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A B S T R A C T   

Background and purpose: Automation in radiotherapy treatment planning aims to improve both the quality and 
the efficiency of the process. The aim of this study was to report on a clinical implementation of a Deep Learning 
(DL) auto-planning model for left-sided breast cancer. 
Materials and methods: The DL model was developed for left-sided breast simultaneous integrated boost treat-
ments under deep-inspiration breath-hold. Eighty manual dose distributions were revised and used for training. 
Ten patients were used for model validation. The model was then used to design 17 clinical auto-plans. Manual 
and auto-plans were scored on a list of clinical goals for both targets and organs-at-risk (OARs). For validation, 
predicted and mimicked dose (PD and MD, respectively) percent error (PE) was calculated with respect to 
manual dose. Clinical and validation cohorts were compared in terms of MD only. 
Results: Median values of both PD and MD validation plans fulfilled the evaluation criteria. PE was < 1% for 
targets for both PD and MD. PD was well aligned to manual dose while MD left lung mean dose was significantly 
less (median:5.1 Gy vs 6.1 Gy). The left-anterior-descending artery maximum dose was found out of re-
quirements (median values:+5.9 Gy and + 2.9 Gy, for PD and MD respectively) in three validation cases, while it 
was reduced for clinical cases (median:− 1.9 Gy). No other clinically significant differences were observed be-
tween clinical and validation cohorts. 
Conclusion: Small OAR differences observed during the model validation were not found clinically relevant. The 
clinical implementation outcomes confirmed the robustness of the model.   

1. Introduction 

Over the years, technological development in radiation therapy has 
brought innovation to both hardware and software tools with new 
irradiation techniques such as intensity-modulated radiation therapy 
(IMRT) and volumetric-modulated arc therapy (VMAT), and planning 
approaches (inverse planning, multi-criteria optimisation). While on the 
one hand this has led to an overall improvement of plan quality, on the 
other, the higher complexity of the planning process has engendered 
drawbacks like increased planning time or larger inter-planner vari-
ability [1–5]. 

The introduction of automation into radiation therapy has, among 
other advantages, a great potential to accelerate standardisation in 
treatment planning, thus minimising the aforementioned drawbacks 

affecting plan quality [6,7]. Nowadays, different approaches are avail-
able for providing automated plans: from the simple use of dose objec-
tive templates [8,9] to the more sophisticated techniques based on 
Artificial Intelligence (AI), and particularly on Machine Learning (ML). 
Among the ML-based techniques, commercial Knowledge-Based (KB) 
models utilise ML methods for learning the mapping of hand-crafted 
features extracted from the patient data to planning endpoints and 
constraints, such as the dose volume histogram (DVH) [10–12]. Such 
features may result in the loss of information, which potentially leads to 
a reduced predictive performance of the KB model limited for the re-
gions of interest that are delineated [13,14]. More recently, the intro-
duction of Deep Learning (DL) techniques has circumvented this specific 
limitation of KB models since they do not rely on predefined rules (e.g. 
dose prediction for delineated organs at risk (OARs) only) but rather on 

* Corresponding author at: Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré 1, CH-1007 Lausanne, 
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their ability to automatically learn thousands of features from raw data 
and therefore, if properly trained, to predict a 3D-dose distribution for 
any given patient geometry and treatment site [15–19]. 

DL techniques were successfully employed in left-sided breast auto- 
planning for both early and locally advanced cancers [15,19]. In both 
cases, dose prediction was restricted to a single dose prescription level 
(40.05 Gy) and exclusively for the IMRT treatment technique narrowing 
their range of applicability in breast cancer treatments. 

In fact, several studies showed that around 70% of local recurrences 
(LR) occur mostly near or at the original tumour site [20–22], sup-
porting the indication of the simultaneous integrated boost (SIB) to the 
tumour bed to reduce the risk of LR. Early breast cancer SIB treatments 
are more challenging for tangential IMRT techniques that may provide 
less dose conformity and homogeneity to both whole breast and boost 
planning target volumes (PTVs) than VMAT-based techniques [23]. The 
VMAT typical increase of low-dose spillage to the heart, may be miti-
gated treating the patients under deep inspiration breath-hold (DIBH) 
conditions providing the optimal planning dose trade-off between PTV 
and OARs [24]. 

To the best of our knowledge, no existing auto-planning solutions 
were available for early breast cancer SIB treatments. Furthermore, the 
previously mentioned models were not applicable due to their limita-
tions in dose prescription and irradiation technique. Therefore, our goal 
was to train and develop a DL-based auto-planning model utilizing a 
VMAT technique. This model was specifically designed for left-sided 
early breast cancer patients receiving treatment under DIBH conditions. 

2. Materials and methods 

The DL auto-planning model was developed in collaboration with 
RaySearch Laboratories (RSL) for RayStation (RS) TPS v12A (RSL, 
Stockholm, Sweden) following four sequential steps: 1) data curation for 
model training, 2) model training, 3) model tuning, and 4) model vali-
dation. Step number 2 was entirely carried out by RSL, while in step 
number 3 RSL fine-tuned the mimicking parameters according to our 
clinical indications. 

2.1. Data curation for DL model training 

Initially, 60 left-sided breast patients treated at our institution under 
DIBH were included. Simulation CT and treatment planning were 
available for each patient. DIBH-CT resolution was 1x1x2 mm3. Two 
6FFF MV reversed partial arcs (span range 210◦-230◦) from an Elekta 
Agility linear accelerator (Elekta AB, Stockholm, Sweden) were 
employed. Start (range 285◦- 310◦) and stop (range 135◦ − 160◦) gantry 
angles were manually chosen to minimise contra-lateral breast irradia-
tion according to the patient’s anatomy. Collimator angles were set to 5◦

and 355◦, respectively. For each arc, control points were defined every 
3◦ resulting in a segment range varying from 70 to 77 and maximum 
allowed beam-on time was 75 s. Dose calculation grid (Collapsed Cone 
Convolution (CCC) algorithm) was 3x3x3mm3. The SIB and whole- 
breast planning target volumes (PTV_Boost and PTV_Breast, respec-
tively) were generated by expanding their respective clinical target 
volumes by 5 mm and then cropping it 3 mm under the skin. Prescription 
doses of 60 Gy and 50 Gy were simultaneously delivered in 25 fractions 
for the PTV_Boost and PTV_Breast, respectively, during four to six 
breath-hold cycles. 

Original clinical plans (C-Plans) were randomly optimized by five 
medical physicists using different dose-volume optimization objectives 
templates and following the RTOG 1005 protocol [25] for dose-volume 
constraints. Patient-specific QA, performed with the Octavius II phan-
tom and analysed with the Verisoft software (PTW, Freiburg, Germany), 
returned gamma-pass value > 95% of points with 3%/3mm criteria (no 
dose scaling and dose difference normalised to global dose maximum) 
for each plan. 

To reduce the inter-operator variability and improve the quality of 

the existing dose distributions, data curation was approached as follows. 
For each patient, OAR contours were reviewed and adjusted when 
needed, and the dose was recomputed. A list of clinical goals was 
extracted from each plan and the median value of each clinical goal over 
the 60 plans was used to define a new list of clinical goals to be achieved 
(Table 1). 

Fifty-two out of the 60 C-plans were reoptimized due to different 
reasons: 1) 45/52 because of missing structures or objectives of sec-
ondary importance, 2) 28/52 because of sub-optimal choice of optimi-
zation objectives for OARs listed in Table 1, and 3) 15/52 because not 
complying with the dosimetry protocol of Table 1. In the first case, 
missing objectives controlling both mean and maximum doses were 
introduced. In the second one, the maximum and mean dose objectives 
were added or revised in their formulation for specific OARs listed in 
Table 1. In the last case the whole list of optimization objectives was 
revised. The planning comparison between plans used for model 
training and original clinical plans is reported in Fig. S1(a),(b), and 
Table S1 of Supplementary Material. 

To improve the heterogeneity of the input data for model training, 20 
new additional plans were optimised according to the clinical goals 
listed in Table 1 for a total of 80 plans used for model training (MT- 
plans). Fig. S2 of the Supplementary Material presents the distribution of 
the PTV_Breast volumes of the patients used for model training. 

The same dosimetric protocol of Table 1 and planning parameters 
were finally used to generate 15 new additional manual plans to be used 
for model tuning (5) and validation (10). 

According to local regulations, there was no need for ethical and/or 
legal approval for the present study. 

2.2. DL model training, predicted and mimicked dose 

The DL technique used for model training was based on the U-Net 
convolutional neural network (CNN) [26]. Briefly, through sequential 
convolutional and de-convolutional layers it was able to incorporate 
both local and global features for learning a pixel-to-pixel mapping 
between imaging and dose data to predict the 3D dose distribution for 
any given 3D anatomical data [27,28]. Predicted dose distribution was 
not directly exploitable as it needed to undergo the mimicking process to 
become clinically applicable through an optimization process. In RS, DL 
predicted dose serves as reference input for the voxel-based objectives of 
the dose mimicking process. Goals and constraints applied as post- 

Table 1 
List of clinical goals to be achieved for plans used as model training data. 
PTV2_Crop was the difference without margins between PTV_Breast and 
PTV_Boost. LAD is the abbreviation for Left Anterior Descending Artery.  

Structure Dose-Volume Objective Requirement 

PTV_Boost D98% ≥ 57 Gy 
D2% ≤ 61.8 Gy 
V57Gy ≥ 96% 
V56Gy ≥ 99% 
V61.8 Gy ≤ 2% 

PTV_Breast V47.5 Gy ≥ 95% 
V46.5 Gy ≥ 98% 

PTV_Crop D1% ≤ 60 Gy 
V52.5 Gy ≤ 15% 

Lung_L V5Gy ≤ 33% 
V10Gy ≤ 20% 
V20Gy ≤ 10% 
V40Gy ≤ 2% 
Dmean ≤ 7 Gy 

Lung_R D1% ≤ 5 Gy 
Dmean ≤ 1.5 Gy 

Heart D1% ≤ 6 Gy 
Dmean ≤ 1.5 Gy 

Breast_R D1% ≤ 9 Gy 
Dmean ≤ 2 Gy 

LAD Dmax ≤ 8 Gy  
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processing to the predicted dose give rise to different reference inputs 
and, similarly, varying the mimicking objectives different outcomes are 
possible. The set of instructions used for dose mimicking was iteratively 
adjusted by RSL during the model tuning under our supervision to fulfil 
the clinical goals of Table 1 and released as an instruction file in the 
JavaScript Object Notation (JSON) format readable by RS. Although 
mimicked dose can be tailored to a specific list of clinical goals by 
altering the objectives, the same set of dose mimicking objectives and 
weights as released were used for all patients. This involved three in-
termediate CCC dose calculations: two over the course and one at the 
end of the 180 dose mimicking iterations. 

2.3. DL model tuning 

Auto-planning model was initially evaluated comparing auto- with 
manual plans for five new patients. Given the predicted dose, the tuning 
phase involved modifications to the JSON file only. Two senior medical 
physicists and one expert radio-oncologist performed a blind evaluation 
according to their clinical experience. A five-value scoring scale was 
used to compare the plans generated by the DL-based model (DL-plans) 
and the test plans (T-plans): 1.Worse, 2.Slightly worse, 3.Equivalent, 4. 
Slightly better, 5. Better. The model was considered acceptable for 
validation only if the scores were ≥ 3 for both PTVs and all OARs 
involved. 

2.4. DL model validation 

For each clinical goal in Table 1, predicted and mimicked outcomes 
were evaluated against the corresponding manual result by the percent 
error (PE) calculated as DLclinicalgoal− Manualclinicalgoal

Manualclinicalgoal • 100. Paired Wilcoxon 
signed-rank tests were performed to assess statistically significant dif-
ferences (p < 0.05) for predicted and mimicked dose PE. 

In addition, a blind comparison between manual and auto-plans was 
carried out by an experienced radiation oncologist by means of the same 
scoring scale reported in the previous paragraph. 

2.5. DL model clinical evaluation 

The model was employed to generate 17 clinical plans after its 
validation. Clinical and validation cohorts were compared in terms of 
dose distribution to assess statistically significant differences using the 
Wilcoxon rank-sum test because of different size between samples. 
Furthermore, the achievement of the clinical goals requirements was 
also investigated. 

3. Results 

3.1. DL model tuning 

For the initial version of the DL model only one out of the five test 
patients had an equivalent score for PTVs while all DL-plans were better 
or at least equivalent for OARs. This was due to the over-sparing of the 
OARs, particularly for the left lung, causing the loss in homogeneity for 
both PTVs. Therefore, the model was progressively improved by tuning 
the mimicking parameters defined in the set of model instructions. Dose 
constraints to the left lung and contralateral breast were systematically 
relaxed, enabling a better PTV homogeneity as shown in Fig. 1. 

The fourth version of the model was accepted for validation as all DL- 
plans were equivalent or better than T-plans (see Table S2). 

3.2. DL model validation 

Predicted dose median values met all clinical goals. For PTVs, mean 
doses were well aligned to manual plans (PE < 1%), while PTV_Breast 
coverage resulted significantly improved (PE = 1.1%). For OARs, large 
PE values were not correlated with clinically significant differences of 
median values. As expected, the mimicking process altered the initial 
dose prediction. Mimicked dose resulted worse than predicted dose for 
PTV_Boost maximum dose and PTV_Breast coverage. On the other hand, 
it was found significantly better in terms of OAR dose sparing, especially 
for left lung and contralateral breast. 

Concerning the comparison between mimicked and manual plans, 
PTVs differences were not significant except for the PTV_Crop D1% 
showing an improving of dose conformity for auto-plans. For OARs, 
auto-plans returned better results for both lungs and contra-lateral 
breast while manual plans were superior in terms of heart dose 
sparing (see Table 2 and Fig. S3(a),(b) for details). 

Individual plan analysis showed that predicted dose failed to achieve 
35 clinical goals out of the 210. In all cases, deviations were negligible or 
not clinically significant except for the LAD maximum dose that resulted 
overpredicted for three cases ranging from 5.2 Gy to 8.6 Gy. After 
mimicking, the number of failed clinical goals were reduced to 20 and 
the LAD overdosage range halved (see Table 3). The achievement of 
clinical goals listed per plan is reported in Table S3 of supplementary 
material. 

Blind comparison evaluation provided results in support of auto- 
planning: auto-plans were judged equivalent, slightly better and better 
than manual plans twice, six times and twice, respectively. The main 
reason of such preference was the less dose to the left lung. 

Fig. 1. DVH comparison between manual (solid lines) and auto-(dashed lines) plans for the initial (a) and the final (b) version of the model for a test case. It is clearly 
visible for the initial model the over-dosage of the PTV1_Boost (dark blue) and the under-dosage of PTV_Breast (light blue). The final model equalised the manual 
dose to the PTVs while keeping the same less dose to the left (dark green) and right (light green) lung. Right breast (yellow) and heart (brown) were unchanged 
between the two versions with respect to the manual dose. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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3.3. Clinical evaluation 

Across the cohorts, the clinical and validation auto-plans were found 
well aligned except for the PTV_Crop D1% and LAD maximum dose that 
resulted significantly higher (+0.5 Gy) and lower (-1.9 Gy), respectively, 
for clinical plans as reported in Table 4. 

Clinical goals were not fulfilled in 27 out of 357 total evaluations 
providing similar results to the validation plans in terms of failing per-
centage (8.4% vs 7.5%) and negligible clinical impact (see Table 5). 
Detailed clinical goal evaluation is reported in Table S4 of Supplemen-
tary Material. 

4. Discussion 

This study reported on the clinical implementation of a new DL- 
based auto-planning model for VMAT left-breast treatment under 
DIBH. Overall, 95 different patients were involved to conduct and 
validate the model that afterwards was successfully clinically applied for 
17 patients. 

The predict mean dose error for PTVs and OARs was well aligned to 
previous findings using similar CNN architecture and treatment site 
[15,19] confirming the accuracy of the U-net in predicting dose for large 
structures. On the other hand, the LAD maximum dose showed large 
variations in dose prediction. This might be due to the increased un-
certainty in predicting the dose within few voxels lying on the dose 
gradient region, therefore in this case the use of a more robust metrics 

Table 2 
Planning comparison between manual, predicted and mimicked dose averaged over the 10 validation patients.  

Structure Figure of Merit Unit Manual Dose Predicted Dose Mimicked Dose PE (%) p- value 
Median Range Median Range Median Range Predicted Mimicked Predicted Mimicked 

PTV_Boost D98% Gy  57.2 56.5–58.1 57.1 55.5–57.7  57.1 56.8–57.4  − 0.2  − 0.2  0.38 0.11 
D2% Gy  61.4 61.1–62.3 61.3 61.1–61.6  61.4 61.1–62.2  − 0.1  0.0  0.28 0.92 
V57Gy %  98.6 97.1–99.6 98.3 96.6–99.1  98.4 97.3–98.8  − 0.3  − 0.2  0.23 0.19 
V56Gy %  99.6 98.7–99.9 99.4 97.7–99.8  99.5 99.2–99.8  − 0.3  − 0.1  0.32 0.56 
V61.8 Gy %  0.6 0–5.5 0 0–0.7  0.1 0–7.3  − 100.0  − 81.4  0.02 0.91 
Dmean Gy  59.9 59.7–60.0 59.7 59.5–59.9  59.8 59.6–59.9  − 0.3  − 0.2  0.01 0.24 

PTV_Breast V47.5 Gy %  95.7 95.4–96.8 96.7 96.1–97.6  96.0 94.3–97.0  1.1  0.4  0.01 1 
V46.5 Gy %  97.5 95.4–96.8 98.0 97.5–98.5  97.8 96.2–98.3  0.6  0.3  0.02 0.92 
Dmean Gy  51.2 50.8–52.1 50.8 50.6–52.3  51.3 50.7–52.5  − 0.8  0.2  0.04 0.18 

PTV_Crop D1% Gy  58.6 58.0–59.5 58.2 57.4–59.8  57.8 57.2–58.5  − 0.6  − 1.3  0.23 < 0.01 
V52.5 Gy %  10.8 8.4–19.3 8.0 5.9–19.6  10.5 7.1–17.6  − 25.8  − 2.3  0.11 0.32 

Lung_L V5Gy %  30.9 19.1–39.7 29.4 21.1–36.4  23.1 18.1–28.6  − 4.8  − 25.3  0.32 < 0.01 
V10Gy %  18.1 10.9–23.6 16.0 7.9–22.1  13.4 7.6–17.8  − 11.5  − 25.7  0.23 < 0.01 
V20Gy %  8.9 3.0–11.3 8.3 2.4–12.5  7.3 2.5–10.5  − 6.5  − 17.6  0.85 < 0.01 
V40Gy %  1.3 0–1.9 1.3 0–2.7  1.2 0–2.2  6.1  − 4.4  0.11 0.19 
Dmean Gy  6.1 4.1–7.4 5.9 3.7–7.6  5.1 3.5–6.4  − 2.5  − 15.9  0.56 < 0.01 

Lung_R D1% Gy  3.6 1.6–6.4 3.6 2.3–5.5  3.4 1.7–5.0  − 0.5  − 6.8  0.63 0.11 
Dmean Gy  0.9 0.5–1.6 1.0 0.7–1.4  0.9 0.5–1.2  1.6  − 8.4  0.7 0.08 

Heart D1% Gy  4.6 3.5–5.5 5.2 3.6–6.1  5.4 4.2–6.1  13.2  18.0  0.19 < 0.01 
Dmean Gy  1.4 1.1–1.5 1.5 1.2–2.0  1.5 1.2–1.7  4.1  4.1  0.43 < 0.01 

Breast_R D1% Gy  5.2 2.5–12.0 5.9 3.0–10.0  5.2 2.2–9.1  13.9  − 0.2  0.85 < 0.01 
Dmean Gy  1.1 0.8–2.8 1.5 0.9–2.4  1.2 0.5–2.0  46.1  12.4  0.23 0.38 

LAD Dmax Gy  7.1 4.6–12.5 7.8 4.9–16.6  7.7 5.6–12.4  9.1  7.6  0.11 0.38  

Table 3 
Evaluation of model failed objectives and corresponding deviation with respect to the requirement listed for both predicted and mimicked dose for the 10 validation 
patients.   

Objective Failed objectives 
Structure Figure of Merit Requirement Predicted Dose Mimicked dose 

Number Deviation Number Deviation 
Median Range Median Range 

PTV1 D98% ≥ 57 Gy 2 − 1.2 Gy (-1.5 - − 0.8) Gy 1 − 0.2 Gy – 
D2% ≤ 61.8 Gy 0 – – 1 0.4 Gy – 
V57Gy ≥ 96% 0 – – 0 – – 
V56Gy ≥ 99% 3 – – 0 – – 
V61.8 Gy ≤ 2% 0 – – 1 5.3 % – 

PTV2 V47.5 Gy ≥ 95% 0 – – 2 − 0.4 % (-0.7 - − 0.1) % 
V46.5 Gy ≥ 97% 0 – – 2 − 0.5 % (-0.8 - − 0.2) % 

PTV_Crop D1% ≤ 60 Gy 0 – – 0 – – 
V52.5 Gy ≤ 15% 1 4.6 % – 1 2.6 % – 

Lung_L V5Gy ≤ 33% 3 2.6 % (0.8–3.3) % 0 – – 
V10Gy ≤ 20% 3 1.3 % (1.1–1.6) % 0 – – 
V20Gy ≤ 10% 3 1.7 % (1.7–2.6) % 2 0.4 % (0.3–0.5) % 
V40Gy ≤ 2% 3 0.8 % (0.3–0.9) % 2 0.2 % (0.1–0.2) % 
Dmean ≤ 7 Gy 3 0.4 Gy (0.2–0.7) Gy 0 – – 

Lung_R D1% ≤ 5 Gy 2 0.4 Gy (0.1–0.6) Gy 0 – – 
Dmean ≤ 1.5 Gy 0 – – 0 – – 

Heart D1% ≤ 6 Gy 1 0.1 Gy – 1 0.1 Gy – 
Dmean ≤ 1.5 Gy 4 0.3 Gy (0.2–0.5) Gy 3 0.1 Gy – 

Breast_R D1% ≤ 9 Gy 1 1 Gy – 1 0.1 Gy – 
Dmean ≤ 2 Gy 3 0.5 Gy (0.3–0.5) Gy 0 – – 

LAD Dmax ≤ 8 Gy 3 5.3 Gy (5.2–8.6) Gy 3 2.9 Gy (2.2–4.4) Gy  
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such as near-maximum dose for dose reporting would be of help. 
Dose mimicking significantly improved the OAR dose sparing. The 

auto-planning workflow involved a predicted dose post-processing 
before undergoing the dose mimicking process [19,29]. The magni-
tude of the post-processing was defined during the model tuning phase 
by exploring the dosimetric trade-offs achievable from the initial pre-
dicted dose. It aimed to intentionally alter the predict dose towards a 
specific trade-off that could produce clinically realistic dose distribution 
once mimicked. Specifically, left lung and right breast sparing was 
privileged over a less (but still within the evaluation criteria) PTV_Boost 
homogeneity and PTV_Breast coverage. 

Post-processing of predicted dose may be considered as a powerful 
tool able to improve training data of any quality. Although this is true to 
some extent, a revised set of training data maximizes the efficiency of 

the process. In fact, this allowed the optimal explorations of trade-offs 
from the original predicted dose where dosimetric outliers were due to 
patient geometrical variation only [30]. Furthermore, post-processing 
applied user-defined dose reduction functions that have an impact on 
the whole structure acting as a dose re-normalization weight. Hence, 
without data curation, the post-processing would have reduced the 
overall predicted dose keeping the same level of heterogeneity of 
training data. However, the large dose difference observed between 
predicted and mimicked dose for the left lung and right breast, suggested 
that during data curation the dose trade-off for that OARs was not fully 
explored. 

After mimicking, the DL auto-planning model provided good results 
as all the clinical goals were met. When compared to our clinical plans it 
performed better in terms of PTV dose conformity and OAR sparing 
except for the heart. The model was built so that a small penalty was 
accepted for the heart (median dose: +0.1 Gy, D1% +0.9 Gy) to better 
spare the left lung (median dose: − 1Gy). This trade-off was acceptable as 
both the maximum and mean heart dose were still within the clinical 
goal. 

All automatic plans could have been further optimised after auto-
matic optimisation by the addition of new dose-volume objectives just 
like for standard plans [15,19]. This could have solved the slight over-
dosage of the heart. However, we evaluated the results for auto-plans 
without any further optimization as we were looking for a fully auto-
mated solution. 

Once adopted in the clinical practice, the model provided only two 
significant differences with respect to the validation cases: the increase 
of PTV_Crop D1% and LAD dose sparing. The average PTV_Boost volume 
was found for the clinical cohort slightly larger than for validation 
cohort (59 cm3 vs 51 cm3), probably explaining the increase of dose 
received by the PTV_Crop. The higher average value of LAD maximum 
dose observed for the validation cohort was due to three dose outliers 
(see individual plan evaluation in the supplementary material) corre-
sponding to patients with reduced DIBH capabilities. 

Obviously, the model presented here was tailored to our clinical 
practice. It may not reflect the clinical standards of other centres where 
different treatment protocols are used. Nonetheless, the automated so-
lution implemented in RS enables the user to drive the optimisation 
towards different solutions, given the predicted dose from the U-net 
CNN. As mentioned, by acting on the set of instructions of the predicted 
and the mimicked dose, as well as by editing the set of dose-volume 

Table 4 
Planning comparison between clinical and validation cohorts (note that results referred to different patients).  

Structure Figure of Merit Unit Clinical Plans (n = 17) Validation Plans (n = 10) p- value 
Median Range Median Range  

PTV_Boost D98% Gy  57.3 56.6–57.7  57.1 56.8–57.4  0.17 
D2% Gy  61.5 61.0–62.6  61.4 61.1–62.2  0.36 
V57Gy %  98.7 97.1–99.3  98.4 97.3–98.8  0.16 
V56Gy %  99.7 99.1–100  99.5 99.2–99.8  0.44 
V61.8 Gy %  0.3 0–9.9  0.1 0–7.3  0.92 
Dmean Gy  59.9 59.6–60.1  59.8 59.6–59.9  0.02 

PTV_Breast V47.5 Gy %  96.0 95.3–97.3  96.0 94.3–97.0  0.86 
V46.5 Gy %  97.7 97.1–98.4  97.8 96.2–98.3  0.82 
Dmean Gy  51.3 50.4–51.7  51.3 50.7–52.5  0.92 

PTV_Crop D1% Gy  58.3 57.6–58.8  57.8 57.2–58.5  < 0.01 
V52.5 Gy %  11.5 5.5–15.2  10.5 7.1–17.6  0.57 

Lung_L V5Gy %  24.7 18.5–30.9  23.1 18.1–28.6  0.68 
V10Gy %  14.2 8.9–19.2  13.4 7.6–17.8  0.68 
V20Gy %  8.2 4.0–12.1  7.3 2.5–10.5  0.71 
V40Gy %  1.5 0.2–2.5  1.2 0–2.2  0.50 
Dmean Gy  5.4 3.9–7.0  5.1 3.5–6.4  0.68 

Lung_R D1% Gy  3.8 2.2–6.3  3.4 1.7–5.0  0.39 
Dmean Gy  1.0 0.5–1.4  0.9 0.5–1.2  0.39 

Heart D1% Gy  4.6 3.3–6.5  5.4 4.2–6.1  0.24 
Dmean Gy  1.6 1.0–1.8  1.5 1.2–1.7  0.24 

Breast_R D1% Gy  4.5 2.3–7.7  5.2 2.2–9.1  0.41 
Dmean Gy  1.1 0.7–2.0  1.2 0.5–2.0  0.64 

LAD Dmax Gy  5.8 3.4–8.0  7.7 5.6–12.4  < 0.01  

Table 5 
Evaluation of model failed objectives and corresponding deviation with respect 
to the requirement for the 17 clinical patients.   

Objective Failed objectives 
Clinical Cases (Mimicked Dose) 

Structure Figure of Requirement Number Deviation 
Median Range 

PTV1 D98% ≥ 57 Gy 3 − 0.1 Gy (-0.4 - − 0.1) Gy 
D2% ≤ 61.8 Gy 2 0.7 Gy (0.6–0.8) Gy 
V57Gy ≥ 96 % 0 – – 
V56Gy ≥ 99 % 0 – – 
V61.8 Gy ≤ 2 % 2 5.8 % (3.8–7.7) % 

PTV2 V47.5 Gy ≥ 95 % 0 – – 
V46.5 Gy ≥ 97% 0 – – 

PTV_Crop D1% ≤ 60 Gy 0 – – 
V52.5 Gy ≤ 15 % 1 0.2 % – 

Lung_L V5Gy ≤ 33 % 0 – – 
V10Gy ≤ 20 % 0 – – 
V20Gy ≤ 10 % 1 0.1 % – 
V40Gy ≤ 2 % 4 0.3 % (0.1–0.5) % 
Dmean ≤ 7 Gy 0 – – 

Lung_R D1% ≤ 5 Gy 3 0.2 Gy (0.1–1.3) Gy 
Dmean ≤ 1.5 Gy 0 – – 

Heart D1% ≤ 6 Gy 3 0.4 Gy (0.1–0.5) Gy 
Dmean ≤ 1.5 Gy 8 0.1 Gy (0.1–0.2) Gy 

Breast_R D1% ≤ 9 Gy 0 – – 
Dmean ≤ 2 Gy 0 – – 

LAD Dmax ≤ 8 Gy 0 – –  
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objectives, it is possible to modify the resulting dose distribution. New 
strategies may involve the extra-sparing of whichever OAR needed, for 
instance in case of a previous irradiation of the right breast. However, 
any new model modification needs to pass an internal qualitative and 
quantitative evaluation. 

Since plan quality and treatment-related toxicity are strongly 
dependent upon breast volume [31,32], it is often taken as an indicator 
of anatomic differences [33,34]. A potential limitation of the study was 
the range of whole breast volume of the model validation group of pa-
tients (605 cm3 – 876 cm3) with respect to the range of the training 
patients (193 cm3 – 1565 cm3). Therefore, model validation was a for-
tiori limited to a narrow range of clinical cases. Clinical cases extended 
the whole breast volume range (186 cm3 – 1260 cm3), showing the 
robustness of the model for small and medium-sized breast volumes. 

The behaviour for large-sized breasts (>1200 cm3) remains to be 
evaluated, although a series of different DL approaches showed model 
robustness with respect to anatomical variation for other treatment sites 
[35]. Nonetheless, the use of beam energies higher than 6MV may still 
provide better outcomes in terms of dose homogeneity for large breast 
volumes. 

In conclusion, a new DL-based automated planning solution for left- 
sided SIB breast treatments under DIBH was developed and successfully 
implemented in clinical routine filling the existing gap for this specific 
clinical indication. 
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