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2. Summary 

 

Malignant pleural mesothelioma (MPM) is an aggressive disease arising from the pleural 

tissue which surrounds the lungs. Its prognosis remains limited even for patients able to 

benefit from multimodal approaches. Recent clinical trials in MPM patients led to the 

adoption of dual immunotherapy, instead of chemotherapy. However, the incremental 

survival remains poor and restricted to only a subset of patients responding to 

immunotherapy. MPM is known to be an immune altered tumor. Thus, a partial 

explanation to the limited effectiveness of immunotherapy could be the absence of 

immune cells infiltrating the tumor. To reverse this microenvironment phenotype, 

numerous approaches have been tried. In my thesis, I focus on the effects of vascular 

targeted low-dose photodynamic therapy (L-PDT). Photodynamic therapy is an approved 

treatment modality with pleiotropic effects on the vascular and immune compartments. 

The hypothesis of my thesis is that L-PDT can modulate the tumor vasculature and 

immune microenvironment which results in improved tumor control in a mouse model 

of MPM.  

Building upon previous results from my host lab indicating that L-PDT could contribute 

to enhance the immune infiltration of MPM, I showed that L-PDT had the potential to 

induce adhesion molecules such as ICAM-1, VCAM-1 and E-Selectin on tumor endothelial 

cells. I then demonstrated that E-Selectin was essential to promote the infiltration of MPM 

with active GRZB+CD8+ T-cells and thus improve tumor control. Furthermore, by 

inhibiting selectively E-Selectin, NF-κB pathway and CD8+ T lymphocytes, I found that all 

components were necessary and sufficient to induce the MPM tumor control mediated by 

L-PDT. To determine the clinical relevance of the uncovered mechanism, I then validated 

in an MPM patient tissue microarray cohort of 82 patients the correlation between 

vascular E-Selectin expression and CD8+ infiltration. I also demonstrated that patients 

with MPM with higher levels of vascular E-Selectin expression had better survival 

compared to others.  

In conclusion, the present thesis shows a potent role of low dose photodynamic therapy 

as an MPM immune priming method which can lead to improved tumor control. These 

findings suggest a favroable role for L-PDT alone or in combination with 

immunotherapies. Further validation of these findings in patients are warranted. 
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3. Résumé 

 

Le mésothéliome pleural malin (MPM) est un cancer agressif émanant de la plèvre qui est 

un tissue séreux entourant les poumons et recouvrant la cavité intrathoracique. Son 

pronostic demeure limité même chez les patients pouvant bénéficier d’approches 

multimodales. Des essais cliniques récents incluant des patients avec MPM ont démontré 

la supériorité de l’immunothérapie (double inhibition des points de contrôle) par rapport 

à la chimiothérapie conventionnelle. Néanmoins, le gain en survie reste faible et se limite 

à une fraction des patients traités. L’infiltration et la réponse immunitaire dirigée contre 

le MPM reste alterée et pourrait expliquer l’efficacité limitée de l’immunothérapie. Afin 

d’améliorer le pronostic du MPM, de nombreuses approches centrées l’amélioration de la 

réponse immunitaire ont été tentées. Dans ma thèse, je m’intéresse à l’impact 

immunitaire et vasculaire de la thérapie photodynamique à faible dose (L-PDT) du 

mésothéliome. La thérapie photodynamique est une modalité de traitement qui a des 

effets pléiotropiques sur les compartiments vasculaire et immunitaire. L’hypothèse de ma 

thèse est que la L-PDT module la vascularisation tumorale et l'infiltration immunitaire et 

améliore le contrôle du mésothéliome malin dans un modèle murin orthotopique 

syngénique.  

Dans la première partie de mon projet, je me base sur des résultats acquis de mon 

laboratoire d’accueil et démontre sur un modèle orthotopique de MPM que la L-PDT est 

capable d'induire l’expression de molécules vasculaires d’adhésion telles que ICAM-1, 

VCAM-1 et E-Selectin. Je démontre ensuite que l’expression de E-Selectin corrèle avec 

l’infiltration tumorale de lymphocytes CD8+ et avec un meilleur contrôle tumoral. En 

utilisant des inhibiteurs de la E-Selectin, du NF-κB et des lymphocytes CD8+, je découvre 

un mécanisme impliquant l’expression vasculaire d’E-Selectin via NF-κB qui est 

nécessaire et suffisante pour l’infiltration de lymphocytes CD8+ et le contrôle du MPM 

dans le modèle murin.  

Dans un second temps, je valide l’importance de ce mécanisme sur des échantillons 

clinques de patients avec MPM. En effectuant des immunohistochimies et corrélations 

statistiques avec la survie des patients, j’ai pu trouver que l’expression vasculaire d’E-

Selectin corrélait avec l’infiltration lymphocytaire (CD8+) du MPM. Par ailleurs, une 
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expression vasculaire élevée de l’E-Selectin corrélait avec une meilleure survie des 

patients.  

Ces trouvailles et ce mécanisme prédisent un impact intéressant de la photothérapie 

dynamique dans le contexte du MPM et une potentielle combinaison de ce traitement avec 

l’immunothérapie pour améliorer le pronostic des patients.  
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4. Introduction 

 

4.1 Malignant Pleural Mesothelioma 

 

4.1.1 Lungs and pleura 

 

The respiratory system is responsible for two distinct functions: conduction and 

respiration. The conduction function consists in conveying air to the respiratory portion 

where respiration, meaning blood oxygenation through gas exchanges, can occur. 

Conduction is provided by the upper respiratory tract which include nasal cavities, 

nasopharynx, larynx, trachea and the lungs. In the lungs, the conduction spans from the 

trachea to the terminal bronchioles where gas exchanges happen downstream, (1). By 

providing the only respiratory unit of the body, lungs are the major organs implicated in 

respiration. They are composed of lobes; three for the right lung and two on the left lung. 

Trachea is dividing at the carina into two main bronchi, one right and one left. Each lobe 

is then defined following the lobar bronchi emerging from the main bronchus. Bronchi 

are further dividing in smaller anatomical structure from the segmental bronchi to the 

terminal bronchioles. Terminal bronchioles finally open on the respiratory bronchioles 

where blood oxygenation takes place, (1,2). Respiratory bronchioles are communicating 

with grouped alveoli through alveolar ducts, altogether constituting a respiratory unit, 

(3). Pulmonary capillaries bring deoxygenated blood from the right ventricle to the 

alveoli. Alveoli are covered by a thin, highly specialized epithelial layer composed of 

alveolar epithelial cells named pneumocytes. Type I pneumocytes accounts for 96% of the 

alveolar epithelium and are in contact with endothelial cells of the pulmonary capillaries. 

Type II pneumocytes are secretory cells producing surfactant. Surfactant is a lipidic 

solution that avoids collapsing the alveoli during expiration by lowering the surface 

tension produced at the blood air interface, (4). Indeed, during breathing, air is shifted 

from the outside into the lung by creating a depression inside the chest cavity. 

An essential element to facilitate breathing is the pleural space. Two pleurae, one on the 

chest cage (the parietal pleura) and one on the lung (visceral pleura) delimits the serosal 

pleural cavity. This cavity is filled with pleural fluid produced by the pleura and negatively 

pressurized at approximately −3 to −5 cmH2O. Those characteristics are critical for 
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transmitting movements of the chest wall to the lungs, maintaining the lungs in a properly 

inflated state and for blood circulation within the thorax, (5,6). The pleura derives from 

the lateral mesoderm splitting into somatic and splanchnic mesoderm, giving rise to 

parietal and visceral pleura respectively, (7). A monolayer of mesothelial cells composes 

each pleura. By secreting surfactant, both pleural surfaces repulse each other creating the 

negative pressure. The extracellular matrix is richly composed of supportive elements 

such as blood vessels, lymphatic vessels, elastic fibers, and nerves endings, (8). Blood 

vessels vascularizing the pleural spaces either arise from the systemic circulation alone 

(for the parietal pleura) or from the systemic and pulmonary circulation (for the visceral 

pleura), (8). The lymphatic drainage of the pleura is responsible to clear excessive liquid 

found in the interstitium of the pulmonary parenchyma. Lymph vessels converge into the 

lobar and hilar lymph nodes stations, (9). The immune landscape of pleura is limited 

under physiologic conditions. Pleural inflammation mainly arises from pulmonary 

inflammation. A major player of pleural inflammation are resident macrophages. Their 

role remains poorly understood but it appears to contribute to clear apoptotic cell under 

physiologic conditions and participate to the neutrophil influx during inflammation, (10). 

Conversely, dysfunction of their cleaning function could lead to pleural diseases.  

 

4.1.2 Development and classification of malignant pleural mesothelioma 

 

While its origin remains a matter of debate, an inefficient cleaning of inhaled mineral 

fibers by resident macrophages appears to be the cause for development of malignant 

pleural mesothelioma (MPM). Indeed, studies have shown a link between asbestos fiber 

exposure (chrysotile, crocidolite, and amosite) and development of MPM. This ability 

relies on their intrinsic properties: because of their length, alveolar and resident pleural 

macrophages are unable to phagocytose the fibers completely, leading to a state of 

“frustrated phagocytosis”. The latter then causes the production of reactive oxygen 

species that cause DNA strand breaks and cell-cycle arrest, ultimately causing cancer 

development, (11). Asbestos fibers have been banned from construction material in the 

90s and the incidence of MPM is expected to decrease. More recently, it was shown that 

other types of material containing nano-fibers could have properties similar to asbestos 

and have health hazard consequences (11, 12). In addition to the occupational exposure 

which explains 90% of MPMs, an estimated 4% are caused by ionizing radiation (for 
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diagnostic or therapeutic purposes) (13, 14).  Finally, spontaneous MPM or MPM arising 

from genetic mutations subsequent to viruses such as simian polyomavirus SV40 

exposure represent the last small proportion of MPM etiologies, (11, 15). 

MPM is a deadly disease with an estimated median survival time from diagnosis of 11 

months, (13). The histology of the tumor is a well-identified factor affecting survival and 

can be classified as epithelioid, sarcomatoïd or biphasic, (Fig. 1). The epithelioid subtype 

represents up to 80% of MPMs, (16). This subtype has the lowest histological invasiveness 

of the surrounding stroma with tumor cells harboring a solid, trabecular or 

tubulopapillary pattern. This subtype has the best 15 month median survival prognosis, 

(17). The sarcomatoïd subtype represents 5% to 10% of MPMs, (16). It is the most 

aggressive histology with spindle or mesenchymal cells that have high invasive potential. 

The prognosis of sarcomatoid MPM is the worst with 5 month median survival (17). 

Finally, biphasic MPMs are a mixture of epithelioid and sarcomatoid (17). The prognosis 

is linked to the predominant histology composing the biphasic MPM, e.g., a higher 

proportion of sarcomatoïd cells (> 80%) is associated with lower survival, (18). 

Alternative genetic criteria for MPM classification were described (17).  

Genetic alterations identified in MPM concerned the tumor suppressor genes such as 

BAP1, NF2 and CDKN2A/CDKN2B genes that are frequently inactivated by deletion (11). 

BRCA-1 associated protein is a tumor suppressor protein encoded by the BAP1 gene. The 

functions of this protein are multiple from cell-cycle and transcription regulation by de-

ubiquitination of histones to homologous recombination of the DNA through BARD1 

interaction. BAP1 mutations are found in up to 65% of MPM, (19). BAP1 mutations were 

more frequent in epithelioid than sarcomatoid histologies. BAP1 mutation is also 

associated with improved overall patient survival (OS), (19, 20). NF2 or 

neurofibromatosis 2 gene, encodes merlin, a tumor suppressor protein. Merlin regulates 

diverse cellular events mediated through HER1/2, Hippo and mTOR signaling such as 

transcription or translation. NF2 mutations are the second most common mutation after 

BAP1 and concerns 35% of MPMs. NF2 mutations are more frequent in sarcomatoïd than 

epithelioid histologies and associated to lower patient survival (21, 22). Finally, the 

CDKN2A gene encodes for two proteins enhancing p53 activity: p14ARF and p16INK4a, 

(23). Loss of p16 from CDKN2A by homozygous deletion is found in up to 70% of MPMs. 

Studies have supported the use of p16 detection by immunohistochemistry in MPM 
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patients since it is a frequent mutation and its expression is associated with better 

survival and response to chemotherapy, (24, 25). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.3 Current treatment strategies in MPM 

 

Until recently, a key element in the management of MPM was its resectability and 

histology. Patients with localized epithelioid or biphasic tumors were managed by 

multimodal approaches including surgery, radiotherapy and chemotherapy while 

patients with more extensive disease or sarcomatoid histology only receive systemic 

therapies with palliative radiation, (26). 

Two surgical resection approaches were performed according to tumor burden: extra-

pleural pneumonectomy (EPP) or extended pleural decortication (EPD). While both 

approaches aimed to macroscopically resect the tumor burden, EPP was associated to 

high morbidity and mortality which limited its clinical benefit for patients, (27). EPD had 

a far lesser morbidity and mortality burden with similar oncological outcomes (28-30). 

Additional local therapies were also tested before or after the surgery to improve patient 

outcome. Sugarbaker et al, perfused hyperthermic chemotherapy in the pleural cavity 

after MPM resection which was associated to better patient survival (31). De Perrot et al 

combined pre-operative hypofractionated radiation therapy with EPP. Results were 

encouraging regarding survival but limited by the toxicity of this approach (32). Friedberg 

Fig 1. Major histologic subtypes in MPM. Representative histopathology images of the A) 
epithelioid, B) biphasic and C) sarcomatoïd histologic subtype of MPM. Histological 
classification remains a major criterion in outcomes and management of MPM patients. 
Adapted from (17) 



15 
 

et al, combined radical pleurectomy with intrathoracic photodynamic therapy. Results 

showed patient median survivals of more than 30 months in this highly selected 

population (33).   

In 2023, the MARS-2 trial was presented at the World Conference on Lung cancer (34). 

This randomized controlled trial compared, for patients with resectable MPM, 

chemotherapy only to chemotherapy + extended pleural decortication (EPD). The overall 

survival was comparable between groups and there were more adverse events and a 

lesser quality of life in the surgical group compared to chemotherapy only group. The role 

of surgery in MPM is therefore controversial. Until recently, the only non-surgical 

systemic therapy approach in MPM was cisplatin combined to pemetrexed (35, 36). This 

approach showed response in the majority of MPM with an improved survival of 10%. 

Immunotherapy was recently evaluated in MPM given its promising results in other chest 

malignancies. Immunotherapy consists in improving the efficacy of the host immune 

response directed against the cancer. Various approaches exist for this concept including 

adoptive T cell transfers, cancer vaccines and immune checkpoint inhibitors (ICIs), (37). 

The latter aims to block immune checkpoint molecules expressed by other cells that 

influence the activity of lymphocytes. As an example, cytotoxic T lymphocyte antigen-4 

(CTLA-4) is an immune checkpoint molecule. It consists in a ligand on effector immune 

cells that interact with its receptor on antigen presenting cells. A second immune 

checkpoint molecule is programmed death-ligand 1 (PD-L1) and is expressed on tumor 

cells. It binds to the PD1 expressed at the immune cell surface, (38). Interactions of the 

immune checkpoint molecule with its ligand inhibit the function of immune cells. In T-

cells, the inhibition could happen through the downregulation of the T cell receptors and 

MHC-1, a key molecule for cancer cells recognition. This leads to a decreased effectiveness 

of the immune cells. By competitively binding such immune checkpoints, ICI precludes 

the inhibition of the function of immune cells to happen. This results in an enhanced 

immune activity.  

 

In MPM, a phase III trial comparing chemotherapy (standard of care) with dual ICI, an 

anti-CTLA-4 (ipililumab) and an anti-PD1 (nivolumab), in second line exhibited an 

improved survival in the immunotherapy group compared to chemotherapy of 4 months. 

This has made ICI therapy a pillar in the management of MPM (39). However, these results 

still require improvement. Given the critical role of the immune system in the response to 
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immune checkpoint inhibition therapy, the investigation of the tumor microenvironment 

and its influence on the immune system composition have gained more interest. 

 

4.2 The tumor microenvironment 

 

4.2.1 Overview of tumor microenvironment 

 

The establishment and progression of a tumor is complex and involves multiple factors. 

In addition to genetic alterations that drive tumor growth and dissemination the 

surrounding host cells were shown to play a semantic role in supporting these 

mechanisms. The tumor microenvironment refers to the diversity of elements 

surrounding the tumor niche (40) The TME can be separated in cellular and non-cellular 

elements. Cellular elements include immune cells and cells acting on the extracellular 

matrix (ECM) such as fibroblasts or endothelial cells. Non-cellular elements are 

components embedded close to the tumor and in the ECM such as cytokines, chemokines, 

or ECM fibers, (41). The interpretation of the interactions occurring in the TME is complex 

since each element can contribute to tumor progression or actively impair tumor spread 

according to the circumstances (40). With the recent rise in importance of 

immunotherapy, research on the TME immune microenvironment has gained significant 

interest. The ultimate aim is to decipher how the tumor and TME can affect the immune 

response against tumors alone or in combination with immunotherapies.  

 

4.2.2 Immune microenvironment in malignant pleural mesothelioma 

 

MPM is known to harbor an altered immune microenvironment. The term “cold TME” is 

often used to refer to an immune desert inside a tumor, as opposed to “hot TME” 

harboring strong immune infiltration, (42, 43, Figure 2). MPM has a high intertumoral 

heterogeneity regarding the composition of its TME, mainly influenced by the histological 

subtype of the tumor. Epithelioid and biphasic tumors are more prone to display a poorly 

infiltrated TME while sarcomatoïd tumors are characterized by an immune riche TME, 

(42, 44). A possible explanation to this observation is the aggressive phenotype of 

sarcomatoïd tumors. Indeed, sarcomatoïd MPM have a higher mutational load which 

favor the generation of neoantigens and a better immune response generation. This 
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response is, however, inhibited by tumor related mechanism (45, 46). The main effector 

element in the immune response remains tumor infiltrating lymphocytes (TIL). In 

addition to the CD3+ markers used to discriminate TILs, additional membrane protein 

markers are used to define their function. For example, lymphocytes harboring CD8+ are 

categorized as effector cytotoxic T-cells which exert an activity against tumors. CD4+ T-

cells enhanced through cytokines the function of CD8+ T cells and are referred to helper 

T-cells. In addition to their supportive functions, helper T cells also have an intrinsic 

cytotoxic activity, (47, 48).  

In the past, TILs have been used as prognostic markers for MPM. It was demonstrated in 

samples from MPM patients that a higher count in CD8+ cells in the tumor was associated 

with better progression free survival (PFS), better OS and higher levels of necrotic cells. 

Moreover, lymph node invasion was negatively correlated to the presence of CD8+ cells. 

The trend is less clear for CD4+ T cells, that were associated with improved or a decreased 

OS, (49, 50). Importantly, the immune checkpoints harbored by TILs in MPM patients 

were highly predictive of survival. The expression of immune checkpoints in MPM is 

highly variable from one tumor to another and is closely related to histology. For example, 

PD-L1 is three times more frequently expressed in non-epithelioid MPM (30%) compared 

to epithelioid MPM (10%), (51). Because they inhibit the immune response, this 

observation explains why sarcomatoid tumors have worst survival than epithelioid ones. 

Additionally, even low levels of expression of PDL-1 by MPM tumor cells (<1%) show 

decreased survival compared to negative PDL-1 patients (52-54). Other immune 

checkpoints remain poorly investigated in MPM. For examples, CTLA-4 expression 

appeared highly variable across MPM patient samples, and a higher expression was 

observed in epithelioid compared to non-epithelioid tumors. A favorable prognostic effect 

on the survival was found for the expression of CTLA-4 in the tissue, (55). The role of 

immune checkpoints on patient survival remain inconsistent in the literature (56). 

Nevertheless, dual immune checkpoint inhibition therapy was significantly better in non-

epithelioid histologies compared to others suggesting there may be an therapeutic 

opportunity in these patients including with upfront ICI therapy.  

 

Furthermore, given their importance for tumor response, strategies to enhance the 

recruitment of TILS in the MPM TME have been suggested. Among them, modulation of 
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the vasculature and endothelial cell activation have been performed in my host lab and 

by others. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.3 Vasculature in cancer  

 

The vasculature of cancer is characterized by an abnormal architecture and function.  This 

aberrant morphological and functional vascularization is due to the unregulated secretion 

of growth factors such as the vascular endothelial growth factor A (VEGF-A) related to the 

need of energy of developing tumors. The abnormal function and increased permeability 

of vessels impacts on the TME composition by limiting immune cell recruitment or drug 

distribution, (57, 58). Because of the barriers anarchic vasculature represents to 

effectively treat the cancer, therapies have been developed to normalize these vessels.  

Anti-angiogenic therapies were developed to target angiogenic factors. The first approach 

has been to inhibit the interaction between VEGF-A and its receptor. Bevacizumab, an 

antibody directed against VEGF-A is the first and most known anti-angiogenic therapy. 

Bevacizumab exhibited promising results in improving patient survival and is now part 

Fig 2. Immune phenotype observed in tumors. Several critical steps are needed to turn a 
cold TME into a richly infiltrated one. Absence of active immune cells against cancer cells 
consists in an immune-desert phenotype. Priming and activation of T cells by cancer-
specific antigens are required to overcome this phenotype. Activation of T cells is not 
sufficient to ensure an effective immune response. Infiltration of the cytotoxic cells are 
keys to exert an effective tumor control. Lack of T cells infiltration results in an immune-
excluded phenotype. Adapted from (43) 
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of the standard of care for many cancers such as colorectal or breast cancers, (59-60). A 

second approach was to target the TME and its elements directly responsible for vessel 

growth. Macrophages are innate immune cells able of phagocytosis. Macrophages can 

either be recruited from the systemic circulation as monocyte derived cells, myeloid 

derived suppressive cells (MDSC) or be present in the tissue as tissue-resident 

macrophages, (61). Tumor associated macrophages (TAM) are macrophages found in the 

TME of the cancer and thought to support its growth. While there is no current consensus 

on their precise origin, a polarization of the macrophages, from a pro-inflammatory 

subtype (M1 macrophages) to a pro-tumoral subtype (M2 macrophages) seems to be 

initiated by the tumor and its TME and to partially explain the presence of TAMs, (62). M2 

macrophages appeared to support abnormal angiogenesis. Therefore, targeting those 

cells with, for example, anti-CSF1-R, has shown promising effects with vascular 

normalization, (63). 

High MPM vascular density was associated to a lower patient survival, (64). This suggests 

a favorable impact of anti-angiogenic drugs the normalize the tumor vasculature. 

Therefore, Bevacizumab, in combination with Cisplatin and Pemetrexed, is now used as 

second line therapy for epithelioid MPMs, (65, 66). 

In addition to the abnormal vascular structure, the function of angiogenic vessels is 

impaired. Methods to improve this function have also been developed and tested.  

 

4.2.4 Endothelial anergy and adhesion molecules in cancer 

 

Vessels are covered on their inner side by a monolayer of endothelial cells which 

constitute the endothelium of the vascular intima. Endothelial cells are polarized with a 

luminal membrane in contact with components circulating in the vascular lumen and 

basolateral membrane anchored it to the surrounding tissues, (67). ECs are the main 

effectors responsible for vessel function (barrier, hemostasis, vascular tone, and immune 

response regulation, (68)). ECs contribute to the immune response mainly by recruiting 

and allowing the immune cells from the circulation to enter the target site. This process 

first implies the activation of ECs. This activation takes place through two distinct 

pathways. The first pathway is mediated through GTP coupled receptors and lasts 10 to 

20 minutes to ensure a controlled activation of the inflammatory phenotype. In case of 

sustained inflammation, pro-inflammatory cytokines such as IL-1 and TNF-α will trigger 
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their receptor at the surface of ECs, leading to the second pathway of EC activation. The 

latter is dependent on gene transcription and protein translation. This pathway is slower 

but lasts for longer periods (hours to days) . The recruitment function of ECs can then 

begin through the secretion of attractive cytokines and chemokines such as IL-8 or CCL-

2, (69-71). Once leucocytes are attracted close to ECs, the presence of adhesion molecules 

and their ligands at the surface of leucocytes allows their firm arrest. This interaction 

happens in three phases: Tethering, rolling and firm arrest; with distinct adhesion 

molecules operating during each of these steps, (72). Once attached, the EC allows for 

leucocytes to cross the endothelium through a phenomenon call diapedesis. While it was 

admitted leucocytes transits between EC during diapedesis, more evidence suggests a 

cross cellular migration through EC cell, mainly during the phase I activation, (69), (Fig. 

3). 

The key players during this recruitment process are cellular adhesion molecules (CAM) 

presented by ECs. Among them, E-Selectin, ICAM-1 and VCAM-1 constitute the main CAM. 

E-Selectin is a type I transmembrane protein constituted by a N-terminal lectin-like 

domain, an epidermal growth factor (EGF) domain and a variable domain. It binds sialyl 

Lewis x (sLex) derived proteins expressed at the surface of immune cells, (70, 71). Mostly 

expressed by ECs, E-Selectin participates during the early phase to the recruitment of 

leucocytes by initiating the rolling of the latter (70).  Intercellular adhesion molecules 

(ICAM) are a family of CAM with ICAM-1 being the most expressed protein of the family. 

ICAM-1 is a transmembrane protein with extracellular domain close to an 

immunoglobulin domain. It preferentially binds the β2-integrin called LFA-1. Its binding 

allows the firm arrest of the leucocyte at the endothelium, (72, 73). Vascular cell adhesion 

molecule 1 (VCAM-1) is a glycoprotein composed of a transmembrane domain, a 

cytoplasmic domain, and an extracellular domain with six or seven immunoglobulin-like 

domains binding preferentially, (74, 75). As ICAM-1, VCAM-1 promotes the full arrest of 

the leucocyte and facilitates the transmigration of immune cells into the inflammation 

site, (75). CAM participate actively to cancer immunity. Indeed the absence of CAM 

impaired the recruitment of a cancer immunity decreasing tumor control (76, 77). Despite 

their pro-inflammatory role, the impact of CAM on cancer control is still controversial: in 

addition to favoring leucocyte extravasation, recent evidence suggests CAM can also 

promote tumor progression and metastasis spread (78, 79). In addition, CAM also 
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stimulate interactions in the TME leading for example to the polarization of monocytes to 

M2 macrophages, (80) or to epithelial-to-mesenchymal transition in cancer cells, (81). 

In cancer, ECs are characterized by a general loss of the previously mentioned functions. 

This state is designed as endothelial anergy. The resultant hypoxia and low pH within the 

TME are known to be immunosuppressive and preclude ECs from becoming responsive 

to inflammatory signals, (82, 83). In addition, the VEGF-A secretion appears to be 

responsible for the inhibition of the stimulatory signal given by IL-1 or TNF-α to EC, (84, 

85). Because of the crucial role of ECs for the promotion of an immune response, therapies 

to relieve the vascular anergy in cancer have been proposed. In my thesis, I have used low-

dose photodynamic therapy to relieve tumor vascular anergy and restore endothelial 

function and immune cell infiltration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Photodynamic therapy 

 

4.3.1 Origin and mechanism of action 

 

Photodynamic therapy (PDT) was developed in the early 20th century. Scientists observed 

that the exposure of certain molecules to light could mediate damage to cells. A german 

E-Selectin 

ICAM-1 / VCAM-1 

Fig. 3 Cascade of interactions preceding diapedesis. Circulating leucocytes closely 
interacts with endothelial cells during infiltration inside the tissues. E-Selectin typically 
plays its role during the initial interactions called rolling, while ICAM-1 and VCAM-1 
interacts with leucocytes to provide the firm arrest of the circulating cells.  Adapted from 
(75) 
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scientist, Oscar Raab, observed in 1900 that the combination of specific wavelengths with 

a chemical component called acridine was lethal for Paracemium specie, (86). Few years 

later, scientists referred to the term photodynamic action by applying eosin followed by 

exposition to visible light to treat skin diseases, (87). Since, the described biological effect 

evolved from these initial experiences to the actual concept of PDT. This therapy consists 

in the activation of photosensitizer, an inert component reactive to light, with a specific 

light wavelength. The exposure of the photosensitizer to light will excite the molecule and 

deliver the energy for an electron to move to a first excited state. This will lead to the 

creation of reactive molecular species including reactive oxygen species (ROS), (88). 

Through their highly reactive properties, ROS are able to interact with many components 

of the cells such as proteins, lipids or nucleic acids. Therefore, ROS can lead to numerous 

physiological and pathological processes, (89). Since its first application in clinic in 1976 

for bladder cancer, PDT is now used in various cancers with interesting results, (90). 

Because of their easy illumination, skin cancers seem to be the most suitable opportunity 

for PDT treatment. Given its low side effect profile, PDT offers an alternative treatment in 

non-surgical skin cancers. PDT was shown to be effective for the management of non-

melanoma skin cancer such as basal carcinoma. However, the treatment with PDT was 

associated with higher recurrence rates (91). Authors observed similar results in 

melanoma. While PDT was an interesting palliative option for the treatment of melanoma, 

studies suggested that the combination of PDT with immunotherapy could be helpful to 

overcome melanoma resistance and thus, recurrences, (92). PDT treatment also benefit 

to other cancer types such as colorectal, head and neck or breast cancer. As for skin 

cancers, the adjunction of immunotherapy to PDT treatment seems promising, (93-95) 

The rational of combining PDT to immunotherapy is to benefit from the local tumor killing 

and immune stimulation effect of PDT and enhance host immunity against metastasis and 

recurrence: an abscopal effect. The abscopal effect designs the ability of a therapy to 

control tumors distant from the tumor site through the stimulation of the immune system. 

Studies have demonstrated the ability of PDT to mount an immune response that will 

attack tumors distant from the treatment site (96-98). Moreover, PDT seems to have an 

impact on the memory compartment of the immune system. Memory CD8+ T-cells are a 

long-term, heterogenous population of immune cells responsible for a rapid and effective 

immune reaction in case of a rechallenge by a previously encountered antigen, (99). In 

the context of cancer, memory immune cells are of great interest through their 
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effectiveness to prevent relapses. Tissue-resident CD8+ T-cells contribute to immune 

surveillance of tissue and preclude the initiation of a recurrent tumor, (100). The ability 

of PDT to stimulate memory immune cells have been observed in preclinical cancer 

models through an improved survival and tumor control after the rechallenge of the 

animals by the initial tumor cells, (101, 102). Altogether, these data support the 

combination of PDT with ICIs. Several studies demonstrated the efficacy of these two 

treatments in colon cancer and breast cancers (103-106). Interestingly, the timing 

between PDT and ICI therapies appears to be crucial to maximize their synergistic effects. 

Indeed, due to the interval between PDT treatment and CD8+ infiltration, an early 

administration of ICI before the infiltration of the tumor by the CD8+ would preclude to 

see any effect of the combination, (107).  

A plethora of effects were attributed to PDT. It can induce cell damages and also modulate 

the immune and vascular compartments (Fig 4). Cell killing mediated by PDT is mainly 

related to the ROS generated which will react with cellular components such as the 

plasma membrane or organelles thus causing the disruption of the cell. In addition, cell 

damages followings PDT appear to be mediated through the apoptotic pathways. Both the 

intrinsic (mitochondria mediated) and extrinsic (Fas death receptor activation) pathways 

seem involved. In both pathways, the exposition to PDT leads to the activation of caspase 

3/7 by caspase 8 (extrinsic) or caspase 9 (intrinsic) ultimately triggering apoptosis, (108). 

PDT treatment also affects the immune response. By creating a local inflammation, PDT 

enhances the production of cytokines at the site of the disease. Studies report an increased 

secretion of pro-inflammatory cytokines such as IL-1, IL-6 or IL-10 after treatment, (109-

111). Those cytokines are responsible for an improved recruitment of immune cells at the 

site of illumination. In addition to cytokines, adhesion molecules induced by PDT appear 

to play a role in the recruitment of immune cells. Indeed, while PDT significantly increased 

leukocyte-endothelial cell interaction in tumors, PDT-induced leukocyte recruitment was 

significantly decreased in presence of anti-pan-selectin antibodies, (112). While various 

cell types are involved in the response, including NK cells or neutrophils, it appears that 

CD8+ T-cells are the main effectors of the immune response provided by PDT, (111-114). 

In the context of cancer, the depletion of CD8+ after PDT treatment abrogated the long-

term control provided by PDT suggesting their substantial contribution to tumor control 

(113, 115). As targeting the vasculature of the cancer became an interesting approach to 

tackle tumor growth, the impact of PDT on the tumor vasculature has been studied. The 



24 
 

main action of PDT on the vasculature consists in direct damages to tumor vessels. 

Decreasing the vessels density inside the tumor results in a decrease in oxygen 

concentration ultimately favoring the shrinking of the tumor, (116-118). In addition, 

authors also reported the ability of PDT to generate thrombosis inside tumor vessels after 

treatment, (118, 119). PDT also interact with a main inflammation pathway: NF-κB. While 

the implications of NF-κB on tumors are various, it appears that PDT is able to enhance 

immune activity and reduce the ability of tumor cells to survive to oxygen stress through 

this pathway, (120). Given the importance of remodeling the TME, either acting on the 

immune environment or the vasculature, innovative approaches using PDT have been 

tried to specifically influence those compartments. In my thesis, we focus on low-dose 

photodynamic therapy targeting the endothelium.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.2 Vascular targeted low-dose photodynamic therapy 

 

PDT depends on multiple parameters such as the fluence, fluence rates and the timing 

between the photosensitizer injection and illumination. The fluence rate is the number of 

photons on a unit area per unit of time. The variation in the fluence rate heavily impacts 

Figure 4. Potentiation of immune system by PDT treatment. Treatment of cancer cells by 
PDT induce apoptosis and necrosis. Those two phenomena in turns release antigens in the 
ECM that will be uptaken and presented to cytotoxic cells in lymph nodes by antigen 
presenting cells. Ultimately, this cascade of events contributes to the mounting of a specific 
immune response against the tumor.  Adapted from (88) 
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the tumor response to PDT, (121). Indeed, while high fluence rates were historically used 

in PDT treatment, it appeared they were associated to higher oxygen consumption by PDT 

which decreased its effect (121). Therefore, authors supported the use of lower fluence 

rate, e.g. from 112 to 14 mW/cm2, in order to preserve oxygen at the site of action and 

maximize the PDT effect. PDT used with lower fluence rate is called low-dose 

photodynamic therapy, (L-PDT). L-PDT was shown to increase tumor apoptosis 

compared to PDT with higher fluence rates. Moreover, L-PDT was able to enhance 

immune stimulation, with higher cytokine secretion and neutrophil recruitment 

compared to PDT at high fluence rates, (122). Additional research supported the 

increased effect of L-PDT on tumor control compared to conventional PDT. However, little 

is known regarding the contribution of the immune system to this improved phenotype, 

(123-125). Our group previously investigated the effect of L-PDT on the immune 

infiltration in a heterotopic murine model of MPM. In addition to an improved survival in 

presence of L-PDT treatment, an increased infiltration of CD8+ lymphocytes and a better 

activity of antigen presenting cells were observed early after treatment. Moreover, an up-

regulation of E-Selectin was also correlated to the improved immune infiltration, (126). 

Modulating the timing between photosensitizer injection and illumination allowed to 

target the endothelium more specifically with our L-PDT treatment. Indeed, localization 

of the photosensitizer, mainly intra- and perivascular at the time of treatment can affect 

the endothelial cells more specifically, (Fig. 5). Targeting the vessels with L-PDT resulted 

in a remodeling of the tumor vasculature. By allowing a better coverage of the vessels by 

the pericytes, L-PDT decreases the leak from the blood vessels and the associated 

interstitial fluid pressure (IFP). A reduced IFP facilitates a better drug distribution 

through convection. This improved drug distribution has been shown to be selective for 

the tumoral tissue and led to a better uptake of macromolecules such as chemotherapy, 

(127, 128). The promising effects of PDT on the TME have led to the translation of this 

therapy to cancer patients. 
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Altogether, it seems that a better comprehension of the immune impact of PDT and its 

combination with immunotherapy is mandatory to exploit these approaches in cancers 

such as MPM.  

 

4.4 HYPOTHESIS and Aims of the study 

 

Because L-PDT has shown interesting immune modulating potential of the TME and that 

treatments to control MPM are urgently needed, we hypothesized that:  

 

Low dose photodynamic therapy modulates the expression of adhesion molecules 

on the tumor endothelium which favors immune infiltration and improved immune 

mediated MPM control.  

 

AIMS 

 

AIM 1: Understand the impact of L-PDT on the tumor microenvironment (vascular and 

immune compartments) of MPM.  

 

AIM 2: Assess how the immune remodeling and which immune components of the tumor 

microenvironment affects tumor control.   

 

AIM3: Validate the clinical prognosis of E-Selectin and CD8+ T-cells in patients bearing 

MPM.  

 

 

 

 

 

 

 

 
 
Fig. 5 Vascular targeted low dose photodynamic therapy. Vascular targeted L-PDT results 
in the release of ROS inside the vessels. Activation of endothelial cells by this process 
results in a relief of vascular anergy through the expression of E-Selectin. In addition, L-PDT 
favors the recruitment of CD8+ T cells at the tumor site. Adapted from (126) 
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5. Summary of results and contributions 

 

In the following chapters 7.1, 7.2 and 7.3, I present the findings of my thesis. 

In the first chapter entitled “Low dose photodynamic therapy remodels the tumor 

microenvironment of malignant pleural mesothelioma” I first developed two orthotopic 

syngeneic models of MPM in mice that could be treated by L-PDT. Then, I investigated 

how L-PDT influences the vascular and immune compartments of the tumor 

microenvironment of MPM. Prior experiments published by my host laboratory had 

shown that L-PDT could induce E-Selectin expression in endothelial cells and improve the 

immune recruitment of antigen presenting cells and cytotoxic lymphocytes in the tumor 

bulk. However, the mechanism for these correlations was never clearly established.  With 

Dre Sabrina Cavin and Dr. Yameng Hao, we first developed a mouse model for MPM where 

the cell line was injected orthotopically and the L-PDT could be delivered through the 

chest wall.  In addition, we developed a second model of chronic thoracic window in order 

to perform intravital imaging (IVM) on the tumor. Next, with Dre Sabrina Cavin and Dr 

Christophe Gattlen, we determined the importance of the NF-κB pathway for E-Selectin 

expression as well as the E-Selectin expression importance for lymphocyte infiltration. 

Finally, with Dre Sabrina Cavin, we observed the immune recruitment induced by L-PDT 

was dependent on the E-Selectin expression and on the NF-κB signaling. 

In the second chapter entitled “Induction of vascular E-Selectin and CD8+ T-cells 

infiltration are mandatory for MPM control provided by L-PDT”, we validated the key role 

played by E-Selectin and CD8+ T-cells induced by L-PDT in the MPM tumor control. To do 

so, I performed a survival experiment where L-PDT treated mice were continuously 

depleted in E-Selectin. I observed a significant decrease in survival in mice where E-

Selectin was abrogated compared to control, suggesting the crucial contribution of E-

Selectin in improving the survival in MPM bearing mice. In a second survival experiment, 

mice were depleted in CD8+ T cells. Control provided by L-PDT on the tumor was lost in 

depleted animals suggesting the dramatic contribution of T-cells in the L-PDT mediated 

tumor control.   

In the third project entitled “Clinical prognosis of endothelial E-Selectin expression and 

impact on CD8+ T-cell infiltration in MPM patient samples”, I validated the outcomes 

provided by E-Selectin and CD8+ T cells in human MPM tissues through 

immunofluorescence staining. I found a basal higher expression of E-Selectin and an 
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increased expression after treatment were associated with an improved survival in MPM 

patients. Additionally, CD8+ T cells infiltration was positively correlated with survival in 

our cohort. Also, in tumors with a CD8+ T cells infiltration above the median, E-Selectin 

was positively correlated to CD8+ T-cells infiltration. The results of these three projects 

are constituting an article which is currently sent to journals for peer-review.  

All along the project, Dr. Jean Yannis Perentes, Pr. Johanna Joyce and Dre. Sabrina Cavin 

provided their input and helped in the design of the experiments, article writing, 

congresses presentation preparation, and contributed substantially to the editing and 

writing of this thesis. 
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6. Material and Methods 

 

Cell lines 

 

Mouse malignant mesothelioma cells AB12 (Reference: RRID:CVCL_4405 ) derived from 

BALB/c mice exposed to crocidolite asbestos were kindly provided by Pr. Marc de Perrot, 

University Health Network, Toronto, Canada. AB12 luciferase-expressing cells were 

generated by transduction with a lentiviral vector containing a luciferase transgene and 

puromycin resistance gene (pLenti PGK V5-LUC Puro w543-1, Addgene). Once inoculated 

in mice, AB12 cells form biphasic MPM characterized by the presence of epithelioid and 

sarcomatoid cytomorphology cells. Cells were grown in culture in RPMI 1640 medium 

supplemented with 10% fetal bovine serum. 5 µg/ml of Puromycin (Puromycin ant-pr-1, 

Invivogen) was added for selection of luciferase expressing cells. 

Immortalized human vascular endothelial cells EC-RF24 (ScienCell, RRID:CVCL_AX74) 

were seeded on poly-L-Lysine coated plates and maintained in endothelial basal medium-

2 (EBM-2™ basal medium, CC-3156, Lonza) supplemented with appropriate growth 

factors (EGM-2™ SingleQuots™ Supplements, CC-4176, Lonza) and passaged at 80% 

confluence. 

 

Mouse and tumor models 

 

Animal experiments were conducted on 10- to 20-week-old BALB/c mice imported from 

Charles River Laboratories. The animals were acclimated for at least 1 week prior to the 

beginning of experiments and all animal experiments were conducted in accordance with 

the Animal Welfare Act and the National Institutes of Health ‘Guidelines for the Care and 

Use of Laboratory Animals’ and approved by the Committee for Animal Experiment for 

the Canton Vaud, Switzerland (authorization VD3574). 

250’000 AB12 luciferase expressing cells were injected in 50uL of media directly inside 

the chest cavity under general anesthesia with ketamine/xylazine (65/4 mg/kg). 

Evaluation of tumor size was performed every 2-3 days using the whole body intravital 

imaging system (IVIS) (IVIS spectrum, Perkin Elmer) 10 minutes after injection of 100 µl 

of D-Luciferin (Promega, P1041) at a concentration of 15mg/ml I.P. Animals were treated 

when the bioluminescence signal in tumors reached a value between 8.0 x 106 to 2.0 x 107 
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p/sec/cm2/sr. The animals were assigned to different treatment groups to obtain 

homogenous bioluminescence values between groups and a male to female ratio of 1:1. 

Animals with extra-thoracic tumors or undetectable tumor growth were excluded from 

the study.  

At the end of all experiments, animals were sacrificed by IP injection of 0.1mg/kg 

Pentobarbital and perfused intracardially with saline solution. 

 

Photodynamic Therapy 

 

L-PDT was performed using the liposomal form of benzoporphyrin derivative monoacid 

ring A Visudyne® (Novartis Pharma AG, Basel, Switzerland), as a photosensitizer. 

 

• In vivo L-PDT administration 

 

Animals were anesthetized with a mixture of ketamine / xylazine (100/10 mg/kg) 

administered IP. Visudyne was resuspended in 0.9% NaCl at a concentration of 0.1 mg/ml 

benzoporphyrin derivative monoacid ring A and injected intravenously at a dose of 

400 µg/kg body weight. After 10 min, a laser light of 568 nm was applied through the chest 

wall to the tumor and surrounding normal tissue by using a frontal light diffuser 

containing a lens (Medlight, Ecublens, Switzerland). The height between the light diffuser 

and chest wall was defined by measuring in real-time the fluence rate and the fluence in 

11 mice using a previously described light dosimetry system (129-131) and set at 4.35 

cm to treat the tumor with an irradiance of 50 mW/cm2. The treatment spot had a 

diameter of 25 mm, and the treatment time was of 198 s to reach a total light dose of 

10J/cm2. 

The drug-light conditions were chosen to modulate and favor stabilization of the tumor 

vasculature based on previously published studies (132).  

 

• In vitro L-PDT treatment 

 

EC-RF24 cells were serum-starved 6 hours before treatment and incubated with 50 ng/ml 

Visudyne for 15 min. The photosensitizer was removed with the media prior to light 
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exposition. Cells were then exposed to an irradiance of 5 mW/cm2 and a light dose of 

0.15 J/cm2 (for L-PDT) as described previously, (132).  

 

Inhibition of canonical NF-κB pathway:  

 

• In vitro NF-κB pathway blockade in endothelial cells 

 

Two different siRNA constructs targeting IKKγ (NEMO) were used to block the NF-κB 

pathway in endothelial cells, named, respectively siRNA1 (s16186, Ambion) and siRNA2 

(s16187, Ambion). Negative control siRNA (Silencer™ Select Negative Control No. 1 

siRNA, 4390843, Thermofisher) was used as control. Sequences of siRNAs are provided 

in Table 1. 

Briefly, cells seeded in 60 mm dishes were transfected with 120 pmol of each siRNA (40 

pmol/µL) using the Viafect transfection reagent (E4981, Promega) in a 4:1 ratio. Medium 

was changed 6h to 8h after transfection.  

 

• In vivo NF-κB pathway blockade 

 

A NEMO (IKKγ) binding domain (NBD) peptide containing the IKKα and IKKβ consensus 

binding sequence was used to inhibit NF-κB activity in vivo (Sigma Aldrich 480025). A 

mutated non-binding peptide (Sigma Aldrich 480030) was used as control. Inhibitory and 

control peptides were dissolved in a sterile solution of 10% DMSO in PBS to a final 

concentration of 1mg/ml according to a previously published protocol (133). 100 μl of 

the suspension were injected IP 15 minutes before PDT treatment. 

 
Table 1: Sequences of siRNA 

 Sense Antisense 
siRNA 1 AAACAGGAGGUGAUCGAUAtt UAUCGAUCACCUCCUGUUUgg 
siRNA 2 GGAUCGAGGACAUGAGGAAtt UUCCUCAUGUCCUCGAUCCtg 

 

E-Selectin inhibition in vivo 

 

50 µL of anti-E-Selectin antibodies at a concentration of 0.6 μg/μl (BioXcell BE0294) were 

injected IV 30 minutes before treatment, according to a previously published protocol 

(134). After PDT treatment, antibodies were injected every 2 days until sacrifice to 
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maintain E-Selectin blockade along the course of the experiment. Controls were 

performed using appropriate IgG isotype control (BioXcell BP0090) at the same 

concentration.  

 

CD8 T-cell depletion 

 

3 days prior L-PDT treatment mice were injected IP with 0.2 mg of anti-CD8 antibody 

(BioXcell BP0061) once a day. After L-PDT, antibodies were injected every 2 days until 

sacrifice to maintain CD8 depletion during the course of the experiment, following a 

previously established protocol (135). Controls were performed using appropriate 

isotype control IgG (BioXcell BP0090) at the same concentration.  

 

Flow cytometry  

 

7 days after L-PDT treatment, tumors were collected and dissociated using tumor 

dissociation kit (Miltenyi). The dissociated tissue was filtered through a 40 µm mesh filter 

in HBSS and red blood cell were removed using 1mL of red blood cell lysis buffer 

(Biolegend) for 10 minutes. The single cell suspension was stained with the Zombie-near-

infrared fixable viability kit (Biolegend) for 20 minutes at room temperature (RT) 

following standard protocol, washed with FACS buffer (2 mM EDTA and 0.5% BSA in PBS) 

and then FC-blocked (BD Biosciences) for 30 minutes on ice. After washing with FACS 

buffer, cells were incubated with directly conjugated antibodies (see Table 2). Stained 

samples were washed 3 times with FACS buffer.  Sample acquisition was performed on a 

BD Symphony at the Flow Cytometry Core Facility of University of Lausanne. FlowJo 

v10.7.1 (BD) was used for analysis. 

 

Table 2: Antibodies used in flow cytometry 

Primary antibody 
Reactivity 

to 
Concentration 

used 
Reference Manufacturer 

FVD UV440 Mouse 1/700 423105 Biolegend 

CD16/32 Mouse 1/100 553141 BD Bioscience 

CD45 BUV805 Mouse 1/500 748370 BD Bioscience 

CD4 BUV615 Mouse 1/500 613006 BD Bioscience 

CD3 BUV395 Mouse 1/25 563565 BD Bioscience 

CD11b BV750 Mouse 1/750 101267 Biolegend 
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PD1 BV711 Mouse 1/100 135321 Biolegend 

LAG-3 BV421 Mouse 1/200 125221 Biolegend 

CTLA-4 PE Mouse 1/50 106305 Biolegend 

CD8 PE-Cy5.5 Mouse 1/200 35-0081-82 Thermofisher 

TCRβ Alexa 488 Mouse 1/250 109216 Biolegend 

TIGIT PE-Cy7 Mouse 1/50 142107 Biolegend 

     

     
 

Immunostaining  

 

Paraffin-embedded fixed samples or OCT embedded samples were cut in 8 µm thick 

sections and used for immunofluorescence staining of adhesion molecules and 

lymphocytes in mouse tumor tissues.  Paraffin-embedded fixed samples were stained for 

adhesion molecules: Tissue section of whole slides and tissue microarray (TMA) slides 

were deparaffinized and rehydrated by heating slides at 60°C for 10 minutes on a heated 

plate followed by successive immersion in xylene (3 times 5 minutes), EtOH 100% (3 

times 3 minutes), EtOH 90% (3 minutes), EtOH 70% (3 minutes) and water (2 times 3 

minutes). Slides were then immersed in antibody retrieval pH 6 solution, heated in 

microwave at 800 Watts for 5 minutes and left 30 minutes at room temperature for cool 

down.  

After 3 successive wash of 10 minutes with PBS, sections were mounted on a Shandon 

coverplate system (Epredia™ 72110017), blocked one hour with blocking solution 

composed of 5% normal donkey serum (NDS, Bio Rad, C06SB), 0.1% bovine serum 

albumin (BSA, Panreac Applichem, ref A1391,0100) in PBS and incubated overnight with 

primary antibodies in blocking buffer at 4°C. The day after, samples were washed with 

PBS and incubated with secondary antibody and DAPI (ThermoFisher Scientific Cat# 

D3571, RRID:AB_2307445) in blocking buffer for 1h at RT. Antibodies and concentrations 

used are provided in Table 3. At the end of the staining procedure, slides were mounted 

using Fluoromount-G mounting medium (Southern Biotech, ref: 0100-01).  

The slides were scanned with Zeiss Axioscan Z.1 at x20 magnification, and the images 

were analyzed with Image J (FIJI). Thresholds between 80 and 120 were applied to 

separate noise from the signal. Thresholds values were then exported in the RG2B 

colocalization plug-in to measure colocalization displayed as pixel count.  
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Samples embedded in OCT were used for immunofluorescence of immune cells in mice 

tissue. OCT blocs were cut in 8 µm thick sections. Slides were fixed in methanol at -20°C 

for 10 min. After 3 times 10 minutes PBS wash, procedure was performed as for paraffin 

section. Antibodies used are presented in Table 3. 

 

Table 3 : Antibodies used in immunofluorescence 

Primary antibody Organism Reactivity to 
Concentration 

used 
Reference Manufacturer 

E-Selectin Rabbit 
Mouse, 

Human 
1/25 

NBP1-

45545SS 

Novus 

Biological 

ICAM-1 Mouse Mouse 1/100 NBP2-22541 
Novus 

Biological 

VCAM-1 Rabbit Mouse 1/100 NBP2-67292 
Novus 

Biological 

VE-Cadherin Goat Mouse 1/200 AF1002 R&D System 

CD3 Rabbit 
Mouse, 

Human 
1/100 GTX16669 Gene Tex 

CD4 Rat 
Mouse, 

Human 
1/50 550280 

BD 

Pharmingen 

CD8a Rat 
Mouse, 

Human 
1/50 550281 

BD 

Pharmingen 

VE-Cadherin Goat Human 1/100 AF938 R&D System 

 

Secondary antibody Organism 
Reactivity 

to 

Concentration 

used 
Reference Manufacturer 

Alexa Fluor 488 Donkey Goat 1/300 A-11055 Invitrogen 

Alexa Fluor 568 Goat Mouse 1/300 A11031 Invitrogen 
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Alexa Fluor 568 Donkey Rabbit 1/300 A-10042 Thermo Fisher 

Alexa Fluor 488 Donkey Rabbit 1/300 A-21206 Thermo Fisher 

Alexa Fluor 488 Donkey Rat 1/300 A-21208 Thermo Fisher 

Alexa Fluor 568 Donkey Rabbit 1/300 A-10042 Thermo Fisher 

Alexa Fluor 647 Goat Rat 1/300 A-21247 Thermo Fisher 

Alexa Fluor 647 Donkey Goat 1/300 A-31573 Invitrogen 

 

Immunofluorescent staining of EC-RF24 cells  

6 hours after PDT treatment, EC-RF 24 cells were fixed with 4% PFA. Blocking and 

staining were performed as described for tumor staining. Antibodies used are described 

in Table 3. Acquisition of 3 fields per well was performed using an Olympus Fluoview 

3000 confocal microscope with a plan Apochromat 20×/0.75 WD 0.6mm DIC dry 

objective. To isolate the signal from adhesion molecules expressed at the membrane, 

nucleus was removed using mask from DAPI staining and thresholds of between 500 and 

900 were applied to remove background noise. 

  

MPM tumor microarray 

 

77 MPM patient samples collected during initial biopsy and/or from surgical resection 

specimen (either extrapleural pneumectomy or pleural decortication) at the University 

Hospital of Bern, Switzerland, were included in a tumor microarray (TMA) in triplicate 

core under the ethical approval KEK-BE: 2016-01497. Analysis was performed on 

formalin fixed paraffin-embedded sections. In addition to the TMA, 5 formalin fixed 

paraffin-embedded patients samples collected at initial biopsy from the Lausanne 

University Hospital were added to the analysis. Tumor samples were deparaffinized by 

heating on 60°C plate for 10 minutes followed by successive immersion in xylene (3 times 

5 minutes), EtOH 100% (3 times 3 minutes), EtOH 90% (3 minutes), EtOH 70% (3 

minutes) and water (2 times 3 minutes). Serial antibody retrieval solution immersions 

were performed. Tumor samples were immersed in a pH6 antibody retrieval solution and 

heated in microwave at 800 Watts for 5 minutes followed by a 30-minute cooldown. 

Solution was discarded and slides were then immerged in another pH9 antibody retrieval 
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solution. Slides were heated in microwave at 800 Watts for 5 minutes and put to cool 

down in the solution for 30 minutes. Following steps of the procedure were performed as 

described in the immunostaining section.  

 

MPM tissue microarray – Analysis 

Individual tumors in the TMA were isolated with QuPath and exported to FIJI for analysis. 

Patient samples were available in triplicates before and/or after treatment. Samples 

before treatment were collected during diagnostic biopsy while post-treatment samples 

originated from the surgical resection. Only cores derived from the tumor center were 

used in the analysis. Thresholds between 70 and 120 were applied to separate noise from 

the signal. Thresholds values were then exported in the RG2B colocalization plug-in to 

measure colocalization signal displayed as pixel count. Non-vascular E-Selectin were 

obtained by subtracting colocalization area between VE-Cadherin and E-Selectin to the 

total E-Selectin area.  

 

Western Blot 

Cells were lysed in RIPA buffer after L-PDT treatment and samples in SDS-PAGE sample 

buffer were separated on 10% acrylamide gels and electroblotted onto nitrocellulose 

membranes. Membranes were blocked in PBS-Tween with 5% milk and incubated with 

polyclonal anti-E-selectin/CD62E antibody (NBP1-45545, Novus Biologicals, 1:1000), 

anti-phospho-IκBα (2859S, Cell Signaling Technology, 1:1000), anti-total-IκBα (9242S, 

Cell Signaling Technology), anti-IKKγ (sc-166398, Santa Cruse, 1:1000) or anti-GAPDH 

antibody (G9545, SIGMA, 1:5000). Appropriate HRP secondary antibodies were used for 

detection (Jackson Immunoresearch Laboratories, 1:5000). Antibodies were diluted into 

PBS-Tween 0.1%. Between each step, 3 wash with PBS-Tween 0.1% was performed. 

Acquisition was realized on Vilber, Fusion Fx. Densitometric quantifications of specific 

bands were performed using the ImageJ/Fiji software. 

 

Statistical analysis 

 

Statistical analyses were performed using GraphPad Prism version 8.0.1 for Windows 

(GraphPad Software, Inc., San Diego, CA, USA). The significance between means of more 
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than 2 experimental groups was assessed by using one-way analysis of variance followed 

by Tukey’s multiple comparisons post hoc test when the F value was significant. When 2 

sets of data were compared, a two-tailed Student’s t-test was applied. Test for normal 

distribution (Shapiro-Wilk test), outliers identifiers tests, equality of variance test were 

applied consistently. If data were not normally distributed, Kruskal-Wallis test was 

applied. All data are expressed as mean ± standard deviation. Survival analyses were 

performed using Kaplan-Meier analysis with log-rank (Mantel-Cox) test applied. Hazard 

Ratio were calculated using Mantel-Haenszel method. P < 0.05 was considered significant.
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7. Results 

 

7.1 Low dose photodynamic therapy remodels the tumor 

microenvironment of malignant pleural mesothelioma  

 

Development of two orthotopic MPM immunocompetent mouse models PDT 

application  

 

Studying the TME in vivo requires replicating the tumor development as closely as 

possible to the human setting. This implies an orthotopic growth and treatment of the 

tumor. Thus, I first developed an orthotopic model of MPM that could be treated by L-PDT. 

Growing MPM tumors in the pleura is well established, (136). However, assessing tumor 

growth was the first challenge. I used AB12 cells which are syngeneic BALB/c MPM cells 

developed from exposure of mice to crocidolite asbestos (136). To follow tumor within 

the chest cavity, I transduced tumor cells with luciferase. In the presence of luciferin, 

transfected cells produce photons that can be imaged by an in vivo imaging system (IVIS). 

I then confirmed the signal measured corresponded to the tumor bulk in the chest cavity. 

Preliminary cohorts of mice were first used to establish the growth of AB12 cells 

implanted in BALB/c mice. I observed that a photon count of 1x107 p/sec/cm2/sr was the 

minimum to ensure robust and reproducible tumor growth  (Fig. 6.1). Thus, I set this point 

as the established tumor cutoff to decide when L-PDT treatment could be performed. This 

allowed high reproducible cohorts of animals along the experiments.   

 

 

 

 

 

 

 

 

 

 

Fig. 6.1: Development of an orthotopic MPM model for transthoracic L-PDT 
Representative growth curves of a preliminary cohort of mice to investigate the dynamic 
of orthotopic AB12 growth. Each line represents a mice. Results are obtained from IVIS. 
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Delivering the suited dose of L-PDT directly in the chest of the mice was the second 

challenge for the establishment of the model. Chest wall thickness is a factor to account 

for when exposing the chest to the laser. Moreover, mice present a unique thoracic cavity 

(only one pleural space) which implies to intubate the mice for any incision in the chest 

to avoid a bilateral pneumothorax and death by asphyxia. To avoid having to intubate and 

open the chest of animals for therapy, given the chest cavity of mice is thin and similar, I 

developed a model in which light could be delivered directly through the chest wall (Fig. 

6.2A). Using an investigational cohort of 11 wild type animals in which we placed 2 light 

sensors within the chest cavity (at different depths), I determined the laser characteristics 

for reproducible light delivery in the chest . We ensured of the homogeneous distribution 

of the laser inside the cavity. In addition, a third probe was placed at the surface of the 

chest to evaluate the loss of light due to the thoracic wall, (Fig. 6.2B). For each animal, the 

height of the laser required to reach the targeted dose inside the chest was recorded. After 

11 animals, the graph showed in Fig. 6.2C was drawn and we conclude that a height of 

4.35 cm was satisfying our conditions (irradiance of 50 mW/cm2, total light dose of 

10J/cm2)  with a low variability between animals. Each animal was terminally 

anesthetized at the end of the experiment. 
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In parallel, we also developed a mouse thoracic window model to be able to treat with L-

PDT and also image using two photon laser scanning imaging methods. 

 

Intravital imaging (IVM) allow the live observation of biological events in living tissue. In 

the context of tumors, IVM can track the events regulating the progression of cancer from 

local establishment to metastasis dissemination. With the growing interest of 

investigating the TME, IVM plays a role in interrogating the immune regulation taking 

place in the microenvironment of the tumors, (136, 137). Different models of window 

have been described to image various organs and their disease in mice such as brain or 

skin, (139, 140). Recently, Condeelis group described a surgical protocol to implant a 

thoracic window, (141). The group used this model to investigate breast metastasis 

development in the lung.  

 

The window I helped to develop consists in a titanium frame implanted in the rib cage of 

the animal that allows, through a coverslip, the intravital imaging of the underlying 

tissue/tumor. Sabrina Cavin and I adapted the protocol from the previous study from 

Condeelis group (141) and established a new window model (more stable and more 

practical under the microscope). We brought modifications to the original window frame 

in order to fit the two-photons available in the facility. We also engineered a solution to 

reduce the breathing artefact of the animal during the imaging. All these modifications 

required to establish a new surgical protocol. This was done successfully with the ability 

to keep mice alive for more than 6 weeks and image the lung under the window during 

this period. This model is now being used in the project of Damien Marie who investigate 

the TME of lung cancer with it. Results of his study are planned to be part of a peer-

reviewed article and will include our thoracic window model.  

 

 

Surgical protocol for the implantation of a chronic thoracic window 

Fig. 6.2: Development of an orthotopic MPM model for transthoracic L-PDT : A) Illustrative 
image of orthotopically delivered L-PDT in thoracic cavity. Chest cavity remained close during 
the procedure. B) Representative quantification of the fluence (top curves) and fluence rates 
(bottom curves) measured to establish the conditions for the L-PDT in vivo model. 2 probes were 
placed into the animal (right and left chest) and 1 at the top of the rib cage. C) Quantification of 
the laser height required to deliver 50 mW/cm2 through the chest, n=11 animals.  
 
 



41 
 

 

The main challenge for the surgery was to perform an air sealed implantation of the 

window in the chest cage of the animal through a limited invasive approach to allow a 

good recovery and a long imaging time period. C57BL/6 mice were anesthetized using a 

mix of Ketamine-Xylazine at a dose of 100 mg/kg. Due to the unique thoracic cavity in 

mice, the animals were intubated using a BD Venflon catheter after exposure of the 

trachea. The mice is then placed on the left lateral side. An incision is performed 1cm 

above costal edge and 1cm away from the median line of the sternum. After dissection of 

the fat and the muscular plane, chest wall is exposed and ribs 2 to 6 are resected in a 

circular way. A purse string suture was performed surrounding the chest opening. The 

frame was inserted, and lungs recruited before closing the pleural cavity by placing the 

glass coverslip. A second purse string suture was performed to adapt the skin inside the 

groove of the titanium frame. Animals were then extubated and monitored until the 

animal had fully recovered. Oral antibiotics (10mL of Bactrim 200/40mg in 250mL of 

water) was administered until the end of the experiment. The analgesia was insured by 

subcutaneous (0.1mg/kg) Temgesic injections twice a day for 3 days and oral Temgesic 

(0.3mg/mL) and Dafalgan (1mg/mL) for 7 days. 

 

Intravital imaging and correction of the breathing artefact 

 

Animals generally fully recover from their surgery after a couple of hours but their 

mobility and feeding are completely normal by the 4th postoperative day. (Fig 7A). IVM 

was performed using a two-photon microscope. To avoid breathing artefacts, we 

developed two solutions: first, we used a stabilizing plate fitting the window groove (Fig. 

7B). The chest was slightly elevated with this maneuver and made the window more 

independent of the rib cage movement  
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Second, we set an electronic pad under the animal that gated the laser scanner imaging at 

fixed timepoints of the respiratory cycle thus improving significantly the imaging quality. 

To investigate the MPM microenvironment in real time, we used Rhodamine 6-G (R6G) 

and Pacific blue dextran to label the circulating leucocytes (in red) and the vessels (in 

blue) respectively. We manage to clearly observe vessels and circulating leucocytes inside 

the healthy lung tissue, (Fig. 7C). The next step was to develop a tumor model expressing 

a green fluorescent protein (GFP) to image in real time the tumor with its vessels and its 

immune infiltration. However, we were never able to have a reproducible MPM mouse 

model with or without GFP expression within the timeframe of our thoracic window. We 

did, however, manage to obtain a reproducible lung cancer model in the thoracic window 

model. Therefore, in a second project led by my colleague Damien Marie, we are now 

investigating the TME of lung cancer using this intravital imaging model.  
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Fig. 7: Model of intravital imaging through a thoracic window: a) C57BL/6 mice implanted with 
the chronic thoracic window. Surgery protocol is well established and provides a survival rate 
of more than 80%. Mice can be kept alive with a functional window up to 6 weeks. B) Set-up 
under 2-photons microscope with the x16 immersion lens. A stabilizing plate is used to 
compensate for breathing movement shifts. C) Left: Live image at x16 magnification of healthy 
lung using the window. Circulating leucocytes are marked in red with Rhodamine 6G and vessels 
in blue with Pacific-Blue Dextran. Right: Vessels of healthy lung stained with FITC-Dextran.  
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Low dose photodynamic therapy promotes vascular endothelial E-Selectin via NF-
κB 
 
To understand the TME remodeling provided by L-PDT, we sought to understand how L-

PDT could induce E-Selectin as observed in our previous publication. We first used an in 

vitro model in which EC-RF24 endothelial cells are cultured and can be treated by L-PDT. 

We first determined the kinetics of E-Selectin expression in EC-RF24 (Fig. 8.1 A). We 

found that L-PDT caused a peak of E-Selectin expression at 9 hours which remained 

elevated up to 24 hours following therapy (Fig. 8.1 B-D). Because the NF-κB transcription 

factor was shown to be involved in the regulation of E-Selectin (142), we monitored IκBα 

phosphorylation, a key mediator in the NF-κB canonical pathway activation. IκBα 

phosphorylation occurred between three- and twenty-four-hours following L-PDT in 

vitro, as determined by western blot analysis (Fig. 8.1 B-C).  
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To confirm a role for canonical NF-κB pathway in E-Selectin induction following L-PDT, 

we used two different siRNAs to silence NEMO (IKKγ). We observed a silencing of 48% 

for siRNA 1, 65% for siRNA 2 and 2% for control siRNA (Fig. 8.2 A). Using EC-RF24 cells 

transfected with each NEMO siRNA construct, we found that E-selectin upregulation 

following L-PDT was abrogated (mean expression of 0.98 for L-PDT with control siRNA  

vs 0.37 (p=0.0079) and 0.41 (p=0.0076) for L-PDT with siRNA 1 or 2 respectively, Fig. 8.2 

B-C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.1: E-Selectin expression following L-PDT is mediated by the NF-κB pathway A) 
Schematic representation of in vitro experiments: ECRF-24 cells were treated by L-PDT and 
protein lysate was collected at 1h, 3h, 6h, 9h and 24h after treatment. B) Western blot 
analysis of lysates from not treated (NT) ECRF-24 cells or treated with Visudyne (50ng/mL), 
Light (0.15 J/cm2) or L-PDT for the indicated time using anti-phospho-Iκα, anti-total IκBα, 
anti-E-selectin and anti-GAPDH antibodies with densitometric quantification of 5 
experiments (C). All values were normalized to the amount of GAPDH. D) Additional 
timepoints of E-Selectin expression after treatment in EC-RF24 endothelial cells. 
Timepoints were replicated between n=4 to n=6.. * : p< 0.05, ** : p<0.01, ***: p<0.001, 
****: p< 0.0001. One-Way ANOVA tests were used. p-value under 0.05 are considered as 
significant. 
 

C B 

A 

Fig. 8.2: E-Selectin expression following L-PDT is mediated by the NF-κB pathway A) 
Representative western blot of NEMO inhibition in presence of Si RNA in EC-RF24 cells. 
Percentage of silencing were obtained comparing intensity of NT signal with intensity from 
other siRNA signals. Quantification on the right. B) Western blot analysis of lysates from 
not treated (NT) ECRF-24 cells or treated with Visudyne (50ng/mL), Light (0.15 J/cm2), L-
PDT or TNFα 20ng/ml for 6h for the indicated time using anti-NEMO, anti-E-selectin and 
anti-GAPDH antibodies with densitometric quantification of 5 experiments (C). * : p< 0.05, 
** : p<0.01, ***: p<0.001, ****: p< 0.0001. One-Way ANOVA tests were used. p-value 
under 0.05 are considered as significant. 
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We validated these findings by the monitoring of E-Selectin expression with 

immunofluorescence staining on wild EC-RF24 compared to EC-RF24 cells transfected 

with NEMO siRNAs, (Fig. 8.3 A-F). Thus E-Selectin induced L-PDT relies on canonical NF-

κB signaling. We next aimed to extend these findings in vivo. 

 

A 
B 

E-Selectin 

NT Visudyne Light L-PDT TNFα 

Control SiRNA NT Control SiRNA L-PDT SiRNA 1 L-PDT SiRNA 2 L-PDT C 

E-Selectin 

D 

F 

E 

NEMO 

Fig. 8.3: E-Selectin expression following L-PDT is mediated by the NF-κB pathway A) 
Representative images of immunofluorescence staining of ECRF-24 cells treated with Visudyne 
(50ng/mL), Light (0.15 J/cm2), L-PDT or TNFα 20ng/ml for 6h with quantification of 5 
experiments (B); E-selectin appears in red. C) Representative images of immunofluorescence 
staining of ECRF-24 cells treated or not with L-PDT in presence of NEMO siRNA with 
quantification of 5 experiments (D). E) Representative image of NEMO inhibition between 
untreated and siRNA 2 cells. F) Quantification of expression of E-selectin in ECRF-24 cells 
treated by light, L-PDT or TNFα investigated by immunofluorescence. * : p< 0.05, ** : p<0.01, 
***: p<0.001, ****: p< 0.0001. One-Way ANOVA tests were used. p-value under 0.05 are 
considered as significant. 
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We then used our orthotopic MPM model to validate our in vitro findings. We assessed 

the role of the NF-κB pathway in the upregulation of endothelial E-Selectin following L-

PDT in vivo. For this, we disrupted the formation of the IKK complex using a NEMO 

binding domain (NBD) peptide that prevents the formation of the IKK complex and 

inhibits canonical NF-κB activation (Fig. 9A); as control a non-binding peptide was used 

(133). We found that while L-PDT caused a significant increase in endothelial E-Selectin 

compared to untreated control (NT), the presence of the NBD totally prevented this, 

(p<0.05 compared to L-PDT group, Fig. 9 C-D). Interestingly, this phenotype was also 

observed for other trans-endothelial adhesion molecules such as ICAM-1 and VCAM-1, 

which were upregulated with L-PDT but remained similar to NT in the presence of NBD 

(Fig. 9 C-D). In contrast, the non-binding peptide did not impact L-PDT-mediated adhesion 

molecule induction. There was no difference in MPM vessel density in the presence or 

absence of the NBD peptide assessed by the VE-Cadherin expression levels (Fig. 9B).  

 

Given the essential role of adhesion molecules for the recruitment of immune cells, we 

next investigated how NBD affected the tumor immune microenvironment. We found that 

the infiltration of CD8+ T cells following L-PDT in MPM was impaired in response to the 

NBD but not to the control peptide (p<0.001 compared to L-PDT group and p<0.0001 

compared to L-PDT + Control peptide group, Fig. 9 E-F). Finally, granzyme B expression 

by intra-tumoral CD8 T cells was induced in response to L-PDT and prevented upon NBD 

peptide co-administration (Fig. 9 E-F). This suggests a critical role for NF-κB mediated E-

Selectin induction following L-PDT to mount CD8+ T cell response.  
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E-Selectin is essential for immune infiltration of L-PDT treated MPM 

 

Finally, we validated the contribution of E-Selectin to the immune recruitment induced 

by L-PDT.  We applied L-PDT in the orthotopic MPM syngeneic mouse model and assessed 

the impact of E-Selectin inhibition with an antibody, injected 30 minutes before L-PDT, on 

immune cell recruitment (Fig. 10A). At 24 hours, the abundance of tumor infiltrating T- 

cells was assessed by immunofluorescence (Fig 10B). We observed a significant 

recruitment of CD3+/CD8+ and of CD3+/CD4+ T cells in the tumor bed following L-PDT, 

which returned to control levels upon E-Selectin inhibition (Fig 10B-E). Interestingly, L-

PDT with or without E-Selectin blockade did not affect overall tumor vessel density 

assessed by the quantification of VE-Cadherin (Fig. 10 F). To further investigate the 

remodeling provided by L-PDT, we looked at longer timepoints after treatment: At 7 days, 

the recruitment of CD3+ and CD3+/CD8+ cells was significantly enhanced in L-PDT 

treated tumors compared to control tumors as determined by flow cytometry, while 

overall CD45+ content was comparable between groups (Fig. 10G-J).  

  

Fig. 9: Peptide-based inhibition of IκB kinase (IKK) complex formation in vivo abrogates 
the expression of tumor endothelial E-Selectin following L-PDT in MPM. A) Schematic 
representation of NF-kB pathway blockade experiment in MPM tumor bearing mice 
treated with L-PDT. B) Quantification of expression of VE-Cadherin in orthotopic MPM 
tumor. C) Illustrative images of E-Selectin, ICAM-1, VCAM-1 (in red), VE-Cadherin (in green) 
expression in MPM tumors. Colocalization appears in blue. D) Quantification of 
colocalization area of VE-Cadherin and E-Selectin E-Selectin, ICAM-1 or VCAM-1 over tumor 
area in immunofluorescence staining of MPM tumors, n=26. E) Illustrative images of CD3+ 
(in green) and CD8+ cells (in red) (top) and CD3+ CD8+ Granzyme B (in purple, bottom) in 
MPM tumor by immunofluorescence staining. Colocalization between CD3+ and CD8+ 
appears in blue. F) Quantification of CD3+ CD8+ T cells (top) and CD3+ CD8+ Granzyme B+ 
cells (bottom) over tumor area by immunofluorescence, n=24. NBD: NEMO Binding domain 
peptide. * : p< 0.05, ** : p<0.01, ***: p<0.001, ****: p< 0.0001, One-Way ANOVA tests 
were used. p-value under 0.05 are considered as significant. D: Day 
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Fig. 10: Low dose photodynamic therapy promotes T lymphocyte infiltration through 
vascular endothelial E-Selectin. A) Schematic representation of the experiment inhibiting 
E-Selectin in MPM tumor bearing mice treated with L-PDT. B) Illustrative image of CD3+ 
CD8+ cells infiltrating MPM. CD3, CD8 and their colocalization appear respectively in green, 
red and yellow. C) Quantification of area of CD3+ CD8+ colocalization over tumor area, 
n=24. D) Illustrative image of CD3+ CD4+ cells infiltrating MPM. CD3, CD4 and their 
colocalization appearing respectively in green, red and yellow. E) Quantification of area of 
CD3+ CD4+ colocalization over tumor area, n=29. F) Representative images of E-selectin 
and VE-Cadherin inside MPM tumors and quantification. Flow cytometry (n=9) of G) CD45+ 
cells among total cells, H) CD3+ cells among CD45+ cells, I) CD3+ CD4+ cells among CD45+ 
cells and J) CD3+ CD8+ cells among CD45+ cells from MPM bearing mice treated or not with 
L-PDT. * : p< 0.05. One-Way ANOVA tests or two-tailed unpaired t-tests were used 
accordingly. p-value under 0.05 are considered as significant. D: Day 
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7.2 Induction of vascular E-Selectin and CD8+ T-cells infiltration are 

mandatory for the MPM control provided by L-PDT  

 

E-Selectin and CD8+ T-Cells are essential for tumor control following low-dose 

photodynamic therapy 

 

Given the importance of CD8+ T-cells in controlling tumor development, we next 

investigated the impact of E-Selectin inhibition following L-PDT on MPM control. For this 

purpose, we monitored the tumor response to L-PDT with or without long-term E-selectin 

inhibition (Fig. 11.1 A). Tumor growth was significantly decreased with L-PDT + IgG 

compared to untreated conditions (mean reduction in tumor size by 89.8%+/-35.3, 

p=0.0249, Fig. 11.1 B-C,) and translated into a survival advantage (mean survival of 8 days 

in L-PDT compared to 6.5 days in controls, p=0.0195, Hazard Ratio 0.08, 95% Confidence 

Interval (CI) 0.009752 - 0.6708, Fig. 11.1 D). Interestingly, in the presence of an E-Selectin 

blocking antibody, tumor growth was comparable to control and the survival advantage 

of L-PDT was lost (Fig. 11.1 D). 
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Given the L-PDT correlated with enhanced CD8+ T lymphocyte infiltration, we next 

determined the contribution of these immune in the observed phenotype. We depleted 

CD8+ T-cells in mice using an anti-CD8 antibody injection. Tumor bearing mice were then 

treated with L-PDT. Tumor control following L-PDT was abrogated in the presence of the 

anti-CD8 antibody, with tumor volumes and animal survivals comparable to the untreated 

group (6.4 x107 p/sec/cm2/sr in L-PDT with IgG Control vs 3.4x108 p/sec/cm2/sr in L-

PDT with anti-CD8, p=0.0149 and median survival of 8 days in L-PDT with IgG Control vs 

7 days in L-PDT with anti-CD8, Hazard Ratio: 0.09, 95% CI 0.01370 - 0.5411, p= 0.083) 

(Fig. 11.2 A-B). CD8+ T cell depletion did not affect the overall amount of VE-Cadherin, 

(Fig. 11.2 C) suggesting a stable vascular density in the MPM tumors. Together, these 

results indicate a central role for E-selectin and CD8+ T-cells in mediating the L-PDT 

efficacy.  

 

 

 

Fig. 11.1: E-Selectin is essential for tumor control following low-dose photodynamic 
therapy. A) Schematic representation of the experiment inhibiting E-Selectin in MPM 
tumor bearing mice treated with L-PDT. B) Tumor growth curve observed by IVIS in 
photocount per second of untreated animals (n=5) or treated with L-PDT with IgG control 
(n=5) or L-PDT with E-Selectin inhibition (n=6). Two-tailed unpaired t-test was used as 
statistical test. C) Representative images of tumor growth followed by bioluminescence 
among treatment groups at day 0, day 3 and day 7 after treatment. D) Kaplan-Meier 
analysis of the survival between animals included in the tumor growth assessment. * : p< 
0.05, ** : p<0.01. p-value under 0.05 are considered as significant. D: Day 
 

Fig. 11.2: E-Selectin is essential for tumor control following low-dose photodynamic 
therapy. A) Kaplan-Meier analysis of the survival between animals depleted or not in CD8+ 
population and treated with L-PDT or untreated, (n=15). B) Tumor size comparison at 
median survival between CD8+ depleted and non-depleted animals using two-tailed 
unpaired t-test, (n=11). C) Quantification of immunofluorescence investigating the 
expression of VE-Cadherin (on the left) and vascular E-Selectin (on the right) in untreated 
mice (NT) or mice treated with L-PDT following or not CD8+ depletion. * : p< 0.05, ** : 
p<0.01. p-value under 0.05 are considered as significant. D: Day 
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7.3 Clinical prognosis of endothelial E-Selectin expression and impact 

on CD8+ T-cell infiltration in MPM patient samples 

 

Vascular E-Selectin expression is associated with better survival in malignant 

pleural mesothelioma patients 

 

In order to investigate the impact of vascular E-Selectin on the survival of MPM patients, 

we analyzed a large number of tumor tissues from 82 patients with a total of 105 samples 

when including pre- and post-treatment samples. The majority of these patients had 

received chemotherapy exclusively or in combination with surgery and/or radiation 

therapy. Among these patients, 54 tumors presented an epithelioid histology, 21 a 

biphasic and 7 were sarcomatoid. In this cohort, 21 patients underwent surgical resection 

and similar chemotherapy regimens with matched pre- (initial biopsy) and post-

treatment (surgical specimen) samples. We first compared tumors with an increased in 

E-Selectin post treatment (n=13) compared to sample with decreased or stable E-Selectin 

expression (n=8) (Fig. 12.1 A). Patients with higher tumor associated vascular E-Selectin 

presented a better survival compared to patients with lower levels, (median survival: 24 

months versus 8 months, p=0.0027, Fig. 12.1 B). This change was significant in patients 

with epithelioid tumors (median survival: 24 months versus 9 months, p=0.0007, Fig. 12.1 

C). In the biphasic and sarcomatoid subgroups, no survival analysis could be obtained 

because of sample underrepresentation in this surgical cohort. The median expression of 

vascular E-Selectin across all subtypes was 2.18%. Patients with an E-Selectin expression 

higher than the median had significant better survival compared to patients with lower 

than median expression. This observation was found when pooling all histologies and 

when considering epithelioid tumors, (Fig. 12.1 D-E). However, no difference was found 

in biphasic or sarcomatoid tumor group, (Fig. 12.1 F). Finally, VE-Cadherin and non-

vascular E-selectin expression had no impact on survival across different histologies (Fig. 

12.1 G-H). 
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Fig. 12.1: Vascular E-Selectin expression is associated with better survival in malignant 
pleural mesothelioma patients A) Representative images of vascular E-Selectin and VE-
cadherin expression with colocalization signal in blue and respective Hematoxylin/Eosin 
coloration. Image on the left shows a tumor with high vascular E-Selectin expression while 
image on the right correspond to a tumor with low expression. Kaplan Meier analysis 
between patients presenting an increase (red) or a decrease (blue) in vascular E-Selectin 
expression after treatment including B) all histologies, C) only including epithelioïd tumors. 
Kaplan Meier analysis associating vascular E-Selectin to survival in months in: D) MPM 
patients of the cohort independently of histology subtype; E) only epithelioïdes patient. 
Survival curves associating survival with respectively F) E-Selectin in biphasic and 
sarcomatoïd patients, G) VE-Cadherin across all histologies, H) non-vascular E-Selectin in 
all histologies. Cut-off was determined as the median of the value of interest. p-value under 
0.05 are considered as significant. 
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We next investigated lymphocyte infiltration in these samples (Fig. 12.2 A). Neoadjuvant 

treatment increased infiltration in CD8+ T cells in 10 patients and remained the same or 

decreased in 9 patients. Patients with a CD8+ T-cell infiltration higher than the median 

exhibited a better survival compared to patients with lower values (median survival of 

19.5 months versus 11 months, p=0.0056), (Fig. 12.2 B). This was also observed when 

separating epithelioid from biphasic and sarcomatoid tumors, (Fig 12.2 C-D). We did not 

find a survival difference between patients with higher or lower CD8+ infiltration after 

treatment, (12.2 E). Additionally, in the patients with CD3/CD8+ lymphocyte infiltration 

above the median, we found a positive correlation between recruited CD3/CD8 

lymphocytes and vascular E-Selectin expression (Fig. 12.2 F). Altogether, our findings 

show a correlation between vascular E-Selectin expression and CD3/CD8+ lymphocyte 

recruitment and patient outcome. 
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Fig. 12.2: Vascular E-Selectin expression is associated with better survival in malignant 
pleural mesothelioma patients . A) Representative images of CD3+ CD8+ expression with 
respective Hematoxylin/Eosin coloration. Image on the left shows a tumor with high CD8 
infiltration while image on the right correspond to a tumor with low infiltration. Kaplan 
Meier analysis between patients with high and low infiltration of CD3/CD8 cells across B) 
all histologies or C) among epithelioid tumors only or D) biphasic and sarcomatoïd tumors 
only. Cut-off was determined as the median of the value of interest. E) Survival curves 
between patients presenting post-treatment higher or lower values of CD3+/CD8+ cells. F) 
Pearson correlation between vascular E-Selectin and CD3/CD8 cells in patient with above 
the median CD3+ CD8+ cells infiltration. p-value under 0.05 are considered as significant. 
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8. Discussion 

 

During my MD-PhD thesis, I investigated how L-PDT could remodel the TME and the 

immune infiltration of a MPM murine model. More specifically, I investigated how L-PDT 

affected the tumor vasculature and adhesion molecule expression within MPM and how 

this affected the immune infiltration and tumor control. I established a mechanism 

involving NF-κB induced E-selectin expression favoring CD8+ T cell infiltration leading to 

immune mediated tumor control. Each element was necessary and sufficient to induce L-

PDT dependent tumor control.   

 

I first found that L-PDT induced endothelial E-Selectin expression through the activation 

of the NF-κB pathway in vitro and in vivo. This increased E-Selectin expression was 

associated to higher MPM infiltration by active CD8+ and CD4+ lymphocytes. This 

recruitment was mandatory for the L-PDT induced tumor control. The inhibition of E-

Selectin or CD8+ lymphocytes by antibodies abrogated the impact of L-PDT on MPM 

regression. An axis involving NF-κB and E-Selectin was therefore uncovered for the 

effective recruitment of lymphocytes following L-PDT. These preclinical results were 

validated in MPM patient samples where E-Selectin and CD8+ T-cells were positively 

correlated to each other and to patient survival. Altogether, this suggests that L-PDT could 

be an interesting treatment for MPM alone or in combination with immunotherapies.   
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8.1 Modulation of the MPM tumor immune microenvironment 

following L-PDT 

  

In the era of immunotherapy, numerous approaches have been described to reprogram 

TME of poorly infiltrated tumors or switch immunosuppressive environments into pro-

inflammatory ones.  (143, 144), Hanahan et al described the hallmarks of cancer which 

represent the angular stone to understand and establish treatment targets to overcome 

cancer barriers.   

A first hallmark is tumor inflammation. In order to grow, cancer must avoid the host 

immunity to react against it (145, 146). In a previous study from our group, (126), we 

observed L-PDT improved the ratio of CD8+ over CD4+ CD103+, a Treg subtype in mice. 

Thus, L-PDT seems to favor an adaptive immune response through a favorable CD8+ over 

CD4 ratio supporting an immune mediated response. T regulators (Treg) are CD4+ T-cells 

expressing the transcription factor FOXP3. Tregs appear to be an essential TME 

immunosuppressive player that favor the development of cancer, (147). This is further 

supported by the poor prognosis associated with high infiltration of Treg in various 

cancers, (147-149). Tregs exert their function through numerous mechanisms. As their 

effector counterpart CD8+ T cells, Tregs are able to use perforin and granzyme to kill 

effector cells of the anti-tumor immunity, (150). In addition, Tregs are known to secrete 

anti-inflammatory cytokines such as IL-10 or TGF-β and to compete with other T-cells for 

pro-inflammatory cytokine stimulation such as IL-2, (151-152). Altogether, Tregs 

participate to shift the immune environment to a pro-tumoral phenotype by precluding 

the action of cytotoxic T-cells.  

Here, we observed a concurrent upregulation of CD3+CD4+ and CD3+CD8+ T cells 24h 

after L-PDT followed by a drop in CD3+CD4+ cells 7 days after treatment. We were not 

able to distinguish the proportion of Tregs within the total CD3+CD4+ T cell population. 

However, given L-PDT provided a significant survival advantage, this suggests a dominant 

CD8+ response over Tregs. Furthermore, the specific CD8+ inhibition abrogated the 

survival advantage provided by L-PDT.  

 

 

We found that L-PDT could activate the NF-κB pathway. This pathway is important to 

create an inflammatory environment through the secretion of inflammatory cytokines 
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such as IL-1, (153). In addition, a role for adhesion molecule expression at the surface of 

the endothelium to promote immune cell recruitment was also demonstrated. Here, we 

found a positive impact of NF-κB on the expression of adhesion molecules E-Selectin, 

ICAM1 and VCAM1. The impact of NF-κB on tumor progression however remains a matter 

of debate. On the one hand, the pro-tumoral role of NF-κB was first deciphered through 

the study of mutational signatures in tumors: several tumors such as breast harbor gene 

mutations of the NF-κB subunits or IκB proteins (154). The IKKα mutation led to the 

renewal of breast tumor progenitors and was associated with bad outcome (155). Other 

pro-tumor implications of NF-κB include cell adhesion protein promotion which facilitate 

the development of metastasis (156), mesenchymal-epithelial differentiation and 

radioresistance, (157). On another hand, NF-κB also carries an anti-tumoral role through 

its maintenance in effector T-cell homeostasis and survival (158). In MPM patients, the 

contribution of NF-κB has been evaluated for the tumor response to ICIs. In patients 

treated with anti-CTLA-4 and/or anti-PD1, an upregulation of NF-κB in the immune or 

tumor cells correlated with tumor response (159, 136). Here, we found a positive 

contribution of NF-κB in MPM following L-PDT through the expression of adhesion 

molecules that favored immune infiltration. The inhibition of the pathway led to a 

reduction in E-Selectin expression and CD8+ T cell recruitment in MPM tumors. Thus, the 

contribution of L-PDT to the inflammatory landscape could also participate to shift from 

an immunosuppressive TME to an anti-tumor microenvironment. We found that the 

recruitment of those immune cells was promoted following the expression of adhesion 

molecules, notably E-Selectin at the surface of the vessels through NF-κB. While NF-κB is 

a rapidly induced inflammation pathway, here we observed a late activation of the 

signaling following L-PDT. This is in line with literature as reported by Volanti et al who 

observed induction of NF-κB by PDT happening few hours after treatment (160). Authors 

state this late activation could be due to an alternative phosphorylation of IκBα happening 

in endothelial cells exposed to PDT. In addition, IL-6 appears to play a critical role in the 

vascular inflammation mediated by NF-κB, (161). It has been reported activation of NF-

kB by IL-6 could be slow, suggesting its contribution to L-PDT induced activation, (162). 

Altogether, this reinforces the impact of L-PDT on the tumor vasculature which also 

represents an important hallmark of cancer: angiogenesis.  

Tumor vasculature is a major component of the TME and affect both response to 

treatment and the immune polarization of the TME. It is well established that the 
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architecture of the vasculature is aberrant in tumors (163, 164). Vascular normalization 

remains an effective way to tackle cancer growth, (165). This can be performed by 

inhibiting VEGF signaling, the major growth factor responsible for angiogenesis (166-

168). Vasculature normalization remains a contested approach since the improvement of 

the vascular architecture could also favor tumor growth and dissemination through 

better oxygen and nutrient distribution.  However, Hamzah et al showed that vascular 

normalization improved tumor immune infiltration which largely overcame the better 

nutrient distribution. (169). This suggests the dramatic impact of the immune system on 

controlling tumor growth and spread. In addition to inhibiting angiogenesis, it is possible 

to remodel the vasculature via endothelial and pericyte modulation (170, 171). L-PDT 

was previously shown to improve the vascular transport by enhancing the pericyte-

endothelial association. This vascular stabilization following L-PDT caused a decrease in 

intrinsic vascular permeability and a drop in interstitial fluid pressure. This ultimately 

translated into a better drug distribution inside tumors, (127, 128). In my thesis, I 

highlighted a second new vascular modulation provided by L-PDT. Following exposition 

to the treatment, endothelial cells are able to recover from the vascular anergy through 

the NF-κB pathway.  This occurred through the activation of the canonical NF-κB signaling 

as NEMO blockade impaired the L-PDT effect. Interestingly, NF-κB activation by L-PDT 

occurred several hours after therapy suggesting a cascade effect between the creation of 

free oxygen radicals and ultimately NF-κB activation (172, 173). The activation of the 

endothelium allows the expression of adhesion molecules at the surface of the vessels 

such as E-Selectin, ICAM-1 and VCAM-1. In conclusion, I deciphered that L-PDT could 

relief the vascular anergy which translates into a better tumor infiltration and thus an 

improved tumor control. Those links were not clearly established in the context of L-PDT 

before. While the role of adhesion molecule in cancer remains unclear, their implication 

in the contribution of the immune system to fight tumor growth implies to review both 

their pro and anti-tumor role in cancer. 

 

 

 

8.2 Contribution of adhesion molecules in cancer development and 

immunotherapy 
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Cellular adhesion molecules (CAM) are key elements for the diapedesis of circulating 

immune cells into the inflammation site, (174, 175). Through their immune promotion 

function, CAM are crucial to establish a directed immune response against the tumor. 

However, the expression of CAM is not restricted to immune and endothelial cells; indeed, 

cancer cells are capable to present and bind to CAM at the surface of host cells, (176, 177). 

By their adhesion function, CAM have the capacity to promote the invasion and circulation 

of tumor cells similarly to the recruitment of immune cells by the vasculature. This 

ambivalent contribution to cancer progression has been extensively studied and CAM 

remained a target for the inhibition of cancer spread for many years, (178-180). However, 

the wide acceptance of immunotherapy led to reconsider the therapeutic potential of 

enhancing CAM in order to favor an immune response in combination with 

immunotherapeutic approaches. There are three main CAM that were found to be 

upregulated by L-PDT in our project:  ICAM-1, VCAM-1 and E-Selectin. 

Here we found that vascular E-Selectin and not tumor E-Selectin were important for the 

L-PDT mediated tumor control and immune infiltration. Our findings are further backed 

by the patient samples. Tumor vs stromal expression of E-Selectin can have different 

effects on tumor progression. Tumor expression for example was shown to favor 

metastasis. In our TMA, E-selectin was not prognostic for patient outcome. Interestingly, 

vascular E-selectin did predict CD8 infiltration and tumor control. This was also the case 

in patient samples where vascular E-selectin correlated with CD8 infiltration and 

outcome.  

ICAM-1 was shown to actively contribute to the diffusion of cancer cells to distant sites 

mainly when the protein is harbored by tumor cells. ICAM-1 is required in the various 

steps of the metastatic cascade. By triggering the TGF-β/SMAD signaling, ICAM-1 is able 

to favor the epithelial-to-mesenchymal transition of cancer cells, (181). Once in the 

circulation, ICAM-1 is implicated in the formation of clusters of circulating tumor cells, 

(182). Finally, ICAM-1 also contributes to the trans endothelial migration of tumor cells, 

(177). Conversely, studies trying to abrogate the expression of ICAM-1 observed a poorer 

tumor control when inhibited. Indeed, authors reported a depleted immune TME 

regarding numerous cells populations such as lymphocytes and neutrophils, (182-185). 

In our study, we observed a significant upregulation of ICAM-1 located at the surface of 

the endothelium. This upregulation could result from the vascular targeting profile of our 
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L-PDT conditions and may explain the enhanced immune infiltration leading to the 

positive outcome observed on animals treated by L-PDT.   

The expression of VCAM-1 on cancer cells is also associated with an increase in cancer 

cells metastasis, (186, 187). Conversely, the anti-tumor potential of VCAM-1 when 

expressed at the surface of endothelial cells, is supported by the literature. Nakajima et al, 

(188), observed upregulation of VCAM-1 and E-Selectin at the surface of endothelial cells 

was ultimately associated with an improved infiltration of immune cells resulting in 

better tumor control. Regarding the potential combination with immunotherapy, VCAM-

1 appears to enhance effects of pulsed dendritic vaccination and antigen-specific 

vaccination, (189, 190).  

Finally, E-Selectin is implicated in the metastasis process. Cancer cells could express 

either E-Selectin or selectin ligands at their surface to promote migration away from the 

primary site, (164). Therefore, research investigated the blocking of E-Selectin in cancer. 

Approaches to deplete E-Selectin varied from inhibitors to genetic mouse model. Results 

reported a decrease in the development of metastasis but also a reduced pro-tumoral 

infiltration in Th2 macrophages, (191-193). However, a key principle to better 

understand the balanced impact of CAM on cancer progression is the site of expression. 

As detailed by Sackstein et al, (194) the expression of CAM at the tumor site was crucial 

for the homing of effector immune cells while other research has supported a contribution 

of CAM on the metastatic process of tumors (176, 191). In addition, E-Selectin expression 

was shown to improve the outcome of immunotherapy. The expression of E-Selectin by 

CAR-T cells appears to be essential for the CAR-T to reach the tumor site, (195). In a 

similar fashion, E-Selectin seems critical for the homing of lymphocytes, thus improving 

the mounting of a specific anti-tumor response, (196).  

In my thesis, we deciphered L-PDT was able to induce CAM at the surface of endothelial 

cells through the NF-κB pathway. This upregulation appears crucial to the TME 

remodeling provided by L-PDT by allowing the recruitment of active immune cells inside 

the tumor. Conversely, upon E-Selectin depletion, we find a decreased infiltration in 

immune cells after L-PDT. To note, only vascular E-Selectin was upregulated following L-

PDT. Moreover, E-Selectin induction appears required for the tumor growth control. Upon 

depletion of E-Selectin, mice loose the survival advantage given by L-PDT. With those 

findings, we highlighted the importance of the site of expression for E-Selectin. Indeed, 

we found vascular targeted L-PDT was able to induce vascular E-Selectin while sparing 
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adjacent tissues and cells. This selective upregulation led to an improvement in immune 

infiltration significantly contributing to the survival of MPM bearing mice. To confirm the 

positive role of E-Selectin when expressed at the surface of endothelial cells, we finally 

confirmed our findings in the clinical setting using MPM patient samples.  

 

8.3 Clinical implication of immune infiltrate and adhesion molecules in 

MPM 

 

In the context of MPM, the scarcity of studies on adhesion molecules in this cancer limits 

the inferences that could be drawn. Ruco et al, (197), investigated specifically the impact 

of ICAM-1 and VCAM-1 in cultured malignant mesothelioma cell lines and malignant 

mesothelioma patient biopsies. They observed an intense expression of both molecules in 

neoplastic cells in patient samples. In vitro, ICAM-1 was constitutively expressed in all 

mesothelioma cell lines while VCAM-1 was present in only one-half of these cells. The 

other half could have VCAM-1 induction following exposure to inflammatory cytokines 

such as TNF-α. At the gene expression levels, (198), others observed an overexpression 

of E-Selectin in all cell lines what was correlated with a worse prognosis. A limitation of 

those studies is they did not investigate CAM expression outside of cancer cells. Such 

investigations have been led by Tsagkouli et al, (199), by analyzing both serum and 

pleural level of CAM in MPM patients. They observed that while ICAM-1 and VCAM-1 did 

not correlate with clinical outcomes, both high pleural and serum E-Selectin levels appear 

to carry a better prognosis and a lower tumor grade, reinforcing the consideration that 

the location of CAM is crucial in tipping the balance of their contribution to tumor 

repression. Conversely, Dick et al found no correlation between survival and E-Selectin, 

ICAM-1 and VCAM-1 expression in pleural effusion of MPM patient. Those results 

underline additional investigations are required regarding the predictive value of 

adhesion molecules in MPM, (200).  

Given the impact of the CAM location, we analyzed 82 MPM patient samples, looking for 

implication of E-Selectin, inside and outside of the vessels, in the survival prognosis. We 

found vascular E-Selectin expression was positively correlated to survival as the level of 

CD8+ cells infiltration in the tumor while E-Selectin outside the vessels did not correlate 

with clinical outcomes. Regarding the CD8+ infiltration, CD8+ cells have shown to carry a 

favorable prognosis in MPM. Indeed, a higher count in CD8+ cells in the tumor was 
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associated with better PFS, better OS and higher levels of necrotic cells. Moreover, 

presence of CD8+ cells was negatively correlated with lymph node invasion, (49, 50). In 

my thesis, CD8+ cells infiltration was found to be positively correlated with survival as 

well in MPM patients. This was true in both epithelioid and biphasic and sarcomatoid 

tumors. Finally, a correlation between E-Selectin expression and CD8+ lymphocytes 

infiltration was found in highly infiltrated tumors, suggesting the synergic contribution of 

vascular CAM and immune cells in improving the survival of MPM patients. Thus, patients 

derived results reinforce the clinical relevance of L-PDT for MPM patients through its 

ability to enhance vascular E-Selectin. In addition, L-PDT, by relieving cold TME and 

vascular anergy, could constitute an interesting adjunct of current immunotherapies in 

MPM. 

 

 

8.4 Clinical translation of L-PDT in MPM  

 

Our preclinical results support the translation of L-PDT as an adjunct of the current 

treatments for MPM. While promising, several points regarding this translation remain to 

be discussed.  

Indeed, we first investigated the role of E-Selectin and CD8+ T-cells on the survival of 

MPM bearing mice following L-PDT. We observed that their selective inhibition led to a 

significant decrease in survival and tumor growth control, a link that was not known in 

the context of MPM. These preclinical results were further confirmed with the TMA study. 

We found that patients with increased level of E-Selectin survived longer compared to 

patients with low levels. The same conclusion was drawn regarding CD8+ T-cells 

expression with tumor presenting a higher infiltration was associated with a higher 

survival. Moreover, patients with CD8+ T-cells infiltration above the median presented a 

significant correlation between vascular E-Selectin expression and CD8+ cells infiltration. 

This supports the critical contribution of both E-Selectin and CD8+ T-cells in the clinical 

outcomes of MPM patients. Interestingly, patients with a higher E-Selectin expression 

after neoadjuvant treatment survived longer compared to patients with a decreased 

expression. Thus, L-PDT, through its potential in inducing endothelial E-Selectin and 

CD8+ infiltration could improve the survival in MPM patients. 
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Since the recent MARS-2 trial, (34), the role of surgery has recently been questioned. The 

latter randomized resectable MPM patients to chemotherapy alone versus chemotherapy 

plus surgery and showed no difference in OS or PFS with more adverse events in the 

surgery group. Caution is thus warranted with the use of surgery. In addition, 

intraoperative PDT of MPM triggers inflammation limiting anti-tumor immune responses 

(201). Therefore, my thesis suggests a supportive role for L-PDT in the management of 

MPM. Indeed, most patients clinically suffer from dyspnea because of the pleural effusion 

they develop. A standard approach consists in performing a thoracoscopy and talc 

pleurodesis to relief the symptoms. My study supports the addition of a L-PDT therapy in 

the context of MPM which could be used as a tumor immune priming approach to enhance 

the impact of subsequent immunotherapy during this operation. Major advantages of L-

PDT include its very low toxicity, precise delivery at the site of interest and effectiveness. 

Moreover, L-PDT has been shown to effectively remodel the tumor vasculature in MPM, 

enhancing the distribution of macromolecules in the tumor while sparring adjacent 

healthy tissues (132). In addition, the stimulation of active immune cells following L-PDT 

indicates L-PDT could also synergize with ICI by improving their tumor targeting.  

Of course, the potential of combining L-PDT with ICI remains to be investigated and goes 

beyond the scope of this thesis. To investigate the possible synergy between L-PDT and 

ICI, additional characterization of the TME is required, notably regarding the timing 

between ICI administration and L-PDT treatment. For this, the use of the thoracic window 

model that was developed for this thesis could be a valuable tool to better combine L-PDT 

with immunotherapies. This study is also beyond the scope of this thesis but the methods 

and the endpoints seem established.  

 

9. Conclusion 

 

MPM is a challenging disease characterized by vascular anergy and an altered immune 

TME. While immunotherapeutic approaches have presented encouraging results, overall 

survival increase remains modest suggesting room for improvement. L-PDT have 

previously shown to positively impact on MPM. In my thesis, I showed the positive 

outcomes provided by L-PDT are linked to a vascular and immune modulation of the MPM 

TME. Specifically, L-PDT enhances endothelial CAM expression through the NF-κB 

pathway. This in turn, support the infiltration of active CD8+ T cells that allows a better 



66 
 

tumor control. Finally, we highlighted the crucial impact of vascular E-Selectin in MPM 

patients on their survival prognosis. The reprogramming of the TME conferred by L-PDT 

remains to be investigated in combination with ICI. Altogether, this study suggests the 

potential translational impact of L-PDT for MPM patients. 
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