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Owing to recent advances in genomic technologies, personalized oncology is poised to fundamentally alter cancer
therapy. In this paradigm, the mutational and transcriptional profiles of tumors are assessed, and personalized treatments
are designed based on the specific molecular abnormalities relevant to each patient’s cancer. To date, such approaches
have yielded impressive clinical responses in some patients. However, a major limitation of this strategy has also been
revealed: the vast majority of tumor mutations are not targetable by current pharmacological approaches. Immunotherapy
offers a promising alternative to exploit tumor mutations as targets for clinical intervention. Mutated proteins can give rise to
novel antigens (called neoantigens) that are recognized with high specificity by patient T cells. Indeed, neoantigen-specific
T cells have been shown to underlie clinical responses to many standard treatments and immunotherapeutic interven-
tions. Moreover, studies in mouse models targeting neoantigens, and early results from clinical trials, have established
proof of concept for personalized immunotherapies targeting next-generation sequencing identified neoantigens. Here,
we review basic immunological principles related to T-cell recognition of neoantigens, and we examine recent studies that
use genomic data to design personalized immunotherapies. We discuss the opportunities and challenges that lie ahead
on the road to improving patient outcomes by incorporating immunotherapy into the paradigm of personalized oncology.
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introduction
We have entered an era in which personalized cancer interven-
tions based on genomic data have great potential to improve
patient outcomes. Proteins bearing somatic mutations represent
ideal therapeutic targets, as they are often expressed exclusively
by cancer cells. Recognizing this, many cancer centers are imple-
menting personalized oncology programs that aim to use genomic
approaches to identify optimal targeted therapies for individual
patients. While this is an exciting and rational approach, it suffers
from a major limitation: many cancer mutations are not easily
‘druggable’ by current pharmaceutical agents. T-cell-activating
therapies are attractive alternatives, as in theory, T cells can rec-
ognize immunogenic mutations in any expressed protein, irre-
spective of the protein’s biochemical function or subcellular
location. Moreover, immunotherapies such as checkpoint block-
ade and adoptive T-cell therapy are yielding remarkable suc-
cesses in the clinic. Intriguingly, genomic studies are revealing

that mutated proteins are often the main target antigens under-
lying these successes [1, 2]. On the basis of such findings, we
discuss the rationale and evidence for including mutation-
targeted immunotherapeutic approaches in personalized oncol-
ogy programs.

using next-generation sequencing
to personalize cancer therapy
Next-generation sequencing (NGS), including whole-genome se-
quencing, whole-transcriptome sequencing, whole-exome se-
quencing, and targeted sequencing, has dramatically expanded
our understanding of cancer. NGS can identify tumor-specific
alterations in the genome and transcriptome that influence cancer
development, progression, and response to treatment. Initially, it
was hoped that sequencing tumors would reveal a circumscribed
set of druggable, recurrently mutated genes responsible for the
malignant phenotype (i.e. driver mutations). However, sequencing
of the first tumor genome in 2008 [3] and the thousands of tumor
genomes since has dampened these hopes. The majority of driver
genes identified to date are mutated in at most a few percent of
patients [4]. Indeed, large-scale sequencing projects like The
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Cancer Genome Atlas (TCGA) continue to identify new onco-
genes as more tumors are sequenced [5, 6]. Moreover, most
somatic tumor mutations are thought to be passengers and not
implicated in tumorigenesis [4, 7, 8]. Furthermore, the muta-
tional load differs by over three orders of magnitude within and
between cancer types [4, 7, 8]. Collectively, the mutational diver-
sity revealed by NGS emphasizes the need for personalized
treatments that exploit the unique mutation profile of each
tumor.
The first genomics-guided personalized cancer treatment was

administered to a patient with adenocarcinoma of the tongue
[9]. Integrated analysis of genome and transcriptome data
revealed a putative driver mutation in the PTEN gene, as well as
overexpression of the RET gene. Although tongue adenocarcin-
oma is not normally treated with RET inhibitors, on the basis of
the NGS data, the patient was given the RET inhibitor Sunitinib,
which led to temporary disease stabilization. In another study,
NGS of a thyroid cancer identified a personal point mutation in
mTOR that conferred resistance to the mTOR inhibitor everoli-
mus [10]. Based on early case reports such as these, several
centers have initiated personalized cancer therapy trials in which
NGS data are used to inform treatment decisions [11–13]. One
group sequenced a panel of 182–236 known driver genes in
highly aggressive tumors from 34 patients [11]. Patients received
one or more drugs tailored to their mutation profile. Of 11 assess-
able patients, 3 achieved a partial response and 4 achieved stable
disease. While these results are encouraging, the majority of
mutant gene products are not targetable with the current arma-
mentarium of pharmaceuticals, thereby limiting the efficacy and
broader applicability of personalized cancer therapy [14, 15].
Furthermore, there is limited financial incentive for pharma-
ceutical companies to develop drugs for rare driver mutations
with niche markets. These factors severely limit pharmacological
approaches to personalized cancer therapy.

recent advances in cancer
immunotherapy
Several immunotherapies have yielded impressive results in the
clinic. Recently, the immune modulatory antibodies ipilimumab
(Yervoy) and pembrolizumab (Keytruda) received FDA approv-
al for treatment of metastatic melanoma [16, 17], and nivolu-
mab received FDA approval for melanoma and nonsmall-cell
lung carcinoma (NSCLC) [18, 19]. These antibodies block signal-
ing of inhibitory T-cell surface receptors cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) (for ipilimumab) and programmed
cell death 1 (PD-1) (for pembrolizumab and nivolumab) [20, 21].
The net effect is to enhance T-cell reactivity toward tumors. The
first published phase III clinical trial of nivolumab demonstrated
a remarkable objective response rate of 40% in highly pre-
treated metastatic melanoma patients [18]. Another strategy for
inducing antitumor immunity is to use cancer vaccines to acti-
vate T cells specific for tumor antigens. Multiple formulations of
cancer vaccines have yielded increased survival in phase II trials
in prostate, breast, lung, and other cancers [22–24], and some
have entered phase III clinical trials [25, 26]. A third form of
immunotherapy is adoptive cell therapy (ACT), where tumor-
infiltrating lymphocytes (TILs) are harvested from tumor tissue,

expanded ex vivo, and transferred back to patients in large
numbers [27]. Phase I and II clinical trials using ACT have
resulted in response rates of over 50% in metastatic melanoma
patients [28, 29]. More recently, ACT with T cells engineered to
recognize the B-cell marker CD19 via chimeric antigen recep-
tors have yielded response rates of 80% in acute lymphocytic
leukemia [30]. These studies provide unequivocal evidence of
the profound antitumor effects of T cells under specific circum-
stances. However, with the exception of a few lineage-specific
targets like CD19, the antigens that underlie many successful
antitumor immune responses have remained largely unknown
due to the technical challenges associated with identifying T-cell
antigens.

a brief primer on T cells and antigen
presentation
To understand how the immune system recognizes tumor cells,
one needs to consider the basic mechanisms of antigen recogni-
tion by T cells. T-cells mature in the thymus, where somatic re-
arrangement of the T-cell receptor (TCR) locus creates a unique
TCR for each T cell. Also within the thymus, self-reactive T cells
are deleted through a process called negative-selection or central
tolerance. The result is a mature T-cell repertoire with limited
reactivity to self but strong reactivity to foreign antigens. The
TCR on T cells recognizes antigens as short peptides (called epi-
topes) bound to the major histocompatibility complex (MHC)
on the target cell surface. Only a few peptides from each protein
have favorable biochemical characteristics to allow them to be
proteolytically cleaved from the parent protein and bound to
MHC. There are two types of MHC molecules encoded by
human leukocyte antigen (HLA) genes: MHC class I (MHCI)
and MHC class II (MHCII). Almost all nucleated cells express
MHCI, which presents epitopes to ‘killer’ CD8+ T cells, also
called cytotoxic T lymphocytes (CTLs). CTL can directly lyse
cells that display cognate epitopes on MHCI, and this is thought
to be the most important mechanism underlying antitumor im-
munity. Professional antigen-presenting cells (APCs) express
MHCII, which presents epitopes to CD4+ T-helper cells (Th).
Th cells can have multiple antitumor functions such as directly
killing tumor cells, augmenting CD8+ T-cell responses, and ac-
tivating innate antitumor immune cells [31]. Most commonly,
T cells recognize antigens derived from pathogens; however,
T cells can also recognize tumor antigens, if they are sufficiently
different from self-proteins found in healthy tissue.

classes of tumor antigen
Tumor antigens fall into several major groups, each with distinct
advantages and disadvantages as targets for cancer immuno-
therapy. First, cancers of viral origin express virus-derived pro-
teins that can be recognized by the immune system. For
example, the E6 and E7 proteins from human papillomavirus
make ideal immunotherapy targets [32]. Second, many human
cancers express cancer-testis antigens [33]. These proteins are
normally expressed only in adult gametes, but can be aberrantly
expressed in tumors due to hypomethylation and gene dysregu-
lation [34]. While the tumor-restricted expression pattern of CT
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antigens makes them attractive targets for immunotherapy,
typically they are expressed by only a portion of tumor cells and
are dispensable for tumor cell survival [35]. Third, oncogenes
with increased expression due to amplification or other mechan-
isms can give rise to ‘overexpressed’ T-cell antigens. Examples
include human epidermal growth factor receptor 2 on breast
and ovarian carcinomas [36–38], and mouse double minute 2
homolog in multiple cancers [39]. Fourth, proteins that are dif-
ferentially expressed in the tissue of origin of the tumor can give
rise to ‘differentiation’ antigens. For example, melanomas often
express the differentiation antigens MART1, gp100, and tyrosin-
ase [40, 41]. Since differentiation and overexpressed antigens are
also present in healthy tissue, T-cells recognizing these classes of
antigens are often low affinity as a result of thymic negative-
selection [39, 42, 43]. Moreover, targeting such antigens with
immunotherapy brings the risk of autoimmune toxicity [44].
Finally, as discussed next, mutations represent a unique class of
tumor antigen that has recently become experimentally access-
ible as a result of NGS advances.

mutations can give rise to neoantigens
that are recognized by T cells
Tumors develop tens to thousands of coding mutations during
the process of tumorigenesis. A small proportion of mutations
affect the extracellular domains of cell surface proteins, such as
the EGFRvIII mutation, providing unique targets for antibody-
based immunotherapies [45, 46]. However, to be recognized by
T cells, mutations need to be processed and presented on MHCI
or MHCII, giving rise to so-called neoantigens. Neoantigens can
arise when mutations affect either TCR contact residues [47] or
anchor residues in peptide epitopes with affinity for MHCI or II
[48]. Even a single amino acid substitution can yield an epitope
that is sufficiently different from self to mark tumor cells for
T-cell-mediated destruction. The concept of neoantigens is not
new. By screening tumor-derived cDNA libraries with tumor-
reactive T-cell clones, several early studies provided anecdotal
examples of immune system recognition of neoantigens [49–
51]. Such studies demonstrated that neoantigens can be derived
from both driver [52–54] and passenger genes [55, 56] and are
present in many different types of tumors, including melanoma
[57], renal cell carcinoma [58], oral squamous cell carcinoma
[52], colorectal carcinoma [59], lung carcinoma [60], and
chronic myelogenous leukemia [61]. Some studies have indi-
cated that neoantigens can be the predominant class of antigen
recognized by TIL [33, 62]. Furthermore, neoantigen-specific
T-cell responses have been associated with complete or partial
tumor regression either spontaneously or after therapy [63–65].
As therapeutic targets, neoantigens have several advantages

over other classes of tumor antigen. First, neoantigen-specific
T cells are not subject to thymic or peripheral tolerance;
therefore, high-affinity T-cell clones are available for immuno-
therapy [66]. Notably, T cells bearing TCRs with high affinity
for their cognate antigens have greater cytotoxic capacity, longer
persistence in the tumor environment, and decreased suscepti-
bility to immune suppression [67]. Second, while differentiation
and overexpressed antigens are expressed by nontumor tissues,
neoantigens are exclusively expressed by tumor cells, reducing

the potential for off-target toxicity. Third, while viral and CT
antigens may be expressed in only a limited number of tumors,
NGS has revealed that a large proportion of tumors express mul-
tiple mutant gene products that could potentially serve as T-cell
targets [4]. However, as discussed next, it remains a major tech-
nical challenge to identify bona fide neoantigens from the tens
to thousands of tumor mutations identified by NGS.

computational approaches facilitate
identification of neoantigens
Until recently, the identification of personal neoantigens
required highly labor-intensive techniques that precluded
routine use in the clinic. Advances in NGS and epitope predic-
tion are starting to address this feasibility issue. In addition
to mutation profiles, a patient’s HLA type can be extracted
from NGS data with high accuracy [68], thereby enabling
in silico epitope prediction to identify candidate neoantigens.
Epitope prediction algorithms assign scores to queried peptide
sequences based on similarity to known HLA-binding peptides
[69]. Prediction accuracy is highest for common HLA alleles for
which more training data are available [69]. Two complemen-
tary retrospective analyses have emphasized the ability of NGS
and epitope prediction algorithms to identify targets of spontan-
eous, tumor-reactive T cells. One study found that epitope pre-
diction correctly identified 87% of published neoantigens [63]
(using the conventional IC50 cutoff of <500 nM [70]). The
second study found that exome sequencing and epitope predic-
tion correctly identified 76%–82% of published neoantigens
[71]. Although these predictive algorithms demonstrate high
sensitivity, their specificity is difficult to assess due in large
part to the issue of antigen processing. While peptide binding
to MHCI can be predicted with reasonable accuracy, only
15%–20% of predicted peptides are naturally processed, which
is an essential precondition for MHCI presentation [72, 73].
Algorithms for antigen processing prediction have been devel-
oped and are continually improving [74], but their sensitivity
is not yet adequate for clinical use [75]. Furthermore, it is
estimated that the human T-cell repertoire can recognize only
∼50% of potential neoantigens [72, 73]. Thus, to identify tumor
neoantigens recognized by patient T cells, predicted neoantigens
must still undergo empirical validation.
An alternative to predicting epitopes is to use tandem mini-

genes to interrogate tumor mutations [76, 77]. In this approach,
RNA encoding tumor-specific mutations and flanking sequences
is transfected into autologous APCs. T-cell recognition of the
APCs is then assessed by ELISPOT or upregulation of T-cell
activation markers.

NGS and epitope prediction for
interrogating T-cell responses to cancer
Despite current limitations of epitope prediction, NGS has been
used successfully to identify tumor-specific T cells in the set-
tings of conventional therapy, checkpoint blockade, vaccines,
and ACT:
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neoantigen-reactive T-cell responses arise during
conventional therapies
Several studies have used NGS to identify and monitor neoanti-
gen-specific T-cell responses during conventional therapies. In
one study, T-cell responses to neoantigens were tracked during
progression from primary to recurrent disease in a patient with
high-grade serous ovarian cancer. Of 40 somatic mutations
identified by whole-exome sequencing [78], one was recognized
by a CD8+ T-cell clone present in ascites [79]. Interestingly, the
mutation was at low abundance in the primary tumor, and the
corresponding T-cell response was undetectable. By first recur-
rence, the mutation was abundant in the tumor, and the T-cell
response first appeared. By second recurrence, the T-cell re-
sponse became undetectable despite continued MHCI presenta-
tion of the mutant neoantigen by tumor cells. Thus, this
provides an example of the immune system mounting a specific
but ultimately unsuccessful response against the evolving tumor
genome during standard treatment. In another study, neoanti-
gen-specific CD8+ T-cell responses were detected in peripheral
blood from two chronic lymphocytic leukemia patients who
achieved long-term remission following allogeneic hematopoi-
etic stem-cell transplantation [80]. In a melanoma study, neoan-
tigen-specific CD4+ T-helper cells were identified in TIL from
two of three patients [81]. Collectively, these studies show that
neoantigen-specific CD8+ and CD4+ T-cell responses can occur
spontaneously or during conventional cancer therapies.

predicted neoantigens are associated with patient
survival
In a study analyzing data from TCGA, the potential immuno-
genicity of 22 758 missense mutations from 515 tumors across
six cancer types was assessed in silico [82]. The study found that
the number of predicted neoantigens was positively associated
with CD8+ T-cell infiltration and patient survival. Moreover, a
study of endometrial cancers found that patients with high
numbers of immunogenic mutations due to dysfunctional DNA
proofreading was associated with an increased cytotoxic immune
signature, and improved survival [83]. These results were corro-
borated and extended by a study which revealed a positive rela-
tionship between mutational load and cytotoxic immune cell
signatures within tumors [84]. Interestingly, the authors also
found that the frequency of predicted highly immunogenic
mutations was lower than expected in some tumor types, raising
the possibility that T cells may have exerted selective pressure
against tumor cells expressing neoantigens.

neoantigen-specific T cells in checkpoint blockade
therapy
Several lines of evidence suggest that neoantigens are important
for effective antitumor responses induced by immune check-
point blockade. For example, patients with tumor types that harbor
large mutational burdens—such as melanoma and NSCLC—
experience the best response rates to PD-1 blocking antibodies
[64, 85]. Moreover, colorectal cancer patients with large muta-
tional burdens due to defects in mismatch repair proteins
responded more favorably to PD-1 blockade [86]. Additionally,
melanoma patients with high mutational loads respond more
favorably to ipilimumab [65]. In this latter study, the authors

proposed the intriguing concept that some neoantigens might
mimic viral pathogens, although corroborating evidence has not
been found in other studies [87]. Further evidence for the role of
neoantigen-specific T cells in checkpoint blockade therapy was
provided by a study of a murine sarcoma model [88]. After treat-
ing tumor-bearing mice with either PD-1 or CTLA-4 blocking
antibodies, NGS was used to identify two neoantigen-specific
T-cell responses in TIL. The neoantigen-specific T cells were
activated strongly by checkpoint blockade and mediated a
potent antitumor effect in vivo. Finally, in a case report of a
melanoma patient who responded well to ipilimumab, T-cell
responses against two neoantigens expanded fivefold during ipi-
limumab treatment in step with the clinical response to therapy
[89]. These studies support the hypothesis that neoantigens are
key T-cell targets underlying effective checkpoint blockade.
Potentially, the number of mutations within a tumor may be
useful for prospectively identifying patients who will respond
favorably to checkpoint blockade (Figure 1).

neoantigens as vaccine targets
A compelling use of NGS is to guide the design of personalized,
neoantigen-specific therapeutic cancer vaccines. In a preclinical
study involving the murine melanoma cell line B16, NGS identi-
fied over 500 mutations, of which 50 with favorable epitope
prediction and expression levels were targeted with peptide vac-
cines [90]. Two of these peptide vaccines extended the survival
of mice bearing established B16 tumors. The authors subse-
quently extended these results and found that neoantigen-
specific CD4 T-helper cells were important mediators of the
antitumor responses, and combining several mutant targets in a
single vaccine improved survival of tumor-bearing mice [91].
Additional studies have demonstrated the efficacy of mutation-
specific peptide vaccines in mouse models of colon cancer and
carcinogen-induced sarcoma [47, 48, 88]. Based on these pre-
clinical successes, at least two personalized neoantigen-targeted
trials using either mutant RNA or mutant peptides as antigens
are currently recruiting melanoma patients [92, 93]. The first
NGS-based neoantigen vaccine trial was recently published and
involved three metastatic melanoma patients. Nine mutated
peptides were found to induce activation of neoantigen-specific
CD8 T cells, and these T-cell responses fell into three categories:
(i) those detected before vaccination and subsequently expanded,
(ii) those detected only after vaccination, and (iii) those activated
toward neoantigens that were not naturally processed and there-
fore not useful for immunotherapy. These data demonstrate that
neoantigen-specific T cells can be activated by vaccination in
cancer patients [94].

neoantigen-specific T cells in ACT
Several studies suggest that neoantigens are important targets
during successful ACT. In a study of three melanoma patients
who responded favorably to ACT [95], NGS identified 264–574
nonsynonymous mutations per case. TIL products were assayed
for recognition of predicted mutant peptides and found to rec-
ognize two to three neoantigens in each patient. For one patient,
neoantigens accounted for the majority of the tumor-specific
T-cell response, suggesting that neoantigen-specific T cells may
be important effector cells during ACT. In another study by the
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same group, NGS was used to identify neoantigen-specific T-cell
responses in two patients who had achieved durable responses to
ACT [96]. These neoantigens were not identified when conven-
tional screening methods were used on the same TIL product,
indicating that NGS can identify neoantigens that are missed by
other methods. The above findings were corroborated and
extended in a study interrogating Th cells from two patients
who responded favorably to ACT [81]. The study found that
neoantigen-specific Th responses comprised a substantial pro-
portion of the ACT product, yet these T cells were undetectable
in peripheral blood before ACT. Together, these findings suggest
that neoantigen-specific T cells are important mediators of
successful ACT in melanoma.

Similar approaches are now being applied to other types of
cancer, as illustrated by a recent case report involving a patient
with metastatic cholangiocarcinoma [77]. The patient received
ACT and experienced tumor stabilization for 13 months. NGS
revealed that ∼25% of the TIL product used for ACT comprised a
neoantigen-specific CD4+ T-cell clone recognizing a point muta-
tion in the putative tumor suppressor ERBB2IP. On progression,
exome sequencing showed that the tumor continued to express the
mutation; therefore, a near clonal population of mutation-specific
T cells was selected for infusion. Subsequently, the patient experi-
enced tumor regression without new tumor growth for at least 6
months after ACT. Although speculative, continued expression of
the mutation despite the severe immune pressure exerted by ACT
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Figure 1. Proposed use of NGS data to personalize immunotherapy. The goals of immunotherapy are to either potentiate pre-existing antitumor T-cell

responses or initiate antitumor T-cell responses if antitumor immunity is low. The level of pre-existing tumor immunity can be assessed by measuring the level
of T-cell markers in RNA-seq data [84]. The total mutation load can be determined using whole-genome or whole-exome sequencing (WGS/WES). (A)
Patients with low T cells and low mutation load may benefit most from personalized tumor-associated antigen (TAA)-specific vaccines to activate T cells
towards highly expressed TAA, which can be identified using RNA-seq data. (B) Patients with low T cells and a high mutation load may benefit most from
neoantigen-specific vaccines. (C) Patients with high T cells but a low mutation load may benefit most from standard ACT, to amplify intratumoral T cells
against undefined antigens. (D) Patients with high T cells and high mutation load may benefit most from either checkpoint blockade, to relieve T-cell suppres-
sion, or neoantigen-targeted ACT, to amplify the mutation-reactive T-cell response. Combination therapies can also be used.
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suggests that mutant ERBB2IP may have been critical for tumor
proliferation or survival. This study emphasizes the potential of
using NGS to deliberately target mutations by ACT (Figure 1).

what proportion of mutations gives rise
to neoepitopes?
For mutations to be of general utility as targets for immunotherapy,
a reasonable proportion must give rise to bona fide MHCI- or
MHCII-binding epitopes. However, at present, there is very little
information regarding the proportion of mutations that meet this
criterion. In the aforementioned studies involving TIL, ≤1% of
tumor mutations elicited T-cell responses [80, 81, 89, 95].
However, these studies were designed to detect only pre-existing T-
cell responses. What has yet to be quantified systematically is the
proportion of mutant peptides that are presented by MHCI or
MHCII but ignored by the immune system. Clinical trials have
shown that vaccination can induce de novo T-cell responses to
mutations in genes such as BCR-ABL, P53, and RAS [61, 94, 97,
98], lending support to the notion that neoantigens can be ignored
by the immune system in the absence of intervention. Thus, an im-
portant area for future research is to develop methods to predict,
quantify, and therapeutically target neoantigens that evade spon-
taneous immune recognition.

conclusions and future directions
As NGS plays an increasing role in the care of cancer patients, op-
portunities will arise for the rational design of targeted immuno-
therapies (Figure 1). Already, NGS has helped researchers discover
that neoantigen-specific T-cell responses are implicated in the effi-
cacy of checkpoint blockade and ACT. Building on these early
findings, one can envision several clinical applications in the near
term, including (i) stratifying patients for checkpoint blockade
based on the number of predicted neoantigens in tumors; (ii) de-
termining the effective dose and duration of checkpoint blockade
by tracking neoantigen-specific T-cell responses over time; (ii)
designing personalized vaccines encoding predicted neoantigens
[94]; and (iv) generating neoantigen-specific T-cell products for
ACT [77] (Figure 1). To fully realize these possibilities, we require
improved methods to reliably identify authentic neoantigens from
among the tens to thousands of mutations found in human
tumors. NGS can identify mutations with high sensitivity, and
epitope prediction algorithms can accurately predict MHCI bindi-
ng of mutant peptides. However, three major remaining challenges
are (i) to predict accurately which neoantigens are naturally proces-
sed to yield MHCI-binding peptides presented by tumor cells; (ii)
to identify and track neoantigen-reactive T cells in a high-through-
put manner; and (iii) to develop immunotherapies that effectively
mobilize neoantigen-reactive T cells in cancer patients. Based on
the evidence provided by the studies reviewed here, efforts applied
on these fronts will facilitate the advancement of immunotherapy
as a central modality of NGS-guided personalized oncology.
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