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ABSTRACT
Very often in change detection only few labels or even none
are available. In order to perform change detection in these
extreme scenarios, they can be considered as novelty de-
tection problems, semi-supervised (SSND) if some labels
are available otherwise unsupervised (UND). SSND can be
seen as an unbalanced classification between labeled and
unlabeled samples using the Cost-Sensitive Support Vector
Machine (CS-SVM). UND assumes novelties in low density
regions and can be approached using the One-Class SVM
(OC-SVM). We propose here to use nested entire solution
path algorithms for the OC-SVM and CS-SVM in order to ac-
celerate the parameter selection and alleviate the dependency
to labeled “changed” samples. Experiments are performed on
two multitemporal change detection datasets (flood and fire
detection) and the performance of the two methods proposed
compared.

Index Terms— Novelty detection, Semi-Supervised, So-
lution Path, Nested SVM, Low Density Criterion

1. INTRODUCTION

One of the major challenges in remote sensing classification
and change detection is the lack of groundtruth information.
In most of the change detection situations the characteris-
tics of changes are difficult to model beforehand or even un-
known. These situations are often reformulated as novelty
detection or one-class classification problems: a few labels
on “unchanged” regions are available and none on “changed”
regions, which are detected as outliers (novelties) [1].

Kernel methods in remote sensing analysis have shown
great performances, handling non-linear relationships, being
robust to noise from intrinsic regularization and having good
generalization properties [1]. More specifically, novelty de-
tection problems such as anomaly detection [2] and one-class
classification [3] have been approached in remote sensing us-
ing the One-Class Support Vector Machines (OC-SVM).

The availability of unlabeled samples can be used un-
der certain assumptions to improve classification accuracy

[4]. In [3], Semi-Supervised Novelty Detection (SSND)
is performed by deforming the OC-SVM kernel using a
graph Laplacian built on the unlabeled samples (S2OC-SVM).
SSND can also be treated as an unbalanced two-class clas-
sification problem where a Cost-Sensitive SVM (CS-SVM)
is trained with labeled samples classified against unlabeled
samples [5]. The training errors costs are biased to penalize
less the errors made on unlabeled samples than on labeled
samples. The CS-SVM has given very good results but has
a major drawback: the search for the optimal cost factors
requires label information from both classes (“changed” and
“unchanged”) and is computationally intensive by solving
each time a large optimization problem [3].

In Unsupervised Novelty Detection (UND) only unla-
beled samples are available and novelties are assumed not
clustered [6] but spread in low density regions in opposi-
tion to simple clustering. This happen in situations where
changes are from multiple types (urban, vegetation, etc..)
with different spectral signatures and can be emphasized with
appropriate features spreading out the changes (e.g. image
difference). In this case, the detection of changes is a density
estimation problem where the novelties are present in the tails
of the distribution [7].

This paper introduces to the remote sensing community
the Nested SVMs, two algorithms based on solving the entire
SVM solution path and having robust properties (enforcing
nested boundaries). Finding the optimal classifier requires
the tuning of ”magic” parameters in both situations (SSND
and UND), therefore we propose unspervised data-driven pa-
rameter selection methods avoiding the classical unrealistic
cross-validation.

2. PROPOSED METHODS

In Fig. 1., the two different situations are illustrated in a 2D
example. (a) In SSND situation, the “changed” samples are
assumed clustered and separated from “unchanged” samples
by a low density region helping the selection of the optimal
boundary at a cost asymmetry γ. A set of classifiers is ob-
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Fig. 1. (a) SSND: boundaries for different cost asymmetry γ.
(b) UND: boundaries of different density level sets λ.

tained for the entire range of cost asymmetries in a single opti-
mization called the Nested Cost-Sensitive SVM. The optimal
cost asymmetry is then selected via a low-density criterion
based on samples close to the boundary.

(b) In UND situation, the “changed” samples are assumed
spread in low density regions. A set of density levels (in-
dexed by λ) is obtained in a single optimization called the
Nested One-Class SVM. The averaged decision function over
the different levels allows a density-based ranking of the un-
labeled samples and the selection of a threshold value sepa-
rating “changed” from “unchanged” samples.

2.1. Semi-Supervised Novelty Detection using Nested
Cost-Sensitive SVM

The Nested Cost-Sensitive SVM (NCS-SVM) solves a single
optimization problem to derive the full set of Cost-Sensitive
SVMs [8]. The NCS-SVM constraints the boundaries at dif-
ferent cost asymmetries to be included in each other (nested).
This ensures a certain coherence among the different bound-
aries and more robustness to parameters (less variations with
different kernel bandwidth). As a recall, the primal optimiza-
tion problem of the standard Cost-Sensitive SVM is

min
w,ξ

λ2 ‖w‖2 + γm
∑
I+

ξi + (1− γm)
∑
I−

ξi


such that yi〈w,Φ(xi)〉 ≥ 1− ξi, ξi ≥ 0, ∀i

As it can be seen in Fig. 1. (b), a cost asymmetry of γm =
0 penalizes only unlabeled samples, while γm = 1 penalizes
only labeled samples. Finally γm = 0.5 penalizes equally
both classes (standard SVM). Let us define M different cost
asymmetries 0.5 ≤ γm ≤ 1 and consider the pixel feature

vector xi ∈ Rd with yi its label corresponding to either the
class of labeled “unchanged” samples (I+ = {i : yi = +1})
or the unlabeled samples (I− = {i : yi = −1}). The La-
grangian dual formulation of the NCS-SVM is

min
αi,1,...,αi,M

M∑
m=1

 1

2λ

∑
i,j

αi,mαj,myiyjKi,j −
∑
i

αi,m


s. t. 0 ≤ αi,m ≤ 1{yi<0} + yiγm,

yiαi,1 ≤ ... ≤ yiαi,M ∀i,m
(1)

with Ki,j = k(xi,xj) =< Φ(xi),Φ(xi) > the kernel rep-
resenting the dot product of samples mapped by Φ in a high-
dimensional space and λ a global regularization parameter.
The constraints of Eq. (1) enforce the boundaries to be nested.
Nested solution paths are piecewise linear along the different
cost asymmetries γm and require very few breakpoints along
the path (usually M ≈ 10 is enough). Intermediate solutions
are obtained via linear interpolation of the Lagrangian multi-
pliers αi,m.

The predicted label of a pixel x at a cost asymmetry γm
is obtained from the sign of the decision function: fγm(x) =
1
λ

∑
i αi,myik(xi,x).

The selection of the optimal cost asymmetry γ∗ is based
on the low-density principle, an extensively used assumption
in semi-supervised learning [4]. This assumption means that
the boundary of the optimal classifier should not cut a cluster
but pass through low density regions only. We propose a low-
density criterion based on the samples that are close to the
boundary. The average distance among k unique pairs of sam-
ples across the boundary will reflect the inverse of the density:
a large average distance meaning a low density around the
boundary.

The optimal cost asymmetry γ∗ passing through low den-
sity region is selected as follows

γ∗m = arg max
γ

(
1

k

k∑
i=1

Dpair(i, γ)

)
(2)

whereDpair(i, γ) is the distance between the ith closest sam-
ple to the boundary (on the positive side) and its unique pair at
minimum distance across the boundary for the cost asymme-
try γ. The closest samples to the boundary are found using the
|fγ,λ(xi)| values and paired progressively with closest sam-
ples on the other side. A large range of k (e.g. from 10 to
100) is used and the most frequent γ∗ obtained is selected. In
practice the γ obtained for different k are quite stable.

2.2. Unsupervised Novelty Detection using Nested One-
Class SVM

The One-class SVM (OC-SVM) with a Gaussian kernel can
lead to an efficient estimation of the support of a distribution.
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Fig. 2. MIDF and its 2nd derivative for Gloucester floods
(NDVI) for 1000 random samples. High MIDF values corre-
spond to high density and low MIDF values to low density.

Varying the regularization parameter of the OC-SVM rejects
a certain number of training samples and define a particular
density level set. The Nested One-Class SVM (NOC-SVM)
solves a single optimization problem to derive the entire set
of OC-SVMs at different regularization levels [8]. Moreover
the NOC-SVM ensures that the boundaries are nested like the
true density levels (hierarchically included in each other).

The dual formulation of the NOC-SVM is

min
αi,1,...,αi,M

M∑
m=1

 1

2λm

∑
i,j

αi,mαj,mKi,j −
∑
i

αi,m


s.t. 0 ≤ αi,m ≤

1

N
,
αi,1
λ1
≤ ... ≤ αi,M

λM
∀i,m

The decision function at the regularization level λm is
fλm

(x) = 1
λm

∑
i αi,mk(xi,x). A sample x is inside the

boundary if fλm
(x) > 1, on the boundary if fλm

(x) = 1 and
outside otherwise.

As any Gaussian kernel method, the standard deviation
σ has to be properly tuned. An unsupervised way of se-
lecting it is using the Minimum Integrated Volume (MIV)
criterion [7]. The optimal σ is resulting in the minimum area
under the curve, represented by the volume of the different
level sets as a function of the percentage of enclosed samples.
The volume is obtained through sampling in a box around
the data and the percentage of enclosed samples through
Cross-Validation. The separation between “unchanged” and
“changed” (novelties) samples is based on the ranking of
the samples using the Mean Integrated Decision Function
(MIDF) [9]: MIDF (x) = 1

M

∑M
m=1 fλm(x), a novelty

will have most of its fλm
< 1 and a sample lying in high

density region will have most of fλm
> 1. The observation

of MIDF (x) values in descending order allows to localize
the breakpoint separating the “changed” from “unchanged”
samples at the maximum of the second derivative of the or-
dered MIDF (see Fig. 2 for an example of unsupervised
breakpoint selection).

3. EXPERIMENTS

Here are presented the results of experiments on two different
image datasets: Gloucester floods consists in two SPOT im-
ages issued from the IEEE GRSS Data Fusion Contest (DFC)
in 2009 [10]. The considered subset is 800×1600px, has a
spatial resolution of 20m and 3 spectral bands (NIR-R-G).
The images have been acquired before and after the floods.
Bastrop fires consists in two Landsat 5 TM images acquired
before and after large fires in Texas (USA) in 2011. Images
are 785×929 pixels with 6 spectral bands (from 450 nm to
2350 nm) at a spatial resolution of 30m. Normalized Differ-
ence Vegetation Index (NDVI) features and difference image
features (DIFF) have been considered alternatively in the ex-
periments.

The following methods are compared: the NCS-SVM
with the unsupervised cost asymmetry γ selection based on
low density (NCS-SVM LD) and with the supervised selec-
tion through cross-validation (NCS-SVM CV), the NOC-
SVM with unsupervised breakpoint selection (NOC-SVM
BKP) and with supervised threshold selection (NOC-SVM
CV).

All the results are reported in Fig. 4. The best results
for Gloucester are obtained with the NDVI features and for
Bastrop with the DIFF features. The NDVI is in these cases
less ambiguous for flooded areas than for burnt areas. For
Gloucester the DIFF features are loosing too much informa-
tion resulting in many false detections. The NCS-SVM give
accurate results for appropriate features and the unsupervised
cost asymmetry selection works very well (NSC-SVM LD
has κ lower than CV of max. 0.03). Meaning that the clus-
ter assumption is reasonable for the two datasets. The NOC-
SVM performed worse since it is less discriminant (unsuper-
vised and not semi-supervised) and because the assumption of
changes spread in low density regions is not really respected.
In opposition to our claim the difference features are not pro-
viding better results with the NOC-SVM. The unsupervised
breakpoint selection (NOC-SVM BKP) results in less accu-
rate and less stable κ accuracies than the supervised upper
bound (NOC-SVM CV). The breakpoint separating the two
classes is often difficult to localize. The number of samples is
a critical issue for the NCS-SVM in order to localize the low
density region between clusters but impacts less the NOC-
SVM, where it only refines the density level sets. Detection
map are presented in Fig. 3. and 5.

4. CONCLUSIONS

We presented two methods for Semi-Supervised Novelty De-
tection (SSND) and Unsupervised Novelty Detection (UND)
based on Nested SVM which solve the entire path of regu-
larization in a single optimization and gains in robustness.
We proposed unsupervised data-driven parameter selection
for each method. The experiments show the effectiveness of



Gloucester floods Bastrop fires
NCS-SVM NOC-SVM NCS-SVM NOC-SVM

CV LD CV BKP CV LD CV BKP

N
D

V
I κ 0.82 (0.02) 0.82 (0.02) 0.57 (0.04) 0.45 (0.13) 0.88 (0.02) 0.87 (0.03) 0.69 (0.02) 0.66 (0.09)

OA 96.2 (0.35) 96.2 (0.33) 88.3 (0.98) 86.7 (2.26) 96.73 (0.50) 90.7 (0.48) 90.7 (0.48) 90.2 (1.69)

D
IF

F κ 0.63 (0.04) 0.50 (0.09) 0.39 (0.77) 0.26 (0.07) 0.94 (0.01) 0.91 (0.01) 0.63 (0.02) 0.48 (0.09)
OA 93.1 (0.56) 91.9 (0.94) 86.6 (0.27) 85.6 (1.71) 98.1 (0.19) 97.6 (0.36) 89.5 (0.43) 87.8 (1.06)

Fig. 4. Averaged results over ten random runs. In parenthesis are reported the standard deviation.

(a) NCS-SVM LD (NDVI) (b) NOC-SVM BKP (NDVI)

Fig. 3. Gloucester: Averaged results over ten random runs.
Black= 100% detected, white=0% detected, red=missed de-
tection, blue=false detection

(a) NCS-SVM LD (DIFF) (b) NOC-SVM BKP (DIFF)

Fig. 5. Bastrop: Averaged results over ten random runs.
Black= 100% detected, white=0% detected, red=missed de-
tection, blue=false detection

our unsupervised selection of cost-asymmetry for the Nested
Cost-Sensitive SVM based on the low density principle, con-
firming the cluster assumption in most of the cases. This in-
duced that the novelties are more clustered than being spread
in low-density regions, resulting in worse performances for
the experiments with the Nested One-Class SVM. The NOC-
SVM would require situations with changes of very different
types. Further perspectives for the NOC-SVM are towards
feature representations spreading more the changes and on a
more robust unsupervised breakpoint localization.
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