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Dispersal mechanisms and competition together play a key role in the spatial distribution of a pop-
ulation. Species that disperse via fission are likely to experience high levels of localized competitive
pressure from conspecifics relative to species that disperse in other ways. Although fission dispersal
occurs in many species, its ecological and behavioural effects remain unclear. We compared foraging
effort, nest spatial distribution and aggression of two sympatric ant species that differ in reproductive
dispersal: Streblognathus peetersi, which disperse by group fission, and Plectroctena mandibularis, which
disperse by solitary wingless queens. We found that although both species share space and have similar
foraging strategies, they differ in nest distribution and aggressive behaviour. The spatial distribution of
S. peetersi nests was extremely aggregated, and workers were less aggressive towards conspecifics from
nearby nests than towards distant conspecifics and all heterospecific workers. By contrast, the spatial
distribution of P. mandibularis nests was overdispersed, and workers were equally aggressive towards
conspecific and heterospecific competitors regardless of nest distance. Finally, laboratory experiments
showed that familiarity led to the positive relationship between aggression and nest distance in
S. peetersi. While unfamiliar individuals were initially aggressive, the level of aggression decreased within
1 h of contact, and continued to decrease over 24 h. Furthermore, individuals from near nests that were
not aggressive could be induced to aggression after prolonged isolation. Overall, these results suggest
that low aggression mediated by familiarity could provide benefits for a species with fission reproduction
and an aggregated spatial distribution.
� 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
At a large scale, species’ spatial distributions are often set by
habitat conditions such as resource availability (Doncaster 1981;
Boyce & McDonald 1999; Kaspari et al. 2000). At a more local scale,
a population’s spatial distribution becomes increasingly influenced
by other factors such as dispersal methods and competitive strat-
egies (Ricklefs & Schluter 1994; Fangliang et al. 1997; Nathan &
Muller-Landau 2000). For populations of sessile organisms, there
is often a trade-off between dispersal and competitive traits (Smith
& Fretwell 1974; Yu & Wilson 2001; Cadotte et al. 2006), so that
spatial distribution reflects a combination of ability to colonize
a site and ability to persist at that site following colonization (e.g.
Levins & Culver 1971; Hubbell 1979; Sousa 1984; Schupp 1990).

Ant colonies with discrete nest sites are sessile organisms that
have evolved a range of dispersal strategies (reviewed in Hölldobler
& Wilson 1990). In many species, young queens establish new
colonies after a mating flight, which allows them to disperse far
from their home nest (Zera & Denno 1997) and colonize new, empty
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habitats (Hölldobler 1981). In some species, however, queens do
not depart on mating flights, and new colonies are produced either
by a single wingless queen departing from her home nest to
establish a new one, or by group fission, in which a group of indi-
viduals leaves the home nest to establish a new one (Vargo & Porter
1989; Peeters & Ito 2001). Colonies originating without a mating
flight often disperse shorter distances than colonies from winged
queens, and colonies originating from group fission are often
initially more competitively capable than colonies originating from
single queens (Peeters & Ito 2001). Therefore, fission dispersal is
expected to lead to high levels of competitive pressure among
nearby conspecific colonies (Chéron et al. 2011), which can have
far-reaching effects on the relationship between spatial distribution
and behaviour among conspecific competitors (Gaudreault &
Fitzgerald 1985; Dyson & Passmore 1992).

Although fission is a common means of reproductive dispersal
in social insects (Peeters & Ito 2001), spiders (Avilés 2000), marine
invertebrates (McFadden 1991) and social mammals (Cant et al.
2001; Waterman 2002), relatively little is known about the
behavioural and ecological factors associated with this process for
many species (Chéron et al. 2011), although fission dispersal has
received much attention in honeybees (Seeley & Buhrman 1999,
by Elsevier Ltd. All rights reserved.
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2001; Seeley 2003, 2010; Rangel & Seeley 2008). We investigated
the relationship among nest distribution, competitive overlap and
aggressive behaviour (intraspecific and interspecific) in two
sympatric ant species that differ in their methods of reproductive
dispersal. The first is Streblognathus peetersi, a species in which the
queen caste has been secondarily lost, and all individuals maintain
reproductive potential (Peeters 1991). This species reproduces by
group fission, with new colonies being created when a group of
unmated workers leaves the parental nest (Monnin & Peeters
2008). After becoming locally established, a single reproductive
individual mates with a winged male near her nest entrance
(Peeters 1991; Cuvillier-Hot et al. 2004). In the second species,
Plectroctena mandibularis, unmated and wingless queens disperse
individually on foot from the parental nest, mate with winged
males, and then establish new nests as singletons (Villet 1999).

Because competitive overlap can affect spatial distribution as
well as competitive strategies, we first compared foraging behav-
iour between species by investigating when and where workers
forage, and what items they collect. Second, we determined the
nest spatial distributions for each species. Nest distribution could
differ according to dispersal mechanism. Alternatively, competitive
interactions among non-nestmates could lead to overdispersion for
each species, regardless of differences in reproductive dispersal
(Levings & Traniello 1981; Wiernasz & Cole 1995; Soares &
Schoereder 2001). Third, to see whether aggressive behaviour is
correlated with nest spatial distribution, we determined the rela-
tionship between nest distance and aggression among workers for
each species, including aggression towards nestmates as well as
non-nestmate conspecifics and heterospecifics. Finally, using
laboratory experiments, we tested whether the relationship
between nest distance and aggression in S. peetersi is sensitive to
familiarity through repeated contact among workers.
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The field site was a large (ca. 20 ha) montane grassland meadow
surrounded by mixed deciduouseconiferous forest, located near
Magoebaskloof, Limpopo province, South Africa (23�53.30S,
29�59.70E, 1395 m elevation). To avoid edge effects and other
difficulties associated with changing habitat type, we limited the
study site to a ca. 12 ha rectangle (300 � 400 m) within the
meadow. During an initial survey, we marked with acrylic paint 60
S. peetersi (five each from 12 colonies) and 40 P. mandibularis (five
each from eight colonies) foragers to track individuals while they
were foraging, and to determine whether they entered or left
multiple nests.
Nests:
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Figure 1. Ant nest spatial arrangement within the study site (ca. 12 ha rectangular plot
within a ca. 20 ha grass meadow; see Methods for full description).
Temporal Analysis

To establish each species’ daily foraging routines, we recorded
the time that the first forager left its nest and the time that the last
forager returned to its nest for 15 nests of each species. During
preliminary observations, we found that both species forage in two
discrete efforts each day, one in the early morning and a second in
the late afternoon. To compare foraging times between S. peetersi
and P. mandibularis, we compared the foraging time midpoints of
both morning and afternoon efforts (i.e. time between first forager
leaving and last forager returning to the nest within a foraging
effort) for all specieseeffort combinations with an ANOVA followed
by Tukey’s multiple comparisons test. We also recorded with what
items (arthropod, annelid or plant material) foragers returned to
their nests during this survey, and compared the similarity of diets
between species using Fisher’s exact contingency table test.
Spatial Analysis

We searched the study site and used GPS to record nest locations
of each species. Preliminary visual inspection of the overall nest
distribution (Fig. 1) suggested that nest spatial intensity could be
inhomogeneous, a violation to most stationary null model spatial
statistics (Baddeley & Silverman 1984; Ripley 1988; Baddeley et al.
2000). To determine the appropriate null model for our analysis, we
tested for stationary structure using a likelihood ratio test
comparing the null homogeneous Poisson model to an inhomo-
geneous Poisson model (Baddeley 2008). Because the inhomoge-
neous model better explained the underlying nest spatial structure
(AIChomogeneous ¼ �1386, AICinhomogeneous ¼ �1389, P ¼ 0.030), we
used nonstationary spatial point patterns (i.e. a null model
assumption of an inhomogeneous Poisson process) for all spatial
analyses.

To determine whether conspecific nest distribution was over-
dispersed, random or aggregated for each species, we used separate
Ripley’s K functions (Ripley 1977; Baddeley 2008) for conspecific
between-nest intensities with isotropic corrections for rectangular
sampling sites (Ripley 1988), and 95% confidence intervals using
Monte Carlo simulations (Ripley 1981; Diggle 2003; Baddeley &
Turner 2005). To determine whether nests within the site were
spatially segregated by species, we tested for nest segregation using
Dixon’s (1994) nearest-neighbour contingency table test (Rajala
2011).

To find each species’ use of foraging space, we divided the study
site into a series of 10 � 10 m quadrats. We randomly chose 100 of
these 100 m2 quadrats to census forager presence/absence for each
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Figure 2. Distributions (median, quantiles, minimum and maximum values) for time
of day when each species foraged (midpoint between when the first forager left a nest
and when the last forager returned) for 15 nests of each species. Foragers from each
species make two foraging trips per day, and remain in the nest during the afternoon.
S: Streblognathus peetersi; P: Plectroctena mandibularis. Letter groupings (a and b)
reflect significant differences between groups (Tukey’s multiple comparisons;
P < 0.001).
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species during each of the two foraging time intervals (0630e0930
and 1600e1900 hours).

Behaviour Assays

We conducted behaviour assays in the field to investigate how
foragers behave towards conspecific and heterospecific competi-
tors from nests at various distances. These assays measured
aggression of a focal individual towards a conspecific or hetero-
specific individual either near or far from the focal ant’s nest
(N ¼ 30 replicates per speciesedistanceecompetitor combination).
Control assays were with a focal individual and a nestmate (N ¼ 30
per species). Near-nest assays included a focal individual and
a forager from its nearest-neighbour nest (conspecific and hetero-
specific). For S. peetersi, the average nearest-neighbour nest
distances were 12.5 m and 15.7 m for conspecific and
P. mandibularis, nests, respectively. For P. mandibularis, the average
nearest-neighbour nest distances were 34.5 m and 14.2 m for
conspecific and S. peetersi nests, respectively. Far-nest assays
included a focal individual and a conspecific or heterospecific
forager from a nest �100 m away. For each assay, the focal ant and
its competitor were placed in isolated containers (15 cm diameter)
for 5 min. After this acclimation stage, both ants were simulta-
neously placed into an assay arena (15 cm diameter) for 3 min,
whilewe recorded the number of times the focal ant was aggressive
(biting, lunging, gaster flexing and fighting) as well as the number
of nonaggressive interactions (antennation or contact without the
above aggressive behaviours). We compared the number of
aggressive interactions among nestmates, near and far conspecifics
and heterospecifics for each species using an ANOVA (square-root
transformed to meet parametric assumptions) followed by Tukey’s
multiple comparisons test to determine whether aggression
differed according to competitor identity.

To determine how behaviour between S. peetersi foragers is
affected by competitor familiarity, we set up a series of laboratory
nest pairs (dark 24 h, 26 �C, 60e70% relative humidity) in which
each pair was connected to a single foraging area (light:dark
12:12 h, 20:28 �C night:day, 40e50% relative humidity). Each
experimental nest contained 20e30 individuals, and each nest pair
included two nests that were collected from far apart (�100 m) in
the field. For 7 days, the foraging area was divided in half with
a solid wall to preclude contact between ants from different nests.
Because diet can influence nestmate recognition in some ant
species (Liang & Silverman 2000; Ichinose et al. 2009), foragers
from one colony received one mealworm every 3 days and sugare
water ad libitum, while foragers from the other colony received one
cockroach every 3 days and honeyewater ad libitum (this amount
of food per individual is similar to what we found foragers
returning to the nest with, and on many days the previous food
itemwas not finished before a new one was added). On the 8th day,
we removed the solid divider so that foragers from both nests
shared a common foraging area. Using digital video cameras, we
recorded in 10 min intervals the number of aggressive and
nonaggressive interactions (as defined in the field assays) among
S. peetersi foragers in the common area 10 min, 1 h and 24 h after
removing the divider. We compared the number of aggressive
interactions between consecutive observation time points for each
nest pair separately using chi-square tests. We then pooled these
results among replicate nest pairs for each comparison of time
points using Fisher’s omnibus test (Sokal & Rohlf 1995). Finally, we
observed all colonies 7 days after removing the divider to examine
the effects of competition on each colony.

Using four additional colonies, we followed the above nest-
pairing protocol for a second S. peetersi laboratory experiment to
compare the effects of isolation on individuals from colonies that
differed in nest distance when in the field. In the first nest pair,
individuals came from nests that were nearby (10 m) in the field
and did not exhibit aggression in the field assay. In the second nest
pair, individuals came from nests that were distant (105 m) in the
field and did exhibit aggression in the field assay. For 8 weeks
before the experiment, all four colonies were isolated, and all
received a similar diet of mealworms, water and sugarewater ad
libitum. In the experimental nests, we removed the solid dividers in
the common foraging areas of each nest pair 7 days after starting
the experiment and recorded the numbers of aggressive and
nonaggressive interactions for two 10 min intervals (10 min and 1 h
after barrier removal).
RESULTS

Temporal Analysis

We found a significant difference (ANOVA: F3,56 ¼ 38327,
P < 0.001) among temporal foraging midpoints for all speciese
foraging effort combinations. This difference was a result of each
species having two discrete foraging efforts per day, one in the
morning and another in the late afternoon (Fig. 2). Neither the
morning nor the afternoon foraging period, however, differed
between species (Tukey’s multiple comparison: morning:
Padjusted ¼ 0.160; afternoon: Padjusted ¼ 0.913).

In addition to foraging at similar times of the day, S. peetersi and
P. mandibularis foraged for similar prey items (Fisher’s exact test:
P ¼ 0.832). Of the 300 S. peetersi foragers observed returning to
their nests,17 returned with arthropods, fivewith annelids and two
with plant/seed material. Of the 220 P. mandibularis foragers
observed returning to their nests, nine returned with arthropods,
one with an annelid and one with plant/seed material.
Spatial Analysis

Nests of S. peetersi were spatially aggregated (Fig. 3a), with
observed Ripley’s K values above critical (a ¼ 0.05) at all radius
distances. By contrast, the spatial distribution of P. mandibularis



(a)

Kinhom.–Poiss.

inhom.–Poiss.

Kobserved

Kcritical

5e–03

4e–03

3e–03

2e–03

1e–03

0e+00

K
ra

d
iu

s S
tr

eb
lo

gn
at

hu
s

K
ra

d
iu

s P
le

ct
ro

ct
en

a

6e–03

6e–03

(b)

5e–03

4e–03

3e–03

2e–03

1e–03

0e+00

0 15 30 45 60

0 15 30 45 60
Radius distance (m)

K

Kobserved

Kcritical

Figure 3. Ripley’s K values, measure of spatial intensity, as a function of increasing
radius distance for nest distribution of (a) Streblognathus peetersi and (b) Plectroctena
mandibularis. Kobserved are actual values, Kinhom-Poiss are predicted values assuming an
inhomogeneous Poisson distribution, and Kcritical are Monte Carlo simulations testing
upper and lower bounds (a ¼ 0.05) of K values at each radius distance. Kobserved val-
ues � Kcritical are evidence of conspecific nest aggregation beyond the underlying
spatial structure, while Kobserved values � Kcritical are evidence of conspecific nest
overdispersion.

10
a

(a)

a

(b)

8

6

4

2

0

b c

b

8

4

6

2

St
re

bl
og

na
th

us
ag

gr
es

si
ve

 e
ve

n
ts

Pl
ec

tr
oc

te
na

ag
gr

es
si

ve
 e

ve
n

ts

0

Nestmate

(versus S.)

(versus S.)

(versus P.)

(versus P.)

Distance from focal nest (competitor species)

Near Far Near Far

Nestmate Near Far Near Far

Figure 4. Number (median, quantiles, minimum and maximum values) of aggressive
events for (a) Streblognathus peetersi (S) and (b) Plectroctena mandibularis (P) during
field aggression assays (N ¼ 30 replicates per group per focal species) with nestmates,
conspecifics (near or far from focal nest) and heterospecifics (near and far from focal
nest). Letter groupings (a, b and c) reflect significant differences between groups
(Tukey’s multiple comparisons; P < 0.01).

C. J. Tanner, L. Keller / Animal Behaviour 84 (2012) 1151e11581154
nests was overdispersed at radius distances �45 m, and randomly
dispersed at larger radius distances (Fig. 3b). Finally, nests within
the site were not spatially segregated between species (C ¼ 0.310,
P ¼ 0.143).

Besides sharing space for nests, S. peetersi and P. mandibularis
also foraged at similar locations. During the morning quadrat
survey, we found S. peetersi in 46 and P. mandibularis in 18 of the
100 sample quadrats. Sixteen of the 100 quadrats contained both
species, which provided a significant positive correlation for
forager presence/absence between these two species (Spearman
correlation test: rS ¼ 0.403, S ¼ 99460, P < 0.001). In the evening
quadrat survey, S. peetersi workers were found in 40 and
P. mandibularis in 12 of the 100 sampled quadrats. Eleven quadrats
contained both species, which again led to a positive correlation for
forager presence/absence between species (rS ¼ 0.390, S ¼ 101748,
P < 0.001).

We did not observe workers of either species entering or leaving
more than one conspecific nest (i.e. neither species is polydomous
at this site). Of the 60 S. peetersi foragers marked at the beginning of
the study, none were observed entering or leaving an alternative
nest. Of the 40 marked P. mandibularis, five were observed entering
heterospecific nests and two entering abandoned nests.
Behaviour Assays

In the field behaviour assays for S. peetersi, the number of
aggressive events varied greatly according to the type of individual
presented (ANOVA square-root-transformed number of aggressive
events: F4,145 ¼ 51.7, P < 0.001; Fig. 4a). Individuals were rarely
aggressive towards nestmates, intermediately aggressive towards
conspecifics from nearby nests (Tukey’s multiple comparisons
between nestmates and near conspecifics: Padjusted ¼ 0.008) and
more aggressive towards conspecifics from distant nests
(Padjusted < 0.001 for near compared to far conspecifics). Aggression
by S. peetersi towards P. mandibularis was high, regardless of nest
distance (Padjusted ¼ 0.999), and of a similar magnitude towards far
conspecifics (Padjusted ¼ 0.982 for near P. mandibularis compared to
far conspecifics; Padjusted ¼ 0.997 for far P. mandibularis compared
to far conspecifics).
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In the field behaviour assays for P. mandibularis, there was also
an overall significant difference in the number of aggressive events
according to the type of individual presented (ANOVA square-root-
transformed number of aggressive events: F4,145 ¼ 31.2, P < 0.001;
Fig. 4b). While individuals were rarely aggressive towards nest-
mates, they were more often aggressive towards non-nestmates
(Tukey’s multiple comparisons: Padjusted < 0.001 for nestmates
compared to either near or far conspecifics). In contrast to
S. peetersi, however, therewas no effect of nest distance on the level
of intraspecific aggression (Padjusted ¼ 0.973 for near compared to
far aggression towards conspecifics). Furthermore, P. mandibularis
aggression did not differ between intraspecific and interspecific
competitors for either nest distance (Padjusted ¼ 0.999 for each
comparison, near and far, between aggression towards conspecifics
and heterospecifics).

When S. peetersi nests that were distant in the field (>100 m)
were paired in the laboratory, repeated contact among
workers led to a reduction in aggression from 10 min to 1 h after
sharing a common foraging area (chi-square tests for eight nest
pairs: P < 0.001, P < 0.001, P ¼ 0.001, P ¼ 0.008, P < 0.001,
P < 0.001, P < 0.001, P < 0.001; Fisher’s omnibus test for overall
significance: P < 0.001; Fig. 5). After 24 h of sharing the same
foraging area, worker aggression decreased still further in most
nest pairs compared to levels after 1 h of sharing (chi-square tests
for eight nest pairs: P ¼ 1, P ¼ 0.020, P ¼ 0.108, P < 0.001, P ¼ 0.132,
P < 0.001, P < 0.001, P < 0.001; Fisher’s omnibus test for overall
significance: P < 0.001). This decline in aggression was not due to
mortality among themost aggressive individuals, as only two of the
419 individuals used in the experiment died within 24 h of barrier
removal.

After the workers had spent 8 weeks in isolation in the labo-
ratory, the correlation between S. peetersi aggression and nest
distance that was observed in the field assays disappeared. The pair
of nests that had been collected near each other in the field and
previously exhibited low levels of aggression exhibited similar
levels of aggression to the pair of nests that had been collected far
away and originally exhibited high levels of aggression (c2 ¼ 0.433,
P ¼ 0.835; Fig. 6). The similarity in aggression between near and far
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a significant reduction in aggression (near pair: c2 ¼ 22.57,
P < 0.001; far pair: c2 ¼ 22.81, P < 0.001; Fig. 6).

DISCUSSION

Although S. peetersi and P. mandibularis share many ecological
similarities, key differences between these species in dispersal and
aggressive behaviour are associated with different spatial distri-
butions. In S. peetersi, groups of individuals disperse on foot to form
new nests via fission, while in P. mandibularis, solitary queens
disperse on foot to form new nests alone. Nests of S. peetersi were
locally aggregated at our study site, while P. mandibularis nests
were locally overdispersed. Such aggregation among S. peetersi
nests is in contrast to most ant species’ nest distributions. In ants,
the high degree of local competitive pressure among nearby nests
(Hölldobler & Wilson 1990) generally leads to overdispersion, with
the highest levels of competitive overlap and overdispersion
occurring among conspecifics (Bernstein & Gobbel 1979; Theunis
et al. 2005; Tschinkel 2006; Boulay et al. 2007, 2010).

Our behaviour assay in the field revealed that the extreme level
of S. peetersi nest aggregation was associated with low aggression
between individuals originating from nearby nests. The observa-
tion of low aggression between closely located nests makes sense
given that intense antagonistic interactions among nearby
competitors should lead to local thinning of nests and nest over-
dispersion (Wiernasz & Cole 1995), as we found in P. mandibularis.

Three lines of evidence suggest a correlation between S. peetersi
nest aggregation and reduced aggression among familiar conspe-
cific foragers. First, workers from nearby S. peetersi nests in the field
were less aggressive than workers from distant nests, while
P. mandibularis worker aggression did not change with conspecific
nest distance. Second, foragers from distant S. peetersi colonies
became less aggressive towards each other after repeated contact in
the laboratory. Third, following isolation in the laboratory,
S. peetersi workers from nearby nests that were initially not
aggressive became as aggressive towards each other as workers
from distant nests, and this aggression also diminished after
repeated contact among foragers. Because of the tightly aggregated
spatial distribution of S. peetersi nests, neighbouring foragers are
often likely to encounter each other, and according to our labora-
tory experiments, repeated encounters among non-nestmate
workers can quickly lead to foragers becoming nonaggressive.
Although S. peetersi is not territorial per se, our field results are
consistent with the deareenemy phenomenon (Ydenberg et al.
1988; Temeles 1994). Furthermore, laboratory experiments
revealed that this deareenemy effect was due to habituation
among workers, which is consistent with findings of ant species
that are more territorial (e.g. Langen et al. 2000).

Nonaggression towards nearby conspecifics could also result
from individual S. peetersi not being able to differentiate between
nestmates and conspecifics from nearby nests. To the contrary, we
found that individual S. peetersi can differentiate between nest-
mates and neighbouring conspecifics, as well as between nearby
and distant conspecifics. This differentiation ability is consistent
with S. peetersi’s social structure, as individuals differentiate
between nestmates to maintain multistrata dominance hierarchies
(Cuvillier-Hot et al. 2004; Cuvillier-Hot & Lenoir 2006), evenwithin
colonies that have multiple matrilines and patrilines (Schlüns et al.
2006). Furthermore, we observed no S. peetersi individuals entering
or leaving more than a single nest throughout the study.

The effect of repeated contact on aggression among ant foragers
often depends on context such as colony size and competitive
strategy. Examples of repeated contact increasing aggression have
been mainly reported in species that form large territorial colonies
(Thomas et al. 2007; van Wilgenburg et al. 2009; Newey et al.
2010). By contrast, observations of reduced aggression after
repeated contact have generally been found in species in which
colonies are smaller and do not have well-defined territories
(Langen et al. 2000; Zinck et al. 2008). Consistent with this
distinction, S. peetersi colonies are very small, tightly aggregated, do
not defend absolute territories and do not recruit to resources
(Ware et al. 1990; Schlüns et al. 2006).

The reduced aggression among nearby S. peetersi foragers might
be adaptive for two nonmutually exclusive reasons. First, because
the costs of defending a two-dimensional territory with temporally
and spatially ephemeral food sources generally outweigh the
benefits (Hölldobler & Lumsden 1980; Fourcassié et al. 2012),
aggressively defending a territory might cost more than it is worth.
Colonies in which foragers repeatedly fight with their neighbours
would suffer the cost of mortality, thereby reducing the foraging
workforce, as well as paying the costs associated with lost foraging
opportunities while fighting. Streblognathus do not perform
trophallaxis (Ware et al. 1990), so foragers returning with and
without food could be clearly identified. As only 7e8% of the
foragers we observed throughout the study returned to the nest
with food items, finding food at this site is not common. Second,
reduced aggression towards neighbouring conspecifics may also
provide indirect inclusive fitness benefits if geographical proximity
is correlated with relatedness (Beye et al. 1998; Langen et al. 2000;
Pirk et al. 2001). Social insects that disperse by fission typically
exhibit population viscosity (West-Eberhard 1975): nearby colonies
are more closely related than distant colonies (Chapuisat et al.
1997; Liautard & Keller 2001; Pirk et al. 2001; Kronauer et al.
2010). The possibility of inclusive fitness benefits from reduced
aggression towards neighbours is consistent with our finding that
aggression in S. peetersi is sensitive to nest distance for conspecifics
but not for heterospecifics.

Another potential benefit of reduced aggression among indi-
viduals from closely located S. peetersi nests is the opportunity for
colony fusion. In laboratory S. peetersi nest pairs, habituation and
reduced aggression were followed by nest fusion within 7 days in
four of the eight pairs (Fig. 5). Adams et al. (2007) reported that
fusion between termite colonies in the field could be predicted
from low aggression levels in laboratory assays. Although ant
colony fusion is relatively rare (but see Kronauer et al. 2010 for
a discussion of how fusion might be more prominent than previ-
ously expected), fusion has the potential to provide benefits in
unfavourable conditions (Herbers & Tucker 1986; Buczkowski &
Bennett 2008). For example, in dwarf honeybees, Apis andreni-
formis and Apis florea, colonies with queens experimentally
removed will merge with sympatric conspecific or heterospecific
queenright colonies (Wongvilas et al. 2010). Notably, fusion seems
to occur predominantly in species that also have a fission stage of
dispersal (e.g. Schneirla & Brown 1950; Kellner et al. 2010;
Kronauer et al. 2010).

In conclusion, we have shown experimentally that familiarity
among S. peetersi workers leads to a reduction in conspecific non-
nestmate aggression, which is consistent with S. peetersi workers
in the field exhibiting less aggression towards nearby conspecifics
than towards conspecifics from distant nests. This familiarity-based
aggression helps to explain the spatial nest aggregation we
observed in S. peetersi. By contrast, familiarity had no effect on
P. mandibularis aggression. Workers were equally aggressive
towards conspecifics regardless of nest distance, which helps to
explain the spatial nest overdispersion we observed in
P. mandibularis. Although dispersal distance is limited in both
species because new colonies are formed without mating flights,
P. mandibularis queens disperse alone, while S. peetersi disperse as
a group from the parental nest. The differences in nest distribution
and aggressive behaviour between S. peetersi and P. mandibularis
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provide support for a connection between dispersal mechanism,
behaviour and spatial distribution for populations.
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