. Two trees I and I
of an island pair are said to share a common label l € A if
there exist x € V(I) and x’ € V(I') such that M (x) =\ (x") =L
If I and I’ do not share any common label, then (I,I’) is
called a label-disjoint island pair.

Now let (I,I') be an island pair. Transforming I into I
can be done by reducing I into a star tree by performing
a sequence of node deletions (if any, i.e., if I is not
already a star tree) and then raising the star tree by
inserting the required nodes to reach I'. Only the unique
node not deleted during the first step might require a
label substitution; for all inserted nodes, the label can

1395
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A B
( A B E
c | E C. . -F
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FIGURE 4.
pair (I.I').

An optimal sequence of edit operations for the island

be chosen to match that of I’. However, if I and I’ share
a common label / among their internal nodes, then the
deletions can be done in a way such that the surviving
node x of I is one with label \(x)=I, thus avoiding
the need for any substitution. The number of required
operations is thus €(I) deletions, followed by zero or one
substitution, followed by ¢(I’) insertions. Alternatively,
the problem can be seen as one of reducing the two trees
into star trees by performing e(I)+¢(I’) deletions, in a
way reducing the two islands into two star trees sharing
the same label, if possible. Figure 4 depicts an example
of such tree editing for a label-disjoint island pair.

The following lemma shows that reducing islands to
star trees is optimal.

Lemma 5. Let (I,I') be an element of Z(r 1v). Then:

e Ifland I’ share a common label, then LRF(I,I')=¢(I)+
e(I.

e Otherwise LRF(I,I")=e(I)+€(I")+1.
The proof for this lemma is available in the Appendix.

We have obviously LRF(T,T") < Z(I,I’)EI(T 1, LRE(, ).

It remains to show that the symmetrical inequality also
holds, that is, we cannot do better by merging islands,
and thus pairs of islands can be considered separately.

The following lemma states that we can always find
a sequence of operations, at each step maintaining or
increasing the number of islands, that is, never merging
islands. For a path P =(01,02, .. .0p) transforming a tree T
into a tree T” and 1 <k <p, denote by T} the tree obtained
from T after performing the sub-sequence of operations
Pr=(01,...0k).

Lemma 6. Let T and T’ be two trees of Tp 5. There is a
shortest path P = (01,02, ...0p) of edit operations transforming
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FIGURE 5. A path P transforming T into T" of the form P1.7,.P3. Py, each P; being a shortest path for the island pair (I;,1;). Here |P1| =6,

[P21=0, [P3]=1, and [P4]|=0.

T into T" such that for each k, 2<k<p, |I(Tx_1.T")| <
IZ(T. T)I.
The proof for this lemma is available in the Appendix.

We are now ready to prove the equality leading to the
efficient computation of the LRF distance of two trees
(see Fig. 5 for an example).

Theorem 1. Let Zir 1y={(I1,1}),(I2. 1), -, (In,I};)} be the
island pairs of T and T'. Then

n
LRF(T.T')= "LRF(I;.I))
i=1
The proof for this theorem is available in the
Appendix.

The next result directly follows from Lemma 5 and
Theorem 1.

Corollary 1. Let Zip py={(I1.17), (I2.1}). - -- . (In. I},)} be the
island pairs of T and T’ and § be the number of label-disjoint

pairs. Then

LRE(T.T) = "(e(I;) +¢(I))) + 3.

ALGORITHM

We present our algorithm for computing the LRF
distance (Algorithm 1). The input is a pair of trees T,
T of Tz p. We show that LRF(T7,T7) can be computed
in time O(n), where n=|L]|.

The algorithm operates on rooted trees, without
loss of generality. Indeed, recall that we can define a
bijection turning an unrooted tree over n leaves into its
corresponding rooted tree using an arbitrary leaf as a
root (see Notation and Concepts section). Note also that
there is a bijection between the bipartitions defined for
each branch of the unrooted tree and the clades defined
by each branch of its rooted counterpart.
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FIGURE 6.  Our implementation of LRF in Python exhibits a linear
runtime on random trees of up to 10,000 leaves. Even on these large
trees, it takes less than a second to compute LRF on an AMD EPYC
7272 processor.

The key to devising an efficient algorithm is to index
the clades of T1 in O(1). This can be achieved using the
data structure of Day (1985), who used it to introduce
an algorithm to compute the conventional (unlabeled)
Robinson-Foulds distance in O(n). To efficiently index
the clades of T7, Day renumbers the leaves of T; using
a postorder sequence. With this representation, each
clade is defined by a contiguous sequence of leaves, for
example, [5,6,7,8], which can thus be summarized by its
smallest and highest values [5, 8]. He stores the clades in
a table X of n rows, where each clade [/, 7] is stored either
in row [ or r. In this way, we can use X to check for the
existence of clade [/, 7] in constant time.

Our algorithm LRF (Algorithm 1) consists of
four tree traversals, followed by one traversal of the
aforementioned table X. The first tree traversal, of T,
renumbers the leaves of T7 in postorder and stores the
clades in X (line 1, buildX). The second tree traversal,
of T, identifies the clades of T, that are shared with
T1 using the efficient X lookup structure and marks
the “good” clades (corresponding to good edges) as
such in X (line 2, findGoodClades). The third and fourth
tree traversals, of T and T, respectively (lines 3 and
4, getlslands), identify the islands that are separated
by the good edges recorded in X, and update X with
the size and labels present in the islands of T7 and
Ty, respectively. Finally, we traverse X and use the
size and labels of all matching islands to compute the
LRF edit distance, using the formulae of Appendix-
Corollary 1 (lines 8-9). Note that for a fixed number
of labels, testing for the presence of a common label
can be done in a constant time with respect to n.
We provide more details on the implementation,
pseudocode and complexity of the tree traversal in the
Appendix. We provide an open source implementation
of LRF in Python as part of the pyLabeledRF package
(https:/ / github.com/DessimozLab/pylabeledrf).  To
empirically confirm the linearity of the algorithm, we
computed the LRF distance between random trees of
size up to 10,000 leaves. The run time averaged over 100
trees per point was almost perfectly linear (Fig. 6).

EXPERIMENTAL RESULTS

To illustrate the usefulness of LRF, we performed
two experiments. First, we compared LRF with RF and
ELRF on a labeled gene tree with random edits. Second,
we used LRF to tackle an open question in orthology
inference: does labeled gene tree inference benefit from
denser taxon sampling?

Empirical Comparison of LRF with RF and ELRF

To get a first sense of LRF’s ability to measure the
actual number of edits between two trees, we performed
a simulation study alongside RF and ELRF. We retrieved
the labeled tree associated with human gene NOX4 from
Ensembl release 99 (Yates et al. 2020), containing 182
genes, including speciation and duplication nodes. Next,
we introduced a varying number of random edits, with
10 replicates, as follows: with probability 0.3, the label
of one random internal node was substituted (from a
speciation label into a duplication one or vice versa);
the remaining probability of 0.7 was evenly distributed
among all internal edges (each implying a potential node
deletion) and all nodes of degree >3 (each providing
the opportunity of a potential node insertion). For ELRF,
consistent with its underlying model, we added the
requirement that edge removal only affects edges with
adjacent nodes with the same label.

For each of RF, LRF, and ELRF, we provide the distance
as a function of the number of random edits (Fig. 7).
As expected, the conventional RF distance returns the
smallest values because it ignores labels; it however
tracks quite well the expected number of node insertion
and/or removal (dashed line). The two labeled RF
alternatives performed similarly, but the heuristic for
ELRF occasionally exceeded the true number of edit
operations—a shortcoming that we do not have with
LRF as we have an exact algorithm for this distance. Both
labeled RF variants tracked better the actual number of
changes, until around 13 edits for LRF or ELRF, after
which the minimum edit path starts to be often shorter
than the actual sequence of random edits.

The Effect of Denser Taxon Sampling on Labeled Gene Tree
Inference

We used LREF to assess the effect of species sampling
for the purpose of labeled gene tree reconstruction.
Consider the problem of reconstructing a labeled tree
corresponding to homologous genes from 10 species.
Our question is: is it better to infer and label the tree using
these 10 species alone, or is it better to use more species
to infer and label the tree, and then prune the resulting
tree to only contain the leaves corresponding to the
original 10 species? In principle, denser sampling allow
to account for more information when resolving the
relationship between genes, and it is known to improve
unlabeled phylogenetic inference (Nabhan and Sarkar
2011). Itis unclear however how the added species affects
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increasing number of random edit operations (node insertion, deletion,
and substitution) on the NOX4 gene tree (182 leaves), using the classical
RF distance (top), the ELRF approximation (Briand et al. 2020; middle),
and the LRF exact distance (bottom).

the labeling, in one hand, improved sampling should
make easier to solve difficult case like hidden paralogy
(a duplication node appearing as a speciation node). In
the other hand, an increased number of internal nodes

may make the labeling more sensitive to errors in the
topology.

First, using ALF (Dalquen et al. 2012), we simulated
the evolution of the genomes of 100 extant species
from a common ancestor genome containing 100 genes
(Parameters: root genome with 100 genes of 432 nucleic
acids each; species tree sampled from a birth—death
model with default parameters; sequences evolved using
the WAG model, with Zipfian gap distribution; duplic-
ation and loss events rate of 0.001). In the simulation,
genes can mutate, be duplicated or lost. All the genes in
the extant species can thus be traced back to one of these
100 ancestral genes and be assigned to the corresponding
gene family. The 100 true gene trees, including speciation
and duplication labels, are known from the simulation.
In our run, the resulting gene trees had in average 100.11
leaves with a minimum of 65 and a maximum of 156.

To evaluate the inference process, among the 100
species, we randomly selected nested groups of 10, 20,
30, 40, 50, 60, 70, 80, and 90 species. We considered the
10 species in the first group as the species of interest.
All other species were used to potentially improve the
reconstruction of the gene trees for the first 10 genomes.
Then, for each group, we aligned the protein sequences
translated from homologous genes using MAFFT L-INS-
i (Katoh and Standley 2013), inferred phylogenetic trees
from the alignments using FastTree (Price et al. 2010),
and annotated their nodes using either the species tree
reconciliation or the species overlap algorithm (Van der
Heijden et al., 2007) as implemented in the ETE3 python
library (Huerta-Cepas et al., 2016). Thus, the nodes of
the tree were labeled as either duplication or speciation.
Finally, we pruned both the inferred gene trees and
the true trees to include only genes corresponding to
the 10 species of interest. The resulting trees had in
average 10.27 leaves. However, in our run, one pruned
tree ended up containing only two genes (due to losses
on early branches) and was thus excluded from the
rest of the analysis. In order to assess the influence of
the accessory species on the node labeling, we used a
variant of the same strategy where the tree annotation
step and pruning step were reversed, and the labeling of
the simulated tree was only done based on the pruned
tree with the 10 species of interest.

We used RF and LRF to assess the distance
between the estimated and true labeled trees, for the
various numbers of auxiliary genomes considered.
For each number of accessory species and over all
annotation scenarios, we computed the mean RF and
LRF distance over all gene trees (Fig. 8, Fig. S1 of
the Supplementary material available on Dryad at
http:/ /dx.doi.org/10.5061/dryad.2bvq83bpr).

The mean error either reflects the topological error
(measured by the RF distance) or both topological and
labeling errors (LRF distance). As the RF distance shows,
topological error decreases as the number of auxiliary
species increases. By contrast, the total error as measured
by LRF does not substantially decrease when species
reconciliation is performed on the augmented data set
(i.e., including accessory species; Fig. 8 upper right).
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Error bars depict 95% confidence intervals around the mean.

This is due to an increase in labeling errors when the
auxiliary species are included, which counterbalances
the reduction in topological errors observed on the
augmented trees. Thus, the best performance (lowest
topological and labeling error) is obtained when we infer
the tree using the augmented data set but perform the
reconciliation after the additional species are removed
(Fig. 8 lower right).

If we use the alternative approach of “species overlap”
to infer the speciation and duplication nodes (Van der
Heijden et al. 2007), we also observe this effect, albeit
to a much lesser extent (Fig. S1 of the Supplementary
material available on Dryad).

In conclusion, this simulation study indicates that
denser species sampling generally improves gene tree
inference but, if kept during reconciliation, these access-
ory species induce a higher event-labeling error if the
true augmented species tree is provided as input. The
best results are obtained by performing tree inference
on the augmented data but reconciliation on the pruned
trees. The improvement on the topological inference of
the gene tree is in line with our expectations, confirming
that increased sampling is generally beneficial even
to solve relations between a finite number of genes
and should be preferred whenever tractable. It is
possible than areduced “smart” sampling optimizing for

diversity and to add resolution to the longest branches
would be enough to reproduce most of benefit of a
higher sampling. Accordingly, the higher topological
improvement gained from accessory species is observed
when adding the first 10 species. The observed effect of
higher sampling on labeling gene trees is likely due to
the sensitivity to errors of the species tree reconciliation
algorithm. Indeed, even if the topology of the “target”
species tree is improved by denser sampling, the absolute
number of topological error on the larger tree is higher
and single topological error can lead to drastic changes
(principally overannotation of duplication events). The
potential benefit of using higher sampling for labeling
(e.g., case of hidden paralogy when the topology of the
smallest gene tree is not enough for accurate labeling)
seems to not be common enough in our simulation to
offset this effect.

CONCLUSION

The LRF distance introduced here overcomes the
major drawback of ELRF, namely the lack of an exact
polynomial-time algorithm. Indeed, with ELRF, minimal
edit paths can require contracting “good” edges, that is,
edges present in the two trees (Briand et al. 2020). By
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contrast, with LRF, we demonstrated that there is always
a minimal path which does not contract good edges.
Better yet, we proved that LRF can be computed exactly
in linear time. The new formulation also maintains other
desirable properties: being a metric, even for an arbitrary
number of label types, and reducing to the conventional
RF distance in the presence of trees with only one type
of label.

The LRF distance is an extension of the RF distance,
which is defined with a unit weight for the two edit
operations, as otherwise there would be no correspond-
ence with the definition using bipartitions and clades.
Moreover, as edge or node insertion and deletion have
no biological, but rather topological, meaning, it is hard
to see on which criteria weights for these operations
would be assigned. In the case of LRF however, changing
a node label is related to an evolutionary event, and
some substitutions from a duplication to a speciation
node lead to an impossible evolutionary scenario. Ban-
ning those substitutions implies strong constraints on
the intermediate allowed topologies. Alternatively, we
may be interested in giving different weights to inser-
tion/deletion versus substitution operations, penalizing
node substitution more than node insertion/deletion.
In that case however, our algorithm would not be
exact anymore as merging islands may result in fewer
substitution events. Accounting for the feasibility of
substitution events or accounting for weighted events
are interesting avenues for future work.

Finally, LRF constitutes a clear improvement over RF
in the context of gene tree benchmarking, where trees
inferred by various reconciliation models are compared
using a distance measure (Altenhoff et al. 2016; Morel
et al. 2020). Such an application was illustrated in the
simulation study of the previous section, in which we
observed that denser taxon sampling improves gene tree
inference at the topological level but that it worsens
tree reconciliation. This latter result could not have been
obtained solely using RF, which serves to illustrate the
biological relevance of LRFE.

DATA AVAILABILITY

Data and scripts for the experimental analyses
are available online at Dryad at the URL provided
as a supplementary file. The software written in
Python is available in the pylabeledrf repository at
https:/ /github.com /DessimozLab /pylabeledrf.
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APPENDIX

Proofs of Lemmas and Theorems
Proof of Lemma 1

Proof. The non-negative, identity, and triangular
inequality conditions are obvious. For the symmetric
condition, notice that we can reverse every edit operation
in a path from T to T" to obtain a path from T’ to
T with the same number of events, and vice versa
(insertions and deletions are symmetrical operations,
and any substitution can be reversed by a substitution).
We thus have LRF(T’,T) <LRF(T,T’) and LRF(T,T') <
LRE(T',T), and equality follows. O

Proof of Lemma 3

Proof. Let P be a path of edge edit operations
and label flip transforming T into T’ such that |P|=
ELRF(T,T’). Then, the sequence P’ obtained from P
by replacing each edge extension by the corresponding
node insertion, each edge contraction by the correspond-
ing node deletion and each node flip by the corres-
ponding node substitution is clearly a path of node edit
operations of size |P’|=|P|=ELRF(T,T’) transforming
T into T'. And thus LRE(T,T) <ELRK(T,T’). Figure 2
depicts an example where the inequality is strict. O

Proof of Lemma 4

Proof. For 1<i<k, let e;=(x;,y;), y; being a leaf of
I, and let Y;=L(Ty,). As U;Y;=L, any subtree I' of T’
containing the set {¢;}1 <;<¢ as I'-terminal edges does not
contain any other I’-terminal edge. As T’ is a tree, for
any 1<i#j <k, there is only one possible path from x; to
x]{. Uniqueness follows. Suppose that such a subtree I is

notanisland. Then, it contains an internal good edge ¢’ =
(x’,y). In other words, there is a non-trivial bipartition of
{Yi}1 <i<x which s also a bipartition in I. This contradicts
the fact that I is an island of T. Finally, as all terminal
edges of I are good edges of T’, it follows that I’ is an
island of T". O

Proof of Lemma 5

Proof. The scenario depicted above for transforming
I into I’ clearly requires €(I)+¢(I') node insertions and
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deletions, and an additional node label substitution in
case I and I’ are label-disjoint. We can conclude that
LRF(I,I') <e(I)+¢€(I')if I and I’ share a common label and
LRF(I,I") <e(I)+€(')+1, if I and I’ are label-disjoint.
On the other hand, as all the edges of I are bad
edges, they should be all removed, before reinserting
those of I'. Now, since an edit operation can remove
or insert at most one edge, and the only operations
removing an edge are node removal or node insertion,
we clearly require at least €(I)+¢(I') node removals and
insertions to transform the unlabeled form of the tree I
into the unlabeled form of I’. Furthermore, as deletions
do not affect star nodes, at least one node in I should
survive (i.e., not be affected by a node deletion). Thus,
if the two trees are label-disjoint, then at least one node
label substitution is required. We can then conclude that
LRF(I,I')>e(I)+¢(I') if [ and I’ share a common label
and LRF(I,I") > e(I)+€(I')+1,if [ and I’ are label-disjoint,
which concludes the proof. O

Proof of Lemma 6

Proof. Let P=(01,02,---0p) be a shortest path trans-
forming T into T". Denote €(Ty, T') =} jyez(r,. 7€) +
('), and £(Ty, T’) the number of label-disjoints pairs of
I(Tg. T').

Assume P contains an operation reducing the number
of islands of T;_1, and let o; be the last operation of that
form, i.e. |Z(T;_1,T')| > |Z(T;, T")|. Such an operation can
only be a deletion Del(T;_1,x,y) where e={x,y} is a good
edge, thus merging the two islands Iy, I containing this
good edge.

As, by assumption, o; is the last operation merging
two islands, at that point each pair of islands is treated
separately, and we deduce from the fact that P is a
shortest path that LRE(T;, T') =3 jyez(r, 1) LRF(.I'),
and thus

LRF(T;—1. T") =1+ 1yez(r,, 7) LRE(L,I'). Then, from
Lemma 5, LRE(T;_1,T')=1+¢(T;, T')+&(T;, T').

On the other hand, there is a path from T;_1 to T’ of
size ¢(T;—1,T')= €(Ti—1, T")+&(Ti-1, T").

As 0; is a deletion of a good edge e={x,y}, it destroys
the bipartition defined by this edge in T;_1, consequently
the corresponding edge in T’ becomes a bad edge.
Therefore, €(T;_1, T )=¢(T;, T")—1.

On the other hand, let §=§(T;,T")—%(T;_1,T’) be the
difference between the number of label-disjoint pairs of
islands after performing the operation o; merging two
pairs of islands (I1,1;) and (I2, 7).

e If both pairs (I1,I}) and (I,I}) share a common
label, then the merged pair also shares a common
label, and thus § =0;

e If both pairs (I1,I]) and (I,I}) are label-disjoint,
then after the merging the resulting pair of islands
may or may not share a common label and thus
—2<¥d<-1,;

* Ifonly one of the two pairs (I1,I7) and (I, I)) share a
common label, then after the merging, the resulting
pair of islands may or may not share a common
label and thus —1 <3 <0.

Therefore, in all cases we have &(T;,T') <&(T;_1,T') <
g(T;, T)+2.

Recall  ¢(Ti_1,T")=€(T;_1,T")+&(Ti_1, T")=¢(T;, T')
—14§(Ti—1. T).

Thus ¢(T;_1,T") <e(T;, T') = 14+8(T;, T ) +2=¢(T;, T') +
g(T;,T")+1 =LRF(T;_1,T’). As LRF(T;_1,T’) is the size
of the shortest path from T;_1 to T/, we should have
C(Tz‘_l , T/) = LRF(TZ‘_1 s T/).

Therefore, replacing the sequence of operations
(04, ...0p) on T;_1 by a sequence of operations solving each
pair of islands separately leads to the same number of
operations. O

Proof of Theorem 1

Proof. Let P beashortest path transforming T into T’
verifying the condition of Lemma 6, that is, not involving
any removal of good edges. As islands can only share
good edges, and good edges are never removed by
any operation of P, islands are never merged during
the process of transforming T into T’, and thus can be
treated separately. Let P;, 1<i<mn, be the subpath of
edit operations transforming I; into Ilf . Each P; should
be a shortest path from I; to I} as otherwise it can be
replaced by a shortest path, contradicting the fact that P
is a shortest path. O

Algorithm Implementation

The algorithm LRF (Algorithm 1) consists of four tree
traversals, followed by one traversal of a table X of n row,
where 7 is the number of leaves of the trees T1 and T2.
The first tree traversal (Algorithm 2) is essentially Day’s
BUILD(T, X) function. The only noteworthy difference
is that each row of X contains additional attributes
(i.e., additional columns): a Boolean variable to indicate
whether a clade is shared among T7 and T5 (i.e., whether
it is a “good” clade), and for good clades, the size and
labels of the islands of T and T» rooted in these clades.

Algorithm 1 LRF(T1,T»)

1: X=buildX(Tq)
findGoodClades(T, X)
. getlslands(T1, X, isT1 =TRUE)

@ N

4: getlslands(T,, X, isT1 =FALSE)

5. €=8=0

6: for clade e X:

7. if clade.isGood:

8: € += clade.islandSize1 + clade.islandSize,

9: if clade.islandLabels1 Nclade.islandLabels) == @:
10: d+=1

11: return ¢+3
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Algorithm 2 buildX(T7)

Algorithm 4 getlslands(T, X,isT1)

1: n="T1.numLeaves

2: X =new table with n rows
3:i=0

4: function traverseT (t):

5 if t is a leaf:
6: i+=1
7: X[t.index].newlndex =i
8: returni,i
9 else:
10: LuinsYmax=mn,1
11: for c ct.children:
12: I, r=traverseT(c)
13: Luins Ymax = min(l, L;i,), max(r, 7yax)
14: Xpinll = X[rmax].l = Lin
15: Xyinlr = X[max].r = rmax
16: X(Lyin)-isGood = X[rmax].isGood = FALSE
17: t.clade =[1,,i1, "max]
18: return Ly, "max

19: traverseT(T1)
20: return X

Algorithm 3 findGoodClades(T7, X)

1: n=Ty.numLeaves
2: function traverseT (t):

if t is a leaf:
i=X[t.index).newlndex
returni,i,1

Lisin, Ymax, numLeaves =n,1,0
for c et.children:

3
4
5:
6: else:
7.
8
9 1,r,w=traverseT(c)

10: Lins Tmax =min(l, Ly, ), max (v, 7imax)

11: numlLeaves += w

12: if numLeaves ==7 5 — Lyin +1:

13: if X([Lyin)l==1lyin and X[Lyin]. 1 =="max:
14: X[linl.isGood =TRUE

15: T .clade =[Lyin, "max]

16: else if X[7yax].l==1yin and X[Fax].t =="max:
17: X["max1.isGood =TRUE

18: t.clade = [Lin, "max]

19: else:

20: t.clade=[1,1]

21: return Ly, , "yax, numLeaves

22: traverseT (T7)

We also store the clade information in each internal node
of Tq (line 17). Like in Day (1985), all the operations
performed at each node of the traversal are O(1), giving
an overall runtime of O(n) for this first traversal.

The second tree traversal (Algorithm 3) is similar to
Day’s COMCLUST function. It traverses T in postorder,
renumbering the leaves in a way consistent with X (line
4), but keeping track not only of the minimum and
maximum leaf number contained in each clade but also
the number of such leaves. If a clade of T, is in Tq, the set
of leaves comprised in that clade will satisfy the property
of forming a contiguous sequence L,L+1,..,R of length
R—L+1 (I. 12). Furthermore, that clade will be stored

1: n=length(X)
2: function traverseT(t, parentIsland):

3 if t is not a leaf:
4 [I,r]1=t.clade
5: row=-—1
6: if X[I].I==I and X[l].r==r and X[!].isGood:
7: row=1
8 else if X[r].l==Iand X[r].r==r and X[r].isGood:
9: row=r
10: if row # —1:
11: islandld =row
12: if iSTll
13: X[row].islandLabels1 = {t.label}
14: X[row].islandSizel =0
15: else:
16: X[row].islandLabels2 = {t.label}
17: X[row].islandSize2 =0
18: else:
19: islandld = parentIsland
20: if isTq:
21: XlislandId).islandLabels1.add({t.label})
22: XlislandId].islandSizel += 1
23: else:
24: XlislandId).islandLabels2.add({t.label})
25: XlislandId].islandSize2 += 1
26: for c et.children:
27: traverseT (c,islandld)
28: traverseT(T,n)
29: return

in X either at row L (line 13) or R (l. 15); either way, we
mark that clade as good (1. 14 or 16). For good clades, we
store the clade information in each internal node of the
tree (1. 15, 1. 18); else we store a dummy clade [1,1] (1. 20).
Like in Day (1985), all the operations performed at each
node of the traversal are O(1), giving an overall runtime
of O(n) for this second traversal as well.

Finally, the third and fourth tree traversals are per-
formed using getlslands (Algorithm 4). As twoislands are
separated by a good edge, we can identify an island by
the good edge (i.e., the good clade) in which it is rooted,
and can thus store island information in the row of X
which corresponds to that good edge. We thus traverse
the tree, keeping track for each island of (i) the set of
labels found in each island (attributes islandLabels1 and
islandLabels2); (ii) the number of bad edges in each island
(attributes islandSizel and islandSize2). Lines 2-27 define
the recursive function used to traverse the tree. We check
whether a particular node is attached to the previous
island by a good edge or a bad edge (1. 4-9). If it is a
good clade (1. 10-17), we have just transitioned to a new
island and thus initialize the island label sets and island
size (1.13-14 for Tq or 1. 16-17 for T»). If it is a bad clade
(1. 18-25), then we are still part of previous island, so we
just update the set of leaves of the previous island (1. 21
or 1. 24), and increment its size counter by one (l. 22 or
1. 25). All operations performed at each internal node are
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constant time, and the number of internal nodes is O(n),
so the time complexity of the tree traversal is done in
time O(n).

Theorem 2. The time complexity of algorithm 1 is O(n).

Proof. As described above, the algorithm consists
of four tree traversal, each running in O(n), and one
traversal of the table X containing n rows, with a constant
number of operation per row. This gives an overall time
complexity of O(n). O
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