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Abstract

Objective

Intravoxel incoherent motion (IVIM) is an MRI technique with potential applications in mea-
suring brain tumor perfusion, but its clinical impact remains to be determined. We assessed
the usefulness of IVIM-metrics in predicting survival in newly diagnosed glioblastoma.

Methods

Fifteen patients with glioblastoma underwent MRI including spin-echo echo-planar DWI
using 13 b-values ranging from 0 to 1000 s/mm?. Parametric maps for diffusion coefficient
(D), pseudodiffusion coefficient (D*), and perfusion fraction (f) were generated for contrast-
enhancing regions (CER) and non-enhancing regions (NCER). Regions of interest were
manually drawn in regions of maximum f and on the corresponding dynamic susceptibility
contrast images. Prognostic factors were evaluated by Kaplan-Meier survival and Cox pro-
portional hazards analyses.

Results

We found that foceg and D*ceg correlated with rCBFcgr. The best cutoffs for 6-month sur-
vival were fcer>9.86% and D* cer>21.712 x10~°mm?/s (100% sensitivity, 71.4% specificity,
100% and 80% positive predictive values, and 80% and 100% negative predictive values;
AUC:0.893 and 0.857, respectively). Treatment yielded the highest hazard ratio (5.484;
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95% CI: 1.162-25.88; AUC: 0.723; P = 0.031); fcer combined with treatment predicted sur-
vival with 100% accuracy.

Conclusions

The IVIM-metrics focgr and D*ceg are promising biomarkers of 6-month survival in newly
diagnosed glioblastoma.

Introduction

High-grade neoplasms produce a complex microvascular network to satisfy a growing need for
nutriments and oxygen [1], and glioblastoma is among the most angiogenic tumors [2]. Cere-
bral blood volume (CBV) correlates with the degree of angiogenesis and increased local perfu-
sion correlates with tumor grading and survival [3-5]. Therefore, hemodynamic parameters
influenced by vessel density and perfusion of the microvasculature, such as CBV and cerebral
blood flow (CBF), can be used as surrogate biomarkers [6-8]. As these perfusion parameters
can be measured by dynamic susceptibility contrast (DSC) MRI, this technique plays an impor-
tant role in the baseline evaluation and follow-up of brain tumors. Recently, intravoxel inco-
herent motion (IVIM) has been proposed as an alternative perfusion MRI technique [9-18].
IVIM uses endogenous tracers to obtain perfusion-related indexes from diffusion-weighted
imaging (DWI) datasets without contrast agents.

Considering the vascular bed as a random network of vessels where blood flows freely, Le
Bihan et al. [19] demonstrated that IVIM could distinguish between water diffusion and the
microcirculation of blood in the capillary network. In biological tissues, diffusion and perfusion
are physically different phenomena, and the incoherent motion of spins, which can be under-
stood as the spatial “mixing” of spins during the time of measurement in each image voxel, bi-
exponentially reduces the signal amplitude observed when different diffusion b-values are
applied [20]. In other words, DWTI is also sensitive to perfusion because the flow of blood in
randomly oriented capillaries mimics a diffusion process. IVIM modeling allows the extraction
of two diffusion coefficients, one related to molecular diffusion restriction, called the diffusion
coefficient (D), and another related to movements of blood in the microvasculature, called the
pseudodiffusion coefficient (D*). A third parameter, the perfusion fraction (f), describes the
fraction of incoherent signal arising from the vascular compartment in each voxel. In recent
years, advances in MR hardware have allowed short-time acquisitions with multiple b-values
and sufficient signal-to-noise ratio, reviving interest in IVIM for imaging tumors in the brain
[8-12] and in body tissues where vascularity is important [18,21-25] for characterizing tumors
and predicting or monitoring the response to treatment [9,12,26,27]. Recent evidence suggests
that fvalues can help differentiate between low- and high-grade gliomas [10-12], and f corre-
lates moderately with DSC rCBV [11]. In addition, in rodent models of glioma, f correlates pos-
itively with vessel density at histology [28].

To our knowledge, no data about the usefulness of IVIM-metrics to predict survival in glio-
blastoma patients are available. Therefore, we determined whether IVIM-metrics D, D*, and f
are useful in predicting tumor response to treatment and survival in newly diagnosed glioblas-
toma, by analyzing them in contrast-enhancing regions (CER) and non-enhancing regions
(NCER) surrounding the CER.
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Materials and Methods
Patient characteristics

The ethics committee at Hospital Dr Josep Trueta approved this prospective study, and all
patients provided written informed consent to participate in it. From November 2009 to
March 2011, we enrolled 23 consecutive patients with newly diagnosed glioblastoma suspected
on CT or MRI. After imaging, all lesions were biopsied. Eight (34.78%) patients were excluded
from the study: five because histology ruled out glioblastoma and three because motion arti-
facts hindered image evaluation. Therefore, 15 patients (7 women; mean age, 66+11 years)
were included. Patients were managed according to published guidelines [29]. The combina-
tion of surgery, radiotherapy, and chemotherapy with concomitant and adjuvant temozolo-
mide was considered standard treatment. Patients did not receive corticosteroids before MRI.
Survival was measured from the pretreatment MRI study to death.

Conventional MRI

MRI was performed on a 1.5-T MR scanner (Gyroscan Intera 1.5T Master; Philips Healthcare,
Best, the Netherlands) using an eight-channel head coil. Before contrast administration, we
acquired axial TIWI SE (TR536ms, TE15ms), axial T2WI fast SE (TR4400ms, TE110ms), and
axial FLAIR (TR8000ms, TE115ms, TI2200ms) sequences. We used a 230-mm field of view,
5-mm section thickness, and 256x192 matrix for these sequences. Five minutes after gadobu-
trol injection, we obtained axial TIWI SE (TR600ms, TE10ms) images parallel to the bicom-
missural line.

IVIM MR

24 axial DW images (TR3000/TE76ms) were obtained using single-shot spin-echo echo-planar
imaging (EPI) before contrast-enhanced MRI. The EPI factor was 41, and the sensitivity-
encoding factor was two. We used a 200-mm field of view, 5-mm section thickness, and 96 x 77
matrix. The measured pixel size was 2.4x2.9x5mm. We used 13 b-values: 0, 10, 20, 30, 50, 100,
150, 200, 350, 500, 650, 800, and 1000 sec/mm?. The total acquisition time was 3 minutes 48
seconds per patient.

DSC-MRI

Using the same section orientations used for DW images, we acquired dynamic T2*-weighted
gradient-echo echo-planar images (TR1800ms; TE25ms) during the first pass of a standard
dose (0.1 mmol/kg) bolus of gadobutrol injected via an antecubital vein at 5 ml/s followed by
30 ml saline solution. To assure that steady-state magnetization was reached, a five series of
dummy scans (i.e., the pulse sequence is run, but data are not acquired) were inserted immedi-
ately before the start of each perfusion series consisted of 50 dynamic acquisitions. Between 8
and 10 per-Gd baseline images were acquired. Based on T2WT and FLAIR images, we selected
seven to ten sections through the tumor for PWTI in a single TR with an in-plane resolution of
1.95x1.95 mm? and slice thickness of 7 mm. The methods used for acquiring data and the algo-
rithm for calculating CBV-corrected maps for contrast agent extravasation are described else-
where [7].

IVIM Image Processing

The IVIM model considers that two compartments exist in biologic tissue: a slow-moving com-
partment, where particles diffuse in a Brownian fashion as a consequence of thermal energy,
and a fast-moving compartment (the vascular compartment), where water molecules moves as
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a consequence of forced blood circulation [19]. In the vascular compartment, D* describes the
displacement of blood on a macroscopic level in an assumed randomly laid vascular network.
For the perfusion to be physiologically meaningful, D* must be greater than D. Therefore:

S, =Slfe™ + (1 —fe], (1)

where fis the fraction of the diffusion linked to microcirculation (perfusion fraction), D is the
diffusion parameter representing pure molecular diffusion (diffusion coefficient), and D* is the
diffusion-related incoherent microcirculation; Sy is the signal intensity at a b-value of zero (i.e.,
without diffusion weighting), and S, is the signal intensity for each b-value (i.e., at each diffu-
sion gradient).

Regions of Interest

A neuroradiologist with 20 years’ experience (S.P.) reviewed the anatomical images, using Olea
Sphere V.2.0 software (Olea Medical, La Ciotat, France). NCER was defined as the hyperin-
tense area surrounding the CER on FLAIR [30]. A fully automated deconvolution analysis was
performed to create parametric images of CBV and CBF [31] in the MR Extended Workspace
(Philips Healthcare, Best, the Netherlands). Due to the technique’s limitations in obtaining
absolute CBF values, an extra ROI was placed in healthy gray matter as a reference [32]. To
scale all CBF values, gray matter flow was established at the same level (65ml/100g/min) for all
patients [33]. DW data were registered to the image with b-value = 0 s/mm? using an affine
transformation and a mutual information algorithm to avoid image distortion due to eddy cur-
rents. Images were analyzed with a computer program developed within the research group on
the Philips Research Imaging Development Environment research platform using Interactive
Data Language 6.3 (Research Systems Inc.; Boulder, CO, USA); this program fits every pixel to
the three parameters in the model described in eq 1 using a Levenberg-Marquardt least-squares
minimization algorithm [34]. The software generates three IVIM maps (one for D, one for D¥,
and one for f) in about 3 minutes. A reader (G.B. with 11 years’ experience) manually placed
ROIs in the CER and NCER for each tumor, with maximal f on three contiguous axial sections.
Mean ROI size was 32+12 mm?®. Large vessels and cystic or necrotic tumor areas were excluded.
The corresponding ROIs were then drawn on the DSC images (mean size, 30+14mm?) and the
results were averaged for CER and NCER. To enable intraobserver reliabilities to be calculate,
all measurements were repeated 1 month after the first determination. The observer was
blinded to the clinical and outcome data of the patients.

Statistical Analysis

Means and standard deviations were calculated for all parameters. Data were evaluated through
the significance of the Pearson product-moment correlation coefficient. Linear regression anal-
ysis was performed using rCBV and rCBF values from DSC-MRI and the f, D, and D* values
from IVIM. Receiver operating characteristic analysis was used to determine the optimal perfu-
sion MRI parameter cutoffs for predicting 6-month survival. Prognostic factors included age,
sex, Karnofsky Performance Score, treatment, volume of CER, volume of NCER, IVIM-met-
rics, and DSC-MRI parameters. Survival curves were calculated using the Kaplan-Meier
method. We used the multivariate Cox proportional hazards model to adjust for the influence
of prognostic factors. We used intraclass correlation coefficients (ICC) to compare measure-
ments of rCBV, rCBF, £, D, and D* in CER and NCER, classifying intraobserver reliability as
fair (ICC = 0.5-0.7), good (0.7-0.9), or almost perfect (>0.90). We also analyzed the variability
of the measurements by Bland-Altman plots showing the mean difference between two meth-
ods of measurement, and 95% limits of agreement as the mean difference [35]. Minitab version
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16.2.1 was used for statistical analyses (Minitab Inc.;State College,PA,USA). Significance was

set at P<<0.05.

Results
Patient Data

Table 1 summarizes patients’ clinical and imaging characteristics. All 15 patients died during
the observation period. Survival was 10.6£6.23 months (range, 5-21 m) in patients receiving
standard treatment and 4.7+2.81 months (range,1-8.5 m) in patients not receiving standard

treatment.

Associations and correlations between DSC-MRI parameters and IVIM-

metrics

Table 2 shows the associations for the values of DWI parameters, DSC-MRI parameters, and
IVIM-metrics and the correlations between them for CER and NCER. The IVIM-metric fcgr

Table 1. Patient characteristics.

Characteristic Datum?®
Male:Female 8.7

Age 66111 (42-79)
Motor deficit (%) 46.67
Language deficit (%) 33.33

Karnofsky Performance Score

89.33£9.61(70-100)

Volume of CER (mL)

18.01+11.91 (7.34—49.85)

Volume of Necrosis (mL)

6.60£5.77 (0.59-21.21)

Volume of NCER (mL)

48.65+26.38 (16.45-119.23)

feer (%)

10.80+2.49 (7.28-15.12)

Dcer (x103mm?/s)

1.064+0.165 (0.804—1.378)

D*cer (x103mm?/s)

24.665+5.140 (16.802-33.163)

ADCcgr(x10mm?/s) 110.78+18.13 (84.82—142.89)
rCBFcer (M1/100g/min) 51.27+21.56 (18.69-86.91)
rCBVceg (MI/100g) 4.69+1.59 (2.27-7.37)

max rCBFcgg (m1/100g/min) 151.63£21.01 (112—181.84)
max rCBVcgg (mI/100g) 12.73+3.31 (8.67-19.07)

fncer (%)

2.34+0.99 (1.02-3.83)

Dncer (x10°mm?/s)

1.488+0.270 (1.097—-1.976)

D*ncer (X10°mm?/s)

4.632+2.264 (1.133-8.614)

rCBFycer (MI/100g/min)

23.65+10.71 (11.03—-46.55)

rCBVncer (MI/100g) 1.47+0.76 (0.67-3.61)
Treatment (n)

Standard 5

Non-standard (surgery only) 8

Non-standard (palliative care) 2

Survival (months)

6.7+4.83 (1-21)

Standard treatment

10.646.23 (5-21)

Non-standard (surgery only)

4.81+2.53 (1-8.5)

Non-standard (palliative care)

4.5+3.54 (2-7)

#Unless otherwise specified, data are means + standard deviations, with ranges in parentheses.

doi:10.1371/journal.pone.0158887.1001
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Table 2. Correlations between IVIM-metrics and DSC-MRI parameters for CER and NCER®.

Pearson r/ P-value

A =fcer(%)

B = Dcer(x10°mm?/s)

C = D*cep(x10°°mm?/s)

D = ADC¢gr(x10°mm?/s)

E = rCBFcgr(ml/100g/min)
F = rCBVgr (M1/100g)

G = max rCBF¢cgr(mIi/100g/min)
H = max rCBVcegr(ml/100g)
1= fNCER(%)

J = Dncer(X10°°mm?/s)

K = D*\cer(X103mm?/s)

L = ADCncer(x10°mm?/s)
M = rCBFycer(ml/100g/min)
N = rCBVycer(mi/100g)

A

-0.68
0.80
-0.21
0.65
0.49
0.65
0.37
0.31
0.62
0.85
0.10
0.56
0.56

B Cc D E F G H | J K L M N
0.01 | <0.01 | 0.45 0.01 0.04 | <0.01 | 0.18 | 0.31 | 0.62 | 0.04 | 0.72 | 0.03 0.03
0.09 [ 0.11 0.73 0.63 0.01 | 041 | 0.08 | 058 | 0.67 | 0.58 | 0.91 0.25

-0.46 0.72 | <0.01 0.12 | <0.01 | 021 | 0.16 | 0.85 | 0.94 | 0.52 | 0.50 0.48
0.43 0.10 0.34 0.97 036 | 034 | 099 | 065 | 0.45 | 0.40 | 0.88 0.44
-0.10 0.71 | -0.27 <0.01 042 | 0.03 [ 097 | 099 | 0.06 | 0.85 | 0.05 0.43
-0.14 0.42 | -0.01 0.82 041 | 002 | 096 | 081 | 0.04 | 0.90 | 0.06 0.44
-0.61 0.71 | -0.25 0.22 0.23 0.32 | 008 | 095 | 0.60 | 0.89 | 0.10 0.82
-0.23 0.34 | -0.27 0.57 0.61 0.27 0.14 | 0.72 | 0.03 | 0.50 | 0.65 0.22
0.47 | -0.38 | 0.99 0.97 0.96 | -0.47 | 0.4 0.11 | 0.06 | 0.67 | 0.66 0.75
0.58 0.85 | 0.65 0.99 0.81 0.02 | -0.1 0.11 0.93 | 0.07 | 0.12 0.59
0.12 0.94 | 0.45 0.06 0.53 | -0.15 | 0.56 | 0.06 | -0.02 0.14 | 0.08 0.01
-0.16 0.18 | 0.4 0.85 0.9 0.04 | 019 | 0.12 | 0.47 | 0.40 0.12 0.05
-0.03 0.19 | -0.04 0.86 0.84 0.44 | -0.13 | -0.12 | -0.42 | -0.47 | -0.41 <0.01

0.32 | -0.20 | 0.22 | -0.22 0.44 0.06 | -0.34 | -0.09 | -0.15 | -0.65 | -0.52 | 0.77

@ Below the diagonal line are the correlation coefficients; above the diagonal are the P-values of the Pearson correlations. Significant correlations are

highlighted in bold.

doi:10.1371/journal.pone.0158887.1002

correlated moderately with rCBFcgr and rCBV cgg (R = 0.65;P = 0.01 and R = 0.49;P = 0.04,
respectively) (Fig 1) and with Dcgr and D*cggr (R = -0.68;P = 0.01 and R = 0.80;P<0.001,
respectively). D*cgr also correlated with rCBFcgr (R = 0.71;P<0.001). rCBF cgp significantly
correlated with rCBV cgr (R = 0.82;P<0.001). Moreover, fcgg correlated with D*cgr

(R = 0.85;P = 0.04) and with rCBFycgr (R = 0.56;P = 0.03) and rCBVycgr (R = 0.56;P = 0.03).

Survival analysis

Table 3 compares the IVIM-metrics and DSC-MRI parameters for patients who survived more
than 6 months versus those who survived less than 6 months. Values for fcgr, D* cgr, TCBFcer,

Fig 1. Glioblastoma in a 62-year-old woman. (A) Axial FLAIR image. (B) Contrast-enhanced T1-weighted
image shows a rim-enhancing tumor. (C) Cerebral blood flow map obtained with DSC-MRI shows
hyperperfusion signals predominantly in the left margin of the tumor (arrows). (D) DSC cerebral blood volume
map. The hyperperfusion signal intensities correlate with those seen on cerebral blood flow map. (E) f map
clearly highlights the area with high perfusion in the margins of the tumor (arrows), which is more evident than
in C and D. (F) D map shows small restricted diffusion area (average D value = 0.895 x 1072 mm?s)
predominantly in the anterior tumor margin (arrows). (G) D* map shows increased fast-diffusion values in the
tumor tissue (arrows).

doi:10.1371/journal.pone.0158887.g001
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Table 3. Clinical data, and diffusion and perfusion parameters in contrast-enhancing and non-enhancing regions according to survival®.

Characteristic Survival < 6 months (n = 8) Survival > 6 months (n=7) p-value
Male/Female 37.5% /62.5% 57.1% /42.9% 0.447
Age 68.5 (63.75-72.5) 69 (59.5-75) 1.00
Motor deficit (%) 50 42.9 0.782
Language deficit (%) 50 14.3 0.143
Karnofsky Performance Score 90 (80-100) 90 (85-95) 0.903
CER (mL) 16.05 (12.28-19.67) 13.82 (8.48-23.78) 0.779
Necrosis (mL) 5.47 (2.95-10.18) 4.11 (2.15-7.05) 0.397
NCER (mL) 49.66 (34.43-70.23) 33.99 (26.01-58.11) 0.281
fcer (%) 11.43 (10.64-14.53) 9.13(7.63-10.41) 0.009
Dcer (x10°mm?/s) 0.997 (0.904—1.056) 1.115 (1.040-1.260) 0.121
D*cer (x103mm?/s) 26.448 (24.774-30.702) 20.507 (18.254-23.601) 0.021
ADCcer(x10°mm?/s) 100.39 (88.9-113.83) 123.51 (106.48-131.59) 0.072
rCBFcggr (M1/100g/min) 67 (47.12-78.48) 46.15 (28.24-49.87) 0.04
rCBVceg (mI/100g) 5.57 (4.67-6.51) 3.87 (2.95-4.55) 0.04
max rCBFcgg (m1/100g/min) 165.9 (156.2-173.4) 140.5 (133.2-147.7) 0.07
max rCBVcgg (MlI/100g) 14.1 (11.0-16.8) 10.6 (9.9-11.5) 0.04
fucer (%) 2.27 (1.18-3.11) 2(1.94-3.15) 0.602
Dncer (x10°mm?/s) 1.381 (1.267-1.662) 1.486 (1.305-1.787) 0.779
D*ycer (x10°°mm?/s) 6.352 (3.752-7.204) 3.764 (2.523-4.264) 0.094
rCBFncer (MI/100g/min) 23.69 (13.37-33.67) 22.92 (17.39-23.68) 0.779
rCBVncer (MI/100g) 1.06 (0.85-1.43) 1.75 (1.31-1.86) 0.336
Treatment 0.067
Standard (n) 1 4
Non-standard (n) 7 3
Survival (months) 4 (2-5.25) 8.5 (7-10) 0.001

2 Significant p-values are highlighted.

doi:10.1371/journal.pone.0158887.1003

and rCBV cgr were significantly higher in patients who survived less than 6 months (Fig 2).
The proportion of patients that received standard treatment was higher in the group that sur-
vived more than 6 months. Table 4 shows the cutoff values for fcgr, D* cgr, TCBFcgr, and
rCBV cgr for predicting survival. The cutoff fogr>9.86% had the highest AUC for predicting
6-month survival (100% sensitivity, 71.4% specificity, 100% positive predictive value (PPV),

and 80% negative predictive value (NPV); AUC 0.893). The cutoff D* cgp>21.712x10 > mm?*/s
yielded 100% sensitivity, 71.4% specificity, 80% PPV, and 100% NPV with an AUC of 0.857.
The treatment was a significant predictor for 6-month survival (85.7% sensitivity, 57.1% speci-
ficity, 70% PPV and 80% NPV; AUC 0.723). In the Cox regression analysis, treatment was the
most important factor (hazard ratio 5.484, 95% confidence interval 1.162-25.88, P = 0.031).

In the multivariate analysis, only fcgr combined with treatment predicted survival 100%
(Table 4). Survival rate was significantly shorter in patients with high values of fcgr (P = 0.008)
and D*cgr (P = 0.007) independently of the treatment received (Fig 3).

Intraobserver Reliability

Intraobserver agreements were almost perfect for DSC-MRI CER indexes (ICC = 0.916), DSC-
MRI NCER indexes (ICC = 0.949), fcgr (ICC = 0.979), fncer (ICC = 0.983), Dcgr (ICC =
0.930), and Dycgr (ICC = 0.98); intraobserver agreement was good for DSC gray matter
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Fig 2. Boxplots of DSC-MRI parameters and IVIM-metrics for CER according 6-month survival.

doi:10.1371/journal.pone.0158887.g002

indexes (ICC = 0.731). The Bland-Altman plots confirmed the high intraobserver reliability
(S1 Fig).

Discussion

Our preliminary results are an important step in collecting evidence about the feasibility and
usefulness of IVIM imaging as a quantitative method to measure perfusion in glioblastoma. To

Table 4. Survival prediction: summary of class performance and hazard ratios for associations between imaging features and overall survival®.

Variable ROC analysis Cox regression model

Cutoff |AUC Sensitivity |Specificity |PPV NPV | Hazard ratio (95% Cl) | p-value
Univariate Analysis
fcer (%) 9.860 | 0.893(0.723-1.063) 1.000 0.714 1.000 | 0.800 |1.193(0.941-1.513) 0.145
D*ceg (x10°mm?/s) 21.712 |0.857 (0.648-1.067) 1.000 0.714 0.800 | 1.000 |1.000 (1.000-1.000) 0.068
rCBFcggr (M1/100g/min) 59.010 |0.821 (0.593-1.050) 0.625 1.000 1.000 | 0.700 |1.025(0.9934-1.057) 0.123
rCBVcegr (MI/100g) 4.780 | 0.821(0.599-1.044) 0.750 0.857 0.857 | 0.750 |1.158(0.7698-1.742) 0.481
max rCBF¢cer (ml/100g/min) 155.25 | 0.786 (0.533—1.000) 0.750 0.857 0.857 | 0.750 |1.032(0.995-1.069) 0.089
max rCBVcggr (mI/100g) 10.765 | 0.821 (0.598-1.000) 0.875 0.714 0.750 | 0.714 |1.044 (0.864—1.261) 0.658
Treatment 1.500 |0.723 (0.490-0.956) 0.857 0.571 0.700 | 0.800 |5.484 (1.162-25.88) 0.031
Multivariate Analysis
fcer and treatment 1.000 1.000 1.000 1.000 | 1.000
D*cgr and treatment 0.929 1.000 0.857 0.889 | 1.000
rCBFcggr and treatment 0.929 0.875 0.857 0.875 | 0.857
rCBVceg and treatment 0.893 1.000 0.750 0.778 | 1.000

#Data are hazard ratio estimates, with 95% confidence intervals in parentheses, for variables included in the Cox regression model (imaging features plus
clinical variables) for the analysis of the association between the imaging features and overall survival after adjusting for standard clinical variables.
Likelihood ratio test of this model versus the null model: P = 0.047 (test statistic = 15.66 with eight degrees of freedom).

doi:10.1371/journal.pone.0158887.1004
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Fig 3. Kaplan-Meier survival curves comparing survival rates for treatment and for pre-specified
cutoff values of fceg and D* cgr (upper row) and for these cutoffs according to treatment received
(lower row) Surgery, radiotherapy, and chemotherapy with concomitant and adjuvant temozolomide
was considered standard treatment (ix).

doi:10.1371/journal.pone.0158887.g003

our knowledge, this is the first study to demonstrate the usefulness of IVIM-metrics in predict-
ing survival in patients with newly diagnosed glioblastoma. We found that patients with
increased fcgr and D* cgg had significantly shorter survival independently of the treatment
they received. Although a detailed analysis will require more data, the following can be deduced
from this small cohort: the cutoffs fcgr = 9.86% and D* cggr = 21.712 x10~’mm?®/s on pretreat-
ment MRI yielded the highest predictive power for 6-month survival (AUC 0.893 and 0.857,
respectively). However, in the Cox regression models, treatment was the only significant vari-
able (P = 0.031), although D*cgr was nearly significant (P = 0.068).

The standard of care for newly diagnosed glioblastoma is now maximum safe surgical resec-
tion followed by radiotherapy plus concomitant and adjuvant chemotherapy with temozolo-
mide [36]. This approach is based on a landmark phase III trial that reported median survival
after surgery of 14.6 months in patients randomized to receive radiotherapy plus temozolomide
compared to 12.1 months in those that receive radiotherapy alone [37], and other studies have
corroborated this survival benefit [36,38]. Our results are consistent with these reports; impor-
tantly, however, we also found that adding f-gr data to treatment data enable survival to be
predicted with an accuracy of 100%. Our preliminary results suggest that patients treated with
the standard of care who had fcgr or D* cgr values over a pre-specified cutoff had worse sur-
vival than those who had fcgr or D* R values below the cutoff. Therefore, IVIM-metrics may
help tailor the therapeutic approach in upcoming studies.

We found a negative correlation between fcgr and Dcgr, probably because regions with
highest tumor cellularity almost certainly correspond to regions with highest vascularity. Bis-
das et al. [12] revealed that IVIM fitting of the diffusion data allowed the contribution of perfu-
sion to be separated from the contribution of true diffusion, thus providing better information
than the apparent diffusion coefficient (ADC) for discriminating between low- and high-grade
gliomas. Although one study found lower ADC values in high-grade gliomas than in lower-
grade gliomas [39], another study reported considerable overlap in ADC values between low-
and high-grade gliomas [40].

We found a strong positive correlation between fcgr and D* cgr and moderate positive cor-
relations between fcgr and rCBFcgr and rCBV cgr. The correlation with rCBFcgr was stronger
than the correlation with rCBV cgr because rCBV is sensitive to vessel wall permeability,
whereas f reflects only blood flowing in small vessels. Our results are in line with those recently
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reported by Federau et al. [11] in 21 gliomas (16 high-grade and 5 low-grade). They found that
fcorrelated moderately with rCBV (r = 0.59) and, in the regions of maximum f, was signifi-
cantly higher in the high-grade group.

In a recent study, lima et al. [28] used a 17.2-T MR scanner to investigate the IVIM perfu-
sion model and 2 non-Gaussian diffusion models for evaluating tissue characteristics in rodent
gliomas [41,42]. IVIM maps highlighted tumor areas as generally heterogeneous, as confirmed
by histology, and f was significantly higher in tumors than in contralateral tissue (P<0.001), as
would be expected given neovascularization. Indeed, there was a significant positive correlation
between f and microvessel density (R = 0.56, P<0.05), and a negative correlation was found
between cellularity and D (R = -0.70, P<0.01).

Infiltrating tumor cells are present in the perivascular spaces in areas of vasogenic edema
around the CER [43]. Higher rCBV ratios have been found in NCER surrounding gliomas than
in the NCER surrounding metastatic lesions [44]. As would be expected given the vascularity
of the CER and NCER, we found positive correlations between fcgr and rCBFycgr and
rCBVycgr. Furthermore, we found that fcgr strongly correlated with D*cgr. The D*value is
considered proportional to mean capillary segment length and average blood velocity [18]; like
the fvalue, the D*value may depend on the attenuation of the tumor microvessels and may cor-
relate with the degree of angiogenesis with intact vessels, probably more frequent in the NCER,
in terms of basement membrane thickness and pericyte coverage [45]. Further research could
shed more light on potential IVIM-metrics to characterize the NCER of high-grade gliomas.

Several authors have used IVIM to separate the diffusion and perfusion components of DWI
data, highlighting its potential value in clinical practice[12,18,46]. In healthy volunteers, Wires-
tam et al. [46] demonstrated modest but significant correlations between fand CBV (R = 0.56;
P<0.001) and between CBF obtained from the median value of D* in IVIM and CBF obtained
from DSC-MRI (R = 0.35;P<0.001). Federau et al. [18] demonstrated that f, D*, and fD* param-
eters change gradually under a hypercapnia and hyperoxygenation challenge in the brain. Bisdas
et al. [14] recently reported that f was significantly correlated with DSC-derived vascular plasma
volume and vascular transit time in healthy brain tissue, whereas in tumor regions, DSC-derived
plasma flow was positively correlated with D* and inversely correlated with f.

The IVIM method has many theoretical advantages over DSC-MRI. Unlike DSC-MRI,
IVIM perfusion-related parameters can be obtained using DWI datasets without the need for
intravenous contrast agents, an important advantage considering that some agents are contra-
indicated in some patients due to the risk of nephrogenic systemic fibrosis [47]. Moreover,
whereas DSC-MRI requires knowledge of the arterial input function, IVIM is intrinsically
quantitative and the intravoxel excitation and readout obviates the need for this measurement
[48,49]. Likewise, DSC-MRI requires a contralateral normalization measurement that can be
difficult to obtain because of anatomical distortion, whereas IVIM-metrics are obtained
through direct assessment of the tumor. IVIM diffusion and perfusion parameters might also
be useful for guiding biopsy within gliomas [50]. Federau et al. [13] recently reported that T,-
prepared IVIM inversion recovery acquisition seems to increase the quantitative blood volume
contrast and contrast-to-noise ratio compared to standard IVIM acquisition and DSC-MR],
improving subjective lesion detection, contrast quality, and diagnostic confidence.

Some important limitations of this study merit comment. This pilot study was done at a sin-
gle center, and the patient sample was too small to draw any definite conclusions about the use-
fulness of IVIM-metrics for patient management and survival prediction. The reported cutoffs
most probably are not optimal and need to be validated. Although the large vessels try to be
excluded, even small vessels could potentially affect the signal intensity or calculated IVIM
map. IVIM is sensitive to motion if the curve is fitted on a voxel-by-voxel basis, so unavoidable
patient movements may be problematic. Susceptibility inhomogeneities, as might occur around
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the petrous apex or the paranasal sinuses or due to the presence of blood postoperatively, for
example, can harm the IVIM signal; however, they are also problematic in DSC-MRI. Analyz-
ing the non-Gaussian diffusion behavior of water (kurtosis or biexponential model) can poten-
tially provide information on microcirculation and tissue microstructure [28], but our
diffusion images were acquired with maximum b-value of 1000 s/mm?, limiting our ability to
go deeper in the analysis of non-Gaussian water movement due to cellular membrane bound-
aries [51,52]. The manual placement of the ROIs was subjective. Differences in slice thickness
and spatial resolution in DSC, IVIM and T1WI would raise issues of systematic bias to match
across different modalities, In our study, fand D* maps was particularly noisy and did not
show clear anatomical findings (Fig 1), which might be expected since these parameters should
be tissue specific (e.g. GM has much higher perfusion than WM). Better signal to noise ratio
from higher field [14] or more averages must be sought for future studies. Partial-volume con-
tamination from cerebrospinal fluid or necrotic areas may have varied during the study. IVIM
and DSC have similar spatial resolution; however, DSC data probably has higher SNR for
deriving perfusion parameters, whereas the SNR in IVIM can make it difficult to extract the
perfusion component reliably. Moreover, IVIM suffers just as much as DSC from the effects of
large-vessel partial volumes, but the IVIM equation is still an approximation of the signal
model to the data and is not really quantitative in the sense that the ADC measurement can be
(when data from low b-values are excluded). Another limitation of IVIM is that the level of
perfusion must be high enough before IVIM can reliably detect and measure a perfusion-
related parameter. Grech-Sollars et al [53] found that the IVIM parameter f had a poorer inter-
scanner coefficient of variation when scanners of different field strengths were combined for
normal, and the parameter was also affected by the scan acquisition resolution, for which per-
tusion is lower than the GBM angiogenic core.

Conclusions

In summary, IVIM seems feasible for evaluating the diffusion and perfusion characteristics of
glioblastoma, and fcgr and D*cgg correlate well with response to therapy and survival. Know-
ing which patients will respond better to treatment is important for individualizing care, so
these parameters might help improve outcomes. Further studies are warranted to test the gen-
eralizability of our findings to other cohorts to determine whether IVIM-metrics can be used
as perfusion biomarkers in gliomas.
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