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ABSTRACT 

 

Uveal melanoma (UM) is a rare intraocular tumor that, similar to cutaneous melanoma, 

originates from melanocytes. To gain insights into its genetics, we performed whole genome 

sequencing at very deep coverage of tumor / control pairs in 33 samples (24 primary and 9 

metastases). Genome-wide, the number of coding mutations was rather low (only 17 

variants per tumor on average; range: 7-28), thus radically different from cutaneous 

melanoma, where hundreds of exonic DNA insults are usually detected. Furthermore, no UV 

light-induced mutational signature was identified. Recurrent coding mutations were found 

in the known UM drivers GNAQ, GNA11, BAP1, EIF1AX, and SF3B1. Other genes, i.e. 

TP53BP1, CSMD1, TTC28, DLK2, and KTN1 were also found to harbor somatic mutations in 

more than one individual, possibly indicating a previously-undescribed association with UM 

pathogenesis. De novo assembly of unmatched reads from non-coding DNA revealed 

peculiar copy number variations defining specific UM subtypes, which in turn could be 

associated with metastatic transformation. Mutational-driven comparison with other tumor 

types revealed that UM is very similar to pediatric tumors, characterized by very few 

somatic insults and, possibly, important epigenetic changes. Through the analysis of whole-

genome sequencing data, our findings shed new light on the molecular genetics of uveal 

melanoma, delineating it as an atypical tumor of the adult for which somatic events other 

than mutations in exonic DNA shape its genetic landscape and define its metastatic 

potential. 
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 Despite having the very rare incidence of 5-8 new cases per million per year,1,2 uveal 

melanoma (UM [MIM: 155720]) is the most common primary intraocular tumor of the adult. 

It develops from melanocytes in the choroid, the ciliary body, or the iris (collectively called 

the "uvea", one of the inner layers of the eye) and usually metastasizes through the blood 

stream to the liver.3,4 Symptoms include variable and painless visual disturbances, often 

presenting when the tumor has already reached a considerable mass. Survival and potential 

therapeutic options depend, among other things, on the presence of specific genetic 

alterations.5 While population studies suggest ethnic predisposition,6,7 environmental 

factors that are directly involved in the transformation process have not been clearly 

delineated. For instance, a possible association with UV light exposure has been suggested,8-

11 but questioned recently by molecular data.12 Research on UM molecular genetics has 

been performed mostly by investigating coding mutations or copy number variations 

detectable by direct sequencing of target genes, karyotype, array-CGH, MLPA, or SNP-array 

analyses.13-17 As a result, mutations at codon 209 of the paralogous oncogenes GNAQ [MIM: 

600998] and GNA11 [MIM: 139313]18,19 and in the tumor suppressor BAP1 [MIM: 603089]20 

have been identified in the majority of UMs, whereas insults in EIF1AX [MIM: 300186] and 

SF3B1 [MIM: 605590] or other genes seem to be less frequent, accounting for at most 20% 

of cases.12,21-26 Moreover, copy gains and losses are common events in this tumor, typically 

involving chromosome 3 monosomy, 6p gain, and 8q gain.14,17 Following whole-genome 

sequencing of a series of tumor-control pairs, we present here an analytically unbiased and 

comprehensive assessment of the genetic landscape of UM. 

 We screened 33 UM samples (24 primary tumors and 9 unrelated metastases, Table 

S1) and corresponding normal tissue pairs by deep coverage whole-genome sequencing 

(WGS), using the sequencing platform by Complete Genomics.27 Written informed consent 
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was obtained from all individuals enrolled in this study, and approval for human subject 

research was obtained from the Institutional Review Boards of all participating Institutions. 

Sequence reads were mapped to the human reference genome, assembly GRch37, and 

somatic variants in tumors were called by comparison with the matched normal genomes, 

as previously described.28 All samples were surgically collected from eye enucleations or 

resected from liver metastases, allowing very clear post-surgery macroscopic isolation of 

tumor tissue from the surrounding environment. None of the 33 affected individuals 

received any treatment prior to primary tumor removal. Average coverage was 112x (range: 

102-118) for both tumor and control samples (>96% of the genome was covered 40x or 

more times), with minimal inter-individual variations (not shown). Mutation calls were 

performed genome-wide and included single-nucleotide variants (SNVs), copy number 

variations (CNVs), as well as structural variations (SVs) such as chromosomal 

rearrangements. CNVs and SVs were assessed by comparing sequence coverage and 

especially de novo assembly of reads defining novel genetic junctions.28 Data were extracted 

from MasterVar files and other relevant matrices by ad hoc Perl, bash, and R scripts, 

available upon request. Overall, we detected 37,321 SNVs (average per sample: 1,166; 

range: 576-2,131), 1,584 SVs (average per sample: 50, range: 13-182), and a number of 

CNVs corresponding to an average of 13.6% of the genome (range: 0.03-33.9%) (Table S2). 

 Unsupervised hierarchical clustering of our samples on CNVs revealed four major 

subgroups associated with mutational and metastatic status, branched two by two (Figure 

1). Classes A and B (first branch) involved samples carrying chromosome 3 monosomy (by 

Fisher test, p-value=4.4x10-06), chr 8q gain (p-value=2.8x10-09), and in some instances chr 8p 

loss (p-value=3.0x10-02). In addition, class B tumors also had loss of chr 6q (p-value=1.0x10-

03). Conversely, classes C and D represented more distinct subtypes with relatively few 
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chromosomal rearrangements; class C tumor had no major aneuploidies, whereas class D 

reported gains of the distal part of chr 8q (p-value=2.0x10-03). Seven samples presenting chr 

1q gain were scattered across all classes, whereas loss of chr 1p were typical of class A 

tumors (p-value=5.0x10-03). 

 Samples with monosomy of chr 3 were also associated (77% of cases) with somatic 

mutations in the tumor suppressor BAP1, lying on chr 3p21.1, in accordance with Knudson’s  

two-hit model of tumorigenesis.29 Indeed, BAP1 SNVs included all kinds of somatic events, 

but mostly mutations leading to premature stop codons and therefore to functional protein 

knockout (Figure S1, Table S3). Hallmark driver mutations in the GNAQ and GNA11 

paralogues, encoding the components of the alpha subunit of the Gq protein heterotrimer, 

were present in 100% of the samples examined. They occurred in a perfectly mutually 

exclusive pattern and involved only four specific missenses: c.626A>T (p.Gln209Leu) [NCBI 

RefSeq: NM_002072.4] (11 samples) and c.626A>C (p.Gln209Pro) [NCBI RefSeq: 

NM_002072.4] (8 samples) in GNAQ, and c.626A>T (p.Gln209Leu) [NCBI RefSeq: 

NM_002067.4] (13 samples) and c.626A>C (p.Gln209Pro) [NCBI RefSeq: NM_002067.4] (1 

sample) in GNA11, affecting the same functional amino acid residue and conferring 

oncogenic potential to this G protein.18,19 Six tumors (18%) had missense mutations in SF3B1 

(Splicing Factor 3B, subunit 1), affecting codon 625 (5 cases) and codon 626 (1 case) (Figure 

S1, Table S3), a previously described hotspot region.21 Finally, 7 other tumors had mutations 

impacting the first 10 codons of EIF1AX (Eukaryotic Translation Initiation Factor 1A, X-

Linked) (Figure S1, Table S3).22 Mutations in SF3B1 and EIF1AX seemed to occur in a 

mutually exclusive pattern and to be enriched classes C and D (p-value=1.6x10-4), with SF3B1 

preferentially mutated in class D. Except for one sample, BAP1 mutations were never 

observed in cases carrying mutations in SF3B1 or EIF1AX (p-value= 1.4x10-5), in agreement 
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with findings from previous literature.23,30 Also, consistent with the fact that all of the 

tumors analyzed harbored variants affecting either GNAQ or GNA11 Gln209, no somatic 

SNVs were observed in PLCB4 or CYSLTR2, two genes that have been found to be mutated in 

a mutually exclusive pattern with respect to GNAQ or GNA11 variants.25,26  

 Five genes (TP53BP1 [MIM: 605230], CSMD1 [MIM: 608397], TTC28 [MIM: 615098], 

DLK2 [MIM: N/A], and KTN1 [MIM: 600381]) harbored somatic missense or truncating 

mutations in at least two samples, across all tumor classes (Table S3). No other non-

synonymous SNVs affecting coding regions of the genome were present in more than two 

samples. TP53BP1 is a partner of the tumor suppressor protein p53, known to play a crucial 

role in maintaining genomic integrity as a mediator and effector of homologous 

recombination in response to double-strand breaks. This protein acts as a molecular scaffold 

that recruits responsive proteins, in order to repair damaged chromatin31 and its depletion 

has been associated with increased cell proliferation.32 CSMD1 (Cub and Sushi Multiple 

Domains-1) is a candidate tumor suppressor gene, the hyper-expression of which increased 

survival in mice with xenografted tumors.33 Loss of CSMD1 was detected in a large set of 

cancers, including head and neck, lung, breast and skin primary tumors,34 and associated 

with high tumor grade in invasive ductal breast carcinoma.35 TTC28 (Tetratricopeptide 

Repeat Domain 28) is a ubiquitous protein, associated with diverse biological functions. Of 

note, TCC28 plays a critical role in the progress of mitosis and cytokinesis during mammalian 

cell cycle and its dysfunction was described as a potential component of tumorigenesis and 

tumor progression.36,37 DLK2 (Delta-Like 2 homolog) is a transmembrane epidermal growth 

factor-like protein. It is highly homologous to DLK1, a protein that was found to be present 

at high levels in gliomas and involved in cell proliferation.38 Similar to DLK1, DLK2 can bind to 

NOTCH1,39 modulating the oncogenic potential of cultured melanoma cells.40 Finally, KTN1 
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(Kinectin 1) is a protein of the endoplasmic reticulum membrane that interacts with 

kinesins.41,42 Its role in cancer may be linked to dysregulation of cytoskeletal activity and 

mitosis. Two of these five genes were previously found to be mutated in UM: a missense in 

TTC28 was detected in one out 35 samples from a WES screen,22 while the cBioPortal 

repository reports a missense mutation in KTN1 in one out of 80 tumors profiled by 

TCGA.43,44 

 Taken together, our clustering analysis indicates that initial events involve GNAQ or 

GNA11 mutations, followed by a major branching determined by the functional loss of BAP1 

and copy gains of chr 8q vs. cases with a relatively normal chromosomal ploidy. These latter 

samples have conversely mutations in EIF1AX or in SF3B1 (classes A and B vs. C and D, 

respectively). In BAP1-negative samples, the long arm of chr 6 could eventually be lost, 

differentiating class B from class A. In BAP1-positive tumors, part of chr 8q could undergo 

amplification, differentiating class D from class C (Figure 2). 

 Aggregate analyses on genetic data showed no significant differences between 

primary (PUM) and metastatic UM (MUM) samples, in terms of number of somatic coding 

SNVs, non-coding SNVs, CNVs, and SVs, indicating that the extent of genomic instability was 

here not associated with metastatic potential (Figure 3B-E). Although singularly none of the 

main somatic drivers (chr 3, 6q, and 8q aneuploidies, as well as SNVs in BAP1, GNAQ, 

GNA11, SF3B1, EIF1AX) were computed as being statistically different, enrichment in PUMs 

vs. MUMs showed very clear association trends (Figure 3A). 

 Remarkably, when considering specific levels of 8q amplification detectable by 

algorithms querying non-coding WGS data for CNVs and aneuploidies, we found a very clear 

association between metastatic potential and 8q ploidy of 5 copies or more (p-value=8.6x10-

4, Figure 3A). In addition, single-copy amplification of 8q (ploidy=3) was indeed associated 
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with primary tumors (p-value=4.7x10-3, Figure 3A). Similarly, when mutational sets defining 

tumor sub-classes were considered, a significant association between sub-class B and 

metastases was identified (Figure 1, p-value=2.0x 10-2). 

 With respect to metastatic samples, the aneuploidies identified correlated well with 

those of 66 liver metastases from UM investigated previously, detecting chr 3 monosomy 

(73%), 8q gain (89%), 6q loss (64%), 1p loss (47%), 8p loss (45%), 1q gain (35%) and 16q loss 

(32%).14 Similarly, the identified SNVs matched those on another study on 5 liver 

metastases.45 Finally, the identification of a SF3B1 mutation in one metastatic sample from 

our series is also in line with late-onset metastasis occurring in individuals with SF3B1 

mutations.23 

 Mutations targeting BAP1 are one of the genetic landmarks of UM20 and were found 

here to be associated with classes A and B (p-value=1.2x10-4), classes that are in fact defined 

mostly by the presence of chr 3 monosomy. To test for functional inactivation of the BAP1 

protein, we assessed its nuclear staining in histological sections of all tumors (Figure 4). 

Twenty of the 33 samples (60%) displayed loss of nuclear localization (Figure 4). Of these, 17 

(85%) presented chr 3 monosomy and a coding SNV (a truncating SNV in 14 cases and a 

missense or an in-frame deletion in 3 cases), accounting for loss of heterozygosity and 

protein delocalization. 

 The number of somatic SNVs involving coding and non-coding regions was strikingly 

low (Figure S2). Globally, the average load of coding mutations was 0.24/Mb (range: 0.08-

0.42/Mb, Table S4), one of the lowest detected so far in tumors. Comparison with other 

cancer types revealed that UM mutational load for coding regions was closer to that of 

pediatric tumors such as rhabdoid tumors [MIM: N/A], medulloblastoma [MIM: 155255], 

neuroblastoma [MIM: N/A], etc.,46 rather than that of adult cancers (Figure S3). Pediatric 
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tumors typically develop over a shorter period than most adult malignancies, frequently 

harbor few driver mutations, and may thereby have fewer sources of heterogeneity, 

facilitating the assessment of both the genetic and epigenetic determinants underlying their 

pathogenesis. Our data seem to suggest that, similarly to pediatric tumors, UM 

development may rely more on epigenetic drivers of transformation and tumor progression, 

rather than the classical accumulation of genetic events observed in the vast majority of 

adult malignancies. 

 The number of non-coding SNVs was also relatively low (736 per tumor on average, 

range: 371-1347) and mostly proportional to the number of coding SNVs (17 per tumor on 

average, range: 7-28) (Figure S2), confirming that, compared to both cutaneous and 

conjunctival melanomas, which also originate from melanocytes, UM follows a different 

oncogenic pathway, characterized by significantly fewer mutations.47,48 In addition, we 

failed to identify any statistically relevant non-coding SNVs for tumor-specific sites that were 

present in four samples or more, suggesting the absence of common regulatory variants in 

the landscape of these tumors, at least in our cohort. 

 Another difference between UM and cutaneous and conjunctival melanomas 

involved its mutational spectrum (Figure 5). Analysis of all coding and non-coding somatic 

single-nucleotide substitutions (SNSs) from our series showed the clear absence of an UV-

induced mutation signature. This particular spectrum results from sunlight-driven formation 

of pyrimidine dimers on the DNA49 and is found in both cutaneous and conjunctival 

melanomas.47,48 Direct analysis of genes known to be involved in cutaneous melanoma, such 

as BRAF [MIM: 164757], NRAS [MIM: 164790], and NF1 [MIM: 162200] revealed no somatic 

mutations in UM, supporting again the notion that uveal and cutaneous melanomas have a 

different molecular etiology.50,51 Conversely, the UM mutational spectrum was remarkably 
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similar across all PUMs and MUMs and resembled that of apparently unrelated tumors, such 

as clear cell renal carcinoma, thyroid tumor, and glioblastoma (Figure 6). Notably, despite a 

different cellular origin, UM shares with these tumors recurrent genetic modifications; BAP1 

mutations and chr 3 monosomy are frequently seen in clear cell renal carcinoma,52 while 

hotspot mutations in the first codons of EIF1AX are recurrent in papillary thyroid 

carcinoma.53 

 Analysis of all specific SNS types along with composition of the flanking bases 

allowed determining specific mutational signatures for UM, according to the classification of 

Alexandrov et al.54 Our samples appeared to be enriched for signatures 12 or 16 (55% of the 

score), signature 1B (25%), and signature 6 (20%) (Figure 5B). Signature 1B corresponds to a 

rather ubiquitous pattern in cancer, resulting from the spontaneous deamination of 5-

methyl-cytosine, which in turn is thought to correlate with the process of aging.54,55 

Conversely, signatures 12/16 and 6 are associated with defects in nucleotide excision repair 

and DNA mismatch repair, respectively. 

 A more global approach, considering the intersection between the SNVs detected in 

our series and the most frequently mutated genes in cancer (TCGA PANCAN list)56 also 

revealed a minimal overlap, limited to BAP1 and SF3B1 (Figure S4). 

 A non-negligible number of structural variants (SVs) such as deletions, duplications, 

inversions, or inter and intra chromosomal rearrangements were also observed (Figure S5). 

Only a few of these events were recurrent, indicating the absence of major common drivers 

constituted by genetic events involving large parts of the genome. Among these, however, 

there were three inter-chromosomal events that were present in at least two individuals 

(Figure 7). Three samples (PUM20, PUM18 and PUM5) had a translocation involving chr 6 

and chr 8 disrupting UBE2W [MIM: 614277] and MYO6 [MIM: 600970] for the 2 first 
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samples, respectively. The third event occurred in intergenic regions. Translocations 

between chr 13 and chr 17 (no genes involved) were also present in MUM9 and PUM5, and 

between chr 3 and chr 12 in PUM17 (no genes involved) and in PUM5 (disrupting KDM2B 

[MIM: 609078]) (Table S5). Although these translocations impacted roughly the same 

genomic areas, highlighting possible hotspot regions in UM genome, they neither targeted 

the same genes nor defined a specific tumor sub-category. Of note, one individual (PUM5) 

appeared to harbor a higher number of interchromosomal events and SVs than the average 

value of the other cases (Figure S5). Notably, this individual was also an outlier of our 

clustering analysis (Figure 1). However, neither the medical history nor tumor pathology 

revealed any uncommon feature, compared to the rest of the cohort. 

 Amplification of chr 8q is a well-known and important feature of UM.17,57,58 Levels of 

chr 8q amplification seem to define prognostic status and metastatic potential in UM and 

differentiate class C from D (Figures 1 and 2). However, the molecular bases for this 

phenomenon are not known. One possible explanation is that the amplification is driven by 

the MYC oncogene [MIM: 190080], which lies in this region.59 By comparing the pattern of 

chr 8q amplification in our samples, we determined the minimal region of overlap, involving 

a 2.3 Mb fragment towards its telomeric site (chr8:126,404,000-128,682,000). 

 Surprisingly, this region was very close to MYC (chr8: 128,748,314-128,753,680) but 

did not include it. Conversely, it harbored 6 other genes (POU5F1B [MIM:615739], FAM84B 

[MIM: 609483], TRIB1 [MIM: 609461], LOC100130231/LINC00861 [MIM: N/A], 

LOC100507056/CCAT1 [MIM: N/A], and LOC727677/CASC8 [MIM: N/A]). The most 

interesting of them was POU5F1B (POU Class 5 Homeobox 1B), a pseudogene of the 

POU5F1/OCT4 family, recently involved in prostatic and gastric cancer.60,61 Real-Time 

quantitative PCR experiments showed that only POU5F1B, TRIB1, LINC00861, and CCAT1 
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were expressed in our UM samples, but no statistically significant correlation between their 

expression levels and 8q amplification or tumor class could be detected. The same held true 

for the MYC transcript, suggesting that none of these genes play a key role in UM 

pathogenesis (Figures S6-S7). 

 By using a WGS-based, untargeted approach to investigate the genetic components 

of UM, we had the unique opportunity of assessing its genomic landscape as a whole, from 

single nucleotide variants to interchromosomal rearrangements, providing the bases for 

future functional studies that go beyond the scope of our analysis. The global picture 

emerging from our work indicates that, genetically, UM is a relatively atypical tumor, mostly 

in virtue of the paucity of somatic events that characterize it. Driver mutations are very few 

and are confined to a relatively low number of genes, such as BAP1, GNAQ and GNA11. 

Other genes, including those that were identified in this study, may have a role in 

tumorigenesis, but they are nonetheless present in a small fraction of the tumors studied. 

Conversely, larger events such as extended copy number and structural variations seem to 

shape  UM’s  genome  in  a  much  more  relevant  way,  possibly  determining  tumor  progression  

and fate. Taken together, our results point to a critical role for non-canonical mechanisms of 

cellular transformation in UM development, where chromosomal rearrangements, silencing 

of chromatin regulators (e.g. BAP1), and non-coding SNVs potentially affecting distal 

regulatory elements may collaborate in the establishment of a permissive oncogenic 

landscape. 
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LEGENDS TO FIGURES 

 

Figure 1. Unsupervised hierarchical clustering and global genetic landscape of all 

tumors analyzed in this study. Samples IDs are indicated on the right. CNV events are 

depicted in blue (copy losses) or in shades of red (copy gains) and ploidy is indicated in the 

legend provided at the top. SNVs in genes found to carry mutations in six or more 

individuals are shown on the left, with mutation classes provided within grey boxes. 

Clustering identifies 4 classes: A, B, C, and D (see text), indicated within the dendrogram. 

 

Figure 2. Inferred somatic events defining tumor classes, as identified by clustering. 

Colors are the same as those shown in Figure 1. All steps determining branching are 

statistically significant. 

 

Figure 3. Genetic features in Primary (PUM) and Metastatic (MUM) tumors. (A) 

Overview of all major somatic events with respect to PUMs and MUMs. Each circle indicates 

a specific genetic event; its center corresponds to the percentage of samples carrying this 

feature in PUMs vs. MUMs, whereas its diameter indicates the total number of such 

samples. Asterisks indicate statistical significance. The grey area depicts the surface of the 

plot for which there is an enrichment in MUMs. (B-E) Box plots of different types of genetic 

alterations, at the genome-wide scale. 

 

Figure 4. Landscape of genetic alterations involving BAP1, and 

immunohistochemistry of BAP1 protein. (A) Samples are ordered with respect to 
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absence/presence of BAP1 nuclear localization, indicating loss or preservation of protein 

function, respectively. In general, loss of BAP1 function correlates with presence of a 

somatic SNV and loss of heterozygosity. (B and C) Representative micrographs of paraffin-

embedded UM samples showing absence and presence of BAP1 protein, respectively. 

Magnification: 252 x. 

 

Figure 5. Mutational signature of our samples, for SNSs, genome-wide. (A) Main 

graph: comparison of mutational load of the UM samples studied with respect to two 

melanomas of the conjunctiva (CM), sequenced and processed according to the same 

methods.48 The number of mutations is radically different in UM vs. CM. Inset: mutational 

spectrum of each UM sample, in percentage, showing a relatively homogeneous spectrum. 

(B) Results of the analysis of mutational events according to the methods and the 

classification proposed by Alexandrov et al.54,55 Three main signatures are detected in our 

samples,  evocative  of  Alexandrov’s signatures 12/16, 1B, and 6. The different peaks indicate 

specific genetic contexts of the altered nucleotide and are ordered according to the original 

article.54 

 

Figure 6. Analysis of the mutational spectrum in our samples vs. other cancer types, 

in coding regions only. (A) The spectrum from UM is dissimilar from those from cutaneous 

and conjunctival melanomas, which are dominated by UV light-induced events (C to T 

transitions) and is conversely closer to that of thyroid and renal papillary cancer. (B) 

Principal component analysis (PCA) of the same data, showing the relatedness of UM with a 

few cancers but again, not with other melanomas. Dimensions of the PCA are indicated by 

the arrowed axes. Primary data other than UM are from previously-published sources.48,62 
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Cancer types: aLung: Lung – adenocarcinoma, scLung: Lung – squamous cell, pRenal: Renal - 

papillary, ccRenal: Renal – clear cell, GBM: Glioblastoma multiforme, AML: Acute myeloid 

leukemia, Cut_mel: Cutaneous melanoma, CM: Conjunctival melanoma. 

 

Figure 7. Circos plot of all somatic interchromosomal events, in all UM samples. Red 

lines indicate events involving the same chromosomal regions in more than two individuals. 
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