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ABSTRACT

Ridesharing, in which drivers offer to share their rides, allows
reduction of travel costs for both drivers and riders; such practice is
increasingly popular. Modern ridesharing systems, enhanced with
location-based features, have improved user experience by enabling
drivers and riders to arrange a trip in near real time. However,
the fine-grained nature of location data collected by the service
providers and exchanged between users raises privacy issues that
could disrupt the adoption of such systems. In this paper, we present
SRide: a privacy-preserving protocol for ridesharing that addresses
the matching problem for dynamic ridesharing systems. We design
and implement a prototype of SRide that operates in four steps. First,
it generalizes users spatiotemporal data of users. Next, it relies on
a secure filtering protocol to compute feasible matches. Then, it
uses an improved version of Priv-2SP-SP- a privacy-preserving
protocol to compute meeting points for ridesharing- to compute
a ridesharing score for each feasible pair. Finally, it computes the
optimal assignment of drivers and riders based on their ridesharing
scores. We conduct an experimental trace-driven evaluation of the
proposed scheme to demonstrate its practical feasibility.
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1 INTRODUCTION

With the advent of mobile phones with geo-localization features,
dynamic ride-sharing services, which arrange shared rides between
a driver and one or multiple riders, have quickly grown over the last
decade. BlaBlaCar, one of the major ride-sharing services, which
operates mostly in Europe, boasts 35 million verified members. In
a typical ride-sharing scenario, a driver who intends to drive from
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a given location to a destination offers to transport other potential
riders for a part of, or the whole, journey. In exchange, the riders
pay the driver a certain amount of money to (partially) cover the
costs of the ride.

Ridesharing, which falls into the broad category of the collabo-
rative economy [5], presents numerous advantages for both drivers
and riders: It enables drivers to cut down their travel costs and offers
a financially-competitive alternative for riders, compared to tradi-
tional means of transportations (e.g., train, plane). Also, ridesharing
saves time as, in some countries, cars used for ridesharing can drive
on so-called high occupancy vehicles lanes [30] which are usually
less crowded. Finally, ridesharing reduces CO3 emissions [8].

Ride-sharing services put drivers and potential riders in con-
tact based on their respective offers and needs [1]; this is achieved
by optimizing some criteria, including the drivers and riders to-
tal traveling time. To benefit from such services (in their current
forms), however, drivers and riders need to communicate personal
information to the service, including their departure locations and
schedules as well as their destinations. Due to the sensitive nature
of this data (e.g., related to monitoring of the location of riders in
real-time, and inferencing sensitive information such as points of
interest or social ties [15]), this raises serious privacy concerns.

Ridesharing has received substantial attention from the research
community over the last few years. In particular, Agatz et al. [1]
formalize the ridesharing problem in a dynamic setting and propose
several optimization techniques to solve it, Bit-Monnot et al. [6]
introduce 2SP-SP, the two-synchronization points shortest path
problem to determine the optimal meeting points (pick-up and drop-
off locations), Stiglic et al. [24, 25] demonstrate that a reasonable
increase in flexibility, in terms of desired departure and transit times
and locations, results in a significant improvement of the overall
performance of ridesharing services (e.g., matching rate).

Unfortunately, most works focus on the optimization problem
underlying the matching of drivers and riders, and very few works
focus on the privacy aspects of ridesharing. Aivodji et al. [3] pro-
pose Priv-2SP-SP which enables a driver and a rider to compute
near-optimal pick-up and drop-off locations that match their con-
straints, without revealing their origins and destinations. However,
they do not address the matching problem, that is, how to put
in contact drivers with potential riders. Running this algorithm
between every pair of driver/rider requires a prohibitively high run-
ning time; therefore, it is not a viable solution. Sanchez et al. [21]
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propose a privacy-preserving approach to solve the matching prob-
lem. However, they disregard the constraints related to the rider’s
travel from the origin to the pick-up location and from the drop-off
location to the destination (i.e., the rider’s transit).

In this paper, we propose SRide, a novel approach that ad-
dresses the matching problem for dynamic ridesharing in a privacy-
preserving way, including the computation of the pick-up and drop-
off times and locations, considering multiple means of transporta-
tion for the rider’s transit, i.e., multimodal routing. More specifi-
cally, we propose a new privacy-preserving protocol, relying on
existing well-established techniques, combined to implement data
minimization at reasonable CPU and bandwidth costs: homomor-
phic encryption, secure multiparty computation, and assignment or
routing optimization methods. The proposed solution, SRide, op-
erates in four stages. In the first stage, riders and drivers apply
spatiotemporal generalization to their private inputs. During the
second stage, the set of potential drivers/rider matching pairs is
reduced using a new secure filtering protocol. In the third stage,
a two-party protocol is executed between feasible pairs, to deter-
mine meeting times and locations, as well as the overall quality
of the match (i.e., compatibility scores), in a privacy-preserving
way. Finally, in the last stage, a matching algorithm is run by the
service provider to pair up drivers and riders, based solely on the
scores computed in the third stage. The proposed approach offers
desirable privacy properties; in particular, limited information dis-
closure to the service provider and between only a small number
of drivers/riders pairs.

We analyze the privacy properties of our solution and evaluate its
performance by using synthetic traces generated from a real dataset
collected from a popular ridesharing service. In particular, our
trace-driven experimental results show that our privacy-preserving
protocol is an order of magnitude faster than a brute force approach
that computes the secure meeting points protocol Priv-2SP-SP on
the complete bipartite graph formed by the divers and the riders.

The rest of this paper is organized as follows. In Section 2, we
survey the related works in the areas of ridesharing and privacy
enhancing technologies for transportation. In Section 3, we describe
the system model, and we formalize the private ridesharing problem.
In Section 4, we give some background about the key techniques
we use in our solution. We detail the proposed approach SRide in
Section 5. In Section 6, we describe our experimental setup and
methodology, including the datasets used, and we report on our
experimental results. We conclude the paper in Section 8.

2 RELATED WORK

In this section, we survey related work, focusing on two areas:
transportation and ridesharing.

2.1 Privacy in transportation

In the field of privacy-enhancing technologies for transportation,
prior works include transportation modeling and secure navigation
services.

Sun et al. [26] proposed a privacy-preserving mechanism to
design fine-grained urban traffic modeling using mobile sensors.
The proposed method ensures the unlinkability of mobility traces
related to users (i.e., it is difficult for an adversary to assign traces
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to specific users). In the same line of work, Ghasemzadeh et al.
[17] devised an advanced anonymization technique to construct
privacy-preserving passengers’ flow graph based on trajectory data.
The proposed approach relies on the so-called lk-anonymity which
derives from k-anonymity [27] but considers that the adversary
has prior knowledge, of length I, and ensures that any pattern of
length [ has at least k occurrences in the released dataset to thwart
identity record linkages.

Xi et al. [29] proposed a privacy-preserving shortest path al-
gorithm based on the use of a cryptographic primitive known as
Private Information Retrieval (PIR) [9]. The proposed approach al-
lows users to query a navigation service provider to obtain the
pre-computed shortest path between two locations A and B without
disclosing A and B to the navigation service provider. In a relatively
similar work, Wu et al. [28] have applied a graph compression algo-
rithm on road networks to improve PIR-based privacy-preserving
shortest path computation’s runtime. Even though these works are
related to ours, none of them can be directly applied to the case of
ridesharing. In a PIR-based solution as in Xi et al. [29], the SP first
builds a database, of drivers’ offers, which will be securely queried
by the riders. However, this type of solution is suitable only when
drivers trust the SP on collecting their location data. In contrary,
our solution can be used when the drivers do not trust the SP.

2.2 Privacy in ridesharing and ride-hailing

Aivodji et al. [3] proposed an approach based on private set inter-
section and multimodal routing to securely compute pick-up and
drop-off locations for ridesharing users in such a way that private
information on users’ origin and destination locations are not re-
vealed to a centralized entity or other users. In this seminal work,
authors have considered the case of one driver versus one rider and
the proposed scheme can guarantee strong security and preserve
privacy without sacrificing the usability of ridesharing services.
The work presented in this paper considers the case of several dri-
vers and several riders with the same objective to find for each
user, the best pick-up and drop-off locations that minimize their
trip costs while preserving peers’ location privacy.

Sanchez et al. [21] proposed a fully decentralized approach to
solve the matching between riders and drivers and also a privacy-

preserving distributed protocol for reputation management in rideshar-

ing. In this method, for the matching phase, space and time general-
izations are used followed by a publish-subscribe [11] routine that
allows drivers to subscribe to topics corresponding to the general-
ization of spatiotemporal doublets in their trajectory and receive
a notification when a rider publishes on the corresponding top-
ics. By contrast, our approach uses spatiotemporal generalization
combined with private set intersection to help ridesharing users
in searching for potential partners while taking into account the
maximal distance they accept to travel before and after the ride.
Pham et al. [20] analyzed the privacy threats for a ride-hailing
system and proposed PrivateRide, a solution that enhances loca-
tion privacy for the riders w.r.t. the service provider and privacy
for the drivers w.r.t. malicious outsiders, while preserving the con-
venience and functionality offered by the current system. Pham
et al. later proposed ORide [19], a ride-hailing system based on
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somewhat-homomorphic encryption, which addresses most limita-
tions of PrivateRide and provides stronger privacy and accountabil-
ity guarantees. It should be noted that ride-hailing and ridesharing
have fundamental structural differences: while in ridesharing, the
vast majority of drivers plan a ride for themselves in the first place
and subsequently offer to share the ride with others, in ride-hailing,
drivers are professionals and make on-demand rides based on riders’
requests; therefore, drivers have relatively strong origin constraints
and no route or destination constraints. These systems also differ in
terms of use cases and properties of rides. Ride-hailing essentially
replaces taxi cabs (short trips, e.g., intra-city) while ridesharing re-
places trains and planes (medium/long trips, typically for weekend
excursions, commuting or vacations). In this paper, our approach
also relies on somewhat-homomorphic encryption to compute fea-
sible matches for each rider, but unlike ORide, feasible matches are
first computed as a shared secret between the service provider and
the rider. To obtain her feasible matches, each rider engages in a
secure comparison protocol with the service provider, in which
they compare their secret share. This allows us to prevent the rider
from learning information about drivers with whom she does not
match. SRide also differs from ORide by the fact that it considers
both spatial and temporal information about the users, while ORide
does not check arrival time consistency.

3 SYSTEM MODEL

Our objective is to design a ridesharing system that provides strong
privacy guarantees to both drivers and riders, without sacrificing
the usability of the system. From a high-level perspective, our sys-
tem involves three entities: drivers, riders, and the service provider.

3.1 Notations

We denote by U, the set of users (drivers and riders), D the set
of drivers, and R the set of riders (D U R = U). Let my = |U|
and m, = |R| respectively denote the number of drivers and riders.
Users have a single role: either driver or rider, that is: D N R = 0.
We will also denote by L the set of nj, = | L] locations and by H
the time horizon for considered instances of ridesharing problem.

Each driver d € D has a profile Pd - (T4 wtd} where:

d _ d d d : faen
o T% = {(Od,rod), .. .,(lk,rlk), . ..,(Dd,de)} is her trajec
tory containing an origin Oy, a destination Dy, and a set of

intermediate locations I, along with their respective arrival
d

lk :

e her maximum flexibility wt? (ie., waiting time).

times 7

The maximum number of intermediate locations on the drivers’
trajectories is denoted by n = maxdeD(|Td|).

Each rider r € R has a profile " = {(Or, 7[; ), Dr,0"} contain-
r
ing:
e her origin O, with the expected departure time 7/, .
e her destination D,..
e her maximum transit distance 6.
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3.2 Adversarial model

In the ridesharing system under study, we consider two types of
adversaries:

e System users (riders, drivers) of the ridesharing system,
who can try to infer private information (origin, destination,
preferences) about other users.

e Service provider hereafter referred to as SP, who tries to
learn the profile of its users and to collect their origins and
destinations.

The security goals are as follows. The SP should not be able to
identify a rider or a driver based on the information it receives from
them; also, neither a driver nor a rider should be able to infer the
origin and destination of other users. Finally, the drivers, the riders
the service provider are assumed to be honest-but-curious. More
precisely, the adversaries know the area on which the ridesharing
system operates and will follow the protocol but they will try to
obtain/infer additional information about other users by observing
and reasoning about information exchanged during the protocol.

3.3 Types of ridesharing systems

Our approach is designed to support common types of ridesharing
implemented by state-of-the-art matching services, namely identical
ridesharing and inclusive ridesharing [14].

In the identical ridesharing setting, riders, and drivers have the
same origin and destination locations. A match can occur between
a driver d and a rider r, if:

(1) dist(Oy4,0,) < 8"
(2) dist(Dg, Dy) < 8

(3) réd - rgd < witd

where dist(, ) represents the distance between two locations (typ-
ically the traveling distance of the user given a transportation
network and her transportation modes).

In the inclusive ridesharing setting, riders may be picked-up and
dropped-off along drivers’ itineraries. A match can occur between a
driver d and a rider r, if 3 (I, T;}i) and (I, Tli/) e T4 with Tl(,{/ > Tli
such that:

() dist(lg, 0y) < 8
@) dist(ly,,Dy) < 8"

r _.d d
(3) AN < wt

In both contexts, the first two conditions capture the fact that
the prior (respectively posterior) transit of the rider must be less
or equal to her maximum transit. The third constraint captures
consistency between the rider’s arrival time at the pick-up point
and the driver’s departure time.

Furthermore, identical ridesharing is a particular case of inclusive
ridesharing, in which the pick-up (respectively drop-off) point is
the driver origin (respectively destination). In this paper, we will
focus on inclusive ridesharing.

4 TECHNICAL BACKGROUND

In this section, we briefly describe the key techniques we use in the
design and implementation of our system.
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4.1 Homomorphic Encryption

A Homomorphic Encryption (HE) scheme [16] allows computations
to be made on encrypted data without requiring access to the de-
cryption key. Fully Homomorphic Encryption (FHE) schemes enable
arbitrary computations on encrypted inputs, whereas Somewhat Ho-
momorphic Encryption (SHE) schemes only support a bounded num-
ber of operations, after which the ciphertext becomes too “noisy”,
and can no longer be decrypted correctly. In this paper, we solely
rely on SHE schemes, as we only need to perform a limited number
of homomorphic operations, and benefit from the better perfor-
mance of SHE schemes over FHE schemes.

4.2 Secure multiparty computation and secret
sharing protocols

Secure multiparty computation (SMC) protocols aim at computing a
function depending on the inputs of several parties in a distributed
manner, so that only the result of the computation is revealed while
the inputs of each party remain secret. Secret sharing subroutines
are widely used to implement SMC protocols. Introduced in the 70’s
[7, 23], secret sharing protocols are cryptographic protocols that
allow a party to share a private input (called the secret) with other
parties, each of which receives a share of the secret. The secret
can be reconstructed only when all (or a subset of) the shares are
combined. That is, individual shares are of no use on their own. In
the following we discuss two commons secret sharing protocols
in the two-party computation setting, namely the arithmetic se-
cret sharing and the boolean secret sharing. In an arithmetic secret
sharing protocol, the secret is an integer s € Zj. In this setting,
the secret owner generates a random integer r4 € Z,, computes
rg =s—rag mod n, and sends it to the second party. In a boolean
secret sharing scheme, the secret is assumed to a binary number,
and each bit of this binary number is shared in mod 2 between
both parties.

In this paper, for each rider, we compute the feasible matches as a
secret shared between the service provider and the rider. To achieve
this goal, we implement an arithmetic secret sharing protocol which
relies on a SHE scheme for the computation of the secret shares
of each party. Finally, a secure two-party equality test is used to
compare secret shares of both the rider and the service provider,
and to determine whether or not there is a match between the rider
and a particular driver.

4.3 Secure determination of meeting points

Aivodji et al. have introduced Priv-2SP-SP, a privacy-preserving
protocol to securely compute meeting points for 2 participants in
dynamic detour ridesharing systems [3]. By securely, we mean the
origin and destination location are not revealed during the process.
The proposed approach relies on a secure two-party computation
protocol which combines private set intersection and multimodal
routing, and allows a pair of driver and rider to compute optimal
pick-up and drop-off location such that the overall journey dura-
tion of both users is minure variant of 25P-SP method [6], which
allows computing optimal meeting points without privacy-related
constraints.

The Priv-2SP-SP protocol runs in two major steps, namely com-
putation of shared preferences and optimization. In the first step,

Ulrich Matchi Aivodji, Kévin Huguenin, Marie-José Huguet, and Marc-Olivier Killijian

both the driver and the rider use a multimodal routing algorithm
to identify their respective potential meeting points as well as the
corresponding travel time (considering the maximum driver detour
and the maximum rider transit distance) and keep this data private.
Then, they use a private set intersection (PSI) [13] protocol to de-
termine common pick-up (respectively drop-off) locations. In the
second phase, both users assign a score to each pair (i, j) of common
pick-up and drop-off locations. The score associated with a pair
reflects its contribution to the overall journey duration of each user
and is based on shortest path computations, including multimodal
aspects for the riders. That is, a pair (i, j) gets the highest score if
and only if it minimizes the overall trip duration.

In this paper, we use Priv-2SP-SP to securely compute rideshar-
ing cost for each feasible pair of driver and rider over a set of
previously known ridesharing points.

5 PROPOSED APPROACH

A naive solution to address the privacy concerns related to the
matching problem in ridesharing is to consider the complete bi-
partite graph formed by all the drivers and riders, and run the
secure ridesharing protocol Priv-2SP-SP [3] between every pair.
The corresponding bipartite graph has my; X m, arcs i.e., one arc
per pair of driver and rider weighted by the ridesharing cost. Fi-
nally, by using a minimum cost bipartite matching algorithm, we
compute the optimal assignment for drivers and riders. However,
running Priv-2SP-SP for the complete bipartite graph is too ex-
pensive. It implies m; peer-to-peer communication for each rider
to interact with the drivers, which can introduce important com-
munication and computation overheads. For instance, it takes a
given pair of driver and rider about 670 milliseconds in the intracity
scenario studied in [3]. In order to address these limitations, the pro-
posed algorithm reduces the size of the bipartite graph by securely
computing feasible pairs of drivers and riders, i.e., pairs satisfying
conditions for inclusive ridesharing. More precisely, we propose a
secure pre-filtering protocol to remove pairs that are quite unlikely
to match. Then, we run Priv-2SP-SP on the feasible bipartite graph
before computing optimal assignments by using ridesharing costs.

5.1 General overview

From a high-level perspective, the proposed approach SRide is
composed of four modules (see Figure 1).

To use SRide, whenever a rider is looking for a ride, she uses
the generalization module to generalize her private inputs (see
Section 5.2). Then, she uses the secure filtering module to initiate a
secure filtering protocol (see Section 5.3) with the service provider
and the drivers. The secure filtering protocol determines the subset
of drivers with whom the rider can travel. More precisely, potential
drivers are drivers that visit the pick-up area of the rider at the
same epoch, and whose itineraries pass through the rider’s drop-off
area. Once each rider learns her potential drivers, she relies on the
secure scoring module to launch the Priv-2SP-SP protocol with
each of her feasible drivers, and finally the SP uses the matching
module to determine optimal assignments of drivers and riders (see
Section 5.4).
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Private inputs

Generalization
module ;

Secure filtering
module ;

e A
R Secure scoring Matching :
bt A module > module —> e
ﬂ. Pairs

Feasible pairs

Figure 1: SRide Overview: Participants use their generalized
inputs and the Secure filtering module to build a bipartite
graph of feasible pairs. The Secure scoring module is used
to securely compute ridesharing scores and meeting points.
The Matching module takes the bipartite graph as an input
and computes the matching that minimizes the total cost.

5.2 Generalizations of inputs

5.2.1 Time and Space generalization. Our goal is to help drivers
and riders in finding matches while keeping a minimal informa-
tion disclosure. To this end, we propose a matching model that
relies on two generalizations, namely time generalization and space
generalization, to capture feasibility constraints.

Time generalization. The total time horizon H (a day for in-
stance) is split into a set of epoch & of same length w: & = {e;},Vt €
1,...,ng. We denote ¢, () the function that converts a time r € H
to its corresponding epoch e; € &.

Space generalization. We consider that the set of locations
L can be divided in a set C = {cs}s of nc polygons or cells. We
denote @g(I) the function that converts a location point [ € £ to its
corresponding cell ¢s € C.

In these generalizations, we consider that the driver’s maximum
waiting time wt? is lower than w and that the area covered by the
rider transit distance §" is included in the generalized cells.

Each user (driver d and rider r) computes a generalized input
vector, denoted respectively by I d and 7, based on their own
profile #¢ and P

For every location /j. on his trajectory T4, a driver d first enumer-
ates all the combination (I, Tl‘i, i) Yk’ > k of pick-up, departure
time and drop-off where > denotes the precedence relation on
the trajectory. Overall, a driver d generates an input vector hav-
ing T4 |x(|T¢|~1)/2 of such triplets. Finally, each driver computes
his generalized input vector 7 d by applying spatial (respectively
temporal) generalizations on the spatial (respectively temporal)
components of the triplets. The maximal size of drivers’ general-
ized input vector is therefore nt X (n7 — 1)/2.

The rider’s generalized input vector, 7", is composed of a single
generalized spatiotemporal triplet corresponding to the generaliza-
tion of her origin, departure time and destination.
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(0y, t;=08:15)

(D,, t; = 08:50)
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(I, t, = 08:45)
(0, t,=08:20) .\
(05, t= 09:10)
5 6
(Dy, t; =09:10)
DZ
[ ]
9 10 11 12

Figure 2: Illustration of the generalization approach: A sce-
nario with one rider (red color) and two drivers (blue and
green colors).

5.2.2  Illustrative example. Let us consider the scenario of Fig-
ure 2 with one rider r and two drivers d; and dz with the following
profiles:

o P4 = ({01, 1), (L. 12). (D1, 13)}, wit}
o P% = ({(03, 1a), (D2, 15)}, wi2}
o P ={(0s,t),D3,8"}

In this example, arrival times are generalized to the correspond-
ing 30-minute epochs (starting at 0:00). In addition, locations are
generalized to the cell in which they fall. The computation of gen-
eralized inputs for each user produces the following vectors:

o 7% = {(c2, €17, co). (c2. €17, c12), (c6. €18, €12)}
o T% = {(cq,e17,c4)}
o I" ={(cs,e18,c12)}

5.3 Secure filtering protocol

5.3.1 Characterization of feasible matches. During the secure
filtering phase, the aim is to obtain pairs of riders and drivers that
can travel together considering the inclusive ridesharing hypothesis
(and thus the inclusive ridesharing).

A match is said feasible between d and r, denoted by d &= r, if
the following conditions hold:

3 (Cf, efl, cf,) € 7% and 3 (c5.ef,cl,) € I" such that:

d
(1) Cil = Cg
(2) ef =ef
(3) cd =

The single triplet of the rider’s generalized input I = {(c{, €], c,)}
corresponds to the generalized cell of its origin, the generalized
epoch of its time at the origin and the generalized cell of its desti-
nation. Then, the first (respectively second) condition means that
there is a location on the driver’s trajectory that is in the same area
as the rider’s origin (respectively destination). The third condition
means that the epoch of arrival time of the rider at this location is
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consistent with the driver’s epoch of arrival time (and maximum
waiting time).

At the end of the secure filtering protocol, one obtains the set of
feasible pairs: Fyq = {(d,r)|d = r}.

In the example presented in Section 5.2.2, there is a feasible
match between the rider r and the driver d;. In fact, the triplet
(c6, €18, c12) is shared by both users and then satisfy the generalized
ridesharing conditions.

We implement a secure filtering protocol to compute feasible
matches. In our implementation, we encode private inputs (gener-
alized spatiotemporal triplets) as coefficients of polynomials. From
here on, we denote by P[i] the i-th coefficient of a polynomial P.
Furthermore, operations on polynomial are coefficient-wise.

5.3.2  Secure Filtering Protocol. The secure filtering protocol,
summarized in Figure 3, engages a rider r with its generalized input
vector 77, the service provider SP and all the drivers d € D with
their respective generalized input vector I 4 To compute feasible
matches, both the rider and all the drivers encode their generalized
input to an integer to ease the comparison. More precisely, to encode
a generalized spatiotemporal triplet (c;, e;, ¢;), the components of
the triplet are converted in their binary form, concatenated together,
and the resulting binary number is converted in its decimal form.
That is, encode(c;, e;, ¢j) = [[cil2 | [ei]2 | [¢j]2]10-

The details of the protocol are summarized as follows:

o The rider r generates a public/private key pair (pk, sk) of
a somewhat homomorphic cryptosystem. Then, she cre-
ates a myth degree polynomial P, (the degree equals the
number of drivers) whose coefficients are identical and cor-
respond to the encoding of her generalized input. That is,
P,[i] = encode(Z7),Vi = 1...my. Afterwards, she sends the
encrypted version [[P,]] of her polynomial, and her public
key pk to the service provider SP.

e The SP stores the encrypted polynomial of the rider, and
forwards her public key to the m drivers.

e The j-th driver creates, for her g-th generalized input, a
monomial ng such that ng = encode(J % [q])x/, ie. its j-th
coefficient P;Ij [j] = encode(Z% [q]) . Overall, nt X (n1 —
1)/2 of such monomials are created then encrypted with
the rider’s public key pk, and sent to the SP. For drivers
dj such that ITY|< nr, we set T% [¢q] = (0,0,0) Vg >
T4 1x(ITU]-1)/2.

e The service provider sums (obliviously) the gth encrypted
monomial of each driver into a single encrypted m th degree
polynomial [[P;I)]] whose jth coefficient corresponds to the
qth generalized input of the jth driver. Next, it computes the
feasible matches of rider r on the g-th generalized input. The
feasible matches are computed as a shared secret between
the SP and the rider. More precisely, the SP generates a ran-
dom mth degree polynomial PgP corresponding to its share,
and computes the share [[P%r]] of the rider r as [[Pqu]] =

[[P-1] = [[PE1] + [[P&1]. The SP sends [[P]) 1] to the rider
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and keeps PgP. The same operation is repeated for all the
nt X (nT — 1)/2 encrypted monomials [[PZ(]] of the drivers.
J

o The rider decrypts each of her shares P;I)r and engages in a
secure equality test with the SP to learn her feasible matches.
Notice that, whenever Pg)r ] = PgP U1, Pr[j] = P‘ZI) [j], and
there is a match between the rider r and the j-th driver dj on
the g-th generalized input. The secure equality test prevents
the rider from learning information about drivers with whom
she does not match. In fact, the secure equality test returns
1 whenever there is a feasible match, and 0 otherwise.

Overall, the secure filtering protocol is composed of two major
steps. In the first step, hereafter referred to as the secret-sharing
subroutine, the rider and the SP use a homomorphic arithmetic
secret sharing protocol to secretly share the feasible matches of the
rider. In the second step, hereafter referred to as the secure two-party
equality subroutine, the rider and the SP use a secure equality test
along with their private shares to compute the feasible matches of
the rider.

5.4 Secure computation of ridesharing costs

In this section, we describe the privacy-preserving meeting points
determination problem and show how we improve Priv-2SP-SP,
the privacy-preserving protocol proposed in [3] to solve the prob-
lem.

5.4.1 Problem formulation. The problem introduced in [3] con-
siders a driver d, a rider r and a set S of potential meeting points.
Each user u € {d,r} has an origin location Oy, a departure time
Tgu, and a destination location Dy,. In addition, the rider r is will-
ing to use public transit before and after the ridesharing occurs.
For each user u € {d,r} and a couple of meeting point (i,j) €
S x §, the traveling cost Tr;—j(u) induced by (i, ) is the time
it takes to the user u to complete her journey. The ridesharing
cost Ride;—j(d, r) induced by (i, ) for a couple of user (d,r) is
Ride;_j(d,r) = Tri—j(d) + Tri_j(r) + |rl.d - 7] |, where |Tid -1/
denotes the waiting time at the pick-up point i. The problem of
privacy-preserving meeting points determination protocol consists
in finding a couple of pick-up and drop-off locations (i*, j*) € SXS
such that Ride;«_j«(d, r) is the minimum, and the location data (O,
and D, of each user are protected.

5.4.2  Limitations of Priv-2SP-SP. We improve the performance
of the Priv-2SP-SP protocol by addressing three main limitations,
namely the scalability issue, the consideration of waiting time and
the consideration of actual ridesharing duration. In fact, in its cur-
rent form, waiting times for both the driver and the rider at the
pick-up location are not captured by the trip cost model. Further-
more, the authors consider every node in the transportation net-
work as a ridesharing station. Because this assumption increases
the computational overhead of the protocol, they use an iterative
approach which considers subsets of common meeting points while
computing ideal meeting points. Furthermore, a scoring algorithm
is used to hide real trip costs. Consequently, the solution found by
the original Priv-2SP-SP protocol is not always the optimal one.

5.4.3 Details of our improvements. To tackle the aforementioned
limitations, our improvements are threefold.
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Figure 3: Secure filtering protocol.

We first consider that the set of ridesharing stations is a subset
of locations known by everyone and propose a speed-up technique
based on table lookup. More precisely, given the set S of poten-
tial ridesharing stations, we run |S| shortest path algorithms to
pre-compute the |S|? shared paths i — j that interconnect the
ridesharing stations. This is possible as we assumed that S is known
in advance and |S|< |V|, where |V| represents. Then, we rely on
a secure comparison protocol to integrate the waiting time in the
trip cost model. More precisely, for each ridesharing station i € S
the driver and the rider use a secure comparison protocol to de-
termine arrival order at the station i and update their traveling
costs accordingly. Finally, we use a secure shared sum protocol to
consider real trip costs instead of scores. More precisely, for each
couple of pick-up and drop-off locations (i, j), the ridesharing cost
Ride;—;(d, r) is compute as a shared secret between the rider and
the driver. Thus, the selection of the best solution is made using
secret shares instead of using scores. This allows us to get optimal
meeting points.

5.5 Putting it all together : The SRide protocol

SRide integrates the four previously detailed modules. First, the
service provider SP initiates the system by setting the time and space
granularity and generates an empty bipartite graph. Then, each

participant generates its generalized inputs. Afterward, the privacy-
preserving filtering protocol is used to produce the set of feasible
matches. In this protocol, each rider relies on the service provider to
compute feasible matches obliviously. Then, each pair of driver and
rider having a feasible match securely computes its ridesharing cost
with the peer-to-peer Priv-2SP-SP protocol after which both users
learn the pick-up and drop-off locations. Finally, the SP centrally
solves an assignment problem based on the weighted bipartite graph
made of feasible pairs with their ridesharing costs, and notifies users
on their matches.

6 PERFORMANCE EVALUATION

In this section, we evaluate the SRide regarding communication
and computational overheads.

6.1 Experimental settings

Our experimental dataset was generated from data collected over a
19-month period on the Covoiturage-libre platform!, a popular and
openly available ridesharing web service operating in France. The
collected data includes pick-up and drop-off cities and trip sched-
ules. On average, there are 468 rides per day. On the busiest day,
1309 rides were scheduled. We generated inter-cities ride-sharing

Lhttp://covoiturage-libre.fr
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scenarios between the cities of Nantes and Rennes. These two cities
(approximately 110 km apart from each other) were chosen because
of the high number of rides observed between them in the dataset.

The multimodal graph was obtained by using data from Open-
StreetMap? for the road network and from Navitia® (in the GTFS
format) for the public transportation network {walk, bus, tramway,
car}.

We generated my = 1000 drivers’ offers and m, = 1000 riders’
requests. Departure locations are generated in the city of Nantes
and arrival locations in the city of Rennes. Each driver’s ride offer
is a trajectory composed of two locations points (origin and destina-
tion) with their corresponding arrival times (nt = 2). Each rider’s
request is composed of an origin location with a departure time
and a destination location. Departure times are uniformly gener-
ated between 5 p.m and 6 p.m for both riders and drivers. In our
simulation, the number of ride requests, in a two hours period, is
greater than what we observe on average for a day period in our
real-world dataset.

The time horizons considered are weekdays between [5p.m 8p.m].
This range is then divided into equal-length epochs of 15 or 30 min-
utes. Locations are generalized to their district. The city of Nantes
is composed of 11 districts while the city of Rennes has 12 districts
leading to a total of 23 generalized locations.

For the homomorphic secret sharing protocol, we use the FV-
NEFLIib library, which implements the FV scheme. As the degree
of the polynomial has to be a power of 2 (see [2]), for the 1,000
drivers we consider in our experiment, we use a 1024-th degree
polynomial to integrate generalized inputs of all the drivers. The
coefficients of the polynomial are coded on 64 bits and the modulus
p on 124 bits. Therefore, a public key or a ciphertext takes up 31
KB, while a plaintext takes up 8 KB.

For the secure computation of feasible matches protocol, we use
the ABY framework [10], which implements both the Goldreich-
Micali-Wigderson (GMW) protocol [18] and the Yao’s garbled cir-
cuit protocol [31], with security against passive adversaries. As
suggested in [4, 22], we use the GMW protocol to have better run-
time and communication performances for the secure two-party
computation between the rider and the SP. The private shares used
for the secure two-party equality test are 15-bit.

Our experiments are conducted on a Intel Xeon CPU E3-1271 v3
(3.60GHz, 32GB of RAM) running Linux 3.13.

6.2 Experimental results

Our results concern the two main steps of the SRide method: the
secure filtering and the secure scoring. Then, we compare SRide
to a brute-force approach.

6.2.1 Secure filtering. In this part, we report the communica-
tion overhead and the computational overhead of both the secret-
sharing and the secure two-party equality subroutines used in the
secure filtering protocol to compute feasible matches.
Communication overhead of the secret-sharing subroutine.
The secret sharing of feasible matches engages the rider, the SP,
and all the drivers. For each ride request, the rider sends to the SP

2 http://www.openstreetmap.org
Shttps://www.navitia.io/datasets
“https://github.com/CryptoExperts/FV-NFLIlib
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a public key and a ciphertext for her encrypted generalized input.
This requires a payload of 2 * 31 = 62 KB. Next, the SP forwards
the public key of the rider to each driver. This requires a payload of
31 KB. Then, each driver encrypts her generalized input with the
rider’s public key and sends the ciphertext to the SP. This requires a
payload of 31 KB. Finally, the SP sends the ciphertext of the shared
secret of feasible matches to the rider. This requires a payload of 31
KB.

Communication overhead of the secure two-party equality
subroutine. The secure computation of feasible matches engages
only the rider and the SP. In this protocol, the two parties run a
secure equality on their private shares obtained with the secret
sharing protocol. As each party has 1000 private shares, each of
which is 15-bit length. Overall, the boolean circuit for this secure
equality test has 15 * 1000 = 15000 inputs, 14 * 1000 = 14000 AND
gates, and 1000 outputs. The ABY framework sends per AND gate
256 bits (128 bit per party) in the setup phase and 4 bits (2 bits per
party) in the online phase. Since the circuit has 14000 AND gates,
each party sends/receives 14000 % 128/8 = 224000 bytes in the setup
phase. In the online phase, each party sends 1 bit per input and 1 bit
per output. Hence, we have 15000/8 + 1000/8 + 14000 * 2/8 = 5500
bytes in the online phase.

Overall communication overhead. A detailed summary of the
communication overhead for a ride request is given in Table 1.
Overall, the secure filtering introduces a small communication
overhead. In fact, the total bandwidth is under 70 KB (respectively
40 KB) for the rider (respectively the driver). As all the private inputs
are encoded using the same number of bits, the time generalization
does not impact the communication overhead.

Computational overhead of the secret-sharing subroutine. A
summary of the different cryptographic operations of each party
is given in Table 2. Overall, there are 5 cryptographic operations,
namely the key generation (by the rider), the encryption of general-
ized inputs (by both rider and driver), the oblivious computation of
the shared secret of feasible matches (by the SP) and the decryption
of the shared secret of feasible matches (by the rider). To summa-
rize, it takes about 519 ms for a rider to obtain secret shares of her
feasible matches.

Computational overhead of the secure two-party equality
subroutine. In the setup phase, the secure equality takes about 4
ms to complete. The online phase takes only 1 ms to complete.
Overall computational overhead. A summary of all the subrou-
tines of the secure filtering protocol is given in Table 2. Overall,
the computational overhead of the secure filtering protocol is very
small (520 ms).

Scalability. As expected, the performance in terms of communica-
tion and computation behave well as the number of drivers rises.
Table 3 shows that computation time for the three different en-
tities during the secret sharing part of the protocol scales with
O(mg X my). Table 4 shows that the performance of the secure
two-party equality test is linear with m.

6.2.2 Feasible Matches. The number IT/(Al of feasible matches
per rider obtained after the secure filtering protocol for different
temporal granularity is given Table 5. It presents the average total
number of feasible matches per rider and its standard deviation (avg
+ std). To summarize, in the two settings, the number of drivers
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Time Rider Driver

Up (KB) Down (KB) Up (KB) Down (KB)
30 67.4 36.4 31 31
15 67.4 36.4 31 31

Table 1: Communication overhead of the filtering protocol

Time generalization Rider SP Driver | Rider & SP Total
(min) KeyGen Enc Dec HomAdd Enc SecureEQ

15 33+1ms |{4+0ms | 1+0ms | 477+3ms | 4+ 0ms 1+ 0ms 520 ms

30 33+1ms | 4+0ms | 1+0ms | 477+3ms | 4+ 0ms 1+ 0ms 520 ms

Table 2: Computational overhead of the secure filtering protocol. The secure filtering protocol engages a rider, the SP, and the
1000 drivers at the same time. Statistics are computed over the 1000 riders.

my 100 | 200 | 500 | 1000 | 8000 | 10000

KeyGen (ms) 4 8 17 33 288 606

Rider Enc (ms) <1 | <1 2 4 36 76

Dec (ms) <1 | <1 1 1 15 52

Driver Enc (ms) <1 | <1 2 4 36 76
SP HommAdd (ms) 6 23 | 122 | 477 | 31177 | 78103
Total 10 31 | 144 | 519 | 31552 | 78913

Table 3: Performances of the secret-sharing subroutine
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Figure 4: Number of feasible matches per rider for a temporal granularity of 30 minutes (left) and 15 minutes (right)

with whom the rider can share a trip was significantly reduced.
In fact, on average, for each ride request, only 4.3% (respectively
2.2%) of the drivers are candidates for ridesharing, when the tem-
poral granularity is set to 30 (respectively 15) minutes. As expected,
the finer the temporal granularity, the smaller the set of feasible
matches for each rider.

6.2.3  Secure scoring. In this section, we discuss the communica-
tion and computational cost of the Priv-2SP-SP protocol used to
find effective pick-up and drop-off locations and ridesharing costs.
As suggested in [3], to speed up Priv-2SP-SP and reduce its com-
munication overhead, we consider a small number of vertices as

ridesharing stations (64 stations in our instances). By doing so, it
takes less than 200 ms for a pair of rider and driver to run the
improved Priv-2SP-SP protocol with a total data payload of 132
KB.

6.2.4 Comparison with the naive approach. Overall, using the
secure filtering protocol and then the Priv-2SP-SP protocol, it will
take about 9 seconds (respectively 5 seconds) to compute feasi-
ble matches and their corresponding ridesharing cost, for a time
generalization of 30 (respectively 15) minutes. The communication
overhead is about 6 MB (respectively 3 MB) for a time generalization
of 30 (respectively 15) minutes. To compare, the naive approach
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my | Comm. (bytes) | Comp. (ms)
100 616 0.394
200 1163 0.461

500 2816 0.535
1000 5554 0.556
8000 44054 1.131
10000 55063 1.286

Table 4: Performances of the secure two-party equality sub-
routine

Time granularity (min) Number of feasible matches

30 43 +23

15 22+12

Table 5: Number of feasible matches per rider. Statistics are
computed over the 1000 riders.

#

) matehes || 5 | S 10 | > 15 | >20
Granularity

15 min 89.6% | 72.6% | 67.3% 55%

30 min 96.7% | 91.3% | 83.1% | 75.4%

Table 6: Anonymity set for a rider given the number of fea-
sible matches

(running the secure scoring between each pair of riders and drivers)
requires about 3 minutes and 132 MB.

7 SECURITY AND PRIVACY ANALYSIS

We implement the homomorphic secret-sharing protocol by using
the Fan-Vercauteren (FV) homomorphic encryption scheme [12].
As all SHE schemes, the FV scheme offers semantic security, i.e., it
is computationally impossible to distinguish whether two different
ciphertexts conceal the same plaintext. For the two-party secure
equality test, we implement the secure computation of feasible
matches protocol with the Goldreich-Micali-Wigderson (GMW)
protocol [18] which provides security against passive adversaries.

7.1 Security of Priv-2SP-SP protocol

The protocol Priv-2SP-SP engages one driver and one rider. In
the new version of this protocol, there are essentially two critical
subroutines, namely the secure comparison subroutine used to
integrate the waiting time at the pick-up location, and the secure
shared sum subroutine used to consider actual trip costs when
selecting the optimal meeting points. During the secure comparison
protocol, both the driver and the rider learn nothing about the
private shares of each other thanks to the privacy guarantee against
passive adversaries of the GMW protocol [18]. During the secure
shared sum subroutine, the rider receives encrypted inputs from the
driver. Hence, she cannot learn anything about the driver’s inputs
because of the semantic security of the FV scheme [12]. On the
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other hand, the driver receives random-looking numbers. Hence,
she cannot learn anything about the rider’s input.

7.2 Confidentiality of the rider

During the secret sharing subroutine, the SP receives the encrypted
generalized inputs of the rider. It cannot learn anything about the
rider’s generalized inputs because of the semantic security of the
FV encryption scheme. Similarly, the drivers cannot learn anything
about the rider except her public key, which is the only information
they receive about her. During the secure computation of feasible
matches, the SP learns nothing about the private shares of the rider
thanks to the privacy guarantee against passive adversaries of the
GMW protocol [18]. Finally, during the Priv-2SP-SP protocol, the
driver cannot learn the rider’s location data thanks to the security
guarantee of the Priv-2SP-SP protocol.

During the matching step, the SP receive ridesharing cost of each
feasible matches. Similarly to [20], we use the anonymity set to
evaluate the k-anonymity of the riders. Figure 4 shows the empirical
cumulative distribution function of the number of feasible per rider
for a temporal granularity of 30 minutes and 15 minutes. Overall,
with a granularity of 30 minutes 50% of the riders have at least
438 feasible matches, and with a granularity of 15 minutes 50% of
the riders have at least 22 feasible matches. That is, the finer the
temporal granularity, the smaller the anonymity set. In Table 6, we
show variations of the anonymity set for a rider given the number
of her feasible matches. Overall, 96.7% (respectively 89.6%) of the
riders have at least 5 feasible matches with time granularity of 30
minutes (respectively 15 minutes).

7.3 Confidentiality of the driver

During the secret sharing subroutine, the SP receives the encrypted
generalized inputs of the drivers. However, as the FV scheme has
semantic security, the SP cannot learn anything about drivers’ gen-
eralized inputs. During the secure computation of feasible matches,
the rider learns the generalized input of a driver if and only if
there is a match between them,; that is, the rider learns nothing
about drivers with whom she does not match. Finally, during the
Priv-2SP-SP protocol, the rider cannot learn the driver’s location
data thanks to the security guarantee of the Priv-2SP-SP protocol.

8 CONCLUSION

In this paper, we have proposed SRide, a practical solution to imple-
ment matching in ridesharing systems while protecting the privacy
of users against both the service provider and other curious users.
We propose a secure filtering subroutine, which relies on homo-
morphic arithmetic secret sharing and secure two-party equality
test, to compute feasible matches. Then, each feasible pair uses
the Priv-2SP-SP protocol to compute its ridesharing cost which
will be used to compute the optimal assignment of riders and dri-
vers. Our experimental analysis shows that our privacy-preserving
protocol has acceptable performances for real-world applications.

Future works include more extensive experiments with more re-
alistic ridesharing hypothesis, for instance, drivers’ detour or fares,
several intermediate locations on the drivers’ trajectory, multiple
origin locations for the riders.
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