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Abstract

HIV latency is a major obstacle to curing infection. Current strategies to eradicate HIV aim at increasing transcription of the
latent provirus. In the present study we observed that latently infected CD4+ T cells from HIV-infected individuals failed to
produce viral particles upon ex vivo exposure to SAHA (vorinostat), despite effective inhibition of histone deacetylases. To
identify steps that were not susceptible to the action of SAHA or other latency reverting agents, we used a primary CD4+ T
cell model, joint host and viral RNA sequencing, and a viral-encoded reporter. This model served to investigate the
characteristics of latently infected cells, the dynamics of HIV latency, and the process of reactivation induced by various
stimuli. During latency, we observed persistence of viral transcripts but only limited viral translation. Similarly, the
reactivating agents SAHA and disulfiram successfully increased viral transcription, but failed to effectively enhance viral
translation, mirroring the ex vivo data. This study highlights the importance of post-transcriptional blocks as one mechanism
leading to HIV latency that needs to be relieved in order to purge the viral reservoir.
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Introduction

Successful antiretroviral therapy reduces HIV plasma viremia to

undetectable levels; however, the virus is not eradicated [1].

Current and non-mutually exclusive hypotheses to explain this

phenomenon include (i) the presence of anatomic viral reservoirs

that are inaccessible to drugs, (ii) ongoing viral replication and cell-

to-cell spread, and (iii) the existence of a long-lived cellular

reservoir that is infected but does not produce viral particles and

can be reactivated. With the last hypothesis, it is proposed that

reactivating viral transcription in latently infected cells may help

purging the HIV reservoir and contribute to HIV eradication [2].

Therefore, a better understanding of the mechanisms involved in

viral transcriptional silencing and in the reactivation from latency

is essential. Less attention has been paid to post-transcriptional

blocks which prevent completion of the viral replication cycle, thus

limiting expression of viral proteins, de novo production of viral

particles and cytopathogenesis.

Currently, there are two competing models on how HIV

establishes latency in resting CD4+ T cells [3,4]. The first model

suggests that activated cells are infected by HIV, and that most of

them are productively infected and die within a few days.

However, a minority of cells revert to a resting memory state,

following the natural biology of CD4+ T cells. The second model

proposes that HIV is able to directly infect resting CD4+ T cells,

even if this process is poorly efficient. To study HIV latency

experimentally, cell lines have been used extensively to investigate

the molecular mechanisms underlying impairment of viral gene

expression. Cell lines highlighted viral transcriptional silencing as a

major determinant of HIV latency (reviewed in [5–8]). There is

however increasing interest for work in more representative

primary cell settings. In recent years, multiple systems using

primary cells from various CD4+ T cell subpopulations have been

developed. These systems yield sufficient numbers of cells allowing

investigations that may recapitulate more closely in vivo processes

(reviewed in [4,9].

Primary cell latency models have been used for the screening

and assessment of molecules that promote viral transcription [10].

Multiple compounds [11] reactivate viral transcription from

latently infected cells in vitro, reflecting the various mechanisms

involved in viral transcriptional control, including epigenetic

regulation (such as histone modifications and DNA methylation)

and immune modulation (such as T cell receptor engagement and

protein kinase C signaling) [8,11,12]. The efficiency of these

agents varies according to the HIV latency model used [11,13],

underscoring that the mechanisms leading to repression and
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reactivation of viral transcription may be cell-specific. Some of the

agents are moving forward to clinical trials [1,11,14–16].

We have previously completed a detailed analysis of the cellular

response to HIV infection in a T cell line and derived a model of

cell reprogramming upon viral invasion [17]. Here, we use an

extension of this experimental approach to investigate viral latency

and reactivation in a model of primary CD4+ T cells. We

hypothesized that a comprehensive assessment of the paired

transcriptomes of the host and the virus by RNA sequencing,

coupled to the analysis of viral protein expression, would allow for

addressing the extent of viral transcriptional and post-transcrip-

tional silencing, the structure of the viral transcriptome, and the

nature of the cellular transcriptional program induced by

pharmacological and immunological reactivating compounds.

Our in vitro and ex vivo data reveal defects in viral translation and

particle production that reflect a state of post-transcriptional

cellular latency which may not be reversed by agents merely

enhancing viral transcription.

Results

Viral production from latently infected cells ex vivo
We compared the efficacy of T-cell receptor (TCR) stimulation

and SAHA treatment to stimulate viral particle production ex vivo.

For this, we tested virus release from latently infected cells isolated

from HIV-infected individuals under successful treatment (Table
S1). We isolated resting CD4+ T cells and cultured them for 1, 2,

and 4 days in the presence of IL-2 supplemented with DMSO

(control), SAHA or TCR stimulation. TCR stimulation resulted in

successful viral particle production in 7 of 11 samples, with viral

RNA copies ranging from 42 to 2940 copies/ml of supernatant.

Viral RNA copies in controls (mock-treated cells) were at or below

the limit of detection of the assay for 6 samples, and values ranging

from 27 to 287 copies/ml for 5 samples (Fig. 1). SAHA was

undistinguishable from control, suggesting a failure to stimulate

particle production from latently infected cells ex vivo, confirming

previous studies [18]. We observed effective inhibition of histone

deacetylases confirming that primary cells were exposed to

appropriate concentrations of SAHA (Fig. 1).

Stability of the cellular model of latency
To further investigate the mechanisms underlying SAHA

inefficiency to reactivate latently infected CD4+ T cells ex vivo

and generate viral particles, we used the cellular model described

by the laboratories of Cloyd [19] and Karn [20] that preferentially

produces latently infected CD4+ T cells with a central memory

phenotype. These cells constitute the major cellular reservoir of

HIV in blood [21]. The viral vector, previously used in latency

studies, encodes Tat, Rev, and a destabilized GFP protein with an

estimated half-life of 6 hours [22]. Starting with the transduction

of two million cells from a healthy donor, we sorted a population

of 200,000 successfully infected cells and amplified them to obtain

50 million cells. The infected cell population was then co-cultured

on a feeder layer of the H80 human brain tumor cell line over 10

weeks (Fig. S1). We obtained a population of latently infected cells

carrying a stable number of viral integration events, measured at

1.06 proviruses per cell. This measure of quality control, as well as

the quasi-universal reactivation of the cell population upon T cell

receptor (TCR) stimulation with anti-CD3/anti-CD28 and IL-2

(see below) excluded outgrowth by non-infected cells. The

expression from the env open reading frame of a destabilized

viral-encoded GFP decreased significantly following infection (entry

phase), and reached its nadir upon co-culture on feeder cells (week

0). However, low level GFP expression remained stable at around

3-fold above background (mock uninfected cells) through 10 weeks

of co-culture (latency phase) (Fig. S2). Upon reactivation by TCR

stimulation (reactivation phase), we observed up to 9-fold increase of

GFP expression; with 92% of cells expressing the viral-encoded

GFP, Figure 2. The activation marker IL2Ra (CD25) remained

undetectable during the latency phase. Thus, the model recapit-

ulates the process of latency, although the basal degree of GFP

expression suggests incomplete silencing of HIV.

Incomplete transcriptional silencing of HIV
To understand the extent of viral silencing during latency, we

assessed three parameters of viral transcriptional activity using

RNA sequencing data. First, we estimated the proportion of viral

transcripts among the total number of detected transcripts. From

week 0 (W0) through week 10 (W10), this proportion was stable

with a mean of 1.23% (95%CI; 1.15, 1.32). Second, we evaluated

the distribution of viral reads along the viral vector genome. We

identified a conserved pattern of coverage of the viral vector

genome through the latency phase (Fig. 3A). Third, we assessed

the pattern of viral splicing. All main splice variants were well

represented and in conserved proportions [23] (Fig. 3B, Fig. S3,
Fig. S4). Upon TCR stimulation, there was a proportional shift in

viral splice forms. Indeed, cell activation resulted in a profound

modification of the transcriptome and doubling of the RNA

content of the blasts.

The RNA sequencing approach captures polyadenylated viral

RNA (i.e. fully elongated). On these RNA species we did not

observe major deficits in viral genome coverage, or splicing during

latency. Thus, these viral transcripts could contribute to the

residual viral-encoded GFP expression. However, these analyses

do not discriminate between continuous translation from a stable

pool of viral transcripts from the original infection and de novo

transcription from leakiness of the latency model.

Dynamics of entry, latency, and reactivation
The host RNA profile during the dynamic process of latency

was studied in time-course transcriptome analyses by grouping

host genes according to their transcriptional response to HIV and

to TCR stimulation with anti-CD3/CD28. Whereas the virus only

minimally perturbed the transcriptional state of the cell, TCR

Author Summary

HIV-infected individuals must receive lifelong antiviral
therapy because treatment discontinuation generally
results in rapid viral rebound. The field has identified a
state of latency at the level of transcription of the
integrated provirus as the major mechanism of persis-
tence. A number of drugs are now tested that aim at
inducing viral transcription as a step to purge the reservoir.
The assessment of viral production in cells from HIV-
infected individuals with optimal viral suppression re-
vealed the failure of SAHA/vorinostat to efficiently gener-
ate viral particle production. To further investigate and
characterize the process of latency at the transcriptome
level, and the response to SAHA as well as various
reactivating agents, we use a model of primary CD4+
lymphocytes. The main observation from this study is that
viral transcripts persist during latency, and that the
accumulation of viral transcripts does not result in efficient
viral protein expression upon reactivation with agents
such as SAHA. Our data suggest that post-transcriptional
blocks also contribute to latency, and that additional
strategies need to be explored to efficiently purge the viral
reservoir.
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stimulation resulted in massive cell reprogramming, impacting

66% of all detected genes. Numbers of genes differentially

expressed under the various conditions are detailed in the legend

of Figure 4.

Principal component analysis revealed two transcriptionally

distinct phases: entry (W0–W2) and latency (W4–W10) (Fig. 4B,
Fig. S5). The tight cluster of samples during the 6 weeks of latency

includes both infected and uninfected samples, indicating a stable

process that is only minimally perturbed by the virus. To assess the

differences between infected and uninfected cells, we compared

gene expression in paired samples to pinpoint potential markers of

HIV latency, consistently differentially expressed during the 6

weeks of maintenance of latency (W4–W10): we identified 103

cellular genes as upregulated and 124 as downregulated in HIV-

Figure 1. Viral production from latently infected cells ex vivo. Panel A. HIV RNA copies/ml measured in the supernatant of resting CD4+ T cells
isolated from treated HIV+ individuals (S: cells from single individuals, P: pooled cells from 2-3 individuals) and stimulated ex vivo with DMSO (control,
black), SAHA (blue) or TCR (green) for 1, 2 or 4 days. Panel B. Box plot showing HIV RNA copies/ml measured in the supernatant of resting CD4+ T cells
isolated from treated HIV+ individuals and stimulated ex vivo with DMSO (control, black), SAHA (blue) or TCR (green) for 1, 2 or 4 days. Each circle
represents a different cellular sample. Bars: min to max. Solid line: median. Panel C. Immunoblot of histones (1 mg) extracted from stimulated ex vivo
cells isolated from treated HIV+ individuals. H3K27Ac: anti-histone 3, acetylated Lysine 27; H3K9Ac: anti-histone 3, acetylated Lysine 9; H3: anti-
histone 3 (total).
doi:10.1371/journal.ppat.1004156.g001
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infected samples during this phase. The differentially expressed

genes exhibit moderate enrichment for pathways including

chemokine and cytokine receptors and immune response (Fig.
S6). All differentially expressed genes and analyses can be queried

and downloaded from the open access interactive web resource

http://litchi.labtelenti.org.

The RNA sequence data also allowed for estimating the

diversity of integration sites during the various time points and

upon reactivation. Out of these, we identified 15886 integration

events with reads at a junction between host and HIV transcripts.

Importantly, the data reflects host-virus splicing events that, while

globally identifying the general location of an integration event, do

not allow precise mapping. From this we identified 12868

integration events in the host genome across conditions; ranging

from 3718 at the earliest time point (i.e. 14 days before W0) to

2216 at the latest time point (TCR 24h); 92.5% represented

unique integration sites. Overall, these findings indicate minimal

clonal bias in the model.

In summary, the stability of the cellular transcriptome profile

between weeks 4 and 10 is consistent with maintenance of a resting

state of primary CD4+ T cells and limited contribution from viral

infection. TCR stimulation creates a cellular environment highly

supportive of HIV expression.

Reactivation with pharmacological and immunological
agents

After ten weeks of co-culture on H80, cells were collected and

incubated in the presence of various pharmacological (vorinostat

[SAHA], disulfiram [DSF], 59-azacytidine [AZA]), or immuno-

logical (interleukin 7 [IL-7]) stimuli, as well as TCR stimulation.

We collected RNA for sequencing and cells for FACS analysis at 8

and 24 hours after treatment start. The removal of cells from the

feeder cell layer induced a 2-fold reduction of the proportion of

HIV to all cellular transcripts (from 1.26% to 0.64% at 8 hours),

possibly due to loss of a trophic environment provided by H80

cells (Fig. 5A). In contrast, exposure to SAHA resulted in an

increase in the proportion of viral transcripts to 1.77% at 8 hours

and 2.14% at 24 hours, three times that of DMSO control

(Fig. 5A). The effect of TCR stimulation on the proportion of

HIV transcripts was modest, but cell activation was accompanied

by blast morphology and a 2-fold increase in total cellular RNA at

24 hours. Disulfiram had a transient effect, with an increase in the

proportion of HIV transcripts to 1.63% at 8 hours. IL-7 had a

slower effect with 1.21% at 24 hours. AZA had no detectable

impact on viral transcription. The use of the various agents did not

result in profound changes in viral vector genome coverage or

splicing. However, the use of SAHA was associated with a relative

increase in the proportion of unspliced transcripts (Fig. S3).

Viral transcription induced by activating agents such as SAHA

and disulfiram was not proportionally reflected at the protein level

as expression of the viral-encoded GFP remained low (Fig. 5B).

As previously reported, AZA [24-26] alone, or IL-7 [27] had no

discernible or minimal effects on viral protein expression. This

observation was in contrast to the strong increase in GFP

expression induced by TCR stimulation. The divergent response

was maximal when estimating GFP translation per transcript

(Fig. 5C). Ratios were also assessed by considering the production

of GFP relative to the amount of single-spliced HIV forms, which

have the capability of being translated into GFP. The general

profile of transcription, translation and ratios was not modified in

this analysis.

To understand the differential effect of reactivating agents on

viral transcription, we compared the transcriptional signatures

induced by these agents (Fig. 6, and http://litchi.labtelenti.org).

TCR stimulation showed a very strong effect involving 3664

upregulated and 3220 downregulated genes, with a strong

enrichment signal for upregulation of the cellular machinery

(signal transduction, generic gene expression, protein synthesis,

and metabolism), and upregulation of genes previously proposed

to play a role in HIV biology [28]. In contrast, the various other

agents exerted limited influence on the host transcriptome (Fig.
S7). SAHA induced upregulation of 730 genes and downregula-

tion of 559 genes. Genes involved in immune response and T-cell

activation processes were preferentially downregulated by SAHA.

Disulfiram showed weak effects on cellular gene expression, with

only 132 upregulated genes enriched for HIV cofactors, innate

immunity, and apoptosis, and 57 downregulated genes enriched in

defense response genes. Very little transcriptomic effects were

Figure 2. Dynamics of HIV latency in a primary CD4+ T cell model. Viral-encoded GFP expression (green) and activation marker IL2Ra (CD25)
expression (black) during the steps of entry into latency (week -3 to week 2), maintenance of latency (week 4 to 10), and reactivation upon TCR
stimulation (8, 24, and 72 hours after week 10). Shown are the geometric mean fluorescence of intensity (geoMFI) ratios of HIV-based vector infected
cells and mock non-infected control cells.
doi:10.1371/journal.ppat.1004156.g002
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Figure 3. Features of HIV transcription. Panel A. Distribution of HIV reads along the vector genome. On the top is depicted the viral vector
genome used (NL4-3-D6-drEGFP). Red crosses indicate the genes that are disrupted by stop codon insertion, frameshift or deletion. TSS: transcription
start site; D: splice donor; A: splice acceptor. Reads mapping to the LTR are equally assigned to 59 and 39 ends, explaining the presence of viral reads
upstream the TSS. Panel B. Pattern of splicing for the main viral RNA forms: genomic unspliced full-length viral RNA (US, blue), singly spliced RNAs
without the Gag-Pol major intron (SS, green; spliced in D1 but not in D4), and multiply spliced subgenomic mRNAs (MS, red; spliced in D1 and in D4).
doi:10.1371/journal.ppat.1004156.g003
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observed in response to the other reactivating compounds (Fig. 6
and http://litchi.labtelenti.org).

To confirm the main findings, we repeated the latency and

reactivation experiment in the same and on an independent

donor. These analyses also included spike-in internal controls for

RNA sequencing and used culture supernatant only from H80

feeder cells (without direct cell-cell contact). The data confirmed

the reproducibility of the model, and the inability of SAHA to

induce viral protein expression in proportion to the increase in

viral transcripts (Fig. S8). Taken together, these results suggest

that, in this model of latency, agents successfully inducing HIV

transcription, such as SAHA and disulfiram, do not lead to

proportional effects on HIV translation. These agents may not

generate a cellular environment that effectively sustains HIV

protein expression. In contrast, cell activation upon TCR

stimulation creates a permissive environment by systematic

activation of the cellular machineries required for viral replication.

These results underscore the need to explore strategies that

facilitate successful completion of the viral cycle in combination

with agents that act primarily on viral transcription.

Discussion

A number of agents have been identified as latency reverting

drugs. SAHA has been extensively studied and brought forward to

clinical trials [14,28,29]. However, data from Blazkova et al. [18],

our data, and recent reports at the time this work was under

consideration [30-32] indicate that SAHA fails to effectively

increase particle production ex vivo. We tested the ability of SAHA

to increase viral production from latently infected CD4+ T cells

from virologically suppressed HIV-infected individuals. While

SAHA effectively inhibited histone deacetylation, it failed to

stimulate particle production as compared to TCR stimulation.

Data from the Siliciano laboratory also indicates that reactivation

induced by SAHA is not sufficient to trigger a cytopathic effect and

cell death [33]. We explored this paradox by using the primary

CD4+ T cell model described by Cloyd [19] and Karn [20].

Use of a primary cell model allowed the detailed analysis of the

dynamic process of HIV latency and persistence. We examined

cellular transcriptional dynamics over 10 weeks and jointly defined

cellular and viral expression patterns using RNA sequencing and

FACS analysis. In this cellular model, latency appears to be a

stable process. However, viral transcripts are continuously present

accompanied by residual expression of viral-encoded GFP. We

reviewed printed material and figures from various primary

models and observed comparable levels of residual GFP or p24

expression that are generally interpreted as background

[10,19,20,34,35] – indeed, the original paper by Tyagi et al.

identified up to 28.77% of cells expressing low levels of GFP

during latency [20]. Upon TCR stimulation, there is near

universal induction of GFP expression, generally validating the

model. The use of SAHA and disulfiram successfully increased

viral transcription; however the reactivated cells failed to produce

proportional amounts of viral protein. Overall, these observations

underscore the importance of the cellular environment to allow

any effect on viral transcription to translate into an efficient

purging strategy [1].

We observed a remarkable stability of the cellular transcrip-

tional profile after 4 weeks of co-culture on H80 feeder cells

despite the presence of HIV transcripts in the cells. Few cellular

genes were differentially expressed between non-infected and

infected cells. These genes may represent biomarkers of HIV

latency, or markers of the original subset of cells that were

successfully transduced. Moreover, the pool of viral transcripts

might persist from the original infection or reflect ongoing

transcription. Cell-associated viral RNA can also be detected in

latently infected resting memory CD4+ T cells in individuals

under effective antiretroviral therapy ([14,36-38], and Hu et al.,

abstract 405, and Fromentin et al., abstract 412, CROI 2014), and

in animal models ([39,40], and Okoye et al., abstract 136LB,

CROI 2014). The short half-life of the viral vector-encoded

destabilized GFP [10] suggests that some residual translation takes

place. Leakiness of the system could be induced by the trophic

environment of the experimental system, including secreted factors

from the feeder cells, or by the small concentration of IL-2 used in

the model. Some level of residual activation has been observed in

other primary cell models [41]. Here, however, we only detected

negligible levels of cellular activation as assessed by expression of

the activation marker IL2Ra (CD25). To better understand the

nature of the persisting viral transcripts, we examined the amount

and distribution of HIV reads along the viral vector genome, and

the pattern of splicing. The proportion of HIV transcripts

remained stable at about 1.26% of all cellular transcripts during

10 weeks, without apparent defects in structure. However, the

RNA sequencing approach captures polyadenylated RNA; there-

fore it would not represent coverage of other species of viral

transcripts, including non-polyadenylated paused viral transcripts

that could be relevant and contribute to the process of latency or

reactivation. The leaky system bears some similarities with that of

infection of cells belonging to the monocyte/macrophage lineage,

which, as discussed by Van Lint et al. [41], may not reach complete

silencing but maintain a low level of viral replication. Therefore,

the model used here may recapitulate both latency and persistence

of viral transcription as already observed in vivo [1]. However, the

experimental system used here has shortcomings. In our hands,

the amount of materials generated is limiting, and the use of a

complete viral clone is too toxic, which led us to use an attenuated

viral vector that only expresses GFP (from env ORF), Rev and Tat.

The use of such a truncated HIV vector may affect the level of

basal HIV transcription and thus the process of latency [42].

Although we are aware of the possibility that, in other types of

vectors, specific transcripts and viral proteins other than GFP

could be selectively expressed (e.g. Gag) [43], the detailed splice

analysis militates against major differences in protein expression

across the viral genome.

We tested three pharmacological agents to induce viral

transcription. SAHA was an efficient inducer, resulting in over

3-fold increase in the proportion of viral transcripts in the cell,

Figure 4. Host transcriptional response in latency and reactivation in a primary CD4+ T cell model. Panel A. Illustrated are 9729 genes
with statistically significant association to at least one of the two experimental conditions, HIV infection and TCR stimulation, as evaluated by 2-way
analysis of variance of 14513 expressed genes (FDR,0.05). Data are presented in three non-exclusive groups: those regulated in concordance with
viral presence (345 genes, top panel), those regulated in concordance with TCR-stimulation 9647 genes, (middle panel), and those showing non-
additive synergetic effects by viral presence and TCR stimulation (59 genes, bottom panel). The bold lines represent the group average, and color
intensities are proportional to statistical significance of the effects within each group. Panel B. Principal component analysis of host whole-
transcriptome data supports a three-step model of entry-latency-reactivation. There is a transcriptionally coherent latency phase between week 4 and
week 10, and a distinct reactivation phase at 8, 24, and 72 hours after TCR stimulation. All data, including differentially expressed genes and
enrichment analysis, are available at http://litchi.labtelenti.org.
doi:10.1371/journal.ppat.1004156.g004
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Figure 5. Response to latency reactivating agents. Panel A. Viral transcription (proportion of HIV transcripts to total cellular transcripts). Panel
B. Viral expression (GFP) profiles after reactivation with the various compounds. Panel C. HIV GFP protein expression corrected by the proportion of
HIV transcript reads in the cell, normalized by DMSO 8 h. The reference lines represent the W0 of latency, and DMSO 8 hour values.
doi:10.1371/journal.ppat.1004156.g005
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consistent with previous reports [14,16,44,45], reviewed in [5–7].

The effect of disulfiram was short-lived, with a 2.5-fold induction

of viral transcription at 8 hours; also consistent with previous

reports [46]. Despite the observed effects on viral transcription,

these compounds contributed only minimally to viral protein

expression. AZA did not affect viral transcription or translation,

Figure 6. Reactivating agents fail to provide cellular environment necessary for completion of HIV life cycle. Each panel summarizes
over-represented pathways among the differentially expressed genes induced by the indicated treatment. Organized under ten major categories,
each individual circle represents one enriched pathway in Reactome (see methods). The size is proportional to the adjusted p-value (q-value), and the
y-axis corresponds to the average effect of the differentially expressed genes within the reported pathway. Only TCR stimulation using anti-CD3/
CD28 and IL-2 leads to upregulation of numerous cellular pathways, as well as upregulation of reported HIV cofactors and HIV related pathways
(shown in red). AZA is not shown as no enrichment was observed.
doi:10.1371/journal.ppat.1004156.g006

Dynamics of HIV Latency and Reactivation

PLOS Pathogens | www.plospathogens.org 9 May 2014 | Volume 10 | Issue 5 | e1004156



consistent with the mode of action of this drug which needs to be

incorporated into DNA to be active and prevent methylation.

This finding suggests that the cells are not dividing, which again

supports the accuracy of our model. In contrast, in cell lines,

which are dividing, a longer exposure allows observation of

biological effects [24]. In addition, the cellular transcriptional

environment was hardly affected by the various drugs, empha-

sizing that the cells retain a resting state [18,46,47]. Use of IL-7

contributed minimally to enhanced viral transcription or trans-

lation, despite exerting more pronounced effects on cellular

transcription, consistent with recent reports on the use of this

cytokine in vivo [48]. In contrast, the effect on the transcriptome

and the cellular environment created by TCR stimulation

strongly favored translation.

Our data raise the possibility of post-transcriptional block as one

of the mechanisms of HIV latency. This is consistent with studies

from the Fauci laboratory that indicated that resting CD4+ T cells

from aviremic patients did not produce quantifiable cell-free

virions despite the presence of cell-associated HIV-1 RNA [18,49].

Proposed mechanisms underlying post-transcriptional blocks

include splicing defects [43], inhibition of nuclear RNA export

[50], inhibition of expression of viral proteins in a codon-usage-

dependent manner [51], and inhibition of HIV translation by

microRNAs [41,52]. Our current work, and results from Iglesias-

Ussel et al. [53] suggest that latently infected cells may have

multiple biochemical and metabolic blocks that are not completely

released by some of the reactivating agents currently being

evaluated.

Cell line models and primary CD4+ T cell models have

advanced the understanding of basic mechanisms of HIV

transcriptional latency and served to screen for latency

reversing agents. In particular, cell lines highlighted the role

of multiple cis- and trans-acting factors in the regulation of

basal viral transcription [5,7]. Primary cell models provided a

broader view on the complexity of latency and variability in

response to reactivating agents [13,54]. Our work on the

dynamics of latency and reactivation using a primary cell

model underscores the existence of barriers beyond transcrip-

tional silencing – thus helping explain clinical trials and ex vivo

data that identify persistent viral transcription but impaired

viral protein expression and particle production. Overcoming

post-transcriptional blocks may thus require additional inter-

ventions.

Materials and Methods

Viral production from latently infected cells ex vivo
We collected 25 ml of total blood from HIV-infected individuals

participating in the Swiss HIV Cohort Study (http://www.shcs.ch)

with controlled viremia (Table S1). Resting CD4+ T cells were

purified by Ficoll gradient separation followed by negative

selection and magnetic separation using the human CD4+ T Cell

enrichment kit supplemented with anti-HLA-DR, anti-CD25 and

anti-CD69 (Stem Cell Technologies). Cells were resuspended in

Opti/FCS/IL-2, split in three wells (approximately 1 million/ml/

well) containing DMSO, 0.5 mM SAHA, or TCR stimulation as

described below. After 1, 2 or 4 days of incubation, cell

supernatant was collected and assessed for viral presence in a

COBAS AMPLICOR analyzer (Roche), with a limit of detection

of 20 unspliced RNA copies/ml.

Histone immunoblotting
Resting CD4+ T cells from HIV-infected individuals were

isolated and treated for 24 h with DMSO, SAHA or TCR

stimulation as indicated above. Histone extraction was performed

according to Abcam’s protocol. Briefly, cells were washed twice

with ice-cold PBS, resuspended in Triton Extraction Buffer (PBS–

0.5% Triton X100–protease inhibitors–0.02% NaN3) at 107 cells/

ml and incubated 109 on ice to allow cell lysis. Cells were

centrifuged at 380 g for 109 at 4uC and washed once with Triton

Extraction Buffer. After centrifugation, the pellet was resuspended

at 46107 cells/ml in 0.2N HCl and incubated over night at 4uC to

allow for histone extraction. Samples were centrifuged at 380 g for

109 at 4uC and the histone-containing supernatant was collected

and protein concentration was measured using Qubit Protein

Assay (Life Technologies) following manufacturer’s protocol.

Histone extracts (1 mg) were separated on an 8–16% SDS-

polyacrylamide gel, transferred to a nitrocellulose membrane and

processed for immunoblotting. Briefly the membranes were

washed with PBS, blocked for 2 h at RT in PBST-milk (PBS/

0.2% Tween-5% non fat dry milk), incubated over night with anti-

histone antibodies (1:1000) at 4uC, washed three times for 109 in

PBST, incubated with swine anti-rabbit-HRP (Dako P-0217,

1:2000) for 2 h at RT, washed again and revealed using Luminata

Crescendo Western HRP substrate (Millipore). Primary antibodies

were rabbit polyclonal from Abcam: anti-H3K27Ac (ab4729),

anti-H3K9Ac (ab10812), anti-H3 (ab1791).

Primary cell model
Primary CD4+ T cells were purified by Ficoll gradient

separation followed by negative selection and magnetic separation

using the human CD4+ T Cell Isolation kit II (Miltenyi Biotec)

(Fig. S1). Cells were activated using CD3/CD28 co-stimulation in

presence of IL-2 (mimicking TCR stimulation) as described

previously [10]. Briefly, anti-CD3 antibodies (10 mg) were plated

in 1 ml PBS per well of a 6-well plate and incubated for 1–2 h at

37uC. Wells were then washed once with 3 ml of PBS and filled

with 106 cells/ml of primary CD4+ T cells supplemented with

1 mg/ml anti-CD28 antibodies in Optimizer CTS T-Cell expan-

sion SFM culture medium containing 5% heat-inactivated fetal

calf serum (FCS) and 100 U/ml human recombinant IL-2 (Opti/

FCS/IL-2 culture medium). Three days post-stimulation, cells

were collected, washed and resuspended at 106 cells/ml in Opti/

FCS/IL-2 for infection with an HIV-based vector (NL4-3-D6-

drEGFP/CXCR4; a kind gift from R.F. Siliciano). This HIV

vector uses a CXCR4 tropic HIV envelope for entry, contains

functional tat and rev genes, as well as a gfp reporter gene

containing a PEST sequence (yielding a protein half time of

,6 hours); this vector contains mutations (stop codons, frameshift

or deletion) in gag, vif, vpr, vpu, env and nef and is thus less cytotoxic

for the infected cell, thereby promoting latency in a higher

proportion of infected cells [10]. HIV particles were produced by

transfection of HEK293T cells as previously described [22].

Infection was carried out by spinoculation for 3 hours at 25uC and

at 1500 g using 50 mg p24 equivalent HIV vector/106 cells in

presence of 5 mg/ml polybrene. After spinoculation, cells were

washed and resuspended at 106 cells/ml in Opti/FCS/IL-2.

Forty-eight hours post-infection, cells were resuspended in PBS/

FCS (to eliminate the interference of phenol red) and sorted by

FACS according to GFP expression, yielding a typical purity of .

98%. FACS sorting was performed with a Mo-Flo Astrios

instrument. Upon sorting, successfully infected GFP+ cells were

further processed to investigate HIV latency.

Establishment and maintenance of HIV latency was mostly

carried out as previously described [19,20] (Fig. S1). Infected

GFP+ cells stimulated using anti-CD3 and anti-CD8 antibodies in

presence of IL-2 as described above were expanded in Opti/FCS/

IL-2 for ,3 weeks, typically allowing ,2 log of cell multiplication.
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At this time (week 0), cells were washed, resuspended in R-10/IL-2

(RPMI-1640 culture medium supplemented with 10% heat-

inactivated FCS and 40 U/ml IL-2) and added to an adherent

H80 feeder cell layer. The H80 human brain tumor cell line,

known to promote ex vivo survival of primary CD4+ T cells, were

prepared by plating 106 cells/25 cm2 flask (T25) or 36106 cells/

75 cm2 flask (T75) the day before starting co-culture with primary

CD4+ T cells. CD4+ T cells were resuspended in R-10/IL-2 and

added on top of the feeder cell layer, in 16 ml R-10/IL-2 in T75 if

30-1006106 primary CD4+ T cells or in 5 ml R-10/IL-2 if .

306106 cells. Culture medium was changed three times a week by

renewing half of it. Every two weeks, CD4+ T cells were collected

and transferred onto a new feeder cell layer flask. During this

transfer, cell samples were collected for analyses (see below). The

co-culture of primary CD4+ T cells with H80 feeder cells was

carried over a period of 10 weeks to allow CD4+ T cells to revert

to a resting phenotype and to ensure entry into and maintenance

of latency. Collected samples were used for: (i) assessing the

expression of virally-encoded GFP and of the marker of activation

IL2Ra (CD25) by FACS analysis, and (ii) assessing dynamic

changes of the cellular and viral transcriptomes using mRNA-Seq.

This analysis allowed for (a) following the cellular dynamic process

from activated to resting state at the transcriptional level in non-

infected as well as infected cells, (b) highlighting genes differentially

expressed in HIV-infected cells as compared to mock cells, and (c)

measuring concomitant viral transcriptional activity in resting

CD4+ T cells. The latency process was also repeated using H80

supernatant as alternative to cell-to-cell contact conditions.

Reactivation
We included pharmacological and immunological agents that

affect HIV transcriptional activity by different mechanisms of

action and that are currently under clinical consideration.

Specifically, we used a histone deacetylase inhibitor (vorinostat

or SAHA, 0.5 mM), a DNA methylation inhibitor (59-azacytidine,

1 mM), an alcohol dehydrogenase inhibitor (disulfiram, 0.5 mM).

All drugs were suspended in dimethyl sulfoxyde (DMSO), thus

DMSO was used as a negative control (of note, final DMSO

concentration was 0.0033% corresponding to 1:30,000 dilution).

We also used immunological stimulation by interleukin-7 cytokine

(100 ng/ml), and a full TCR stimulation using anti-CD3/anti-

CD28 antibodies in presence of interleukin-2. At 8 h and 24 h

after treatment, cells were analyzed for GFP expression by FACS

and for transcriptome composition as described below.

RNA sequencing
Cell samples were stored in RNALater at the time of collection.

Once all samples, from week 0 to week 10, were collected, total

RNA extraction was performed using Illustra RNAspin mini

isolation kit (GE Healthcare) and further processed for mRNA-Seq

library preparation (TruSeq RNA sample prep kit, Illumina – that

starts with capture of polyA-containing transcripts), followed by

cluster generation (TruSeq single-end cluster generation kit,

Illumina) and high-throughput sequencing on Illumina HiSeq2000

at the Genomics Technology Facility, University of Lausanne.

Addition of RNA spike-ins were also added according to

manufacturer’s instructions (ERCC Exfold RNA Spike-in Mixes,

Life Technologies and Loven et al. [55]). We obtained about 100

mio single end reads of 100 nucleotides for each sample. The

sequencing reads were cleaned before alignment in order to

improve the accuracy of downstream analyses. The cleaning steps

included the removal of (i) Illumina’s adapter (if present at the 3’

end of the read) with cutadapt v0.9.5 [56], (ii) low quality (PHRED

score,6) nucleotides at the 39 or 59 end of the reads, (iii) reads

with mean PHRED score lower than 20 and (iv) polyA tails with

prinseq v0.17 [57]. Only reads of 30 nucleotides or longer after

trimming were kept for further analyses. The cleaned reads were

aligned to the reference genome with TopHat v2.0.6 [58] using

the ensembl gene GRCh37 release 68 annotation file. The

reference genome was built by concatenating the human genome

(hg19) and the HIV vector sequence. The number of reads per

gene was extracted with a modified version of HTSeq-count v0.5.3

(http://www-huber.embl.de/users/anders/HTSeq/doc/count.

html) using the same annotation file and considering the whole

HIV vector as a single gene. The modifications allowed multiply

aligned reads to be weighted accordingly. Ambiguous reads

were randomly attributed to one of the genomic regions they

aligned to. To identify integration sites we used Tophat fusion

with bowtie1 and default parameters.

Variance stabilization
Two-way analysis of variance and principle component analysis

(PCA) were used for quantitative assessment of the transcriptome

data presented in Fig. 4. In order to fulfill the underlying

assumptions of these models, we conservatively discarded lowly

expressed genes to minimize heteroscedasticity due to shot noise.

Retaining genes expressing at least 100 reads in more than half of

the samples yielded 14,513 genes. The resulting dataset was

smoothed by adding pseudocounts (10 extra reads per gene), and

log-transformed for variance stabilization.

Differential expression tests
Differential expression tests were performed assuming negative-

binomially distributed read counts using the Bioconductor package

DESeq [29]. Paired-sample differential expression tests were

performed using generalized linear models and dispersions were

estimated using the Cox-Reid-adjusted maximum likelihood

estimator. Lowly expressed genes were discarded after estimating

dispersion. All p-values were corrected using a false discovery rate

of 5% (Benjamini-Hochberg procedure [59]).

Pathway enrichment analysis and visualization
Enrichment analyses were performed using Fisher’s exact test to

detect overrepresentations of functional classes, regulatory motifs

(among miRNA and transcription factor targets), physical

locations on chromosomes, and HIV-related pathways, proteins

and co-factors as described previously [17]. HIV co-factors include

genes in HIV related pathways from the Reactome pathways

database Ver.40, genes identified in previous siRNA studies [60–

63], and genes encoding protein interaction partners for each viral

protein ([28] and http://mint.bio.uniroma2.it/virusmint). All p-

values were corrected using a false discovery rate of 5%.

For visualization in Fig. 6, we only considered enrichment hits

from Reactome pathways and HIV co-factors databases. The

major pathway categories were chosen from maximal pathways,

(Pi), among all the reported unique enrichment hits pooled over all

reactivating agents. In order to choose the most representative

pathway categories, we defined the asymmetric coverage score of

the ith pathway, Pi, over the jth pathway, Pj, as mi,j = |Pi > Pj|/|Pj|

and the total coverage of the ith pathway as Si =gj mi,j. The set of

representative categories was built by those with the highest total

coverage score Si. We used the nine top categories plus a pseudo-

pathway called ‘‘miscellaneous’’ for the visualization. Each

pathway was assigned to the major category that holds the highest

coverage score over it. Subsequently, the pathways that are not

covered more than 95% in any of the chosen major categories are

assigned to the miscellaneous category.
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Data and materials availability
All data, including differentially expressed genes and enrich-

ment analyses, are freely available in interactive mode or for

downloading at http://litchi.labtelenti.org.

Bioinformatics of viral transcriptome
Two splice junction aligners were used to identify HIV splicing

events: Tophat v2.0.6 and STAR v2.3.0 [64]. All acceptor-donor

pairs were retrieved and their proportion calculated. Both splice

junction aligners gave similar and consistent results. The HIV

transcriptome profile was assessed using the Python package

HTSeq (http://www-huber.embl.de/users/anders/HTSeq/doc/

overview.html). Coverage was normalized by the sample size

factor estimated using DESeq. To calculate the percentage of

HIV transcripts among all transcripts, we compared the

gene length normalized counts using the length of the longest

annotated transcript (isoforms with intron retention were not

considered).

The main viral RNA forms were estimated as follows. The

number of reads overlapping the D1 junction corresponds to

unspliced reads (US, non-spliced in D1). The number of reads

aligning to the left of D1 and broken at D1 (up to a different HIV

position) corresponds to reads spliced in D1 and thus belongs to

singly spliced or multiply spliced HIV RNA (MS+SS). The

number of reads overlapping the D4 junction corresponds to singly

spliced or unspliced HIV transcripts (US+SS). The number of

reads aligning to the left of D4 but broken at D4 (up to different

HIV position) corresponds to reads spliced in D4 and thus belong

to multiply spliced transcripts (MS). Finally, the total proportion of

reads (100%) is US+MS+SS, and SS can be obtained as

SS = 100%–US–MS.

Supporting Information

Figure S1 Experimental design. Cellular model.

(PDF)

Figure S2 FACS analysis of HIV-encoded GFP expres-
sion of representative cell samples. Panel A. CD4+ T cells

were analyzed by FACS to assess the geometric mean fluorescence

intensity of GFP expression (FL1-H channel). The histogram plot

shows uniform populations (single peaks) for uninfected controls

(W10+24 h DMSO, dotted grey line), latently infected cells (W10,

red solid line), latently infected cells upon 24h reactivation with

DMSO (black solid line), SAHA (blue solid line) or TCR

stimulation (green solid line). Data revealed a shift in intensity of

TCR-stimulated cells but not SAHA-treated cells as compared to

the corresponding DMSO control. Panel B. Dot plots of FSC/

SSC or FL1/FL2 of CD4+ T cells, either mock or HIV-infected,

at week 10 post co-culture on H80 (W10) and 24 h post TCR

stimulation (TCR). FSC/SSC dot plots shows differences in cell

size and complexity between W10 and TCR, likely representative

of resting CD4+ T cells and activated CD4+ T cells respectively.

FL1/FL2 dot plots shows highly expressing GFP cells in R7 region

upon TCR stimulation.

(PDF)

Figure S3 Features of HIV transcription under several
reactivation agents. Panel A. Distribution of HIV reads along

the vector genome; each panel compares one agent against

DMSO as control. On the top is depicted the viral vector genome

used. TSS: transcription start site; D: splice donor; A: splice

acceptor. Reads mapping to the LTR are equally assigned to 59

and 39 ends. Panel B. Pattern of splicing for the main viral RNA

forms: genomic unspliced full-length viral RNA (US, blue), singly

spliced RNAs without the Gag-Pol major intron (SS, green; spliced

in D1 but not in D4), and multiply spliced subgenomic mRNAs

(MS, red; spliced in D1 and in D4).

(PDF)

Figure S4 Features of HIV transcription under several
reactivation agents. Detailed assessment of donor-acceptor

splice junction usage and graphical representation. D: splice

donor; A: splice acceptor.

(PDF)

Figure S5 Principal component analysis of latency and
TCR stimulation compared to H80 feeder cells. The

transcriptome of H80 feeder cells (two replicates) is distinct. There

is no evidence for contamination of primary CD4+ T cells during

the process of latency. Upon TCR stimulation, the CD4+ T cells

are removed from the H80 feeder cells.

(PDF)

Figure S6 Pathway enrichments for the differentially
expressed genes during HIV latency. Each panel summa-

rizes over-represented pathways among the differentially expressed

genes induced by viral presence. Organized under nine major

categories, each individual circle represents one enriched pathway

in Reactome (see methods). The size is proportional to the

adjusted p-value (q-value), and the y-axis corresponds to the

average effect of the differentially expressed genes within the

reported pathway.

(PDF)

Figure S7 Principal component analysis of modifica-
tions in the transcriptome upon exposure to the various
reactivating agents. The transcriptome of CD4+ T cells

exposed to the various reactivating agents cluster with that of

mock and of latently infected cells (W4 to W10), suggesting a

minimal impact of those compounds on the cell. Panel A shows the

transcriptome data in the context of latency phase and full cell

activation by TCR stimulation. Panel B shows a PCA analysis on

the large cluster of cells exposed to reactivating agents. The PCA

of the cluster reveals small compound- and HIV-specific

transcriptome differences compared to W10 infected and unin-

fected CD4+ T cells.

(PDF)

Figure S8 Validation and reproducibility of the model.
Panel A. Viral transcription (viral-encoded GFP transcripts

normalized by internal control and by baseline DMSO values)

upon SAHA or TCR stimulation on two donors. Panel B. Viral

expression (GFP MFI) profile after reactivation with SAHA or

TCR on two donors. Panel C. Principal component analysis of

modifications in the transcriptome upon exposure to the various

reactivating agents. An additional experiment was performed to

include cellular samples prior co-culture with H80 cell supernatant

(mD14, mD12 and mD9 corresponding to cells collected 14, 12

and 9 days before W0 respectively). This additional set of CD4+ T

cell transcriptomes recapitulates the entry, latency and TCR

reactivation that were already observed. Exposure to H80 did not

require cell-to-cell contact as the experiment used only filtered

H80 cell culture supernatant. These additional cellular samples

also included RNA spike-in controls (spike) to control for RNA

content differences; normalization data using library size or RNA

spike-in were similar.

(PDF)

Table S1 Characteristics of HIV-infected individuals
included in the ex vivo activation study.

(PDF)
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