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Abstract

INTRODUCTION—Tumor fitness, evolution, and resistance to therapy are governed by selection 

of malignant cells with specific genotypes, by expression programs related to cellular phenotypes, 

and by influences of the tumor microenvironment (TME). Although bulk tumor analysis can 

interrogate the genetic state of tumor cells with high precision, bulk expression profiles average 

the diverse cells within each tumor, thereby masking critical differences and providing limited 

insight into cancer cell programs and TME influences. Single-cell RNA sequencing (scRNA-seq) 

can help to address those challenges but incurs financial and logistic considerations, including the 

time required to accrue large cohorts of fresh tumor specimen for single-cell analysis.
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RATIONALE—We reasoned that scRNA-seq of a limited number of representative tumors could 

be combined with bulk data from large cohorts to decipher differences between tumor subclasses. 

In this approach, bulk samples collected for large cohorts, such as from The Cancer Genome Atlas 

(TCGA), are first used to define the combined effects of differences in cancer cell genotypes, 

phenotypes, and the composition of the TME. Single-cell analysis of a limited set of representative 

tumors is then used to distinguish those effects. We applied this approach to understand the 

differences between two types of isocitrate dehydrogenase (IDH)-mutant gliomas: astrocytoma 

(IDH-A) and oligodendroglioma (IDH-O). IDH-A and IDH-O are distinguished by co-occurring 

signature genetic events and by histopathology and are thought to recapitulate distinct glial 

lineages. By combining 9879 scRNA-seq profiles from 10 IDH-A tumors, 4347 scRNA-seq 

profiles from six IDH-O tumors, and 165 TCGA bulk RNA profiles, we could decipher differences 

between these two tumor types at single-cell resolution.

RESULTS—We find that differences in bulk expression profiles between IDH-A and IDH-O are 

primarily explained by the impact of signature genetic events and TME composition, but not by 

distinct expression programs of glial lineages in the malignant cells. We infer that both IDH-A and 

IDH-O share the same developmental hierarchy, consisting in each case of three subpopulations of 

malignant cells: nonproliferating cells differentiated along the astrocytic and oligodendrocytic 

lineages, and proliferative undifferentiated cells that resemble neural stem/progenitor cells. By 

analyzing tumors of different clinical grades, we observe that higher-grade tumors present 

enhanced proliferation, larger pools of undifferentiated glioma cells, and an increase in 

macrophage over microglia programs in the TME.

CONCLUSION—Our approach provides a general framework to decipher differences between 

classes of human tumors by decoupling cancer cell genotypes, phenotypes, and the composition of 

the TME. The shared glial lineages and developmental hierarchies observed in IDH-A and IDH-O 

suggest a common progenitor for all IDH-mutant gliomas, shedding light on a longstanding debate 

in gliomagenesis. In contrast to the similarity in glial lineages, IDH-A and IDH-O differ 

significantly in their TME, and in particular in the abundance of microglia/macrophage cells. 

Microglia and macrophages also differ between IDH-A tumors of different grades. Our study 

redefines the cellular composition of human IDH-mutant gliomas, with important implications for 

disease management.

Graphical abstract

Single-cell RNA-seq of IDH-mutant gliomas reveals tumor architecture. (Top) Human 

samples were dissociated and analyzed by scRNA-seq. (Bottom) IDH-O and IDH-A differ in 

genetics and TME but are both primarily composed of three main types of malignant cells: cycling 

stem-like cells and noncycling astrocyte-like and oligodendrocyte-like cells. Tumor progression is 

associated with increased proliferation, decreased differentiation, and increase in macrophages 

over microglia in the TME.
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Cancer cell genotypes, in combination with expression programs related to cellular 

phenotypes and influences of the tumor microenvironment (TME), govern tumor fitness, 

evolution, and resistance to therapy (1). In recent years, studies such as those of The Cancer 

Genome Atlas (TCGA) have charted the genetic landscape and the bulk expression states of 

thousands of tumors, identifying driver mutations and defining tumor subtypes on the basis 

of specific transcriptional profiles (2,3). Whereas the genetic state of individual tumors can 

be studied with high precision, bulk expression profiles provide only limited insight because 

they average together the phenotypic determinants of cancer programs, TME influences, and 

intratumoral genetic heterogeneity. Single-cell RNA-seq (scRNA-seq) can help to address 

those challenges (4–7) but poses financial and logistic considerations, including the time 

required to accrue large cohorts of fresh tumor specimens for single-cell analysis, especially 

in rare tumor types.

We reasoned that scRNA-seq of a limited number of representative tumors could be 

combined with existing bulk data from large cohorts to decipher these distinct effects, and 

sought to apply this approach in an effort to understand the differences between two major 

types of diffuse gliomas. In adults, diffuse gliomas are classified into three main categories 

on the basis of integrated genetic and histologic parameters: IDH-wild-type glioblastoma 

(GBM) is the most prevalent and aggressive form of the disease, whereas mutations in IDH1 
(or less frequently IDH2) define two major classes of gliomas: astrocytoma (IDH-A) and 

oligodendroglioma (IDH-O) (8). IDH-A and IDH-O are two distinct tumor types that differ 

in their genetics, histopathology, and prognosis. Genetically, IDH-A is characterized by 

TP53 and ATRX mutations, whereas IDH-O is characterized by mutations in the TERT 
promoter and loss of chromosome arms 1p and 19q, defining a robust genetic separation into 

two disease entities (2).

In histopathology, IDH-A and IDH-O are distinct and are thought to predominantly 

recapitulate astrocytic and oligodendrocytic lineages of glial differentiation, respectively. 

The notion that glial lineages differ between astrocytoma and oligodendroglioma, as implied 

by their names, originates from distinct morphology and tissue staining. However, 

expression of both oligodendroglial (e.g., OLIG2) and astrocytic [e.g., glial fibrillary acidic 

protein (GFAP)] markers can be readily identified in both diseases (8), mixtures of cells with 

histological features of neoplastic astrocytic and oligodendroglial cells are frequently 
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observed within individual tumors, and cellular morphologies are only partially reminiscent 

of distinct glial cells. Thus, the hypothesis of distinct glial lineages is questionable.

Here, we combined 9879 scRNA-seq profiles from 10 IDH-A gliomas with 4347 single-cell 

profiles from six IDH-O gliomas and 165 TCGA bulk RNA profiles to decipher cancer cell 

genotypes and phenotypes and to gain insight into TME composition across IDH-mutant 

gliomas. We find that differences in bulk profiles between IDH-A and IDH-O are primarily 

explained by signature genetic events and distinct TME composition, but not by distinct 

influences of glial lineages in the malignant cells of the two tumor types. Furthermore, as 

glioma grade increases, we observe enhanced proliferation of malignant cells, a larger pool 

of undifferentiated glioma cells, and an increase in macrophage over microglia programs in 

the TME. Our study redefines the cellular composition of human IDH-mutant gliomas and 

provides a general approach to deciphering differences between tumor subtypes.

Deciphering differences between bulk IDH-mutant glioma samples with 

single-cell RNA-seq

We compared the expression profiles of IDH-A and IDH-O gliomas using bulk expression 

profiles from the TCGA data sets (76 IDH-O and 91 IDH-A gliomas) as well as newly 

measured single-cell RNA-seq profiles (Fig. 1A). Comparing the TCGA bulk profiles, we 

found ~550 differentially expressed genes, suggesting the existence of distinct regulatory 

programs (2) (Fig. 1B). Because bulk profiles averaged the contributions of both genetically 

and phenotypically diverse malignant cells and additional diverse cells from the TME, we 

profiled single cells from 10 IDH-A tumors spanning clinical grades II to IV (table S1 and 

fig. S1), retaining 6341 single-cell profiles after filtering out low-quality cells (Fig. 1A).

We first sought to classify single cells as malignant or nonmalignant. Although genetic 

mutations may be used for such classification, mutation calling from scRNA-seq has limited 

sensitivity and specificity, and combined single-cell DNA and RNA profiling is not yet 

scalable to thousands of cells (9,10). We thus used two complementary approaches: (i) Gene 

expression clustering separated cells into three groups, consistent with the programs of 

glioma cells, immune cells, and oligodendrocytes (fig. S2). (ii) Because glioma cells 

frequently harbor large-scale chromosomal aberrations (2), we estimated copy number 

variations (CNVs) from the average expression of genes in large chromosomal regions 

within each cell (4) and validated some of our predictions by whole-exome sequencing and 

DNA fluorescence in situ hybridization (FISH) (fig. S2 and table S2) (11).

The resulting expression-based and CNV-based classifications were highly consistent with 

one another, and we used both criteria to identify 5097 malignant cells (fig. S3). Our 

classification scheme was further validated by IDH mutations whose detection, although 

technically limited in scRNA-seq data, was highly specific to cells classified as malignant 

(fig. S3; P <10−16, hyper-geometric test).
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Many differences between bulk IDH-A and IDH-O glioma samples do not 

stem from malignant cells

Surprisingly, when we directly compared the IDH-A malignant cells to 4044 malignant cells 

profiled from six IDH-O tumors (12) (Fig. 1B), only about half of the genes that were 

differentially expressed according to bulk TCGA samples were also differentially expressed 

between the single malignant cells of the two tumor types (Fig. 1B and fig. S4). This 

suggests that the remaining differentially expressed genes may reflect differences in the 

TME rather than differences in the expression programs of malignant cells. Indeed, most of 

the remaining expression differences between bulk samples involved either microglia/

macrophage-specific genes or neuron-specific genes (11), which were preferentially 

expressed in bulk IDH-A or IDH-O samples, respectively (Fig. 1, C to E, and fig. S4), 

suggesting influences from nonmalignant cells in the bulk profiles. Differential expression 

between IDH-A and IDH-O was consistent among microglia/macrophage-specific genes and 

among neuron-specific genes (Fig. 1D); this allowed us to estimate the relative abundance of 

microglia/macrophages and of neuronal cells in each of the bulk tumors from the average 

expression of these two signatures (Fig. 1E). Thus, IDH-A tumors are associated with more 

microglia/macrophages and fewer neuronal cells than are IDH-O tumors, with few 

exceptions (Fig. 1E). Note also that these differences are observed between IDH-A and IDH-

O tumors of the same clinical grade or when restricting the analysis to untreated tumors (fig. 

S4).

Most expression differences between IDH-A and IDH-O malignant cells are 

attributable to genetics

Next, we focused on the expression differences between IDH-A and IDH-O that are 

significant in comparisons of both bulk samples and single malignant cells of the two tumor 

types (11). We reasoned that specific genetic events might determine at least some of these 

differences. Indeed, most genes with higher expression in single malignant cells in IDH-A 

are located on chromosomes 1pand19q, which are co-deleted in IDH-O (Fig.1F). Loss of 

function of the transcriptional repressor CIC, which is specific to IDH-O, accounted for an 

additional ~10% of the expression differences (Fig. 1F), as inferred from a CIC expression 

signature (11–13). We also found a limited yet significant (P = 0.018, hypergeometric test) 

enrichment of p53 targets among genes more highly expressed in IDH-O tumors, consistent 

with a mutated TP53 in IDH-A. Overall, 57% of the expression differences were consistent 

with at least one of these genetic causes (Fig. 1F). Taken together, these results suggest that 

differences between bulk TCGA expression signatures of IDH-A and IDH-O primarily 

reflect TME composition and influences of genetic alterations.

scRNA-seq reveals shared glial lineages in IDH-A and IDH-O

IDH-A and IDH-O are thought to primarily recapitulate the astrocytic and oligodendrocytic 

glial lineages, respectively (8). However, the above results demonstrate that most differences 

between IDH-A and IDH-O may be accounted for by genetics and TME and do not fit the 

hypothesis of distinct glial lineages in these tumors. Indeed, we observed limited differences 
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in the expression of astrocyte-specific and oligodendrocyte-specific genes between IDH-A 

and IDH-O, either in bulk or in single-cell profiles (Fig. 2A). Instead, the expression of these 

genes varied substantially across the cells within each of the IDH-A and IDH-O tumors. 

After subtracting intertumor differences (11), principal components analysis (PCA) across 

all IDH-A cells demonstrated that principal components PC1 and PC2 are associated with 

astrocyte-specific (PC1/2-high) and oligodendrocyte-specific (PC1/2-low) genes (Fig. 2B 

and table S3; P <10−9, hypergeometric test).

We refined the sets of glial lineage genes using the scRNA-seq data to define astrocyte-like 

and oligodendrocyte-like expression programs that covary across IDH-A cells (Fig. 2C and 

table S3) (11). These expression programs–which were not accounted for by intertumor 

differences, nor by technical and batch effects (fig. S5, A and B, and fig. S6A)–were 

reproduced in an analysis of 3538 additional cells from two IDH-A tumors profiled with a 

different single-cell RNA-seq protocol (fig. S5C) and were also coexpressed among IDH-O 

cells (Fig. 2C). We scored individual cells in each tumor type for expression of these 

programs; we then used these scores to classify cells with preferential expression of each 

program as well as intermediate cellular states (Fig. 2C). All tumors exhibited a wide 

distribution of cellular states, yet there were more IDH-A cells in intermediate states (Fig. 

2C and fig. S6A). The distribution of single-cell profiles from IDH-wild-type GBMs 

differed, showing a bias toward the astrocytic program; this finding supports the idea that the 

cellular architecture of IDH-A and IDH-O is specific to IDH-mutant tumors and is not 

shared across all diffuse gliomas (fig. S6B). Thus, our data support a model in which 

malignant cells in IDH-A and IDH-O share inferred lineages of glial differentiation.

We next investigated whether the 192 genes differentially expressed between the malignant 

cells of IDH-A and IDH-O (Fig. 1F) are shared across all malignant cells or whether they 

are specific to certain subpopulations. As expected, expression differences in 109 genes that 

can be attributed to signature genetic alterations (Fig. 1F) were shared across all malignant 

cells (fig. S6C). However, differences between IDH-A and IDH-O in the expression of the 

remaining 83 differentially expressed genes (table S3) were most pronounced in 

differentiated tumor cells and were almost completely abolished among the most 

undifferentiated cancer cells (Fig. 2D). Thus, undifferentiated cells from these tumor types 

exhibit increased similarity in gene expression programs, raising the possibility of a shared 

cell of origin for IDH-A and IDH-O.

To further test this hypothesis, we analyzed DNA bulk methylation patterns, as DNA 

methylation may preserve epigenetic signatures of the cell of origin that are not evident by 

gene expression analysis. We found high similarity in DNA methylation between IDH-A and 

IDH-O relative to both IDH-wild-type gliomas and IDH-mutant non-glioma tumors (fig. 

S7). Although DNA methylation is highly influenced by the IDH1 (or IDH2)mutation, this 

high similarity is consistent with a shared histogenesis of IDH-A and IDH-O.
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Undifferentiated glioma cells are associated with proliferation and a shared 

stemness program

The high degree of expression similarity between undifferentiated cells in IDH-A and IDH-

O and the possibility that these might reflect a stem/progenitor cell phenotype prompted us 

to further investigate their developmental programs. We previously identified cancer stem-

like cells in IDH-O that display neural stem/progenitor programs and are highly enriched in 

cell cycle programs (12). Generalizing this finding across all IDH-mutant glioma classes, we 

identified cycling cells on the basis of the expression of consensus cell cycle signatures (fig. 

S8A) (11,12,14) and found that in both IDH-A and IDH-O, only a small proportion of cells 

are proliferating (~4% on average in our cohort) and that there is an inverse correlation 

between proliferation and differentiation(Fig. 3A). Remarkably, the fraction of cycling cells 

for a given state of differentiation is similar between IDH-A and IDH-O (Fig. 3A). This 

supports a model in which proliferation and cell identity are tightly coupled in IDH-mutant 

tumors.

We derived a gene signature of the undifferentiated cells (excluding cycling cells) across the 

IDH-A and IDH-O tumors. Ninety genes were enriched within undifferentiated cells of at 

least three distinct tumors and were examined further for their coexpression among 

undifferentiated IDH-A and IDH-O cells (Fig. 3B). We defined a putative glioma stemness 

program as the subset of genes that are both enriched and co-expressed in undifferentiated 

cells of both IDH-A and IDH-O(Fig.3C). This program includes neurodevelopmental 

transcription factors (e.g., SOX4, SOX11, and TCF4) and is consistent with the expression 

program of human neural stem cells (NSCs) and neural progenitor cells (NPCs) and with a 

program we highlighted in IDH-O (fig. S9). We validated this tumor architecture in IDH-A 

tissues in 14 additional cases (table S1), showing in each tumor (i) two glial lineages of 

cancer cell differentiation, (ii) mutually exclusive expression of cycling (by Ki-67 staining) 

and differentiation (by ApoE expression) markers, and (iii) coexpression of cycling (Ki-67) 

and putative stem cell (SOX4) markers (Fig. 3D and table S1). This architecture has also 

been validated in a cohort of 16 IDH-O tumors (12).

Changes in tumor architecture associated with tumor grade and genetic 

subclones

Although IDH-A and IDH-O share the same stem/progenitor programs and putative lineages 

of glial differentiation, regional and intertumoral variability can be observed in tissues, 

prompting us to investigate additional factors that might modulate tumor architecture. A 

comparison of IDH-A and IDH-O tumors reveals three interrelated differences: (i) The 

overall fraction of cycling cells (fig. S8) is higher in our IDH-A cases, (ii) the overall 

fraction of undifferentiated cells (Fig. 2D) is higher in our IDH-A cases, and (iii) the two 

lineage scores are inversely related in IDH-O, consistent with a differentiation process in 

which one lineage represses the other–a relationship not observed in IDH-A (fig. S6, D and 

E).
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Notably, all three aspects vary significantly within the IDH-A tumors and correlate with 

tumor grade, such that higher-grade tumors tend to have more cycling cells, more 

undifferentiated cells, and a more limited association between lineage programs (Fig. 4A 

and fig. S10, A and B). This provides a molecular fingerprint for tumor progression, because 

IDH-A tumors are thought to begin as grade II lesions and progress to grade III and IV. We 

validated the correlation between the frequency of cycling malignant cells (as reflected by 

the cell cycle program) and tumor grade with analysis of bulk TCGA samples (fig. S10C).

We hypothesized that the observed fingerprint of tumor grade-associated changes might also 

be reflected in clonal evolution, whereby genetically distinct subclones within the same 

tumor vary in their frequency of cycling and undifferentiated cells, with selection favoring 

the more aggressive subclones. To study genetic intratumoral heterogeneity, we inferred 

CNVs from single-cell expression profiles (fig. S2B) and predicted subclones in three of our 

tumors, MGH44, MGH57, and MGH103 (Fig. 4, B and C, and fig. S11). In each of these 

cases, although the overall tumor architecture was preserved across clones, we also observed 

variability either in the fraction of cycling cells or in differentiation patterns (Fig. 4, D and 

E, and fig. S11). Overall, these cases, together with two IDH-O cases (12), demonstrate that 

patterns of differentiation and proliferation can be partially modulated by genetics and 

subjected to selection. Future studies should further investigate the modulation of our 

inferred cellular architecture by genetic evolution.

The microglia-to-macrophage balance in the glioma TME

Finally, we used PCA to analyze the diversity of microglia/macrophage cells, the 

predominant subset of nonmalignant cells in the TME (n = 1043 in IDH-A and 246 in IDH-

O) (fig. S12). The second principal component (PC2) reflected an inflammatory program 

consisting of cytokines [interleukin-1 (IL-1), IL-8, and tumor necrosis factor (TNF)], 

chemokines (CCL3 and CCL4), NF-кB-related genes (REL, NFKBIA and NFKBIZ), and 

immediate early genes (JUNB FOSB EGR3 IER3, and ATF3). The program was active in 

most microglia/macrophage cells across IDH-A and IDH-O tumors and is similar to a 

reported program in IDH-O (12) (table S3). PC1 highlighted two mutually opposing 

programs, which were highly consistent with microglia (PC1-high) and macrophage (PC1-

low) expression programs (Fig. 5A and table S3). Top PC1-high genes included microglia 

markers, such as CX3CR1, P2RY12, and P2RY13 (15), whereas CD163, TGFBI, and 

F13A1 were among the PC1-low genes and are more highly expressed in diverse 

macrophage populations than in microglia (16) (Fig. 5A). Thus, the difference between PC1-

high and PC1-low may correspond to how brain-resident microglia differ from infiltrating 

macrophages that reach the tumor through the circulation and must pass through the blood-

brain barrier.

However, scoring cells by the relative expression of microglia-specific versus macrophage-

specific genes revealed a continuum rather than a bimodal distribution (Fig. 5B) This is 

difficult to reconcile with a simple model of two populations (microglia and macrophages) 

and suggests additional influences on these expression programs. Furthermore, even the top 

macrophage-like cells in gliomas have lower macrophage scores than macrophages from 

melanoma tumors (Fig. 5C) (5). Thus, the glioma microenvironment might have altered the 
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expression profiles of macrophages, thereby decreasing their difference from microglia. 

Moreover, microglia/macrophages from each individual tumor had a limited range of scores, 

with some tumors biased toward macrophage-like cells (e.g., MGH42) and others toward 

microglia-like cells (e.g., MGH56) (Fig. 5C). This indicates that specific properties of the 

microenvironment of each tumor may be dominant over the immune cell of origin with 

respect to macrophage-like and microglia-like expression states, consistent with the results 

of recent studies (15).

This observed intertumor variability in microglia/macrophage states correlated with grade, 

such that cells from higher-grade tumors were preferentially associated with macrophage-

like expression states. We validated this association by comparing the expression of 

macrophage-specific and microglia-specific genes across grades in bulk TCGAIDH-A and 

IDH-O tumors (Fig. 5D). These results suggest that early in their development, gliomas 

primarily contain brain-resident microglia-like cells, whereas macrophage-like programs are 

associated with higher grades and possibly coincide with other grade-associated changes, 

such as increased angiogenesis and alterations of the blood-brain barrier.

Accordingly, this effect may parallel changes in tumor vascularity. We derived a signature of 

endothelial-specific genes (11) and used their average expression to estimate the abundance 

of endothelial cells in each bulk tumor. This endothelial signature is correlated with the 

macrophage-specific, but not microglia-specific, programs across IDH-O and IDH-A tumors 

(Fig. 5E). Moreover, the endothelial signature increases with tumor grade, paralleling 

changes in the macrophage-specific, but not microglia-specific, expression programs (Fig. 

5D). We validated our observations by RNA in situ hybridization for CX3CR1 (microglia) 

and CD163 (macrophages) in our own cohort (Fig. 5F). We also observed cells that co-

express microglia and macrophage programs in tumors, supporting our hypothesis of a 

continuum of microglia-like to macrophage-like states (Fig. 5F).

Although the endothelial program correlates with variability in the macrophage-like 

expression program between cells, it does not account for the variability in the overall 

proportion of microglia and macrophages. IDH-A tumors have a considerably higher 

proportion of microglia/macrophage cells than do IDH-O tumors, as noted above (Fig. 1C), 

and this difference is not accounted for by endothelial cells or by grade (Fig. 5D).

To search for additional mechanisms that might regulate infiltration of microglia/

macrophage cells into the tumor, we searched for genes that are not expressed by 

macrophage/microglia but are correlated with the inferred abundance of microglia/

macrophage cells across bulk tumor samples. We found that 24 genes are correlated with 

both microglia and macrophage expression across IDH-A tumors, and separately across 

IDH-O tumors (fig. S13A, top). Although these analyses were performed within a tumor 

type and thus were not directly influenced by differences between IDH-A and IDH-O, these 

24 genes were preferentially expressed in IDH-A (fig. S13A, bottom), consistent with the 

increased macrophage/microglia signatures in IDH-A. We cannot determine whether these 

associations are causal (i.e., we cannot distinguish whether these genes influence or are 

influenced by immune infiltration, or whether both are affected by a third hidden factor); 

however, the ability of this expression program to predict the extent of microglia/

Venteicher et al. Page 9

Science. Author manuscript; available in PMC 2018 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



macrophage infiltration across tumors and tumor types (fig. S13B) suggests interactions 

between immune infiltration and other cells in the tumor. Interestingly, three of those genes 

were components of the complement system, a specialized arm of the innate immune 

system, as we recently observed in a similar analysis of fibroblast-immune cell interactions 

in melanoma (5).

Taken together, our observations (i) define microglia and macrophage programs in gliomas 

at single-cell resolution; (ii) associate the macrophage program, but not the microglia 

program, with clinical grade and increased vascularity; (iii) highlight a continuity in 

transcriptional programs of microglia/macrophages in tumors (rather than a bimodal 

distribution), suggesting plasticity of cellular states; (iv) reveal an overall increase in 

microglia/macrophage infiltration in IDH-A compared to IDH-O; and (v) define a tumor 

expression signature associated with increased microglia/macrophage infiltration.

Discussion

By combining single-cell analysis of a limited set of representative tumors with bulk 

samples collected for larger cohorts, such as those from TCGA, our approach provides a 

general framework for decoupling cancer cell genotypes, phenotypes, and the composition 

of the TME in tumors. In IDH-mutant gliomas, our approach uncovers shared neural 

developmental programs and putative lineages of glial differentiation in IDH-A and IDH-O. 

Thus, IDH-mutant gliomas are primarily composed of three subpopulations of malignant 

cells: nonproliferating differentiated cells of two glial lineages, as well as proliferative 

undifferentiated cells that resemble neural stem/progenitor cells. The shared glial lineages 

and developmental hierarchies suggest a common progenitor for all IDH-mutant gliomas 

with NSC/NPC-like programs, thereby shedding light on a long-standing debate in 

gliomagenesis (17).

Our study thus represents a shift in our understanding of the histogenesis of glial tumors and 

supports a model where IDH-mutant glioma subclasses share developmental programs and 

putative lineages of glial differentiation, but differ primarily by genetic mutations and TME 

composition. All IDH-mutant gliomas we examined at single-cell resolution, including 10 

IDH-A tumors and six IDH-O tumors as defined by genetics and histopathology, contained 

malignant cells recapitulating oligodendrocyte-like and astrocyte-like glial programs as well 

as a neural precursor program. Although our cohort is fairly limited, our cases have had little 

selection bias (consecutive cases operated at our institution), and our observations have been 

validated in larger cohorts by tissue staining and by analysis of the TCGA data sets.

Given the similar developmental architecture of IDH-A and IDH-O, the morphological 

differences between these two entities might be linked to genetic differences between IDH-A 

and IDH-O and to TME composition. Accordingly, at least two genes involved in 

cytoskeleton and cell shape are down-regulated by IDH-O-specific mutations (table S3): (i) 

GFAP, a marker commonly used to assess astrocytic lineage in histopathology, is positively 

regulated by CIC (12)and is thus more highly expressed in IDH-A than IDH-O; and (ii) 

RHOC, encoding RhoC guanosine triphosphatase, a well-known regulator of cell shape and 

motility (18,19), is located on chromosome arm 1p and is therefore more highly expressed in 
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IDH-A. Thus, signature genetic events might influence the morphology of cancer cells and 

underlie at least some of the histopathologic differences.

We also found a considerable difference in the TME composition of IDH-mutant gliomas, 

whereby IDH-A is enriched with microglia/macrophage signatures. These differences in 

TME composition may also, at least in part, be driven by genetic influences. For example, 

TP53 (mutated only in IDH-A) has been shown to influence major immuneregulatory 

pathways such as NF-κB (20).

Although our data support a shared architecture for all IDH-mutant gliomas, the cellular 

composition of other diffuse gliomas might differ. Indeed, we were not able to clearly 

identify a similar architecture in IDH-wild-type GBM. Because much of the literature on 

putative glial lineages of glioma cells preceded the discovery of the IDH1/2 mutations, IDH-

wild-type tumors might have confounded analyses in those studies. By analyzing IDH-

mutant gliomas of different clinical grades (spanning II to IV) at single-cell resolution, we 

identified a potential molecular fingerprint of tumor progression, with support in TCGA data 

sets; our analyses suggest that high-grade lesions show increased proliferation, larger pools 

of undifferentiated cells, partially aberrant differentiation programs, and increased 

infiltration by macrophages over resident microglia. Finally, from a therapeutic standpoint, 

our data raise the possibility that triggering cellular differentiation could arrest the growth of 

these tumors. By shedding light on the cellular composition of IDH-mutant gliomas, our 

data also offer opportunities for the design of immunotherapies targeting cancer cell 

phenotypes, a potentially novel avenue in the treatment of these currently incurable 

malignancies.

Materials and methods

Tumor dissociation

Patients at Massachusetts General Hospital gave consent preoperatively in all cases 

according to Institutional Review Board Protocol 1999P008145. Fresh tumors were 

collected at the time of resection, and presence of malignant cells was confirmed by frozen 

section. Fresh tumor tissue was mechanically and enzymatically dissociated using a papain-

based brain tumor dissociation kit (Miltenyi Biotec). Large pieces of debris were removed 

with a 100-μm strainer, and dissociated cells were layered onto a 5-ml density gradient 

(Lympholyte-H, Cedar Lane Labs), which was centrifuged at 2000 rpm for 10 min at room 

temperature to pellet dead cells and red blood cells. The interface containing live cells was 

saved and used for staining and flow cytometry. Viability was measured using trypan blue 

exclusion.

Fluorescence-activated cell sorting (FACS)

Tumor cells were blocked in 1% bovine serum albumin in Hanks’ buffered saline solution 

(BSA/ HBSS), and then stained first with CD45-Vioblue direct antibody conjugate (Miltenyi 

Biotec) for 30 min at 4°C. Cells were washed with cold phosphate-buffered saline and then 

resuspended in 1 ml of BSA/HBSS containing 1 μM calcein AM (Life Technologies) and 

0.33 μM TO-PRO-3 iodide (Life Technologies) to costain for 30 min before sorting. FACS 
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was performed on FACSAria Fusion Special Order System (Becton Dickinson) using 488 

nm (calcein AM, 530/30 filter), 640 nm (TO-PRO-3, 670/14 filter), and 405 nm (Vioblue, 

450/50 filter) lasers. Fluorescence-minus-one controls were included with all tumors, as well 

as heat-killed controls in early pilot experiments, which were crucial to ensure proper 

identification of the TO-PRO-3-positive compartment and ensure sorting of the live cell 

population. Standard, strict criteria for forward scatter height versus area were used to 

discriminate doublets and to gate only singleton cells. Viable cells were identified by 

staining positive with calcein AM but negative for TO-PRO-3. Single cells were sorted into 

96-well plates containing cold TCL buffer (Qiagen) containing 1% β-mercaptoethanol, 

snap-frozen on dry ice, and then stored at −80°C prior to whole-transcriptome amplification, 

librarypreparation, and sequencing.

Whole-transcriptome amplification, library construction, sequencing, and processing

Libraries from isolated single cells were generated based on the Smart-seq2 protocol (21) 

with the following modifications. RNA from single cells was first purified with Agencourt 

RNAClean XP beads (Beckman Coulter) prior to oligo-dT primed reverse transcription with 

Maxima reverse transcriptase and locked TSO oligonucleotide, which was followed by 20 

cycles of PCR amplification using KAPA HiFi HotStart ReadyMix (KAPA Biosystems) with 

subsequent Agencourt AMPure XP bead purification as described. The Nextera XT Library 

Prep kit (Illumina) with custom barcode adapters (sequences available upon request) was 

used for library preparation. Libraries from 384 cells with unique barcodes were combined 

and sequenced using a NextSeq 500 sequencer (Illumina).

Paired-end, 38-base reads were mapped to the UCSC hg19 human transcriptome using 

Bowtie (22) with parameters “-q-phred33-quals -n 1 -e 99999999 -l 25 -I 1 -X 2000 -a -m 15 

-S -p 6”, which allows alignment of sequences with single base changes. Expression values 

were calculated from SAM files using RSEM v1.2.3 (23) in paired-end mode using 

parameters “-estimate-rspd-paired end -sam -p 6”, from which TPM values for each gene 

were extracted.

Analysis of bulk DNA methylation profiles

Raw Illumina Human Methylation 450 array data from the TCGA LGG and AML projects 

were downloaded from the Genomic Data Commons Legacy Archive (https://gdc-

portal.nci.nih.gov/ legacy-archive). Annotation for IDH mutational status and 1p/19q co-

deletion were obtained from published TCGA studies (2, 24). Methylation data and IDH 

mutational status (25) were downloaded from the Gene Expression Omnibus 

(www.ncbi.nlm.nih.gov/geo), accession number GSE40853. TCGA data were processed 

from idat files in R using the minfi Bioconductor package with default parameters (26), and 

beta-values were used for subsequent analysis. Of the 482,421 CpG probes present on the 

array, the following were removed: probes targeting the X and Y chromosomes (n = 11,551), 

probes containing a single-nucleotide polymorphism (dbSNP132 Common) within five base 

pairs of and including the targeted CpG-site (n = 7998), and probes not mapping uniquely to 

the human reference genome (hg19) allowing for one mismatch (n = 3965). In total, 459,226 

probes were kept for analysis. For heat map representation, data from the TCGA LGG 
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project were downsampled to 25 samples per group, and the 10,000 most variable CpGs (by 

standard deviation) across groups were selected.

RNA in situ hybridization

Paraffin-embedded tissue sections from human tumors from Massachusetts General Hospital 

were obtained according to Institutional Review Board-approved protocols (1999P008145 

and 2011P002334), mounted on glass slides, and stored at −80°C. Slides were stained using 

the RNAscope 2.5 HD Duplex Detection Kit (Advanced Cell Technologies, cat. no. 

322430). Slides were baked for 1 hour at 60°C, deparaffinized, and dehydrated with xylene 

and ethanol. The tissue was pretreated with RNAscope hydrogen peroxide (cat. no. 322335) 

for 10 min at room temperature and RNAscope Target Retrieval Reagent (cat. no. 322000) 

for 15 min at 98°C. RNAscope Protease Plus (cat. no. 322331) was then applied to the tissue 

for 30 min at 40°C. Hybridization probes were prepared by diluting the C2 probe (red) 1:50 

into the C1 probe (green). Advanced Cell Technologies RNAscope Target Probes used 

included SOX4 (C1, cat. no. 469911), MKI67 (C2, cat. no. 591771-C2), CX3CR1 (C1, cat. 

no. 411251), and CD163 (C2, cat. no. 417061-C2). Probes were added to the tissue and 

hybridized for 2 hours at 40°C. A series of 10 amplification steps were performed using 

instructions and reagents provided in the RNAscope 2.5 HD Duplex Detection Kit. Tissue 

was counterstained with Gill’s hematoxylin for 25 s at room temperature followed by 

mounting with VectaMount mounting media (Vector Laboratories). For a subset of slides, 

we used the ViewRNA technology (Affymetrix). Briefly, slides were baked at 60°C for 1 

hour, then denatured at 80°C for 3 min, deparaffinized with Histoclear, and subjected to 

ethanol dehydration. RNA targets in dewaxed sections were unmasked by treating with 

pretreatment buffer at 95°C for 10 min and digested with 1:100 dilution protease at 40°C for 

10 min, followed by fixation with 10% formalin for 5 min at room temperature. Probe 

concentration was 1:40 for both type 1 (red) and type 6 (blue) probe sets. Probes were 

incubated on sections for 2 hours at 40°C and then washed serially. Affymetrix Panomics 

probes included ApoE (type 6, cat. no. VA6-16904 and type 1, cat. no. VA1-18265) and 

ApoD (type 1, VX6-99999-01). Signal was amplified using PreAmplifier mix QT for 25 min 

at 40°C followed by Amplifier mix QT for 15 min at 40°C, and then signal was hybridized 

with labeled probe at 1:1000 dilution for 15 min at 40°C. Color was developed using Fast 

Blue substrate for Type 6 probes and Fast Red substrate for Type 1 probes for 30 min at 

40°C. Tissue was counterstained with Gill's hematoxylin for 25 s at room temperature 

followed by mounting with ADVANTAGE mounting media (Innovex). For quantification of 

compartments by ISH, at least 1000 cells were counted in representative areas of the tumors.

DNA fluorescence in situ hybridization

The probes used in this study consisted of centromeric (CEP) and locus-specific identifiers 

(LSI) probes. Control probes included centromere (CEP) 1 (10p11.1-q11.1, spectrum 

orange), CEP4 (4p11-q11, spectrum aqua), CEP7 (7p11.1-q11.1, spectrum aqua), CEP10 

(10p11.1-q11.1, spectrum aqua), and chromosome 19 control enumeration probe (19p13, 

green 5-fluorescein), except for chr19 enumeration probe that was purchased from Empire 

Genomic (Buffalo, NY); all others were obtained from Abbott Molecular Inc. LSI probes 

were1p36/1q25 and 19q13/19p13 dual-color probe set (Abbott), bacterial artificial 

chromosomes RP11-626F2 (19q13.2), RP11-112J7 (4q32.1), RP11-1065D4 (7q34), 
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RP11-165M8 (10q23.31) labeled spectrum orange, RP11-54A4 (1q21.2-1q21.3), 

RP11-1061I17 (1q44), RP11-114O6 (7q31.2), RP11-1053E10 (10q25.1) labeled spectrum 

green all obtained from Children’s Hospital Oakland Research Institute (Oakland, CA). 

FISH was performed as described (27). Briefly, 5-μm sections of formalin-fixed, paraffin-

embedded tumor material were deparaffinized, hydrated, and pretreated with 0.1% pepsin 

for 1 hour. Slides were then washed in 2× saline-sodium citrate buffer (SSC), dehydrated, air 

dried, and co-denatured at 80°C for 5 min with a two- or three-color probe panel and 

hybridized at 40°C overnight using the Hybrite Hybridization System (Abbott). Two 3-min 

post-hybridization washes were performed in 2× SSC/0.3% NP40 at 72°C followed by one 

1-min wash in 2× SSC at room temperature. Slides were mounted with Vectashield 

containing 4’,6-diamidino-2-phenylindole (Vector). Entire sections were observed with an 

Olympus BX61 fluorescent microscope equipped with a charge-coupled device camera and 

analyzed with Cytovision software (Leica Biosystems). The LSI and control (CEP) signals 

were quantified in 50 randomly selected, nonoverlapping nuclei, and mean numbers of LSI 

copies and control (CEP) per nucleus were calculated. Scores were calculated, and 

amplification was considered when the LSI/ control CEP ratio was ≥2.0 and deletion was 

considered for ratios of ≤0.75.

Single-cell RNA-seq data processing

Expression levels were quantified as Ei,j =log2 [(TPMi,j/10) +1], where TPMi,j refers to 

transcript-per-million for gene i in sample j, as calculated by RSEM (23). TPM values are 

divided by 10 because we estimate the complexity of single-cell libraries on the order of 

100,000 transcripts and would like to avoid counting each transcript ~10 times, as would be 

the case with TPM, which may inflate the difference between the expression level of a gene 

in cells in which the gene is detected and those in which it is not detected.

For each cell, we quantified two quality measures: the number of genes for which at least 

one read was mapped, and the average expression level of a curated list of housekeeping 

genes. We then conservatively excluded all cells with either fewer than 3000 detected genes 

or an average housekeeping expression level (E, as defined above) below 2.5. For the 

remaining cells, we calculated the aggregate expression of each gene as Ea(i) = 

log2[average(TPMi,1…n) + 1] and excluded genes with Ea < 4. For the remaining cells and 

genes, we defined relative expression by centering the expression levels, Eri,j = Ei,j -

average[Ei,1…n].

Analysis of bulk RNA-seq profiles from glioma tumors from TCGA

TCGA data were downloaded from the Broad Firehose website (https://

gdac.broadinstitute.org/), including RNA-seq (rnaseqv2-RSEM_genes_ normalized), 

mutation, and copy number files from the GBMLGG data set. We used integrated molecular 

and histological classification to define 76 IDH-O tumors (oligodendroglioma histology plus 

IDH1/2 mutation and co-deletion of chromosome arms 1p and 19q) and 91 IDH-A tumors 

(astrocytoma histology plus IDH1/2 mutation, without co-deletion of chromosome arms 1p 

and 19q, and with mutations in P53 or ATRX). We log2-transformed the expression data of 

all tumors, restricted our analysis to 10,375 genes with an average expression above 4 (after 

log transformation), and then identified differentially expressed genes between IDH-A and 
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IDH-O by a combination of fold-change and P value criteria (based on t test); the strict 

definition was based on fold-change of 2 and a P value of 10−5 (before correcting for 

multiple hypothesis testing), whereas the lenient definition was based on fold-change of 1.5 

and a P value of 10−3. The strict definition was used to identify differentially expressed 

genes based on bulk analysis alone (and subsequently examine the genes in single cells, as 

shown in Fig. 1B); the lenient definition was used as additional support for genes first 

detected as differentially expressed in single-cell comparison of IDH-A and IDH-O 

malignant cells. To define signature scores for bulk samples, we centered the log-

transformed expression values of each gene and calculated the average expression of the 

respective gene sets.

Classification of single cells into malignant and nonmalignant cell types

Hierarchal clustering of all IDH-A single cells revealed three main clusters (fig. S2A), 

including cluster 1, which preferentially expressed oligodendrocytic markers (MBP, MOBP, 

PLLP, and CLDN11), and cluster 2, which preferentially expressed markers of microglia or 

macrophages (CD14, CD163, CX3CR1, and IFNGR1) and primarily included cells from 

plates, which were sorted as CD45+ cells. We thus hypothesized that the first two clusters 

reflect nonmalignant oligodendrocytes and microglia/macrophages, whereas the third cluster 

corresponds to malignant cells. To further verify this, we inferred chromosomal copy 

numbers as described below (fig. S2B). We then defined two initial classifications based on 

gene expression and CNVs: (i) We scored cells by their correlation with the average 

expression profile of each cluster to derive expression-based scores for oligodendrocytes, 

microglia/macrophages, and malignant cells, and classified cells to the highest-scoring 

cluster if the correlation for that cluster was higher than that for the other clusters by at least 

0.3; cells with a lower difference in correlation scores were defined as borderline. (ii) We 

classified cells as malignant, nonmalignant, and borderline according to the extent and 

profile of CNVs. We scored each cell for the extent of CNV signal, defined as the sum of 

squares of CNV values across the genome, and for the correlation between the CNV profile 

of each cell with the average CNV profile of all cells from the corresponding tumor that are 

classified by expression as malignant. We defined malignant cells as those with CNV signal 

above 0.05 and CNV correlation above 0.5 (fig. S3A), nonmalignant cells as those that 

satisfy neither of these thresholds, and borderline as those that satisfy only one threshold. 

Finally, we classified cells as oligodendrocytes or microglia/macrophages if they were 

defined as nonmalignant by CNV and as the corresponding expression cluster, and we 

classified cells as malignant if they were classified as such in both expression and CNV 

analyses, or in one of those analyses but as borderline in the other analysis.

CNV estimation

Initial CNVs (CNV0) were estimated by sorting the analyzed genes by their chromosomal 

location and applying a moving average to the relative expression values, with a sliding 

window of 100 genes within each chromosome, as described (4,12). To avoid considerable 

impact of any particular gene on the moving average, we limited the relative expression 

values to [−3,3] by replacing all values above 3 by a ceiling of 3, and replacing values below 

−3 by a floor of −3. This was performed only in the context of CNV estimation. This initial 

analysis is based on the average expression of genes in each cell relative to the other cells 
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and therefore does not have a proper reference to define the baseline. We thus defined the 

gene expression clusters annotated as oligodendrocytes and microglia/macrophages by gene 

expression as the nonmalignant cells, and used the average CNV estimate at each gene 

across those cells as the baseline. Because the nonmalignant cells include both microglia/

macrophages and oligodendrocytes, which differ in gene expression patterns and therefore 

also in expression-based CNV estimates, we defined two baselines, as the average of all 

microglia and the average of all oligodendrocytes, and based on these the maximal 

(BaseMax) and minimal (BaseMin) baseline at each window. The final CNV estimate of cell 

i at position j was defined as

Single-cell comparison of IDH-A and IDH-O malignant cells

We compared the average relative expression of each gene between all malignant IDH-A and 

IDH-O cells and defined a fold-change difference. To assign a P value, we shuffled the 

assignments of cells to tumor types 10,000 times and counted the fraction of times where an 

equal or larger difference is obtained for subsets of cells of the same size as the IDH-A and 

IDH-O cells. We then defined differentially expressed genes as those with fold-change of 2 

and P < 0.01. The extent to which differential expression in single-cell analysis recapitulates 

the differences observed in bulk analysis depends on the choice of specific thresholds, and 

therefore we examined these fractions with a range of thresholds (s).

Principal components analysis

We performed principal components analysis (PCA) for the relative expression values of all 

malignant cells (as defined by integrated expression and CNV analysis). To decrease the 

impact of intertumoral variability on the combined analysis of malignant cells, we 

recentered the data within each tumor separately, such that the average of each gene was 

zero among cells from each tumor. The covariance matrix used for PCA was generated using 

an approach previously outlined (28) to decrease the weight of less reliable “missing” values 

in the data. Because of the limited sensitivity of single-cell RNA-seq, many genes are not 

detected in individual cells despite being expressed. This is particularly pronounced for 

genes with lower expression and for cells that have lower library complexity (i.e., for which 

relatively fewer genes are detected); the result is nonrandom patterns in the data, whereby 

cells may cluster according to their complexity and genes may cluster according to their 

expression levels rather than “true” covariation. To mitigate this effect, we assigned weights 

to missing values, such that the weight of Eij is proportional to the expectation that gene i 
will be detected in cell j given the average expression of gene i and the total complexity 

(number of detected genes) of cell j.

Definition of cell type-specific gene sets

We defined astrocyte-specific, oligodendrocyte-specific, neuron-specific, and endothelial-

specific gene sets using RNA-seq data from sorted cell types from mouse brain (29). For 
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each cell type, we identified genes with a higher expression in the respective cell type than 

in all other brain cell types (astrocytes, oligodendrocytes, neurons, endothelial cells, and 

microglia) by at least a factor of 4. As a more lenient definition (fig. S4), we reduced this 

threshold to a factor of 2. Microglia/ macrophage-specific genes were defined based on the 

IDH-A and IDH-O single-cell data, comparing the average expression of all microglia/

macrophage cells to that of malignant cells and to that of oligodendrocytes with a factor of 8 

threshold (in both comparisons); a factor of 2 threshold was used for the lenient definition in 

fig. S4.

Defining cell and sample scores

Given a set of genes (Gj) reflecting a specific cell type or biological function, we define a 

score, SCj (i), for each cell i, quantifying the relative expression of Gj in cell i as the average 

relative expression (Er) of the genes in Gj compared to the average relative expression of a 

control gene set (Gj
cont): SCj(i) = average[Er(Gj,i)] -average[Er(Gj

cont,i)]. The control gene 

set is defined by first binning all analyzed genes into 25 bins of aggregate expression levels 

and then, for each gene in the considered gene set, randomly selecting 100 genes from the 

same expression bin. In this way, the control gene set has a distribution of expression levels 

comparable to that of the considered gene set, and the control gene set is larger by a factor of 

100 such that its average expression is analogous to averaging over 100 randomly selected 

gene sets of the same size as the considered gene set. A similar approach was used to define 

bulk sample scores.

Genetic causes of expression differences between IDH-A and IDH-O malignant cells

To test the degree to which expression differences between IDH-A and IDH-O could be 

explained by known genetic differences, we focused on genetic events specific to IDH-O 

(co-deletion of chromosome arms 1p and 19q, decreased or loss of function of the 

transcriptional repressor CIC) and those specific to IDH-A (mutations in TP53 and ATRX). 
The immediate impact of the co-deletion is reduction in the expression of all genes on the 

corresponding chromosome arms. Additional effects could reflect trans-effects (e.g., due to 

reduced expression of regulators on these chromosomes); although these effects are 

generally difficult to infer, one of the regulators on these chromosomes is CIC, which is 

further mutated (i.e., causing loss of function of the second allele) in most IDH-O tumors, 

and thus reduced CIC activity is a universal feature of IDH-O that is driven by both co-

deletionand additional loss-of-function mutations. To infer the effects of reduced CIC 

activity, we combined the results of two analyses: (i) We recently identified a subclonal CIC 
mutation in the oligodendroglioma MGH53 (12) and defined subsets of mutant cells and 

wild-type cells by single-cell analysis, thus enabling a direct comparison and identification 

of differentially expressed genes within the same tumor. (ii) We compared the expression of 

all IDH-O TCGA tumors with a CIC mutation to those without CIC mutations and identified 

differentially expressed genes that are either activated or repressed by CIC, using a fold-

change threshold of 2 and a t-test P value of 0.01. We combined the results of these two 

analyses to define putative sets of CIC repressed and activated genes. P53 targets were 

defined according to chromatin immunoprecipitation and presence of a binding motif (30).
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Lineage and differentiation scores

Variability among malignant IDH-A cells, as reflected by the first principal component 

(PC1), is consistent with astrocyte-specific (PC1-low genes) and oligodendrocyte-specific 

(PC1-high) genes (Fig. 2B and table S3). However, this consistency is partial, reflecting the 

differences between differentiation programs as measured in mice (29) and as we observe in 

IDH-A and IDH-O tumors. To refine the definition of these expression programs in the 

context of IDH-A, we used an approach similar to the signature algorithm (31). First, we 

scored each cell based on the expression of the above gene sets to define initial astrocytic 

and oligodendrocytic scores (SCastro and SColigo). We then calculated the correlation of each 

gene with SCastro − SColigo across all malignant IDH-A cells. The 50 genes with highest and 

50 genes with lowest correlations were then used to define the refined astrocytic and 

oligodendrocytic scores (SCref
astro and SCref

oligo), which were used in all subsequent 

analyses. Thus, genes associated with glial differentiation that do not correlate with the 

program in the tumor cells were removed, whereas other genes that are not known to be 

involved in glial differentiation but are coexpressed with the glial programs are added, 

resulting in gene sets that are coherently expressed across tumor cells but maintain high 

similarity to developmental glial expression programs (table S3). We then scaled these 

scores to the range [0 1] by subtracting the minimal score and dividing by the range of 

scores. Finally, we defined a differentiation score for each cell (regardless of lineage) as 

max(SCref
astro, SCref

oligo).

Cell cycle analysis

Gene sets reflecting the expression program of the G1/S and G2/M phases of the cell cycle 

were defined as the overlap between gene sets identified in several previous studies, as 

described (12). We used the average relative expression of these gene sets to derive G1/S and 

G2/M scores. Cycling cells were defined as those in which one of the scores was above 1.5 

and where the P value from one sample t test over the corresponding gene set was below 

10−4.

Identification of a putative stemness program

We searched for genes that are preferentially expressed in undifferentiated cells, after 

excluding cycling cells, in order to avoid cell cycle-related effects. In each tumor, we 

compared the average relative expression of each gene between undifferentiated cells 

(differentiation score below 0.25) and differentiated cells(differentiation score above 0.4), 

separated into those with a higher astrocytic or a higher oligodendrocytic score. This 

resulted in two values of fold-change (undifferentiated versus astro-like and versus oligo-

like) and two corresponding P values, which were calculated by shuffling cell identities 

10,000 times. Significant genes were defined in each tumor as those with a fold-change 

above 1.5 and a P value below 0.05; we used these lenient criteria within each tumor because 

of the limited number of un-differentiated cells, but then focused on genes that were 

significant across multiple tumors. A control analysis after shuffling cell identities within 

each tumor led to genes that were significant in one or at most two tumors, and thus we used 

a threshold of significance in three tumors. Ninety genes satisfied this criterion. To restrict 

those genes to a subset of coherently regulated genes that may reflect a stemness program, 
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we hierarchically clustered the genes in IDH-A and in IDH-O using 1 - R, where R is a 

Pearson correlation coefficient across all undifferentiated cells in the corresponding tumor 

type. In both IDH-A and IDH-O we observed one dominant cluster; we defined that cluster 

as the largest cluster when cutting the hierarchical clustering tree at a correlation of R = 0.4. 

We then ranked the genes by their association with that cluster, defined as the average 

correlation with the genes in that cluster.

Analysis of microglia/macrophages

PCA was performed over the relative expression of all microglia/macrophages from IDH-A 

and IDH-O, including all genes with Ea > 4 (defined only on the basis of microglia/

macrophage cells). PC1 genes were defined as those with a Pearson correlation above 0.3 

(PC1-high genes) or below −0.3 (PC1-low genes). We then examined the expression of the 

mouse orthologs of those genes in mouse microglia and macrophages (16); because multiple 

types of macrophages were previously profiled, we considered the maximal expression and 

the average expression of each gene across those macrophage subtypes. We then defined 

microglia-specific genes as those with higher expression in microglia than the maximal 

macrophage expression by at least a factor of 5, and macrophage-specific genes as those 

with higher maximal macrophage expression than microglia expression by at least a factor 

of 5, as well as higher average macrophage expression than microglia expression by at least 

a factor of 2. We focused on the genes that were defined as both microglia-specific and PC1-

high (CX3CR1, P2RY12, P2RY13, and SELPLG), and on genes defined as both 

macrophage-specific and PC1-low (e.g., CD163, CD74, TGFBI, IFITM2, IFITM3, F13A1, 

NPC2, TAGLN2, and FTH1); the average relative expression of those genes defined the 

microglia-specific and macrophage-specific scores, and their difference defined the 

macrophage versus microglia score, which is shown in Fig. 5B.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Expression differences between IDH-A and IDH-O are governed by the tumor 
microenvironment and genetics
(A) Workflow. Freshly resected tumors were dissociated to single-cell suspension, sorted by 

FACS, and profiled by Smart-seq2 in 96-well plates. (B) Differential expression between 

IDH-A and IDH-O across bulk TCGA tumors (left) and across single cells (center), and the 

averages from each of these two analyses (right). (C) Differentially expressed genes by bulk 

analysis include microglia/macrophage-specific genes (left column) and neuron-specific 

genes (right column). (D) Distribution of expression differences between bulk IDH-A and 
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IDH-O samples for microglia/macrophage-specific genes (black) and neuron-specific genes 

(gray). (E) Microglia/macrophage scores versus neuron scores (11) for bulk IDH-O (blue) 

and IDH-A (purple) tumors. (F) Left: Differentially expressed genes that are neither 

microglia/macrophage-specific nor neuron-specific, assigned to four categories of genetic 

influences (11), from top to bottom: genes residing in chromosome arms 1p or 19q, genes 

activated by CIC, genes repressed by CIC, and P53 target genes. Right: Observed and 

expected percentages of IDH-A–specific genes assigned to the first two categories and IDH-

O–specific genes assigned to the last two categories. Expected percentages were defined by 

analysis of all genes rather than only the IDH-A– and IDH-O–specific genes.
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Fig. 2. Glial lineages are shared among IDH-A and IDH-O
(A) Average expression levels of oligodendrocyte-specific and astrocyte-specific genes 

across all IDH-A (y axis) and IDH-O (x axis) malignant cells. (B) Correlations of 

oligodendrocyte-specific and astrocyte-specific genes with PC1 (x axis) and PC2 (y axis) 

from a PCA of all IDH-A malignant cells. (C) Classification of malignant cells (columns) 

from IDH-A and IDH-O according to the differential expression of 50 oligodendrocytic and 

50 astrocytic genes. Bottom: Relative expression of the 100 genes (rows). Top: Significance 

of differential expression [−log10(P value of a t test)] between oligodendrocytic and 

astrocytic genes. Cells were sorted by significance from the most oligodendrocytic-like to 

the most astrocytic-like cells; dashed lines indicate a significance threshold of P <0.01. (D) 
For each malignant cell in IDH-A and IDH-O, we show its differentiation scores (x axis, 

maximum of oligodendrocytic and astrocytic scores) versus the average expression of IDH-
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A–specific or IDH-O–specific genes (left and right y axes, excluding those genes that exhibit 

differential expression due to genetic alterations). Lines indicate the corresponding local 

weighted smoothing regression (LOWESS), demonstrating the decreased differences 

between IDH-A and IDH-O programs in cells with low glial differentiation scores.
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Fig. 3. Undifferentiated cells in IDH-A and IDH-O are associated with cycling cells and a 
putative stemness program
(A) Percentage of cycling cells (y axis) in sliding windows of 200 cells ranked by 

differentiation scores (x axis) for either IDH-A or IDH-O malignant cells. (B) Pearson 

correlations (color scale) between the expression profiles of 90 genes preferentially 

expressed in undifferentiated cells, across IDH-A (top) and IDH-O (bottom) undifferentiated 

cells. Genes are ordered by their correlation with the highest-scoring cluster in each analysis 

(11). (C) Pearson correlations of the 90 genes in (B) with the highest-scoring clusters in (B) 

in IDH-A (x axis) and IDH-O (y axis). The most consistent genes are labeled. (D) In situ 

RNA hybridization shows mutually exclusive expression of astrocytic (APOE) and 

oligodendrocytic (APOD) lineage markers; mutually exclusive expression of astrocytic and 

proliferation (Ki-67, arrow) markers; and coexpression of proliferation and stem/progenitor 

(SOX4, arrow) markers.
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Fig. 4. Analysis of tumor architecture by tumor grade and in genetic subclones
(A) The percentage of cycling cells (top), percentage of undifferentiated cells (middle), and 

negative correlation between the two lineage scores (bottom) are all associated with tumor 

grade (P < 0.05, one-way analysis of variance). For each feature, bars show the average 

value across groups of tumors defined by tumor type and grade. Error bars denote SE. (B 
and C) CNV inference in MGH103 (B) and MGH57 (C) reveals large-scale CNVs that vary 

between cells of the same tumor. Cells were clustered on the basis of their CNV patterns at 

specific chromosomal regions (black bars at top) to define putative subclones. (D and E) 
Comparison of the two lineage scores (left) and percentage of cycling cells (right) between 

the two subclones indicated for MGH103 (D) and for MGH57 (E). Significant differences 

are indicated (*P <0.05, **P < 0.001; Kolmogorov-Smirnov test for lineages and 

hypergeometric test for cell cycle).
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Fig. 5. Microglia and macrophages across IDH-mutant gliomas
(A) Microglia (y axis) and macrophage (x axis) expression levels (32) of genes with high 

and low PC1 scores from PCA of tumor microglia/macrophages. (B) Top: Distribution of 

scores by average expression of microglia (PC1-high) versus macrophage (PC1-low) genes 

(11). Bottom: Differential expression of selected microglia- and macrophage-specific genes 

among all cells ranked by the scores at top. (C)Fraction (color code) of cells in bins of 

scores, as defined in (B), top, for each glioma; macrophages from melanoma (5) are 

included for reference (top row). Tumor grades are indicated at the right. (D) Average 

endothelial scores (x axis) versus macrophage or microglia (y axis) across IDH-A and IDH-
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O tumors of grades II to IV. Arrows indicate grade-specific changes associated with 

increased expression of endothelial program. (E) Correlation between endothelial scores and 

macrophage/microglia scores across all IDH-A or IDH-O bulk TCGA tumors. (F)In situ 

RNA hybridization for microglia (CX3CR1) and macrophage (CD163) markers. Left to 

right: MGH56 contains a few CX3CR1-positive cells and is negative for CD163. MGH43 

contains microglia-like cells and macrophage-like cells (two blood vessels are highlighted 

by arrows). MGH43 contains cells expressing both CD163 and CX3CR1 (three cells 

highlighted by arrows). MGH42 stains exclusively for CD163.
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