DOMINATION OF SAMPLE MAXIMA AND RELATED EXTREMAL DEPENDENCE MEASURES

ENKELEJD HASHORVA

Abstract

For a given d-dimensional distribution function (df) H we introduce the class of dependence measures $\mu(H, Q)=-\mathbb{E}\left\{\ln H\left(Z_{1}, \ldots, Z_{d}\right)\right\}$, where the random vector $\left(Z_{1}, \ldots, Z_{d}\right)$ has df Q which has the same marginal df's as H. If both H and Q are max-stable df's, we show that for a df F in the max-domain of attraction of H, this dependence measure explains the extremal dependence exhibited by F. Moreover we prove that $\mu(H, Q)$ is the limit of the probability that the maxima of a random sample from F is marginally dominated by some random vector with df in the max-domain of attraction of Q. We show a similar result for the complete domination of the sample maxima which leads to another measure of dependence denoted by $\lambda(Q, H)$. In the literature $\lambda(H, H)$ with H a max-stable df has been studied in the context of records, multiple maxima, concomitants of order statistics and concurrence probabilities. It turns out that both $\mu(H, Q)$ and $\lambda(Q, H)$ are closely related. If H is max-stable we derive useful representations for both $\mu(H, Q)$ and $\lambda(Q, H)$. Our applications include equivalent conditions for H to be a product df and F to have asymptotically independent components.

Key Words: Max-stable distributions; domination of sample maxima; extremal dependence; inf-argmax formula; de Haan representation; records; multiple maxima; concomitants of order statistics; concurrent probabilities.
AMS Classification: Primary 60G15; secondary 60G70

1. Introduction

Let H be a d-dimensional distribution function (df) with unit Fréchet marginal df's $\Phi(x)=e^{-1 / x}, x>0$. We shall assume in the sequel that H is a max-stable df, which in our setup is equivalent with the homogeneity property

$$
\begin{equation*}
H^{t}\left(x_{1}, \ldots, x_{d}\right)=H\left(t x_{1}, \ldots, t x_{d}\right) \tag{1.1}
\end{equation*}
$$

for any $t>0, x_{i} \in(0, \infty), 1 \leq i \leq d$, see e.g., [1-3]. The class of max-stable df's is very large with two extreme instances

$$
H_{0}\left(x_{1}, \ldots, x_{d}\right)=\prod_{i=1}^{d} \Phi\left(x_{i}\right), \quad H_{\infty}\left(x_{1}, \ldots, x_{d}\right)=\min _{1 \leq i \leq d} \Phi\left(x_{i}\right)
$$

the product df H_{0} and the upper df H_{∞}, respectively. Hereafter $\bar{G}=1-G$ stands for the survival function of some univariate df G. It follows easily by the lower Fréchet -Hoeding bound that

$$
\left(H\left(n x_{1}, \ldots, n x_{d}\right)\right)^{n} \geq\left(\max \left(0,1-\sum_{i=1}^{d} \bar{\Phi}\left(n x_{i}\right)\right)\right)^{n} \geq e^{\liminf _{n \rightarrow \infty} n \ln \left(1-\sum_{i=1}^{d} \bar{\Phi}\left(n x_{i}\right)\right)}
$$

$$
\begin{equation*}
=H_{0}\left(x_{1}, \ldots, x_{d}\right), \quad x_{i} \in(0, \infty), \quad i \leq d \tag{1.2}
\end{equation*}
$$

Indeed, (1.2) is well-known and follows for instance using the Pickands representation of H, see e.g., [3][Eq. (4.3.1)] or the inf-argmax formula as shown in Section 4. Consequently, any max-stable df H lies between H_{0} and H_{∞}, i.e.,

$$
\begin{equation*}
H_{0}\left(x_{1}, \ldots, x_{d}\right) \leq H\left(x_{1}, \ldots, x_{d}\right) \leq H_{\infty}\left(x_{1}, \ldots, x_{d}\right), \quad x_{i} \in(0, \infty), 1 \leq i \leq d \tag{1.3}
\end{equation*}
$$

From multivariate extreme value theory, see e.g., [1-4] we know that d-dimensional max-stable df's H are limiting df's of the component-wise maxima of d-dimensional independent and identically distributed (iid) random vectors with some df F. In that case, F is said to be in the max-domain of attraction (MDA) of H (abbreviated $F \in$ $M D A(H))$. For simplicity we shall assume throughout in the following that F is a df on $[0, \infty)^{d}$ with marginal df's $F_{i} \in M D A(\Phi), i \leq d$ that have norming constants $a_{n}=n, n \in \mathbb{N}$, and thus we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F_{i}^{n}(n x)=\Phi(x), \quad x \in \mathbb{R} \tag{1.4}
\end{equation*}
$$

for all $i \leq d$, where we set $\Phi(x)=0$ if $x \leq 0$. Consequently, F is in the MDA of some max-stable df H if further

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{x_{i} \in \mathbb{R}, 1 \leq i \leq d}\left|F^{n}\left(n x_{1}, \ldots, n x_{d}\right)-H\left(x_{1}, \ldots, x_{d}\right)\right|=0 \tag{1.5}
\end{equation*}
$$

In the special case that F has asymptotically independent marginal df's, meaning that for $\left(X_{1}, \ldots, X_{d}\right)$ with df F

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n \mathbb{P}\left\{X_{i}>n x_{i}, X_{j}>n x_{j}\right\}=0, \quad x_{i}, x_{j} \in(0, \infty), \quad \forall i \neq j \leq d \tag{1.6}
\end{equation*}
$$

then $F \in M D A\left(H_{0}\right)$ if simply $F_{i} \in M D A(\Phi), i \leq d$.
In various applications it is important to be able to determine if some max-stable df H resulting from the approximation in (1.5) is equal to H_{0}, which in the light of multivariate extreme value theory means that the component-wise maxima $\boldsymbol{M}_{n}:=\left(\max _{1 \leq i \leq n} X_{i 1}, \ldots, \max _{1 \leq i \leq n} X_{i d}\right), n \geq 1$ of a d-dimensional random sample $\left(X_{i 1}, \ldots, X_{i d}\right), i=1, \ldots, n$ of size n from F has asymptotically independent components.

The strength of dependence of the components of \boldsymbol{M}_{n}, or in other words the extremal dependence manifested in F, in view of the approximation (1.5) can be measured by calculating some appropriate dependence measure for H (when the limiting df H is known).
For any random vector $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{d}\right)$ with df Q which has the same marginal df's as H we introduce a class of dependence measure for H indexed by Q given by

$$
\begin{equation*}
\mu(H, Q)=-\mathbb{E}\left\{\ln H\left(Z_{1}, \ldots, Z_{d}\right)\right\} \tag{1.7}
\end{equation*}
$$

In view of (1.3), since $-\ln H_{i}\left(Z_{i}\right)$ is a unit exponential random variable, we have

$$
\begin{equation*}
1=\max _{1 \leq i \leq d} \mathbb{E}\left\{-\ln H_{i}\left(Z_{i}\right)\right\} \leq-\mathbb{E}\left\{\ln \min _{1 \leq i \leq d} H_{i}\left(Z_{i}\right)\right\} \leq \mu(H, Q) \leq-\mathbb{E}\left\{\ln \prod_{i=1}^{d} H_{i}\left(Z_{i}\right)\right\}=d \tag{1.8}
\end{equation*}
$$

and in particular

$$
\begin{equation*}
\mu\left(H_{0}, Q\right)=d, \quad \mu\left(H_{\infty}, H_{\infty}\right)=1 \tag{1.9}
\end{equation*}
$$

Clearly, $\mu(H, Q)$ can be defined for any df H and it does not depend on the choice of the marginal df's of H. In this contribution we shall show that $\mu(H, Q)$ is particularly interesting for H being max-stable.

Next, consider the case that both H and Q are max-stable. It follows that (see Theorem 2.3) for F satisfying (1.5) and $G \in M D A(Q)$

$$
\begin{equation*}
\mu(Q, H)=\lim _{n \rightarrow \infty} \mu_{n}\left(G, F^{n}\right), \quad \mu_{n}\left(G, F^{n}\right)=n \int_{\mathbb{R}^{d}}\left[1-G\left(x_{1}, \ldots, x_{d}\right)\right] d F^{n}\left(x_{1}, \ldots, x_{d}\right) \tag{1.10}
\end{equation*}
$$

provided that both F and G are continuous. In view of (1.10), we see that $\mu(H, Q)$ relates to F under (1.5).
Let in the following \boldsymbol{W} denote a random vector with df G being independent of \boldsymbol{M}_{n}. We say that \boldsymbol{W} marginally dominates \boldsymbol{M}_{n}, if there exists some $i \leq d$ such that $W_{i}>M_{n i}$. Consequently, assuming further that \boldsymbol{W} is independent of \boldsymbol{M}_{n} we have

$$
\frac{\mu_{n}\left(G, F^{n}\right)}{n}=\mathbb{P}\left\{\boldsymbol{W} \text { marginally dominates } \boldsymbol{M}_{n}\right\}=: \underline{\pi}_{n}
$$

Re-writing (1.10) we have $\lim _{n \rightarrow \infty} n \underline{\pi}_{n}=\mu(H, Q)$ and thus $\mu(H, Q)$ appears naturally in the context of marginal dominance of sample maxima.
Our motivation for introducing $\mu(H, Q)$ comes from results and ideas of A. Gnedin, see [5-7] where multiple maxima of random samples is investigated. In the turn, the probability of observing a multiple maximum is closely related to the complete domination of sample maxima as we shall explain below.
We say that \boldsymbol{W} completely dominates \boldsymbol{M}_{n} if $W_{i}>M_{n i}$ for any $i \leq d$. Assuming that F and G are continuous, we have

$$
\lambda_{n}\left(F^{n}, G\right):=n \int_{\mathbb{R}^{d}} F^{n}\left(x_{1}, \ldots, x_{d}\right) d G\left(x_{1}, \ldots, x_{d}\right)=n \mathbb{P}\left\{\boldsymbol{W} \text { completely dominates } \boldsymbol{M}_{n}\right\}=: n \bar{\pi}_{n}
$$

If further $F \in M D A(H), G \in M D A(Q)$ we show in Theorem 2.3 below that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \lambda_{n}\left(G^{n}, F\right)=\lambda(Q, H)=\int_{(0, \infty)^{d}} Q\left(x_{1}, \ldots, x_{d}\right) d v\left(x_{1}, \ldots, x_{d}\right) \tag{1.11}
\end{equation*}
$$

where v denotes the exponent measure of H defined on $E=[0, \infty]^{d} \backslash(0, \ldots, 0)$, see $[1,3]$ for more details on the exponent measure. Note in passing that by symmetry $\lim _{n \rightarrow \infty} \lambda_{n}\left(F^{n}, G\right)=\lambda(H, Q)$ follows.
Our notation and definitions of $\bar{\pi}_{n}$ and $\underline{\pi}_{n}$ agree with those in [8] for the particular case that $F=G$. Therein the complete and simple records are discussed. If F is continuous and $F=G$ we have that $(n+1) \bar{\pi}_{n}$ equals

$$
\mathbb{P}\left\{\max _{1 \leq i \leq n+1} X_{i j}=X_{1 j}, j=1, \ldots, d\right\}
$$

which is the probability of observing a multiple maximum, see [6, 7, 9-12]. There are only few contributions that discuss the asymptotics of $\lambda_{n}\left(G^{n}, F\right)$ for $F \neq G$, see [13-15].

Since the exponent measure can be defined also for max-id. df H, i.e., if H^{t} is a df for any $t>0$, then as above $\lambda(Q, H)$ can also be defined for any such df H and any given d-dimensional df Q. We shall show that $\mu(H, Q)$ and $\lambda(Q, H)$ are closely related. In particular, for $d=2$ we have $\mu(H, Q)=2-\lambda(Q, H)$, provided that H is a max-id. df. In particular, we show how to define $\lambda(Q, H)$ for any H and Q.

For H being a max-id. df we also show how to calculate $\mu(H, Q)$ and $\lambda(Q, H)$ by a limiting procedure, which relates to domination of d-dimensional random vectors, see Theorem 2.1 below.

It turns out that both dependence measures $\mu(H, Q)$ and $\lambda(Q, H)$ are very tractable if H is max-stable (note that such H is also max-id. df). In particular, we show that $\mu(H, Q)$ is the extremal coefficient of some d-dimensional max-stable df H^{*}, i.e., $\mu(H, Q)=-\ln H^{*}(1, \ldots, 1)$. Moreover, we derive in Theorem 2.5 tractable expressions
for $\mu(H, Q)$ and $\lambda(Q, H)$, which are useful for simulations of these dependence measures if the de Haan spectral representation of H is known.

It is of particular interest for multivariate extreme value theory to derive tractable criteria that identify if a maxstable df H is equal to H_{0}. In our first application we show several equivalent conditions to $H=H_{0}$.

In view of (1.10) and (1.11) we see that both measures of extremal dependence $\mu(H, Q)$ and $\lambda(Q, H)$ capture the extremal properties of $F \in M D A(H)$. Motivated by the relation between $\mu(H, Q)$ and $\lambda(Q, H)$ we derive in our second application several conditions equivalent to (1.6).

Both $\mu(H, Q)$ and $\lambda(Q, H)$ can be defined for any d-dimensional df H and Q. When H is max-stable, these are dependence measures for H, since independent of the choice of Q, we can determine if $H=H_{0}$, see Proposition 3.1, statement ii). A simple choice for Q is taking $Q=H$. Alternatively, one can take $Q=H_{0}$ or $Q=H_{\infty}$. Independent of the choice of Q we show in Proposition 3.1 that $\mu(H, Q)=2$ is equivalent with $H=H_{0}$. In particular, this result shows that $\mu(H, Q)$ is a measure of dependence of H (and not for Q).
Brief organisation of the rest of the paper: In Section 2 we derive the basic properties of both measures of $\mu(H, Q)$ and $\lambda(Q, H)$ if H is a max-id. df. More tractable formulas are then derived for H being a max-stable df. Section 3 is dedicated to applications. We present some auxiliary results in Section 4 followed by the proofs of the main results in Section 5.

2. Main Results

In the following H and Q are d-dimensional df's with unit Fréchet marginals df's and \boldsymbol{Z} is a random vector with df Q. The second dependence measure $\lambda(Q, H)$ defined in (1.11) is determined in terms of the exponent measure ν of H, under the max-stability assumption on H.

A larger class of multivariate df's is that of max-id. df's. Recall that H is max-id., if H^{t} is a df for an $t>0$. For such df's the corresponding exponent measure can be constructed, see e.g., [1], and therefore we can define $\lambda(Q, H)$ as in the Introduction for any H a max-id. df and any given $\mathrm{df} Q$. Note that any max-stable df is a max-id. df, therefore in the following we shall consider first the general case that H is a max-id. df, and then focus on the more tractable case that H is a max-stable df.
2.1. Max-id. df H. Our analysis shows that $\mu(H, Q)$ and $\lambda(Q, H)$ are closely related. Specifically, if $d=2$, then $\mu(H, Q)=2-\lambda(Q, H)$, provided that H is a max-id. df. Such a relationship does not hold for the case $d>2$. However as we show below it is possible to calculate $\mu(H, Q)$ if we know $\lambda\left(Q_{K}, H_{K}\right)$ for any non-empty index set $K \subset\{1, \ldots, d\}$. A similar result is shown for $\lambda(Q, H)$. In our notation Q_{K} denotes the marginal df of Q with respect to K and $|K|$ stands for the number of the elements of the index set K. Below μ_{n} and λ_{n} are as defined in the Introduction.

Theorem 2.1. If H is a max-id. df, then we have

$$
\begin{equation*}
\mu(H, Q)=\lim _{n \rightarrow \infty} \mu_{n}\left(H^{1 / n}, Q\right), \quad \lambda(Q, H)=\lim _{n \rightarrow \infty} \lambda_{n}\left(Q, H^{1 / n}\right) . \tag{2.1}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\mu(H, Q)=d+\sum_{2 \leq i \leq d}(-1)^{i+1} \sum_{K \subset\{1, \ldots, d\},|K|=i} \lambda\left(Q_{K}, H_{K}\right) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda(Q, H)=d+\sum_{2 \leq i \leq d}(-1)^{i+1} \sum_{K \subset\{1, \ldots, d\},|K|=i} \mu\left(H_{K}, Q_{K}\right) \tag{2.3}
\end{equation*}
$$

Remark 2.2. i) For H a max-stable df and $Q=H$ the claim in (2.3) is shown in [12][Theorem 2.2, Eq. (13)]. ii) A direct consequence of (2.3) is that we can define $\lambda(Q, H)$ even if H is not a max-id. df by simply using the definition of $\mu\left(H_{K}, Q_{K}\right)$.
iii) It is clear that $\mu(H, Q) \geq \mu\left(H_{K}, Q_{K}\right)$ for any non-empty index set $K \subset\{1, \ldots, d\}$. Note that (2.1) shows that exactly the opposite relation holds for $\lambda(Q, H)$ when H is a max-id. df, namely

$$
\lambda(Q, H) \leq \lambda\left(Q_{K}, H_{K}\right)
$$

In fact, (2.3) shows that we can calculate both $\mu(H, Q)$ and $\lambda(Q, H)$ by a limit procedure if we assume that H is a max-id. df, see for more details (5.1). Although such a limit procedure shows how to interpret these dependence measures in terms of domination of random vectors, it does not give a precise relation with extremal properties of random samples. Therefore in the following we shall restrict our attention to the tractable case that H is a max-stable df.
2.2. Max-stable df H. We show next the relation of $\mu(H, Q)$ and $\lambda(Q, H)$ with the marginal and complete domination of sample maxima mentioned in the Introduction. Recall that in our notation $\bar{F}_{i}, \bar{G}_{i}, i \leq d$ stand for the marginal survival functions of F and G, respectively.

Theorem 2.3. If H, Q are max-stable df's with unit Fréchet marginals and F, G are two d-dimensional continuous df's such that $\lim _{x \rightarrow \infty} \bar{F}_{i}(x) / \bar{G}_{i}(x)=c_{i} \in(0, \infty)$ for $i \leq d$ and further $F \in M D A(H), G \in M D A(Q)$, then (1.10) and (1.11) hold.

Remark 2.4. The relation $\lim _{n \rightarrow \infty} \lambda_{n}\left(F^{n}, F\right)=\lambda(H, H)$ for $F \in M D A(H)$ is known from works of A. Gnedin, see e.g., [6, 7]. Explicit formulas are given in [16] for $d=2$. See also the recent contributions [8, 12].

In view of [4] (recall H has unit Fréchet marginal df's) the assumption that H is max-stable implies the following de Haan representation (see e.g., [17, 18])

$$
\begin{equation*}
-\ln H\left(x_{1}, \ldots, x_{d}\right)=\mathbb{E}\left\{\max _{1 \leq i \leq d} \frac{Y_{i}}{x_{i}}\right\}, \quad\left(x_{1}, \ldots, x_{d}\right) \in(0, \infty)^{d} \tag{2.4}
\end{equation*}
$$

where Y_{j} 's are non-negative with $\mathbb{E}\left\{Y_{i}\right\}=1,1 \leq i \leq d$. As shown in [19], see also [20, 21] we have the alternative formula

$$
\begin{equation*}
-\ln H\left(x_{1}, \ldots, x_{d}\right)=\sum_{i=1}^{d} \frac{1}{x_{i}} \Psi_{i}\left(x_{1}, \ldots, x_{d}\right), \quad\left(x_{1}, \ldots, x_{d}\right) \in(0, \infty)^{d} \tag{2.5}
\end{equation*}
$$

where Ψ_{i} 's are non-negative zero-homogeneous, i.e., $\Psi_{i}\left(c x_{1}, \ldots, c x_{d}\right)=\Psi_{i}\left(x_{1}, \ldots, x_{d}\right)$ for any $c>0, x_{i} \in(0, \infty), i \leq$ d. Moreover, Ψ_{i} 's are bounded by 1 , which immediately implies the validity of the lower bound in (1.2).

In the literature $-\ln H(1, \ldots, 1)$ is also referred to as the extremal coefficient of H, denoted by $\theta(H)$, see e.g., [12]. Our next result gives alternative formulas for $\mu(H, Q)$ and shows that it is the extremal coefficient of the max-stable
df H^{*} defined by

$$
\begin{equation*}
-\ln H^{*}\left(x_{1}, \ldots, x_{d}\right)=\mathbb{E}\left\{\max _{1 \leq i \leq d} \frac{Y_{i}}{x_{i} Z_{i}}\right\}, \quad\left(x_{1}, \ldots, x_{d}\right) \in(0, \infty)^{d} \tag{2.6}
\end{equation*}
$$

with \boldsymbol{Z} being independent of $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{d}\right)$. Note that since

$$
\mathbb{E}\left\{Y_{i}\right\}=\mathbb{E}\left\{1 / Z_{i}\right\}=1, \quad i \leq d
$$

and Y_{i} / Z_{i} 's are non-negative, then H^{*} has unit Fréchet marginal df's and moreover also \tilde{H} defined by

$$
\begin{equation*}
-\ln \tilde{H}\left(x_{1}, \ldots, x_{d}\right)=\mathbb{E}\left\{\max _{1 \leq i \leq d} \frac{1}{x_{i} Z_{i}}\right\}, \quad\left(x_{1}, \ldots, x_{d}\right) \in(0, \infty)^{d} \tag{2.7}
\end{equation*}
$$

is a max-stable df with unit Fréchet marginal df's.

Theorem 2.5. If H is a max-stable df with unit Fréchet marginal df's and de Haan representation (2.6) with \boldsymbol{Y} being independent of \boldsymbol{Z} with df Q which has unit Fréchet marginal df's, then we have

$$
\begin{equation*}
\mu(H, Q)=\mathbb{E}\left\{\max _{1 \leq i \leq d} \frac{Y_{i}}{Z_{i}}\right\}=\sum_{i=1}^{d} \mathbb{E}\left\{\frac{1}{Z_{i}} \Psi_{i}\left(Z_{1}, \ldots, Z_{d}\right)\right\}, \quad\left(x_{1}, \ldots, x_{d}\right) \in(0, \infty)^{d} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda(Q, H)=\mathbb{E}\left\{\min _{1 \leq i \leq d} \frac{Y_{i}}{Z_{i}}\right\} \tag{2.9}
\end{equation*}
$$

Moreover, with H^{*} defined in (2.6)

$$
\begin{equation*}
\mu(H, Q)=\theta\left(H^{*}\right) \geq \max (\theta(H), \theta(\tilde{H})) \geq 1 \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda(Q, H) \leq \min \left(\mathbb{E}\left\{\min _{1 \leq i \leq d} Y_{i}\right\}, \mathbb{E}\left\{\min _{1 \leq i \leq d} \frac{1}{Z_{i}}\right\}\right) \leq 1 \tag{2.11}
\end{equation*}
$$

Remark 2.6. i) If $Z_{1}=\cdots=Z_{d}=Z$ with Z a unit Fréchet random variable, then the zero-homogeneity of Ψ_{i} 's, (2.5) and (2.8) imply that

$$
\begin{equation*}
\mu(H, Q)=\sum_{i=1}^{d} \Psi_{i}(1, \ldots, 1) \mathbb{E}\left\{\frac{1}{Z}\right\}=\sum_{i=1}^{d} \Psi_{i}(1, \ldots, 1)=\mathbb{E}\left\{\max _{1 \leq i \leq d} Y_{i}\right\}=-\ln H(1, \ldots, 1) \geq 1 \tag{2.12}
\end{equation*}
$$

Further, by (2.9) we have $\lambda(Q, H)=\mathbb{E}\left\{\min _{1 \leq i \leq d} Y_{i}\right\}$.
ii) In view of [12][Theorem 2.2] (see also [16][Eq. (6.9)]) for H with de Haan representation (2.6)

$$
\lambda(H, H)=-\mathbb{E}\left\{\frac{1}{\ln H\left(Y_{1}, \ldots, Y_{d}\right)}\right\}
$$

holds, which together with (2.10) implies that

$$
\mu\left(H_{\infty}, H_{\infty}\right)=\lambda\left(H_{\infty}, H_{\infty}\right)=1
$$

and thus the lower bound in (1.8) is sharp. We note in passing that there are numerous papers where $\lambda_{n}\left(F^{n}, F\right)$ and $\lambda(H, H)$ appear, see e.g., [8, 16, 22-24] and the references therein.
iii) For common max-stable df's H the spectral random vector \boldsymbol{Y} that defines (2.4) is explicitly known. Consequently, for any given random vector \boldsymbol{Z}, using the first expression in (2.8) and (2.9), we can easily evaluate $\mu(H, Q)$ and $\lambda(Q, H)$ by Monte Carlo simulations, respectively.

3. Applications

In multivariate extreme value theory it is important to have conditions that show if a given max-stable df H is equal to H_{0}. In case $d=2$ it is well-known that $H=H_{0}$ if and only if $\lambda(H, H)=0$, see [12][Proposition 2.2] or [6][Theorem 2]. Consequently, when $d>2$, in view of [3][Theorem 4.3.3] we have that $H=H_{0}$ if and only if

$$
\begin{equation*}
\lambda\left(H_{K}, H_{K}\right)=0 \tag{3.1}
\end{equation*}
$$

for any index set $K \subset\{1, \ldots, d\}$ with two elements. Therefore, in the sequel we consider for simplicity the case $d=2$ discussing some tractable conditions that are equivalent with $H=H_{0}$ and (1.6).

As in Balkema and Resnick [25], for a given bivariate df H with unit Fréchet margins define $\xi_{H}:(0, \infty)^{2} \rightarrow[0,1]$ by $\left(\right.$ set $\left.A=H\left(x_{1}, x_{2}\right), B=H\left(x_{1}+h, x_{2}+h\right)\right)$

$$
\begin{equation*}
\xi_{H}\left(x_{1}, x_{2}\right)=\lim _{h \rightarrow 0} \frac{\left[B-H\left(\left(x_{1}, x_{2}\right)+(h,-h)\right)\right]\left[B-H\left(\left(x_{1}, x_{2}\right)+(-h, h)\right)\right]}{A\left[A+B-H\left(\left(x_{1}, x_{2}\right)+(h,-h)\right)-H\left(\left(x_{1}, x_{2}\right)+(-h, h)\right)\right]}, \quad\left(x_{1}, x_{2}\right) \in(0, \infty)^{2} \tag{3.2}
\end{equation*}
$$

If H is a continuous max-id. df, then in view of [25] the function ξ_{H} is non-negative, measurable and bounded by 1 , almost everywhere with respect to $d H$.

Proposition 3.1. Let H and Q be two biavairate df's with unit Fréchet marginals. If H is a max-id. df, then we have

$$
\begin{equation*}
\lambda(Q, H)=\int_{(0, \infty)^{2}}\left[1-\xi_{H}\left(x_{1}, x_{2}\right)\right] \frac{Q\left(x_{1}, x_{2}\right)}{H\left(x_{1}, x_{2}\right)} d H\left(x_{1}, x_{2}\right) \tag{3.3}
\end{equation*}
$$

Moreover, if H is a max-stable df, then the following conditions are equivalent:
i) $H=H_{0}$;
ii) $\theta(H)=-\ln H(1,1)=2$;
iii) $\mu(H, Q)=2-\lambda(Q, H)$;
iv) ξ_{H} equals 1 almost everywhere $d H$;
v) $\frac{d H^{t}}{d H}=\frac{t^{2} H^{t}}{H}$ almost everywhere $d H$ for any $t>0$.

Remark 3.2. i) By [6][Theorem 2] we have that $\lambda(H, H)=0$ is equivalent with $H=H_{0}$ and $\lambda(H, H)=1$ is equivalent with $H=H_{\infty}$.
ii) Statement iii) above holds for any df Q with continuous marginal df's, and thus $\mu(H, Q)$ and $\lambda(Q, H)$ are both dependence measures for H.

We conclude this section with equivalent conditions to (1.6).

Proposition 3.3. Let F, G be two continuous bivariate df's with marginal df's $F_{i}, G_{i}, i=1,2$ satisfying $\lim _{t \rightarrow \infty} \bar{F}_{i}(t) / \bar{G}_{i}(t)=$ 1. If further F_{1}, F_{2} satisfy (1.4) and $\left(X_{1}, X_{2}\right)$ has df F, then the following are equivalent:
i) F has asymptotically independent components;
ii) $\lim _{n \rightarrow \infty} n \mathbb{P}\left\{X_{1}>n, X_{2}>n\right\}=0$;
iii) $\lim _{n \rightarrow \infty} \lambda_{n}\left(G^{n}, F\right)=0$;
iv) $\lim _{n \rightarrow \infty} \mu_{n}\left(F, G^{n}\right)=2$;
v) $\lim _{n \rightarrow \infty} n \mathbb{P}\left\{G\left(X_{1}, X_{2}\right)>1-1 / n\right\}=0$.

Remark 3.4. i) The equivalence of i) and ii) in Proposition 3.3 is well-known and relates to Takahashi theorem, i.e., it is enough to know that the limiting max-stable df H is a product df at one point, say $(1,1)$. See for more details in the d-dimensional setup [3][p. 452].
ii) Recall that the assumption $F_{i} \in M D A(\Phi)$ means that $\lim _{n \rightarrow \infty} F_{i}^{n}\left(a_{n i} x\right)=\Phi(x), x \in \mathbb{R}$ for some norming constants $a_{n i}>0, n \in \mathbb{N}$. For notational simplicity, in this paper we assume that $a_{n i}$'s equal n. If this is not the case, then we need to re-formulate statement ii) in Proposition 3.3 as $n \lim _{n \rightarrow \infty} n \mathbb{P}\left\{X_{1}>a_{n 1}, X_{2}>a_{n 2}\right\}=0$. Note that if $F \in M D A(H)$ with H a max-stable $d f$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n \mathbb{P}\left\{X_{1}>a_{n 1}, X_{2}>a_{n 2}\right\}=2+\ln H(1,1)=2-\theta(H)=: \lambda_{F} \tag{3.4}
\end{equation*}
$$

In the literature, λ_{F} is commonly referred to as the coefficient of upper tail dependence of F, see [3] for more details.

4. Auxiliary Results

Lemma 4.1. Let $\left(V_{1}, \ldots, V_{d}\right)$ be a random vector with continuous marginal df's $H_{i}, i \leq d$. If further G is a ddimensional df with $G\left(x_{1}, \ldots, x_{d}\right)<1$ for any $\left(x_{1}, \ldots, x_{d}\right) \in(0, \infty)^{d}$ and the upper endpoint of $H_{i}, 1 \leq i \leq d$ equals ∞, then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n \mathbb{E}\left\{G^{n-1}\left(V_{1}, \ldots, V_{d}\right)\right\}=\lim _{n \rightarrow \infty} n \mathbb{P}\left\{G\left(V_{1}, \ldots, V_{d}\right)>1-\frac{1}{n}\right\}=\kappa \in[0, \infty) \tag{4.1}
\end{equation*}
$$

if either of the limits exists. Further if

$$
\begin{equation*}
G\left(x_{1}, \ldots, x_{d}\right) \leq \min _{1 \leq i \leq d} H_{i}\left(x_{i}\right), \quad\left(x_{1}, \ldots, x_{d}\right) \in(0, \infty)^{d} \tag{4.2}
\end{equation*}
$$

then $\kappa \in[0,1]$.

Proof of Lemma 4.1 The proof of (4.1) follows from [26][Lemma 2.4], see also [6][Proposition 4]. Assuming (4.2), if H denotes the df of $\left(V_{1}, \ldots, V_{d}\right)$, then we have

$$
\begin{aligned}
0 & \leq n \mathbb{E}\left\{G^{n-1}\left(V_{1}, \ldots, V_{d}\right)\right\} \leq n \int_{(0, \infty)^{d}} \min _{1 \leq i \leq d} H_{i}^{n-1}\left(x_{i}\right) d H\left(x_{1}, \ldots, x_{d}\right) \\
& \leq n \int_{0}^{\infty} H_{1}^{n-1}\left(x_{1}\right) d H_{1}\left(x_{1}\right)=1
\end{aligned}
$$

establishing the proof.

Proposition 4.2. Let $F_{n}, G_{n}, n \geq 1$ be two continuous df's on $[0, \infty)^{d}$ satisfying

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F_{n}^{n}\left(x_{1}, \ldots, x_{d}\right)=H\left(x_{1}, \ldots, x_{d}\right), \quad \lim _{n \rightarrow \infty} G_{n}^{n}\left(x_{1}, \ldots, x_{d}\right)=Q\left(x_{1}, \ldots, x_{d}\right), \quad\left(x_{1}, \ldots, x_{d}\right) \in[0, \infty)^{d} \tag{4.3}
\end{equation*}
$$

with H, Q two max-id. df's with unit Fréchet marginal df's Φ. If for all n large and some $C_{1}>0$

$$
\begin{equation*}
G_{n}^{n}\left(x_{1}, \ldots, x_{d}\right) \leq C_{1} \sum_{1 \leq i \leq d} F_{n i}^{n}\left(x_{i}\right), \quad\left(x_{1}, \ldots, x_{d}\right) \in(0, \infty)^{d} \tag{4.4}
\end{equation*}
$$

where $F_{n i}$ is the i th marginal df of F_{n}, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n \int_{[0, \infty)^{d}} G_{n}^{n}\left(x_{1}, \ldots, x_{d}\right) d F_{n}\left(x_{1}, \ldots, x_{d}\right)=\int_{(0, \infty)^{d}} Q\left(x_{1}, \ldots, x_{d}\right) d v\left(x_{1}, \ldots, x_{d}\right) \tag{4.5}
\end{equation*}
$$

where $v(\cdot)$ is the exponent measure pertaining to H defined on $E:=[0, \infty]^{d} \backslash\{(0, \ldots, 0)\}$. If further for all n large and any x_{1}, \ldots, x_{d} positive

$$
\begin{equation*}
1-G_{n}\left(x_{1}, \ldots, x_{d}\right) \leq C_{2} \sum_{1 \leq i \leq d} \bar{F}_{n i}\left(x_{i}\right) \tag{4.6}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n \int_{[0, \infty)^{d}}\left[1-G_{n}\left(x_{1}, \ldots, x_{d}\right)\right] d F_{n}^{n}\left(x_{1}, \ldots, x_{d}\right)=-\int_{(0, \infty)^{d}} \ln Q\left(x_{1}, \ldots, x_{d}\right) d H\left(x_{1}, \ldots, x_{d}\right) \tag{4.7}
\end{equation*}
$$

Proof of Proposition 4.2 For notational simplicity we consider below only the case $d=2$. From the assumptions

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F_{n}^{n}\left(x_{n 1}, x_{n 2}\right)=H\left(x_{1}, x_{2}\right), \quad \lim _{n \rightarrow \infty} G_{n}^{n}\left(x_{n 1}, x_{n 2}\right)=Q\left(x_{1}, x_{2}\right) \tag{4.8}
\end{equation*}
$$

for every sequence $\left(x_{n 1}, x_{n 2}\right) \rightarrow\left(x_{1}, x_{2}\right) \in(0, \infty)^{2}$ as $n \rightarrow \infty$.
Let v be the exponent measure of H defined on E, see [1] for details. For any x_{0}, y_{0} positive, since by our assumptions

$$
\lim _{n \rightarrow \infty} n\left[1-F_{n}\left(x_{1}, x_{2}\right)\right]=-\ln H\left(x_{1}, x_{2}\right)
$$

holds locally uniformly for $\left(x_{1}, x_{2}\right) \in(0, \infty)^{2}$, using further (4.8) and [19][Lemma 9.3] we obtain

$$
\lim _{n \rightarrow \infty} \int_{\left[x_{0}, \infty\right) \times\left[y_{0}, \infty\right)} G_{n}^{n}\left(x_{1}, x_{2}\right) d\left(n F_{n}\left(x_{1}, x_{2}\right)\right)=\int_{\left[x_{0}, \infty\right) \times\left[y_{0}, \infty\right)} Q\left(x_{1}, x_{2}\right) d v\left(x_{1}, x_{2}\right)=: I\left(x_{0}, y_{0}\right)
$$

Moreover, by (4.4)

$$
\begin{aligned}
& n \int_{[0, \infty)^{2}} G_{n}^{n}\left(x_{1}, x_{2}\right) d F_{n}\left(x_{1}, x_{2}\right) \\
& \quad \leq \quad n C_{1}\left(\int_{\left[0, x_{0}\right]} F_{n 1}^{n-1}(x) d F_{n 1}(x)+\int_{\left[0, y_{0}\right]} F_{n 2}^{n-1}(x) d F_{n 2}(x)\right) \\
& \quad+\int_{\left[x_{0}, \infty\right) \times\left[y_{0}, \infty\right)} G_{n}^{n}\left(x_{1}, x_{2}\right) d\left(n F_{n}\left(x_{1}, x_{2}\right)\right) \\
& \quad=\quad C_{1}\left(F_{n 1}^{n}\left(x_{0}\right)+F_{n 2}^{n}\left(y_{0}\right)\right)+\int_{\left[x_{0}, \infty\right) \times\left[y_{0}, \infty\right)} G_{n}^{n}\left(x_{1}, x_{2}\right) d\left(n F_{n}\left(x_{1}, x_{2}\right)\right) \\
& \quad \rightarrow \quad C_{1}\left(e^{-1 / x_{0}}+e^{-1 / y_{0}}\right)+\int_{\left[x_{0}, \infty\right) \times\left[y_{0}, \infty\right)} Q\left(x_{1}, x_{2}\right) d v\left(x_{1}, x_{2}\right), \quad n \rightarrow \infty \\
& \quad \rightarrow \quad \int_{(0, \infty)^{2}} Q\left(x_{1}, x_{2}\right) d v\left(x_{1}, x_{2}\right), \quad x_{0} \downarrow 0, y_{0} \downarrow 0,
\end{aligned}
$$

where the equality above is a consequence of the assumption that F_{n}, G_{n} have continuous marginal df's. Hence (4.5) follows and we show next (4.7). Similarly, for x_{0}, y_{0} as above

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \int_{(0, \infty)^{2}} n\left[1-G_{n}\left(x_{1}, x_{2}\right)\right] d F_{n}^{n}\left(x_{1}, x_{2}\right) \\
& =\quad \limsup _{n \rightarrow \infty}\left[\int_{\left(\left[x_{0}, \infty\right) \times\left[y_{0}, \infty\right)\right)^{c}} n\left[1-G_{n}\left(x_{1}, x_{2}\right)\right] d F_{n}^{n}\left(x_{1}, x_{2}\right)\right. \\
& \left.\quad+\int_{\left[x_{0}, \infty\right) \times\left[y_{0}, \infty\right)} n\left[1-G_{n}\left(x_{1}, x_{2}\right)\right] d F_{n}^{n}\left(x_{1}, x_{2}\right)\right] \\
& \leq \quad C_{2} \limsup _{n \rightarrow \infty} \int_{\left(\left[x_{0}, \infty\right) \times\left[y_{0}, \infty\right)\right)^{c}} n\left[\bar{F}_{n 1}\left(x_{1}\right)+\bar{F}_{n 2}\left(x_{2}\right)\right] d F_{n}^{n}\left(x_{1}, x_{2}\right) \\
& \quad+\limsup _{n \rightarrow \infty} \int_{\left[x_{0}, \infty\right) \times\left[y_{0}, \infty\right)} n\left[1-G_{n}\left(x_{1}, x_{2}\right)\right] d F^{n}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\leq & C_{2} \limsup _{n \rightarrow \infty}\left(F_{n 1}^{n}\left(x_{0}\right)+F_{n 2}^{n}\left(y_{0}\right)\right)\left[n \bar{F}_{n 1}\left(x_{0}\right)+n \bar{F}_{n 2}\left(y_{0}\right)\right] \\
& -\int_{\left[x_{0}, \infty\right) \times\left[y_{0}, \infty\right)} \ln Q\left(x_{1}, x_{2}\right) d H\left(x_{1}, x_{2}\right) \\
= & C_{2}\left[e^{-1 / x_{0}}+e^{-1 / y_{0}}\right]\left[\frac{1}{x_{0}}+\frac{1}{y_{0}}\right]-\int_{\left[x_{0}, \infty\right) \times\left[y_{0}, \infty\right)} \ln Q\left(x_{1}, x_{2}\right) d H\left(x_{1}, x_{2}\right) \\
\rightarrow & -\int_{(0, \infty)^{2}} \ln Q\left(x_{1}, x_{2}\right) d H\left(x_{1}, x_{2}\right), \quad x_{0} \downarrow 0, y_{0} \downarrow 0,
\end{aligned}
$$

hence the proof follows.

Remark 4.3. The validity of (4.4) has been shown under the assumption that G_{n} is a continuous df. From the proof above it is easy to see that (4.4) still holds if we assume instead that G_{n} is continuous and positive such that G_{n}^{n} is a df. Similarly, for the validity of (4.7) it is enough to assume that F_{n}^{n} is a continuous $d f$.

Corollary 4.4. If H is a bivariate max-stable $d f$ with unit Fréchet marginal df's H_{1} and H_{2}, then for u, t positive

$$
\begin{equation*}
\int_{(0, \infty)^{2}} \min \left(H_{1}^{1 / u}\left(x_{1}\right), H_{2}^{1 / t}\left(x_{2}\right)\right) d v\left(x_{1}, x_{2}\right)=u+t+\ln H(1 / u, 1 / t) \tag{4.9}
\end{equation*}
$$

Proof of Corollary 4.4 The proof follows using Fubini Theorem and the homogeneity property of the exponent measure inherited by (1.1). We give below an alternative proof. Let (V_{1}, V_{2}) have df H and set $U_{i}=H_{i}\left(V_{i}\right), i=1,2$. By the assumptions since the df H is continuous, applying Theorem 2.3 and (4.1) with $u, t>0$ we obtain

$$
\begin{aligned}
& \int_{(0, \infty)^{2}} \min \left(H_{1}^{1 / u}\left(x_{1}\right), H_{2}^{1 / t}\left(x_{2}\right)\right) d v\left(x_{1}, x_{2}\right) \\
& \quad=\lim _{n \rightarrow \infty} n \int_{(0, \infty)^{2}} \min \left(H_{1}^{n / u}\left(x_{1}\right), H_{2}^{n / t}\left(x_{2}\right)\right) d H\left(x_{1}, x_{2}\right) \\
& =\lim _{n \rightarrow \infty} n \mathbb{P}\left\{\min \left(H_{1}^{1 / u}\left(V_{1}\right), H_{2}^{1 / t}\left(V_{2}\right)\right)>1-\frac{1}{n}\right\} \\
& =\lim _{n \rightarrow \infty} n \mathbb{P}\left\{U_{1}>1-\frac{u}{n}, U_{2}>1-\frac{t}{n}\right\}=u+t+\ln H(1 / u, 1 / t)
\end{aligned}
$$

establishing the proof.

5. Proofs

Proof of Theorem 2.1 For $n>0$ set $A_{n}=Q^{1 / n}$ and $B_{n}=H^{1 / n}$. Since H is a max-id. df, then B_{n} is a df for any $n>0$. Furthermore, since $H_{i}=Q_{i}, i \leq d$ (recall H_{i}, Q_{i} are the marginal df's of H and Q, respectively), it can be easily checked that we can apply Proposition 4.2 , which together with Remark 4.3 imply

$$
\begin{align*}
& \lim _{n \rightarrow \infty} n \int_{\mathbb{R}^{d}}\left[1-H^{1 / n}\left(x_{1}, \ldots, x_{d}\right)\right] d Q\left(x_{1}, \ldots, x_{d}\right) \\
& \quad=\lim _{n \rightarrow \infty} n \int_{\mathbb{R}^{d}}\left[1-B_{n}\left(x_{1}, \ldots, x_{d}\right)\right] d A_{n}^{n}\left(x_{1}, \ldots, x_{d}\right) \\
& \left.\quad=-\int_{\mathbb{R}^{d}} \ln H\left(x_{1}, \ldots, x_{d}\right)\right] d Q\left(x_{1}, \ldots, x_{d}\right)=\mu(H, Q) . \tag{5.1}
\end{align*}
$$

The second claim in (2.1) follows with similar arguments and therefore we omit its proof.
Next, for any non-empty subset K of $\{1, \ldots, d\}$ with $m=|K|$ elements by (2.1)

$$
\mu\left(H_{K}, Q_{K}\right)=\lim _{n \rightarrow \infty} n \int_{\mathbb{R}^{m}}\left[1-F_{n, K}\left(x_{1}, \ldots, x_{d}\right)\right] d Q_{K}\left(x_{1}, \ldots, x_{d}\right)
$$

and

$$
\lambda\left(Q_{K}, H_{K}\right)=\lim _{n \rightarrow \infty} n \int_{\mathbb{R}^{m}} Q_{K}\left(x_{1}, \ldots, x_{d}\right) d F_{n K}\left(x_{1}, \ldots, x_{d}\right)
$$

where $F_{n K}, Q_{K}$ are the marginals of F_{n} and Q with respect to K. Note that for notational simplicity we write the marginal df's with respect to K as functions of x_{1}, \ldots, x_{d} and not as functions of $x_{j 1}, \ldots, x_{j m}$ where $K=\left\{j_{1}, \ldots, j_{m}\right\}$ has $m=|K|$ elements. By Fubini Theorem

$$
\int_{\mathbb{R}^{m}} Q_{K}\left(x_{1}, \ldots, x_{d}\right) d F_{n K}\left(x_{1}, \ldots, x_{d}\right)=\int_{\mathbb{R}^{m}} \bar{F}_{n K}\left(x_{1}, \ldots, x_{d}\right) d Q_{K}\left(x_{1}, \ldots, x_{d}\right)
$$

where $\bar{F}_{n K}$ stands for the joint survival function of $F_{n K}$. In the light of the inclusion-exclusion formula

$$
1-F_{n}\left(x_{1}, \ldots, x_{d}\right)=\sum_{1 \leq i \leq d}(-1)^{i+1} \sum_{K \subset\{1, \ldots, d\},|K|=i} \bar{F}_{n K}\left(x_{1}, \ldots, x_{d}\right), \quad\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}
$$

Using further the fact that H and Q have the same marginal df's, for any index set K with only one element we have

$$
\lim _{n \rightarrow \infty} n \int_{\mathbb{R}^{d}} \bar{H}_{n K}\left(x_{1}, \ldots, x_{d}\right) d Q\left(x_{1}, \ldots, x_{d}\right)=\lim _{n \rightarrow \infty} n \int_{0}^{1}\left(1-t^{1 / n}\right) d t=1
$$

hence

$$
\begin{aligned}
& \mu(H, Q) \\
& \quad=\lim _{n \rightarrow \infty} n \int_{\mathbb{R}^{|K|}}\left[1-F_{n}\left(x_{1}, \ldots, x_{d}\right)\right] d Q\left(x_{1}, \ldots, x_{d}\right) \\
& \quad=d+\lim _{n \rightarrow \infty} n \int_{\mathbb{R}^{|K|}} \sum_{2 \leq i \leq d}(-1)^{i+1} \sum_{K \subset\{1, \ldots, d\},|K|=i} \bar{F}_{n K}\left(x_{1}, \ldots, x_{d}\right) d Q\left(x_{1}, \ldots, x_{d}\right) \\
& =d+\sum_{2 \leq i \leq d}(-1)^{i+1} \lim _{n \rightarrow \infty} n \int_{\mathbb{R}^{|K|}} \sum_{K \subset\{1, \ldots, d\},|K|=i} \bar{F}_{n K}\left(x_{1}, \ldots, x_{d}\right) d Q_{K}\left(x_{1}, \ldots, x_{d}\right) \\
& =d+\sum_{2 \leq i \leq d}(-1)^{i+1} \sum_{K \subset\{1, \ldots, d\},|K|=i} \lambda\left(Q_{K}, H_{K}\right)
\end{aligned}
$$

and thus (2.2) follows. Since by the inclusion-exclusion formula we have further

$$
\bar{F}_{n}\left(x_{1}, \ldots, x_{d}\right)=\sum_{1 \leq i \leq d}(-1)^{i+1} \sum_{K \subset\{1, \ldots, d\},|K|=i}\left[1-F_{n K}\left(x_{1}, \ldots, x_{d}\right)\right], \quad\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}
$$

the claim in (2.3) follows with similar arguments as above.
Proof of Theorem 2.5 The claim in (2.8) follows by the de Haan and inf-argmax representation of H. Since by the independence of Y_{i} 's and Z_{i} 's and the fact that $\mathbb{E}\left\{Y_{i}\right\}=\mathbb{E}\left\{1 / Z_{i}\right\}=1$ we have that

$$
\begin{equation*}
\mathbb{E}\left\{Y_{i} / Z_{i}\right\}=\mathbb{E}\left\{Y_{i}\right\} \mathbb{E}\left\{1 / Z_{i}\right\}=1 \tag{5.2}
\end{equation*}
$$

is valid for any $i \leq d$. Consequently, by (2.3), (2.8) and the fact that for given constants c_{1}, \ldots, c_{d}

$$
\min _{1 \leq i \leq d} c_{i}=\sum_{i=1}^{d}(-1)^{i+1} \sum_{K \subset\{1, \ldots, d\}:|K|=i} \max _{j \in K} c_{j}
$$

then we have

$$
\begin{aligned}
\lambda(Q, H) & =\sum_{i=1}^{d} \mathbb{E}\left\{\frac{Y_{i}}{Z_{i}}\right\}+\sum_{2 \leq i \leq d}(-1)^{i+1} \sum_{K \subset\{1, \ldots, d\},|K|=i} \mathbb{E}\left\{\max _{j \in K} \frac{Y_{j}}{Z_{j}}\right\} \\
& =\mathbb{E}\left\{\min _{1 \leq j \leq d} \frac{Y_{j}}{Z_{j}}\right\}
\end{aligned}
$$

establishing (2.9).
Further, since (5.2) holds, then by de Haan representation of max-stable df's we have that the df's H^{*}, \tilde{H} defined in (2.6) and (2.7), respectively are max-stable with unit Fréchet marginal df's. Hence (2.8) implies that $\mu(H, Q)=$ $\theta\left(H^{*}\right)$. Note in passing that for $Q=H$ this follows also from [12][Proposition 2.2].

Using again that Y_{i} 's are independent of Z_{i} 's and $\mathbb{E}\left\{Y_{i}\right\}=1, i \leq d$ we obtain (recall Y_{i} 's and Z_{i} 's are non-negative random variables)

$$
\begin{aligned}
\mu(H, Q) & =\mathbb{E}\left\{\mathbb{E}\left\{\left.\max _{1 \leq i \leq d} \frac{Y_{i}}{Z_{i}} \right\rvert\,\left(Z_{1}, \ldots, Z_{d}\right)\right\}\right\} \\
& \geq \mathbb{E}\left\{\max _{1 \leq i \leq d} \frac{\mathbb{E}\left\{Y_{i}\right\}}{Z_{i}}\right\} \\
& \geq \mathbb{E}\left\{\max _{1 \leq i \leq d} \frac{1}{Z_{i}}\right\}=\theta(\tilde{H}) \\
& \geq \max _{1 \leq i \leq d} \mathbb{E}\left\{\frac{1}{Z_{i}}\right\}=1
\end{aligned}
$$

With the same arguments using now that $\mathbb{E}\left\{1 / Z_{i}\right\}=1, i \leq d$ we have

$$
\begin{aligned}
\mu(H, Q) & =\mathbb{E}\left\{\mathbb{E}\left\{\left.\max _{1 \leq i \leq d} \frac{Y_{i}}{Z_{i}} \right\rvert\,\left(Y_{1}, \ldots, Y_{d}\right)\right\}\right\} \\
& \geq \mathbb{E}\left\{\max _{1 \leq i \leq d} Y_{i}\right\}=-\ln H(1, \ldots, 1)=\theta(H)
\end{aligned}
$$

The lower bound in (2.11) follows with similar arguments, hence the proof is complete.
Proof of Theorem 2.3 Suppose without loss of generality that F satisfies (1.5). If $F_{i}=G_{i}, i=1,2$, then the claim follows from Lemma 4.1 and Proposition 4.2. We consider next the general case that F_{i} 's are tail equivalent to G_{i} 's and suppose for simplicity that $d=2$. In view of [26][Lemma 2.4] we have

$$
\lim _{n \rightarrow \infty} n \int_{[0, \infty)} G_{i}^{n}(x) d F_{i}(x)=c_{i} \in[0, \infty), \quad i=1,2
$$

if and only if $\lim _{n \rightarrow \infty} n \mathbb{P}\left\{G_{i}\left(X_{i}\right)>1-1 / n\right\}=c_{i}$ or equivalently

$$
\lim _{x \rightarrow \infty} \frac{\bar{F}_{i}(x)}{\bar{G}_{i}(x)}=c_{i}
$$

By the assumption $c_{i} \in(0, \infty)$ for $i=1,2$. Consequently, for all $x>0$ there exist a_{1}, a_{2} positive such that

$$
a_{1} \bar{F}_{i}(x) \leq \bar{G}_{i}(x) \leq a_{2} \bar{F}_{i}(x)
$$

Assume for simplicity that $c_{i}=1, i=1,2$. By the assumptions

$$
n \bar{F}_{i}(n x) \rightarrow 1 / x, \quad n \bar{G}_{i}(n x) \rightarrow 1 / x, \quad n \rightarrow \infty
$$

uniformly for x in $[t, \infty), t>0$. Further, for $i=1,2$ we have

$$
\lim _{t \downarrow 0} \lim _{n \rightarrow \infty} n \int_{[0, t]} G_{i}^{n}(n x) d F_{i}(n x)=\lim _{t \downarrow 0} \lim _{n \rightarrow \infty} n \int_{[0, t]} \bar{G}_{i}(n x) d F_{i}^{n}(n x)=0
$$

which implies

$$
\lim _{t \downarrow 0} \lim _{n \rightarrow \infty} n \int_{[0, t]^{2}} G^{n}(n x, n y) d F(n x, n y)=\lim _{t \downarrow 0} \lim _{n \rightarrow \infty} n \int_{[0, t]^{2}}[1-G(n x, n y)] d F^{n}(n x, n y)=0
$$

As in the proof of Proposition 4.2, using that F and G are in the MDA of H and Q, respectively, it follows that for any integer k

$$
\lim _{n \rightarrow \infty} n \int_{[0, \infty)^{2}} G^{n-k}\left(x_{1}, x_{2}\right) d F\left(x_{1}, x_{2}\right)=\int_{(0, \infty)^{2}} Q\left(x_{1}, x_{2}\right) d v\left(x_{1}, x_{2}\right)=\lambda(Q, H)
$$

and further

$$
\lim _{n \rightarrow \infty} n \int_{[0, \infty)^{2}}\left[1-F\left(x_{1}, x_{2}\right)\right] d G^{n-k}\left(x_{1}, x_{2}\right)=-\int_{(0, \infty)^{2}} \ln H\left(x_{1}, x_{2}\right) d Q\left(x_{1}, x_{2}\right)=\mu(H, Q)
$$

establishing the proof.
Proof of Proposition 3.1 In view of Theorem 2.1, since H being a max-id. df implies that $H^{1 / n}$ is a df for any $n \geq 1$ we have with $F_{n}=Q^{1 / n}$

$$
\begin{aligned}
\int_{(0, \infty)^{2}} Q\left(x_{1}, x_{2}\right) d v\left(x_{1}, x_{2}\right) & =\lim _{n \rightarrow \infty} n \int_{(0, \infty)^{2}} Q\left(x_{1}, x_{2}\right) d H^{1 / n}\left(x_{1}, x_{2}\right) \\
& =2-\lim _{n \rightarrow \infty} n \int_{[0, \infty)^{d}}\left[1-H^{1 / n}\left(x_{1}, x_{2}\right)\right] d F_{n}^{n}\left(x_{1}, x_{2}\right) \\
& =\int_{(0, \infty)^{2}}\left[2+\ln H\left(x_{1}, x_{2}\right)\right] d Q\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Since further by [25][Theorem 7] the restriction of v on $(0, \infty)^{2}$ denoted by v_{0} satisfies

$$
\frac{d v_{0}}{d H}=\frac{1-\xi_{H}}{H}
$$

and $\xi_{H}\left(x_{1}, x_{2}\right) \in[0,1]$ almost everywhere $d H$, then the first claim follows.
The equivalence of i) and ii) is known as Takahashi Theorem, see [3][Theorem 4.3.2]. Since $\xi_{H} \in[0,1]$ almost everywhere $d H$, then the equivalence of ii) and iii) is a direct consequence of (3.3) and the fact that $\lambda(Q, H)=$ $2-\mu(H, Q)$, see (2.3). Clearly, by (3.3) we have thus $\xi_{H}=1$ almost everywhere $d H$ is equivalent with $H=H_{0}$, whereas iv) is equivalent with v) is consequence of [25][Theorem 7].

Proof of Proposition 3.3 If $F(1.6)$ holds, then clearly ii) is satisfied and thus i) implies ii). If ii) holds, then

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} F^{n}\left(n x_{1}, n x_{2}\right) & =\exp \left(\limsup _{n \rightarrow \infty} n \ln \left(1-\left[1-F\left(n x_{1}, n x_{2}\right)\right]\right)\right) \\
& =\exp \left(-\limsup _{n \rightarrow \infty} n\left(1-F\left(n x_{1}, n x_{2}\right)\right)\right) \\
& \leq \exp \left(-\limsup _{n \rightarrow \infty}\left[n \bar{F}_{1}\left(n x_{1}\right)+n \bar{F}_{2}\left(n x_{2}\right)-n \mathbb{P}\left\{X_{1}>n \min \left(x_{1}, x_{2}\right), X_{2}>n \min \left(x_{1}, x_{2}\right)\right\}\right]\right) \\
& =\exp \left(-1 / x_{1}-1 / x_{2}\right), \quad x_{1}, x_{2}>0 .
\end{aligned}
$$

As for the derivation of (1.2) we obtain further

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} F^{n}\left(n x_{1}, n x_{2}\right) \geq \exp \left(-1 / x_{1}-1 / x_{2}\right), \quad x_{1}, x_{2}>0 \tag{5.3}
\end{equation*}
$$

implying that $F \in M D A\left(H_{0}\right)$, hence i) follows.
Assuming iii) and since the marginal df's of G are in the MDA of Φ, with the same calculations as in (5.3) for the df G we obtain

$$
\begin{aligned}
0=\lim _{n \rightarrow \infty} n \int_{[0, \infty)^{2}} G^{n}\left(x_{1}, x_{2}\right) d F\left(x_{1}, x_{2}\right) & \geq \lim _{n \rightarrow \infty} n \mathbb{P}\left\{X_{1}>n, X_{2}>n\right\} G^{n}(n, n) \\
& \geq c \lim _{n \rightarrow \infty} n \mathbb{P}\left\{X_{1}>n, X_{2}>n\right\}
\end{aligned}
$$

for some $c \in\left(0, e^{-2}\right)$, hence ii) follows.
Next, assume that ii) holds. We have that $G\left(x_{1}, x_{2}\right) \leq G_{1}\left(x_{1}\right) G_{2}\left(x_{2}\right)=: K\left(x_{1}, x_{2}\right)$ and by the assumption that G_{i} 's are in the MDA of Φ it follows that K is in the MDA of H_{∞}. Further ii) implies that $F \in M D A\left(H_{0}\right)$ and $-\ln H(1,1)=2$. Consequently, Theorem 2.3 yields

$$
\lim _{n \rightarrow \infty} \lambda_{n}\left(K^{n}, F\right)=\lambda\left(H_{\infty}, H_{0}\right) .
$$

But from Corollary 4.4 we have that $\lambda\left(H_{\infty}, H_{0}\right)=0$, hence ii) implies iii).
Let \bar{G} be the joint survival function of the bivariate df G. For any positive integer n, we have that F^{n} is a bivariate df. Hence by Fubini theorem and the fact that $F_{i}=G_{i}, i=1,2$ are continuous df's, for any positive integer n we obtain

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} F^{n}\left(x_{1}, x_{d}\right) d G\left(x_{1}, x_{2}\right) & =\int_{\mathbb{R}^{2}} \bar{G}\left(x_{1}, x_{2}\right) d F^{n}\left(x_{1}, x_{2}\right) \\
& =2 n /(n+1)-\int_{\mathbb{R}^{2}}\left[1-G\left(x_{1}, x_{2}\right)\right] d F^{n}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

and thus the equivalence of iii) and iv) follows. The equivalence iv) and v) follows from Lemma 4.1 and thus the proof is complete.

Acknowledgments

I am in debt to both reviewers for numerous suggestions and corrections. Support from SNSF Grant 200021-175752/1 is kindly acknowledged.

References

[1] S. I. Resnick, Extreme values, regular variation, and point processes, vol. 4 of Applied Probability. A Series of the Applied Probability Trust. New York: Springer-Verlag, 1987.
[2] J. Beirlant, Y. Goegebeur, J. Teugels, and J. Segers, Statistics of extremes. Wiley Series in Probability and Statistics, John Wiley \& Sons, Ltd., Chichester, 2004.
[3] M. Falk, J. Hüsler, and R. D. Reiss, "Laws of Small Numbers: Extremes and Rare Events," in DMV Seminar, vol. 23, Basel: Birkhäuser, third ed., 2010.
[4] L. de Haan, "A spectral representation for max-stable processes," Ann. Probab., vol. 12, no. 4, pp. 1194-1204, 1984.
[5] A. V. Gnedin, "On multivariate extremal processes," J. Multivariate Anal., vol. 46, no. 2, pp. 207-213, 1993.
[6] A. V. Gnedin, "On a best-choice problem with dependent criteria," J. Appl. Probab., vol. 31, no. 1, pp. 221-234, 1994.
[7] A. V. Gnedin, "Records from a multivariate normal sample," Statist. Probab. Lett., vol. 39, no. 1, pp. 11-15, 1998.
[8] C. Dombry, M. Falk, and M. Zott, "On functional records and champions," Journal of Theoretical Probability, Feb 2018.
[9] A. V. Gnedin, "Conical extremes of a multivariate sample," Journal of Research of National Institute of Standards and Technology, vol. 99, pp. 511-511, 1994.
[10] E. Hashorva and J. Hüsler, "On asymptotics of multivariate integrals with applications to records," Stoch. Models, vol. 18, no. 1, pp. 41-69, 2002.
[11] E. Hashorva and J. Hüsler, "Multiple maxima in multivariate samples," Statist. Probab. Lett., vol. 75, no. 1, pp. 11-17, 2005.
[12] C. Dombry, M. Ribatet, and S. Stoev, "Probabilities of concurrent extremes," Journal of the American Statistical Association, 2017, doi:10.1080/01621459.2017.1356318.
[13] E. Hashorva and J. Hüsler, "On the number of points near the multivariate maxima," Statist. Probab. Lett., vol. 55, no. 2, pp. 113-124, 2001.
[14] E. Hashorva, "Asymptotics of dominated Gaussian maxima," Extremes, vol. 5, no. 4, pp. 353-368 (2003), 2002.
[15] E. Hashorva, "Remarks on domination of maxima," Statist. Probab. Lett., vol. 60, no. 1, pp. 101-109, 2002.
[16] A. W. Ledford and J. A. Tawn, "Concomitant tail behaviour for extremes," Adv. Appl. Probability, vol. 30, no. 1, pp. 197-215, 1998.
[17] K. Dȩbicki and M. Mandjes, Queues and Lévy fluctuation theory. Springer, 2015.
[18] I. Molchanov and C. Strokorb, "Max-stable random sup-measures with comonotonic tail dependence," Stochastic Process. Appl., vol. 126, no. 9, pp. 2835-2859, 2016.
[19] E. Hashorva, "Representations of max-stable processes via exponential tilting," Stoch. Proc. Applications, in press, 10.1016/j.spa.2017.10.003, 2018.
[20] K. Dȩbicki and E. Hashorva, "Approximation of supremum of max-stable stationary processes and Pickands constants," arXiv:1712.04243, 2017.
[21] H. Planinic and P. Soulier, "The tail process revisited," Extremes, 2017, doi:10.1007/s10687-018-0312-1.
[22] L. de Haan, Extremes in higher dimensions: the model and some statistics. Report. Econometric Institute. Erasmus University Rotterdam, Inst., Univ., 1985.
[23] A. V. Gnedin, "Corners and records of the Poisson process in quadrant," Electron. Commun. Probab., vol. 13, pp. 187-193, 2008.
[24] A. V. Gnedin and A. Marynych, "Exponential-uniform identities related to records," Electron. Commun. Probab., vol. 17, pp. no. 26, 5, 2012.
[25] A. A. Balkema and S. I. Resnick, "Max-infinite divisibility," J. Appl. Probability, vol. 14, no. 2, pp. 309-319, 1977.
[26] E. Hashorva, "Asymptotics of dominated Gaussian maxima," Extremes, vol. 5, no. 4, pp. 353-368 (2003), 2002.

Enkelejd Hashorva, Department of Actuarial Science University of Lausanne,, Unil-Dorigny, 1015 Lausanne, Switzerland
E-mail address: Enkelejd.Hashorva@unil.ch

