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Introduction

Many situations in life require a decision to be made in order to resolve some issue

that has arisen. Such situations are essentially cases where the decision must be

chosen from a set of possible alternatives. For example, having to choose on a

rainy day whether to take an umbrella, an anorak, or perhaps neither; or having

to choose what to order at a restaurant, just the main course or the three course

meal? How about a drink as well? Of course, the choice outcome in any of these

issues depends on the preferences of the individual that this choice concerns. Some

people do not mind getting a little wet if it rains, so perhaps they might opt to

take neither an umbrella nor an anorak with them on a rainy day. Some other

-very weird- people never have dessert, so for them choosing a three course meal

is out of the question.

However, not all decision choices are made by just one person; some issues

concern a group of people. In this case, a suitable “mechanism” must be used that

will take into account the preferences of all members in the group before reaching

a decision. For example, many countries use plurality voting when electing a new

government. This mechanism chooses the party that received the highest number

of votes, or in other words, the most preferred party according to the preferences

of the plurality. As a second example, consider a book club where members of the

club take turns every week in suggesting a book for everyone in the club to read.

This kind of mechanism, where the decision is made by just one member of the

group, but the decision maker alternates every week, is called serial dictatorship.

In this thesis, both cases where the decision is taken either by a single person or

by a group of people are considered. In the first chapter, we study cases where the

issue concerns a single person, henceforth, agent. Specifically, we are interested

in whether the agent’s preferences, according to the choices he makes, should be

considered “rationalizable”. For a brief (and not completely accurate) explanation

of what is meant by the term rationalizability of preferences, consider the following

example. An agent whose preferences are rationalizable has to decide what to

order from a restaurant’s menu. The available choices are hamburger, salad, beer,

v



vi INTRODUCTION

and coffee. The agent decides to order salad and beer; therefore, we can deduce

that he prefers this combination over every other available combination on the

menu (e.g., hamburger and beer or salad and coffee). Nevertheless, just before

placing his order, the waiter informs him of the daily special, steak, which is not

listed in the menu. Perhaps now the agent will change his order to steak and

beer or steak and coffee; after all, neither combination was previously available,

and therefore, such a change would be rational. However, changing his order to

hamburger and beer would not be rational; the combination of hamburger and

beer was also available initially, when the agent chose to order salad and beer, and

we deduced that according to his rationalizable preferences, he prefers salad and

beer over hamburger and beer.

In the second and third chapters, we study cases where the issue concerns

a group of people, henceforth, agents, and a decision mechanism must be im-

plemented in order to consider the preferences of all agents in the group before

reaching a decision. Here, we are interested to find out how this mechanism might

function when certain requirements, henceforth, properties, must be met. For ex-

ample, perhaps it would be useful that all agents declare their true preferences

instead of trying to manipulate (by lying) the decision chosen by the mechanism.

Due to this, we could require that the mechanism does not “reward” liars by

making sure that an agent would always get the same result or a more favor-

able one when telling the truth. Another property of the mechanism could be

that all agents in the group are treated equally, irrespective of gender, race, social

standing, or religious beliefs. Furthermore, in an environment with often-changing

circumstances, a mechanism that would mitigate any positive or negative changes

“fairly” among the group of agents would perhaps be welcome; therefore, the fol-

lowing property would perhaps be in order. Following a positive (negative) change

in the circumstances, all agents get better off (worse off) compared to their initial

situation. However, it is necessary to bear in mind that not all combinations of

properties are always “compatible”. One of the first to point out this incompati-

bility was Kenneth J. Arrow with his famous impossibility theorem that states the

following. In every voting situation with three or more candidates, there exists

no electoral system that can be efficient,1 independent over irrelevant alternatives

1In a typical voting situation, efficiency essentially requires that the elected candidate was
voted for by at least one voter.
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(IIA),2 and be non-dictatorial3 as well (Arrow, 1950).

We proceed by providing a more in-depth summary of each chapter.

Chapter 1: Set and revealed preference axioms for multi-valued choice

The first chapter was written in collaboration with Hans Peters. It is chronologi-

cally the last chapter of this thesis, but is presented first due to its more general

nature of the topic in choice theory, relative to the other two chapters. The main

part of the work in it took place during the six months I spent in Maastricht,

spread over the last three years.

In this chapter, we consider situations where an issue has arisen with a number

of alternative ways to deal with it, and some individual needs to choose one, or

more, of these alternatives in order to deal with this situation. In the sequel, we

refer to all the possible ways to deal with the issue by the term choice set and

to the individual by the term choice correspondence; that is, given a choice set of

alternatives, a choice correspondence will choose a subset of this choice set, the

chosen set.

Specifically, we are interested in choice correspondences satisfying two proper-

ties. First, the property of independence of irrelevant alternatives (IIA), as well

as a weaker version of it, and second, the weak axiom of revealed preference for

sets (WARP)4.

We show the existence of connections between these properties and two partic-

ular collections of choice sets, called weak and strong sets, which in turn partially

or completely determine the choice correspondences satisfying the above indepen-

dence properties. In other words, if we were to refer to the restaurant example

on page v, we find that by knowing what an agent will order at some restaurants,

specifically the ones whose menus are included in weak and strong sets, we are

able to determine what this agent will order at every restaurant, assuming the

way he makes his choices is according to the two aforementioned conditions.

2Loosely speaking, IIA requires that the removal of non-winning candidates from an election
should not affect the result. For example, if in an election between candidates a, b, and c, a is
the winner, then IIA requires that in an election between just candidates a and b, a to be the
winner as well, since the removal of non-winning candidate c is irrelevant.

3If in every voting situation a specific voter can dictate the result, then we say that this voter
is a dictator. An electoral system is non-dictatorial if it does not allow the existence of dictators.

4Consider again the restaurant example on page v. Since salad and beer are chosen initially,
the agent reveals his preference for salad and beer over any other available combination in the
menu (e.g., salad and coffee). WARP requires that at some other choice set, where salad an beer
are available, the agent will not select salad and coffee, and thus reveal that he prefers salad and
coffee over salad and beer.
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Chapter 2: Solidarity for public goods under single-peaked preferences:

Characterizing target set correspondences

The second chapter was written in collaboration with Bettina Klaus and is chrono-

logically the first chapter of this thesis. It has been presented in conferences at Is-

tanbul’s Bilgi University, Budapest’s Corvinus University, Tbilisi State University,

Maastricht University, the University of Zurich, Lund University, the University

of Southern Denmark, and the University of Lausanne. Moreover, a poster of it

has been presented at Grenoble Alps University.

Here, we consider the problem that a city planner might face when having to

choose a group of locations where an identical public good will be provided to

the citizens of the city in question. For example, choosing the locations of public

parking positions, or in other words, choosing the location of a public parking zone.

In addition, the city planner’s choice needs to take into account the preferences

of the citizens, who are the ones to use this parking zone. Loosely speaking, said

preferences are single-peaked.5

Similarly to the first chapter, the city planner making the choice will be re-

ferred to as a choice correspondence and we will be interested that this choice

correspondence satisfies certain properties. However, in contrast with the previ-

ous chapter, these properties are now related with the citizens’ preferences and

moreover, two of them require a notion of solidarity among the citizens. Namely,

the three properties are efficiency,6 population-monotonicity,7 and (a version of)

replacement-dominance,8 with the two latter ones requiring the aforementioned

notion of solidarity.

We show that if efficiency and either population-monotonicity or replacement-

dominance are to be satisfied by a choice correspondence, then this choice cor-

respondence belongs to a particular class of correspondences, that of target set

correspondences. Loosely speaking, this result implies the following. If the city

planner’s choice has to satisfy these properties, then he should first choose alone

5Single peakedness of preferences implies the following. Each citizen has a single most favorite
location (his peak) when parking his car, for example, right outside his home; moreover, if this
location is taken, then he would prefer to park as closely as possible to his most favorite location.

6When a parking zone is chosen, efficiency guarantees that no other parking zone could have
been chosen instead and would have made some citizens better off, and no citizen worse off.

7If following the addition of some new citizens, a parking zone change is in order, then all
citizens, excluding the newcomers, must be affected in the same way; either nobody gets worse
off, or nobody gets better off.

8If following a citizen’s change of preferences (e.g., after moving to a new home), a parking
zone change is in order, then all other citizens must be affected in the same way; either nobody
gets worse off, or nobody gets better off.
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where the parkinoneg zone should be, then ask the citizens about their prefer-

ences, and finally, only change his initial choice if all citizens unanimously agree

with this change.

Chapter 3: On strategy-proofness and single-peakedness: median-

voting over intervals

The third chapter was single-authored and was chronologically the second chapter

of this thesis; it was written under the close supervision and guidance of Bettina

Klaus. It has been presented in conferences at the University of Lausanne, the

University of Zurich, the University of York, Paris Dauphine University, and the

University of Innsbruck.

The problem considered here is in some ways similar to the one considered in

the previous chapter. Specifically, the problem is the following. A city planner has

to choose a set of (tax) policies which will affect all citizens/voters, with the possi-

ble choices spanning from extreme left-wing choice to extreme right-wing choices.

For example, the decision to increase the tax rate of high earners and decrease

that of low earners would be a left-wing policy, while on the other hand, abolishing

health-related taxes all together and having citizens pay for their health insurance

through the private sector would be a right-wing policy. All voters have their

own preferences about policy choices, which they announce to the city planner

by voting. These preferences are again “based on” single-peaked preferences; for

example, if a voter’s most favorite policy (peak) is a left-wing one, then he also

prefers policies closer to his peak over policies further away. Therefore, he would

also prefer central policies over right-wing policies.

Similarly to the previous chapter, we will refer to the city planner using the

term choice correspondence and will be interested that this choice correspondence

satisfies certain properties, all of which related with the citizens’ announced pref-

erences, i.e., the citizens’ votes. To be more precise, the main three properties we

are interested in are strategy-proofness,9 peaks-onliness,10 and anonymity.11

Our two main results are as follows. First, if strategy-proofness and peaks-

onliness are to be satisfied by a choice correspondence, then this choice correspon-

dence belongs to a particular class of correspondences, that of generalized median

correspondences. Second, if anonymity is also to be satisfied, then this choice cor-

9When a voter lies and does not announce his true preferences, the result cannot improve in
his favor. In other words, a voter cannot strategize in order to improve the result in his favor.

10All voters are only allowed to declare, by voting, their most favorite policy. They cannot
also declare their second most favorite, third most favorite, etc.

11All voters have equal rights in the decision, in other words, all voters get one vote each.
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respondence belongs to a sub-class of generalized median correspondences, called

the class of median correspondences. Loosely speaking, the second result implies

the following.12 If during an election, the city planner’s choice has to satisfy these

properties, then he should first stuff the ballot box with a number of votes of his

choice, then ask the citizens to cast their votes, and finally after combining all

stuffed and cast votes, choose the policy favored by the median vote (in a sense,

the central vote).

At first, this seems as an unwanted situation giving the voters no say in the

outcome; however, this is not entirely true. Although a high number of stuffed

votes implies that indeed, voters cannot influence the outcome, a low number of

stuffed votes achieves a different effect. Specifically, depending on how “low” this

number is, the voters might have complete control on the outcome, in the case of

zero stuffed votes, or have some degree of control on the outcome, with this degree

depending on the number of stuffed votes.13

12The first result, which does not include anonymity, is a little more general and due to this,
difficult to explain concisely in an informal way.

13For an example where voters only have some degree of control over the outcome, consider
the following. In many countries, a supermajority of the parliament is required to agree with
proposed constitutional amendments, in order for these to take place. In such cases, the stuffed
votes could be though of as favoring the status-quo, i.e., no change in the constitution.



Chapter 1

Set and revealed preference axioms for

multi-valued choice

Abstract

We consider choice correspondences for arbitrary sets of alternatives, and focus on the

condition of independence of irrelevant alternatives and on a weaker version of it, as well

as on the weak axiom of revealed preference for sets. We establish connections between

these conditions and their relations with collections of choice sets, called weak and strong

sets, that partially or completely determine the choice correspondences satisfying the

above independence properties.

1.1 Introduction

1.1.1 Background

This chapter contributes to a question with a long history. For single-valued choice

functions the condition of Independence of Irrelevant Alternatives (IIA) requires

that if the alternative chosen from a choice set is still available in a subset, then

it should be chosen in that subset. This condition already occurs in Nash (1950)

as condition no. 7 in Nash’s axiomatic bargaining model. For collections of choice

sets that are closed under a nonempty intersection – as is the case in the present

paper – and (single-valued) choice functions IIA is equivalent to the Weak Axiom

of Revealed Preference; the latter requiring the revealed preference relation to

admit no cycles of length two. The question is how to extend the IIA condition

to (multi-valued) choice correspondences.

The probably most obvious extension was also proposed by Nash in an infor-

mal note in 1950 – see Shubik (1982, p. 420): if F is the choice correspondence

choosing a subset of every choice set, X is a choice set, and F (X) has a nonempty

intersection with Y , a subset of X, then F (Y ) should be equal to this intersection.

1



2 CHAPTER 1: PREFERENCE AXIOMS FOR MULTI-VALUED CHOICE

This condition also appears as Postulate 6 in Chernoff (1954) and Condition C4

in Arrow (1959). The most common and obvious interpretation is that the set of

alternatives chosen by a choice correspondence should be viewed as the set of best

alternatives (in some sense or another) among the available ones: that is, each of

these alternatives is also best in any subset of available alternatives to which it

belongs.

A second possible extension would say that in such a situation, F (Y ) should at

least contain the intersection of F (X) and Y . In terms of the interpretation above,

it could be that additional best alternatives become available in the smaller set.

For instance, the first preferred choice of wine from a restaurant’s menu is no longer

available, making the second preferred choice a best alternative (additional to the

still available best menu choices). This condition was first proposed as Postulate 4

in Chernoff (1954), and has consequently been referred to as the Chernoff property

(e.g., Moulin, 1985, 1988). It appears as Property α in Sen (1971).

In a similar vein, a third extension is to require that the intersection of F (X)

and Y should contain F (Y ), hence F (Y ) is a subset of F (X). In other words,

F still chooses among the best elements, but not necessarily all available ones.

Think of choosing a committee within a society: for a subset of the society one

may need to choose a strictly smaller committee, even if more members of the

original committee are still available. Or, in terms of the restaurant’s menu choice,

the lunch menu may be a subset of the dinner menu, but also lunch itself may be

lighter than dinner: one may want to consume wine of just one brand instead of

several, even if more brands are still available. This extension appears as condition

W2 in Schwartz (1976).

In this chapter the focus is on the first and third extensions, to be called IIA

and Weak IIA (WIIA). A still weaker version of the latter condition is the following

(e.g., Fishburn, 1973) if F (X) is contained in Y , then F (Y ) should be contained

in F (X). This condition, studied in Aizerman and Malishevski (1981), is referred

to as the Aizerman condition; it is implied by Condition W3 in Schwartz (1976).

Following a tradition initiated for consumer theory by Samuelson (1938) and

Houthakker (1950), and continued for general choice problems by – among others

– Arrow (1959) and Richter (1966), most of the literature focuses on rationaliz-

ability: when does a choice correspondence always pick the set composed by those

alternatives that are maximal for some binary relation on the set of alternatives?

For instance, Arrow (1959) shows that a choice correspondence is rationalizable

by a complete and transitive binary relation if and only if it satisfies IIA. Sen

(1971) shows that a choice correspondence is rationalizable by a binary relation if
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and only if it satisfies the Chernoff condition and a condition proposed as Prop-

erty γ1 but later also referred to as the Expansion condition (e.g., Moulin, 1985).

Adding to this the condition of Aizerman results in the choice correspondence

being rationalizable by an ordering which is complete and has a transitive strict

part (Schwartz, 1976; Moulin, 1988). Finally, Aizerman and Malishevski (1981)

show that a choice correspondence satisfies both the Chernoff and the Aizerman

condition if and only if it is pseudo-rationalizable by a collection of single-valued,

complete, and transitive orderings; that is, if in each choice set, the choice corre-

spondence picks the maximal elements of all the orderings in this collection.

1.1.2 Our focus

As mentioned, we focus on IIA as initiated by Nash (Shubik, 1982) and considered

by Arrow (1959), as well as on its weaker version, WIIA, appearing as condition

W2 in Schwartz (1976). We assume no structure on the set of alternatives – it can

be any finite or infinite set, and we study IIA and WIIA choice correspondences

with respect to two closely related questions.

The first question is that of rationalizability. This concerns the existence of

a binary relation on the collection of choice sets, thus, sets of alternatives rather

than only single alternatives, which rationalizes a given choice correspondence.

The usual approach in the literature is to consider revealed preference relations on

alternatives instead of sets, with the exception of Brand and Harrenstein (2011).

Specifically, they consider set-versions of Chernoff’s and Expansion conditions 2

and obtain a characterization (their Theorem 2) of ‘set-rationalizable’ choice cor-

respondences. Their set-rationalizability condition is what we call WARP (Weak

Axiom of Revealed Preference). We characterize WARP by a different condition

and show that this condition is indeed equivalent to the condition of Brand and

Harrenstein (2011) – see Lemmas 1.1 and 1.2. We further show that WARP is

implied by WIIA if the choice correspondence F is a projection, i.e., F ◦F = F –

the latter is implied by WARP, as also observed in Brandt and Harrenstein (2011).

In Theorem 1.1 we characterize IIA by WARP combined with another axiom on

the revealed preference relation (‘Preference Axiom’, PA); this is in contrast to the

single-valued choice case, where IIA and WARP are equivalent. Finally, we show

that IIA implies that the revealed preference relation on choice sets is transitive

1Property γ: for all choice sets X and Y , the intersection of F (X) and F (Y ) is contained in
F (X ∪ Y ).

2Note that Brand and Harrenstein (2011) use the nomenclature of Sen (1971), i.e., α- and
γ-properties instead of Chernoff’s and Expansion conditions respectively.
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and therefore, in view of WARP, acyclic.

The second question is that of identifying collections of choice sets that, as

much as possible, determine the choice correspondence satisfying WIIA or IIA.

Given a choice correspondence F , a choice set S is called a ‘weak set’ if, for every

choice set X, it contains F (X) whenever F (X) has a nonempty intersection with

it, and is equal to F (X) whenever S ⊆ X. Our main result here is that if F satisfies

WIIA and is a projection, then these weak sets partition the sets of alternatives

and the restriction of the revealed preference relation to the weak sets is complete

and acyclic (Theorem 1.3). A choice set S is called a ‘strong set’ if F (X) is equal

to the intersection of X and S whenever F (X) has a nonempty intersection with

S. Here, we show that if F satisfies IIA, then these strong sets partition the sets

of alternatives and the restriction of the revealed preference relation to the strong

sets is complete and acyclic (Theorem 1.4). In this case, the strong sets determine

a unique IIA choice correspondence.

In Section 1.2, we introduce the model and the three main conditions on a

choice correspondence that we consider (WARP, WIIA, and IIA), establishing

relations or lack thereof between them. Section 1.3 introduces the collections of

weak sets and strong sets, and establishes some properties of these collections.

In Section 1.4 we derive Theorems 1.3 and 1.4 mentioned above. Section 1.5

concludes with a summary of the results of the paper.

1.2 Model and properties

1.2.1 Model and basic definitions

Let A be a finite or infinite set of alternatives and let A denote the class of its

nonempty subsets, i.e., A = 2A\{∅}. A choice correspondence is a map F : A → A
such that F (X) ⊆ X for every X ∈ A. A choice correspondence F induces an

irreflexive binary relation RF ⊆ A×A by

(X, Y ) ∈ RF ⇔ there exist Z ∈ A with X = F (Z) and Y ⊆ Z

for all distinct X, Y ∈ A. In this case we say that X is revealed preferred to Y by

F and call RF the revealed preference relation of F .

Later on we also use the following definitions and notations. A binary relation

R on a set Ω is transitive if (ω1, ω2), (ω2, ω3) ∈ R implies (ω1, ω3) ∈ R for all

distinct ω1, ω2, ω3 ∈ Ω. The binary relation R has a cycle of length n, where
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n ∈ N \ {1}, if there are ω1, . . . , ωn ∈ Ω such that (ωi, ωi+1) ∈ R for all i ∈
{1, . . . , n− 1} and (ωn, ω1) ∈ R; R is acyclic if it has no cycles of any length.

For a choice correspondence F , we use the notation F n(X) as shorthand for

F ◦ (F ◦ (. . . (F (X)))), that is, the n-fold composition of F with itself.

In the sequel, we denote a generic choice correspondence by F and conse-

quently, its revealed preference relation by RF .

1.2.2 Weak axiom of revealed preference

The following definition is the standard notion of revealed preference adapted to

our model.

Weak axiom of revealed preference (WARP). For all X, Y ∈ A, if (X, Y ) ∈
RF , then (Y,X) 6∈ RF .

In conformity with the literature, in the revealed preference relation, WARP

excludes cycles of length two but not longer cycles (among others, Rose, 1958;

Peters and Wakker, 1994; Bossert and Peters, 2009). For completeness, we pro-

vide the following example, which contains a cycle of length three, but cycles of

arbitrary length can be easily constructed in similar examples.

Example 1.1. Let A = {a, b, c} and define F by

F (X) =



{a, b, c} if X = {a, b, c}

{a} if X ∈ {{a, b}, {a}}

{b} if X ∈ {{b, c}, {b}}

{c} if X ∈ {{a, c}, {c}}.

Since F (a, b, c) = {a, b, c}, it follows that for all X ( {a, b, c}, ({a, b, c}, X) ∈
RF . Moreover, F (a, b) = F (a) = {a} implies that ({a}, {a, b}), ({a}, {b}) ∈
RF , F (b, c) = F (b) = {b} implies that ({b}, {b, c}), ({b}, {c}) ∈ RF , and

finally F (a, c) = F (c) = {c} implies that ({c}, {a, c}), ({c}, {a}) ∈ RF .

Therefore, F satisfies WARP but RF contains a cycle of length three, i.e.,

({a}, {b}), ({b}, {c}), ({c}, {a}) ∈ RF .

The following lemma characterizes WARP.

Lemma 1.1. F satisfies WARP if and only if for all X, Y ∈ A such that Y ⊆ X,

F (X) = F (Y ∪ F (X)).
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Proof. Let F satisfy WARP and let X, Y ∈ A with Y ⊆ X. Suppose that

F (X) 6= F (Y ∪ F (X)). Since F (Y ∪ F (X)) ⊆ X, the definition of RF im-

plies (F (X), F (Y ∪ F (X))) ∈ RF ; and since F (X) ⊆ Y ∪ F (X), we simi-

larly obtain (F (Y ∪ F (X)), F (X)) ∈ RF . This violates WARP, and therefore,

F (X) = F (Y ∪ F (X)).

Next, let for all X ∈ A and all Y ⊆ X, F (X) = F (Y ∪ F (X)). Let distinct

V,W ∈ A such that (V,W ), (W,V ) ∈ RF . We derive a contradiction as follows.

Since (V,W ) ∈ RF , there exists Z ∈ A such that F (Z) = V andW ⊆ Z. Similarly,

since (W,V ) ∈ RF , there exists Z ′ ∈ A, such that F (Z ′) = W and V ⊆ Z ′.

Therefore, W ⊆ Z and V ⊆ Z ′ imply F (Z) = F (W ∪ F (Z)) = F (W ∪ V ) =

F (F (Z ′) ∪ V ) = F (Z ′); thus V = W , a contradiction.

An immediate consequence of Lemma 1.1 is that if F satisfies WARP then it

is a projection, a fact also established in Brand and Harrenstein (2011).

Corollary 1.1. Let F satisfy WARP. Then, for all X ∈ A, F 2(X) = F (X).

Proof. By Lemma 1.1, for all pairs X, Y ∈ A such that Y ⊆ X, F (X) = F (Y ∪
F (X)). Choosing Y = F (X) implies F 2(X) = F (X).

Notice that the reverse is not true, as illustrated in the following example.

Example 1.2. Let A = [0, 1] and define F as follows.

F (X) =

{1} if X = [0, 1]

X otherwise.

Clearly F 2(X) = F (X). Next, consider sets [0, 1] and
[

1
2
, 1
]
. Since

[
1
2
, 1
]
⊆

[0, 1] and F ([0, 1]) = {1},
(
{1} ,

[
1
2
, 1
])
∈ RF ; in addition, since {1} ⊆

[
1
2
, 1
]

and

F
([

1
2
, 1
])

=
[

1
2
, 1
]
,
([

1
2
, 1
]
, {1}

)
∈ RF . Therefore, F violates WARP. Note that a

similar example with a finite A can easily be constructed.

Brand and Harrenstein (2011) use the expression ‘set-rationalizablity’ instead

of WARP and show that this is equivalent to a set-valued version of Chernoff’s

condition, which we now define.

Condition α̂. For all X, Y ∈ A, if F (X ∪Y ) ⊆ X ∩Y , then F (X ∪Y ) = F (X).

It follows that condition α̂ is equivalent to the condition in Lemma 1.1. This

is not hard to show directly, witnessing the following lemma, which together with

Lemma 1.1 provides an alternative proof of Theorem 2 in Brand and Harrenstein

(2011).
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Lemma 1.2. F satisfies condition α̂ if and only if for all X, Y ∈ A such that

Y ⊆ X, F (X) = F (Y ∪ F (X)).

Proof. Let F satisfy condition α̂ and X, Y ∈ A with Y ⊆ X. Let X ′ = X and

Y ′ = Y ∪ F (X). Then F (X ′ ∪ Y ′) = F (X) ⊆ X ′ ∩ Y ′ and condition α̂ imply

F (X ′ ∪ Y ′) = F (Y ′). Therefore, F (X) = F (Y ∪ F (X)).

Next, let X, Y ∈ A with F (X ∪ Y ) ⊆ X ∩ Y . In addition, let X ′ = X ∪ Y
and Y ′ = X \F (X ∪Y ). Then, assuming that for all X, Y ∈ A such that Y ⊆ X,

F (X) = F (Y ∪ F (X)), implies that F (X ∪ Y ) = F (X ′) = F (Y ′ ∪ F (X ′)) =

F ((X \ F (X ∪ Y )) ∪ F (X ∪ Y )) = F (X), where the last equality follows since

F (X ∪ Y ) ⊆ X ∩ Y ⊆ X. Therefore, condition α̂ is satisfied.

1.2.3 Weak independence of irrelevant alternatives

The next property requires, for each set X and for every subset of X that has a

nonempty intersection with F (X), only alternatives from F (X) to be chosen.

Weak independence of irrelevant alternatives (WIIA). For all X, Y ∈ A
such that Y ⊆ X, if F (X) ∩ Y 6= ∅, then F (Y ) ⊆ F (X).

Example 1.3 below shows that WIIA does not imply WARP. The reverse does

not hold either, as shown in Example 1.4 that follows.

Example 1.3. Let A = N and define F by

F (X) =

X if |X| = 1 or X is infinite

X \ {max(X)} if 1 < |X| <∞.

Let Y ⊆ X such that F (X) ∩ Y 6= ∅. If X is infinite, then trivially F (Y ) ⊆
X = F (X). If X is finite and |Y | = 1, then F (Y ) = Y ∩ F (X) = Y . Otherwise,

F (Y ) ⊆ Y ∩ F (X). Hence, F satisfies WIIA. However, let X = {1, 2, 3} and

Y = {1, 2}. Then F (X) = {1, 2} implies ({1, 2}, {1}) ∈ RF , while F (Y ) = {1}
implies ({1}, {1, 2}) ∈ RF . Hence, F does not satisfy WARP. Note that these

statements also hold for finite A = {1, 2, . . . , n} with n ≥ 3.

Example 1.4. Let A = [0, 1] and define F by

F (X) =

X \ {0} if X ⊆ [0, 1] with X ∩ (1
2
, 1] 6= ∅

X otherwise.
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Then F ([0, 1]) = (0, 1] whereas F ([0, 1
2
]) = [0, 1

2
]; hence, F does not satisfy WIIA.

By using Lemma 1.1 it is straightforward that F satisfies WARP. The example

can be easily adapted to a finite A.

Thus, there is no direct logical relation between WIIA and WARP. However,

if F satisfies WIIA then the restriction of RF to singletons has no cycles of length

two. This is not surprising since WIIA reduces to the classical IIA for single-valued

choice correspondences. For completeness, we provide the simple proof. Let rF

denote this restriction, i.e., ({x}, {y}) ∈ rF for distinct x, y ∈ A if there is Z ⊆ A

such that F (Z) = {x} and y ∈ Z.

Lemma 1.3. Let F satisfy WIIA. Then rF has no cycles of length two.

Proof. Let distinct {x}, {y} ∈ A and assume that ({x}, {y}) ∈ rF and ({y}, {x}) ∈
rF to derive a contradiction. Since ({x}, {y}) ∈ rF , there exists X ∈ A such

that F (X) = {x} and y ∈ X. Similarly, there exists Y ∈ A such that x ∈ Y

and F (Y ) = {y}. Since {x, y} ⊆ X and F (X) ∩ {x, y} 6= ∅, WIIA implies

F (x, y) ⊆ F (X) ∩ {x, y} = {x}; hence, F (x, y) = {x}. Similarly, one obtains

F (x, y) = {y}. Since x 6= y this is a contradiction.

If we add the condition that F be a projection, i.e. F 2 = F , then WIIA implies

WARP.

Lemma 1.4. Let F satisfy WIIA and F 2 = F . Then, F satisfies WARP.

Proof. Let X, Y, Z, Z ′ ∈ A such that X, Y ⊆ Z, X, Y ⊆ Z ′, F (Z) = X, and

F (Z ′) = Y . By WIIA we have both F (X ∪ Y ) ⊆ F (Z ′) = Y and F (X ∪ Y ) ⊆
F (Z) = X, so that F (X ∪ Y ) ⊆ X ∩ Y . This implies X ∩ Y = F (Z) ∩ F (Z ′) 6=
∅. Hence, by Lemma 1.11, F (Z) ∪ F (Z ′) = F (F (Z) ∪ F (Z ′)), and therefore

X ∪ Y = F (X ∪ Y ) ⊆ X ∩ Y , which implies X = Y . We conclude that F satisfies

WARP.

The converse of Lemma 1.4 does not hold. If F satisfies WARP then by

Corollary 1.1 it is a projection, but Example 1.4 shows that WIIA does not have

to hold.

The following result shows that if F satisfies WIIA, then so does every n-fold

composition of F with itself. It will be useful later on.

Lemma 1.5. Let F satisfy WIIA and let n ∈ N with n ≥ 2. Then F n satisfies

WIIA.
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Proof. The proof is based on induction: F 1 = F satisfies WIIA, and assume that

F k satisfies WIIA for every k = 2, . . . , n − 1. Let X, Y ∈ A with Y ⊆ X and

F n(X) ∩ Y 6= ∅. We have to show that F n(Y ) ⊆ F n(X).

Note that for every k ∈ {1, . . . , n − 1}, F k(X) ∩ Y 6= ∅ and the induction

assumption imply that F k(Y ) ⊆ F k(X) and thus, that

F `(X) ∩ Fm(Y ) 6= ∅ for all `,m ∈ {1, . . . , n− 1}. (1.1)

We now first prove that

F n(X) ∩ F k(Y ) 6= ∅ for every k = 0, . . . , n− 1 (1.2)

where F 0(Y ) = Y . The proof of (1.2) is by induction. By assumption, F n(X) ∩
F 0(Y ) = F n(X)∩Y 6= ∅. Let 1 ≤ ` ≤ n− 1 and assume that F n(X)∩F k(Y ) 6= ∅
for every k = 1, . . . , ` − 1. We show that F n(X) ∩ F `(Y ) 6= ∅. First, since

∅ 6= F n−1(X)∩F `−1(Y ) ⊆ F n−1(X) by (1.1), and F n(X)∩(F n−1(X)∩F `−1(Y )) =

F n(X)∩F `−1(Y ) 6= ∅ by the induction assumption for this part, WIIA of F implies

F (F n−1(X) ∩ F `−1(Y )) ⊆ F n(X). (1.3)

Second, since ∅ 6= F n−1(X)∩F `−1(Y ) ⊆ F `−1(Y ) by (1.1), and F `(Y )∩(F n−1(X)∩
F `−1(Y )) = F `(Y ) ∩ F n−1(X) 6= ∅ by (1.1), WIIA of F implies

F (F n−1(X) ∩ F `−1(Y )) ⊆ F `(Y ). (1.4)

By (1.3) and (1.4), F n(X) ∩ F `(Y ) 6= ∅, which completes the proof of (1.2).

Now, since F n−1(X) ∩ Y 6= ∅, the assumed WIIA of F n−1 implies F n−1(Y ) ⊆
F n−1(X). Since by (1.2) we have F n(X) ∩ F n−1(Y ) 6= ∅, WIIA of F implies

F n(Y ) ⊆ F n(X). This completes the proof of the lemma.

If A is finite, then there exists n ∈ N such that F ` = F n for all ` ≥ n. In

this case, Lemma 1.5 implies that if F satisfies WIIA, then so does F n. If A is

infinite, such an n does not necessarily exist. However, we may define F∞ by

F∞(X) = ∩n∈NF n(X) for every X ∈ A, assuming that this set is nonempty for

every X ∈ A. The following example shows that this condition is not necessarily

satisfied if F satisfies WIIA.
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Example 1.5. Let A = [0, 1] and for every X ∈ A, let x be the maximal number

in N ∪ {0} such that X ⊆ [0, 1
2x

]. We define F by

F (X) =

X \ ( 1
2x+1 ,

1
2x

] if X \ ( 1
2x+1 ,

1
2x

] 6= ∅

X otherwise.

It is easy to check that F satisfies WIIA. However, ∩n∈NF n(A \ {0}) =

∩n∈N(0, 1
2n

] = ∅.

Remark 1.1. If F satisfies WIIA and F∞ is well defined, then it follows from

Lemma 1.5 that F∞ satisfies WIIA.

1.2.4 Independence of irrelevant alternatives

The next property was first proposed by Nash (cf. Shubik, 1982), and also appears

in Chernoff (1954) and Arrow (1959).

Independence of irrelevant alternatives (IIA). For all X, Y ∈ A such that

Y ⊆ X, if F (X) ∩ Y 6= ∅, then F (Y ) = F (X) ∩ Y .

For single-valued choice, IIA is equivalent to WARP as long as the domain of

choice sets is closed under intersection, more precisely, if every nonempty intersec-

tion is in the domain. In the present context, this is no longer true: IIA implies

WARP, as shown by the lemma below, but not the other way around, as shown

by the example that follows.

Lemma 1.6. Let F satisfy IIA. Then F satisfies WARP.

Proof. Let X, Y ∈ A such that (X, Y ) ∈ RF . Then there is Z ∈ A such that

F (Z) = X and Y ⊆ Z. We have to show that (Y,X) /∈ RF . This is true if

F (V ) = Y for no V ∈ A with X ⊆ V . Now suppose F (V ) = Y for some V ∈ A
with X ⊆ V . If X ⊆ V then by IIA applied to Z ∩V we have both F (Z ∩V ) = X

and F (Z ∩ V ) = Y , an impossibility since X 6= Y . Therefore, X 6⊆ V , which

completes the proof.

Example 1.6. Let A = {a, b, c} and define F by

F (X) =


{a} if X ∈ {{a, b}, {a, c}}

{b} if X = {b, c}

X otherwise.
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It can be easily checked that F satisfies WARP. However, since {a, b} ⊆ {a, b, c}
and {a, b} ∩ F ({a, b, c}) 6= ∅, it follows that F ({a, b}) = {a} violates IIA. By

partitioning a set in three nonempty subsets, the example can be easily adapted

to an infinite A.

In order to obtain a characterization of IIA we introduce the following condition

on the revealed preference relation of a choice correspondence: if X is revealed

preferred to Y , then every subset of X that includes all alternatives in X ∩ Y , is

also revealed preferred to Y .

Preference Axiom (PA) For all distinct X, Y, Z ∈ A such that X ∩ Y ⊆
Z ⊆ X, if (X, Y ) ∈ RF , then (Z, Y ) ∈ RF .

This axiom can be interpreted as expressing that what really makes X (re-

vealed) preferred to Y is the intersection of X and Y . Indeed, the axiom implies

that if X is preferred to Y then X ∩ Y , if nonempty, is preferred to Y .

We have the following characterization of IIA.

Theorem 1.1. F satisfies IIA if and only if it satisfies WARP and PA.

Proof. (only if part) Let F satisfy IIA. Then F satisfies WARP by Lemma 1.6. We

show that F satisfies PA. Let distinct X, Y, Z ∈ A such that X ∩Y ⊆ Z ⊆ X and

(X, Y ) ∈ RF . By IIA of F and (X, Y ) ∈ RF , F (X∪Y ) = X. Since Z∪Y ⊆ X∪Y
and F (X ∪ Y ) ∩ (Z ∪ Y ) = X ∩ (Z ∪ Y ) = (X ∩ Z) ∪ (X ∩ Y ) = Z 6= ∅, IIA of F

implies F (Z ∪ Y ) = Z. Therefore, (Z, Y ) ∈ RF .

(if part) Let F satisfy WARP and PA. We show that F satisfies IIA. Let

X, Y ∈ A with Y ⊆ X and F (X)∩Y 6= ∅. Suppose that F (Y ) 6= F (X)∩Y . Since

F (Y ) ⊆ Y ⊆ X, it follows that (F (X), F (Y )) ∈ RF . In addition, (F (X)∩F (Y )) ⊆
(F (X)∩Y ) ⊆ F (X), so that by PA, (F (X)∩Y, F (Y )) ∈ RF . But also, F (Y ) ⊆ Y

and F (X)∩Y ⊆ Y imply (F (Y ), F (X)∩Y ) ∈ RF . This violates WARP; therefore

F (Y ) = F (X) ∩ Y . Thus, F satisfies IIA.

In Example 1.6, F satisfies WARP but not IIA. Hence it follows from Theorem

1.1 that F does not satisfy PA either. This can also be easily established directly.

E.g., let X = {a, b, c}, Y = {b}, and Z = {a, b}, then (X, Y ) ∈ RF but (Z, Y ) /∈
RF .

The next example shows that PA does not imply IIA or WARP.
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Example 1.7. Let A = {a, b, c, d} and define F by

F (X) =



{a, b} if X = {a, b, c, d}

{a} if X ( {a, b, c, d} and a ∈ X

{b} if X ⊆ {b, c, d} and b ∈ X

{c} if X ⊆ {c, d} and c ∈ X

{d} if X = {d}.

It is straightforward to show that F satisfies PA. Since {a, b} ⊆ {a, b, c, d}, {a, b}∩
F ({a, b, c, d}) 6= ∅, and F ({a, b}) = {a}, it follows that F does not satisfy IIA and

by Theorem 1.1, it also does not satisfy WARP.

In Section 1.2.3 we have already seen that WIIA and WARP are logically

independent. The same is true for WIIA and PA since in Example 1.3, F satisfies

WIIA but not PA. The following example shows that PA does not imply WIIA.

Example 1.8. Let A = {a, b, c} and define F by

F (X) =

{a} if X = A

X otherwise.

In this case, F does not satisfy WIIA since F ({a, b}) = {a, b} 6⊆ {a} = F (A) ∩
{a, b}. To show that F satisfies PA, let X, Y, Z as in the statement of PA and

V ∈ A such that F (V ) = X and Y ⊆ V . If |X| = 1 then either V = X and then

Z = X = Y , a contradiction since Z 6= Y ; or V = A, which implies X = {a} and

therefore Z = {a} = X, so that (Z, Y ) ∈ RF . If |X| = 2, then V = X and Y ⊆ X

with |Y | = 1; this implies Z = X and thus (Z, Y ) ∈ RF .

Theorem 1.2. Let F satisfy IIA. Then RF is transitive and acyclic.

Proof. By Theorem 1.1, F satisfies WARP. It is sufficient to prove that RF is

transitive, since with WARP this implies acyclicity. Let distinct X1, X2, X3 ∈ A
with (X1, X2), (X2, X3) ∈ RF . We prove that (X1, X3) ∈ RF . Let Z = X1 ∪X2 ∪
X3. We consider two cases for F (Z).

If F (Z)∩X3 = ∅ then F (Z) ⊆ X1 ∪X2. If F (Z) 6= X1 then (F (Z), X1) ∈ RF .

On the other hand, since (X1, X2) ∈ RF there is Z1 ∈ A such that F (Z1) = X1

whereas X2 ⊆ Z1; in particular, this implies (X1, F (Z)) ∈ RF , so that WARP is

violated. Hence, in this case, F (Z) = X1 and therefore (X1, X3) ∈ RF .



1.3. WEAK AND STRONG SETS 13

If F (Z)∩X3 6= ∅ then F (X2 ∪X3) = F (Z)∩ (X2 ∪X3) by IIA, hence F (X2 ∪
X3) ∩ X3 6= ∅. This implies (F (X2 ∪ X3), X2) ∈ RF . On the other hand, by a

similar argument as in the first case, (X2, X3) ∈ RF implies (X2, F (X2∪X3)) ∈ RF ,

violating WARP. Hence, in this case, (X1, X3) ∈ RF , which concludes the proof

of the theorem.

For (single-valued) choice functions on a domain that is closed under nonempty

intersection, IIA and WARP are equivalent, but do not necessarily imply acyclic-

ity of the revealed preference relation (e.g., Gale, 1960; Peters and Wakker, 1994).3

In our case, IIA is stronger than WARP (cf. Theorem 1.1), and implies transitivity

and acyclicity of the revealed preference relation.

The converse of Theorem 1.2 does not hold: the revealed preference relation

RF of the choice correspondence F in Example 1.7 is transitive and acyclic, but

F does not satisfy IIA.

1.3 Weak and strong sets

In this section we introduce two collections of choice sets in relation to a given

choice correspondence. We will show, in this section and the next one, that these

collections are relevant for choice correspondences satisfying WIIA and IIA, re-

spectively.

1.3.1 Weak sets

A set S ∈ A is a weak set if the following holds. For all sets where some alternatives

of S are chosen, only alternatives of S are chosen; and in addition, if all alternatives

of S are available, then all alternatives of S are chosen.

Weak sets. S ∈ A is a weak set at F if for all X ∈ A for which F (X) ∩ S 6= ∅,
we have:

(i) F (X) ⊆ S

(ii) if S ⊆ X, then F (X) = S.

The set of weak sets at F is denoted by SF . By RSF = {(X, Y ) ∈ RF | X, Y ∈ SF}
we denote the restriction of RF to SF .

We show below that the elements of SF are pairwise disjoint and then, in

Lemma 1.8 which follows, that RSF behaves well if F satisfies WIIA.

3That is, they do not necessarily imply that F satisfies the so-called Strong Axiom of Revealed
Preference.
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Lemma 1.7. Let distinct S, T ∈ SF . Then, S ∩ T = ∅.

Proof. Let Z = S ∪ T . Without loss of generality assume that F (Z) ∩ S 6= ∅.
Then S ∈ SF and S ⊆ Z imply F (Z) = S. If S∩T 6= ∅, then F (Z)∩T 6= ∅; hence

T ∈ SF and T ⊆ Z imply F (Z) = T = S. This contradicts S 6= T . Consequently,

S ∩ T = ∅.

Lemma 1.8. Let F satisfy WIIA. Then RSF is complete and acyclic.

Proof. Let S, T ∈ SF with S 6= T . By the definition of SF , F (S ∪ T ) ∈ {S, T};
hence, RSF is complete. Without loss of generality assume that F (S ∪ T ) = S.

We show that (T, S) /∈ RSF , which implies that RSF has no cycles of length 2. To

show this, let Z ∈ A with S ∪ T ⊆ Z. If (S ∪ T ) ∩ F (Z) 6= ∅, then by WIIA,

S = F (S ∪T ) ⊆ (S ∪T )∩F (Z). Since S ∈ SF , this implies that F (Z) = S. Since

Z was arbitrary, we have (T, S) /∈ RSF .

In order to show that RSF has also no cycles of length larger than 2, let n ≥ 2

and S0, . . . , Sn ∈ SF with (Si, Si+1) ∈ RSF for each i = 0, . . . , n−1. Since RSF has

no cycles of length 2, it is sufficient to show that (S0, Sn) ∈ RSF . Since Si ∈ SF
for every i = 0, . . . , n, we have F (∪ni=0S

i) = Sj for some j ∈ {0, . . . , n}. If j 6= 0,

then (Sj−1, Sj), (Sj, Sj−1) ∈ RSF , so that we have a cycle of length 2. Hence,

j = 0, which implies in particular (S0, Sn) ∈ RSF .

1.3.2 Strong sets

A set S ∈ A is a strong set (of alternatives) if the following holds. For all sets

where some alternatives of S are chosen, all the available alternatives of S are

chosen, and only these.

Strong sets. S ∈ A is a strong set at F if for all X ∈ A for which F (X)∩S 6= ∅,
we have F (X) = S ∩ X. The set of strong sets induced by F is denoted by S̃F .

By RS̃F = {(X, Y ) ∈ RF | X, Y ∈ S̃F} we denote the restriction of RF to S̃F .

Since, clearly, S̃F ⊆ SF , Lemmas 1.7 and 1.8 also hold for the set of strong

sets. For easy reference we formulate the following lemma.

Lemma 1.9. The elements of S̃F are pairwise disjoint, and RS̃F is complete and

acyclic.
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1.4 Partitions induced by WIIA and IIA

In this section we discuss partitions of the set of alternatives related to WIIA

and IIA of a choice correspondence. These are the sets of weak and strong sets

introduced in the preceding section.

1.4.1 Weak sets and WIIA

Before proceeding with our main result, we first present to lemmas that are used

in its proof. Specifically, given a choice correspondence F , Lemma 1.10 shows

some consequences for sets of choice sets (i.e., some Z ⊆ A) with common chosen

alternatives in all these choice sets, if WIIA or IIA are satisfied by F . Then,

Lemma 1.11 strengthens this result in the case where F 2 = F .

Lemma 1.10. Let F be a choice correspondence and ∅ 6= Z ⊆ A such that

∩Z∈ZF (Z) 6= ∅. Then the following statements hold:

(i) If F satisfies WIIA then ∪Z∈ZF (Z) ⊆ F (∪Z∈ZZ).

(ii) If F satisfies IIA then ∪Z∈ZF (Z) = F (∪Z∈ZZ).

Proof. (i) Let x ∈ ∩Z∈ZF (Z). Since F (∪Z∈ZZ) ⊆ ∪Z∈ZZ, there is Z ′ ∈ Z
such that Z ′ ∩ F (∪Z∈ZZ) 6= ∅, so that F (Z ′) ⊆ F (∪Z∈ZZ) by WIIA. Hence,

x ∈ F (∪Z∈ZZ), so that Z ′ ∩ F (∪Z∈ZZ) 6= ∅ for all Z ′ ∈ Z, and hence F (Z ′) ⊆
F (∪Z∈ZZ) for all Z ′ ∈ Z by WIIA. This proves part (i).

(ii) Let F satisfy IIA. Using similar arguments as in part (i) now implies that

F (Z ′) = F (∪Z∈ZZ) ∩ Z ′ for all Z ′ ∈ Z by IIA. This proves part (ii).

Lemma 1.11. Let F be a choice correspondence satisfying WIIA and F 2 = F .

Let ∅ 6= Z ⊆ A such that ∩Z∈ZF (Z) 6= ∅. Then ∪Z∈ZF (Z) = F (∪Z∈ZF (Z)).

Proof. Let x ∈ ∩Z∈ZF (Z). We first show that x ∈ F (∪Z∈ZF (Z)). Since

F (∪Z∈ZF (Z)) ⊆ ∪Z∈ZF (Z), there is a Z ′ ∈ Z such that F (Z ′)∩F (∪Z∈ZF (Z)) 6=
∅. Then WIIA and F 2 = F imply x ∈ F (Z ′) = F 2(Z ′) ⊆ F (∪Z∈ZF (Z)).

Since, thus, x ∈ F (∪Z∈ZF (Z)) it follows that F (Z ′) ∩ F (∪Z∈ZF (Z)) 6= ∅ for

all Z ′ ∈ Z and hence by WIIA and F 2 = F that F (Z ′) = F 2(Z ′) ⊆ F (∪Z∈ZF (Z))

for all Z ′ ∈ Z. Hence, ∪Z∈ZF (Z) ⊆ F (∪Z∈ZF (Z)).

Our main result follows.

Theorem 1.3. Let F satisfy WIIA and let F = F 2. Then SF is a partition of A

and RSF is complete and acyclic.
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Proof. Let x ∈ A. In view of Lemmas 1.7 and 1.8 we only still have to prove

that there is an S ∈ SF such that x ∈ S. Define Z = {Z ∈ A | x ∈ F (Z)} and

S = ∪Z∈ZF (Z). It is sufficient to prove that S ∈ SF . To this end, let X ∈ A such

that F (X) ∩ S 6= ∅. This implies, in particular, that there is Z ′ ∈ Z such that

F (X)∩F (Z ′) 6= ∅. By Lemma 1.10(i) we obtain F (X)∪F (Z ′) ⊆ F (X∪Z ′), which

implies x ∈ F (X ∪Z ′) and therefore X ∪Z ′ ∈ Z. Hence F (X) ⊆ F (X ∪Z ′) ⊆ S.

Finally, assume additionally that S ⊆ X. We show that F (X) = S, which then

completes the proof. By Lemma 1.11, S = ∪Z∈ZF (Z) = F (∪Z∈ZF (Z)) = F (S).

Since S ⊆ X and F (X) ∩ S 6= ∅, WIIA implies F (S) ⊆ F (X) and therefore

S ⊆ F (X). Together with F (X) ⊆ S, this implies F (X) = S.

Theorem 1.3 thus states that a WIIA choice correspondence that is, moreover,

a projection, induces a partition of the set of alternatives such that the alternatives

assigned to every choice set lie in exactly one element of this partition. Moreover,

if the choice set contains that partition element, then that element is assigned

completely.

However, the converse of this result does not hold. Example 1.10 exhibits a

projection F , where SF is a partition of A and RSF is complete and acyclic, that

violates WIIA.

Two particular applications that follows from Theorem 1.3 are collected in the

following corollary.

Corollary 1.2. Let F satisfy WIIA.

(i) If A is finite and m = |A| − 1, then SFm is a partition of A and RSFm is

complete and acyclic.

(ii) If F∞ is well-defined and F∞ = F∞ ◦ F∞, then SF∞ is a partition of A

and RSF∞ is complete and acyclic.

Proof. Statement (i) follows from Lemma 1.5 and Theorem 1.3. Statement (ii)

follows from Remark 1.1 and Theorem 1.3.

The condition in Corollary 1.2(ii) that F∞ is a projection is not redundant as

is illustrated by the following example.

Example 1.9. Let A = {−1, 0} ∪ { 1
2n
| n ∈ N}. Define F by

F (X) =

X \ {max{x : x ∈ X}} if |X| > 1

X otherwise.
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Then F∞ is well-defined, and both F and F∞ satisfy WIIA. Since F∞(A) =

{−1, 0} and F∞({−1, 0}) = {−1}, we have F∞ ◦ F∞(A) = {−1} 6= F∞(A).

Hence, F∞ ◦ F∞ 6= F∞.

The following lemma concludes our study of WIIA in this chapter.

Lemma 1.12.

(i) For finite A, let F be a projection and satisfy WIIA, S0 = ∅, and Si =

F (A \ ∪i−1
k=0Sk). Then, SF = {S1, . . . , S`} and (Sj, Si) ∈ RSF whenever j < i.

(ii) For general A, let T be a partition of A completely and acyclically ordered

by R, and suppose moreover that for every X ∈ A, the collection {S ∈ T | S∩X 6=
∅} has a maximal element SX according to R. Then, there exists a (not necessarily

unique) projection F satisfying WIIA, where SF = T and RSF = R.

Proof. We prove statement (i) as follows: we first propose a partition T of A, then

we show that SF = T , and finally we show that RSF is complete and acyclic. The

proof of statement (ii) is much simpler.

(i) Since A is finite and for all X ∈ A, F (X) ⊆ X and F (X) 6= ∅, there exists

a (finite) integer `, where S` = F (A\∪`−1
k=0Sk) = A\∪`−1

k=0Sk. Let T = {S1, . . . , S`};
it follows that T partitions A.

Next, since T partitions A, for all X ∈ A, there exists k̂ ∈ {1, . . . , `} such that

X ⊆ A \ ∪k̂−1
k=0Sk and X ∩ Sk̂ 6= ∅; hence, WIIA implies F (X) ⊆ Sk̂. Moreover,

notice that F being a projection implies F (Sk̂) = Sk̂; hence, if in addition Sk̂ ⊆ X,

then it follows by WIIA that F (X) = Sk̂. Therefore, SF = T .

Finally, since j < i ≤ ` implies that Sj = F (A \ ∪j−1
k=0Sk) and Si ⊆ A \ ∪i−1

k=0Sk,

it follows that (Sj, Si) ∈ RF which completes the proof.

(ii) Define F such that for all X ∈ A, F (X) = X ∩ SX . It is easy to verify

that F is a projection and satisfies WIIA (in fact it satisfies IIA). Moreover, it is

clear that SF = T and RSF = R.

1.4.2 Strong sets and IIA

The analogue of Theorem 1.3 is the following.

Theorem 1.4. Let F satisfy IIA. Then S̃F is a partition of A and RS̃F is complete

and acyclic.

Proof. Let x ∈ A. In view of Lemma 1.9 we only still have to prove that there is

an S ∈ S̃F such that x ∈ S. Define Z = {Z ∈ A | x ∈ F (Z)} and S = F (∪Z∈ZZ).

By Lemma 1.10(ii) we have S = ∪Z∈ZF (Z) 3 x, so that it is sufficient to prove
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that S ∈ S̃F . To this end, let X ∈ A such that F (X)∩ S 6= ∅, then it is sufficient

to prove that F (X) = S ∩X.

Since F (X)∩S 6= ∅, Lemma 1.10(ii) implies F (X)∪S = F (X)∪F (∪Z∈ZZ) =

F (X ∪ (∪Z∈ZZ)). In particular, this implies that F (X ∪ (∪Z∈ZZ)) ∩ X 6= ∅
so that by IIA we obtain F (X) = F (X ∪ (∪Z∈ZZ)) ∩ X. Thus, it follows that

F (X) = (F (X) ∪ S) ∩X = F (X) ∪ (S ∩X). Hence, F (X) ⊇ S ∩X. Therefore,

it is sufficient to prove that F (X) ⊆ S ∩X.

By Lemma 1.10(ii), F (X) ∩ S 6= ∅ implies F (X) ∩ (∪Z∈ZF (Z)) 6= ∅. Hence,

for some Z ′ ∈ Z, F (X) ∩ F (Z ′) 6= ∅. Thus, by Lemma 1.10(ii), F (X ∪ Z ′) =

F (X) ∪ F (Z ′). It follows that x ∈ F (X ∪ Z ′) and thus, X ∪ Z ′ ∈ Z. In addition,

since S = ∪Z∈ZF (Z), F (X ∪ Z ′) ⊆ S, and hence, F (X) ∪ F (Z ′) ⊆ S. Therefore,

F (X) ⊆ S and trivially, F (X) ⊆ S ∩X.

Remark 1.2. For finite A, if F satisfies IIA, then the set of strong sets S̃F can

be computed analogously as in Lemma 1.12(i). Conversely, for general A, let T
be a partition of A completely and acyclically ordered by R. Suppose moreover

that for every X ∈ A, the collection {S ∈ T | S ∩X 6= ∅} has a maximal element

SX according to R. Then, it is easy to verify that F (X) = X ∩ SX defines an

IIA choice correspondence with S̃F = T as the set of strong sets with ordering

RS̃F = R. The uniqueness of F can be shown easily by contradiction: assuming

that for some Y ∈ A, F (Y ) 6= Y ∩ SY , either implies that F violates IIA, or that

F (SY ) 6= SY and thus that SY 6∈ S̃F .

The logical converses of Theorems 1.3 and 1.4 do not hold. The following

example describes a projection F of which the sets of weak and strong sets coincide,

are a partition of A, and are completely and acyclically ordered by RF , but which

does not satisfy WIIA.

Example 1.10. Let F (A) ( A and for all X ∈ A define F by

F (X) =


F (A) if F (A) ⊆ X

X if X ⊆ F (A)

X \ F (A) otherwise.

It is straightforward to verify that F is a projection and SF = S̃F = {F (A), A \
F (A)}, which is a partition of A. Also, RSF = {(F (A), A \ F (A))} (in fact, it is

not difficult to show that F satisfies WARP). Let X, Y ∈ A such that F (A) ⊆ X,

Y ⊆ X, Y 6⊆ F (A), F (A) 6⊆ Y , and Y ∩ F (A) 6= ∅. Then F (X) = F (A) but

F (Y ) = Y \ F (A) 6⊆ Y ∩ F (A) = Y ∩ F (X). Hence, F does not satisfy WIIA.
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1.5 Summary

In this chapter we have established connections between the conditions of WARP,

IIA, and WIIA for choice correspondences and their relations with the collections

of weak and strong sets. The main results are summarized in Table 1.1 below.

WARP
Corollary 1.1

=⇒ F 2 = F

WIIA & F2 = F v
Lemma 1.4

=⇒ WARP

Theorem 1.3
=⇒ SF is a partition, RSF is complete and acyclic

IIA
Theorem 1.1⇐⇒ WARP & PA

Theorem 1.2
=⇒ RF is transitive and acyclic

Table 1.1: Summary of main results
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Chapter 2

Solidarity for public goods under single-

peaked preferences: Characterizing tar-

get set correspondences

Abstract

We consider the problem of choosing a set of locations of a public good on the real line

R. Similarly to Klaus and Storcken (2002), we ordinally extend the agents’ preferences

over compact subsets of R, and extend the results of Ching and Thomson (1996), Vohra

(1999), and Klaus (2001) to choice correspondences. Specifically, we show that efficiency

and either population-monotonicity or one-sided replacement-dominance characterize

the class of target set correspondences on the domains of single-peaked preferences and

symmetric single-peaked preferences.

2.1 Introduction

We study the social choice problem where a non-empty and compact set (of points)

is chosen on the real line R. We consider this (chosen) set to represent a public

good such that each point in the set represents an option for the public good

together with its location. We assume that agents have single-peaked preferences,

that is, an agent’s welfare is strictly increasing up to a certain point, his “peak”,

and is strictly decreasing beyond this point. Given a non-empty and compact set

(of points) that represents the public good’s options and their locations, an agent

-although in good knowledge of all options and their respective locations- is unable

to compute his chance of obtaining the public good at a particular location, e.g., in

the case of parking spaces along a street, an agent knows that he will (eventually)

find a parking spot somewhere along the street but he does not know where this

will be. According to the literature, we should say that the agent needs to make

a decision under ignorance (Peterson, 2009, p. 40). We therefore assume that

21
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agents, when comparing sets, only consider their best (most favorite) point(s) and

their worst (least favorite) point(s) in each set. Finally, we assume that the set

has adequate capacity to accommodate all agents, that is, all agents have access

to the public good but possibly at different locations.

More specifically, we look into the situation where the social planner wishes to

make a choice by providing the public good in a way that is efficient, according

to the agents’ preferences, and that satisfies some notion of solidarity between

agents towards changes in circumstances. Loosely speaking, solidarity requires

that all agents not responsible for the change should be affected in the same

direction. The changes in circumstances we study in this chapter are changes in the

agents’ population, by considering the property of population-monotonicity, and

changes in some agents’ preferences, by considering the property of replacement-

dominance. Population-monotonicity, introduced in the context of bargaining

(Thomson, 1983b,a), applies to a model with a variable population of agents and

requires that if additional agents join a population, then the agents who were

initially present should all be made at least as well off, as they were initially, or

they should all be made at most as well off. Replacement-dominance, introduced

in the context of quasi-linear binary public decision (Moulin, 1987), applies to a

model with a fixed population of agents and requires that if the preferences of an

agent change, then the other agents whose preferences remained unchanged should

all be made at least as well off, as they were initially, or they should all be made

at most as well off.

Further to the parking zone example, already briefly mentioned and further

explained in Section 3.2, another example of the described situation could be the

following. A social planner drafts an “if-needed” list of candidate locations to build

a public hospital according to the agents’ preferences. She does so in an effort to

narrow down future construction scenarios while at the same time respecting (in an

efficient sense) the agents’ preferences and adhering to some notion of solidarity,

as described above. Then, if at some future time the need to build a hospital

materializes, each location in this list is scrutinized and one of them is chosen for

the hospital to be built at, with this final verdict assumed unpredictable at the

time when the list is drafted.

Many more social choice problems can be phrased as problems of providing a

public good by choosing the location of it on the real line R or an interval of it, or

more generally, on a tree network,1 when agents have single-peaked preferences.

In these types of problems, it is very natural for changes in the population (e.g.,

1A tree network is a connected graph that contains no cycles.
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through a change in the birth or migration rate) or changes in the agents’ prefer-

ences (e.g., through the influence of public media or social networks) to arise.

Hence, the properties of population-monotonicity and replacement-dominance

have been studied, together or individually, in a variety of contexts. For the special

case where the tree network is a closed interval, the problem coincides with the

problem of providing a public good by choosing its level when agents have single-

peaked preferences (Moulin, 1980). Apart from the provision of public parking

or the provision of a hospital by choosing an “if-needed” list of locations, further

examples of providing a public good in one or more locations include the provision

of (one or more) schools, parks, or libraries on a tree network that represents an

infrastructure, e.g., the network of roads in a neighborhood.

For choice functions that assign a public good on an interval, or on a

tree network, the solidarity properties population-monotonicity and replacement-

dominance, have been considered. Specifically, for the location problem on

an interval (on a tree network), it was shown that efficiency and population-

monotonicity characterize the class of “target point functions” on the domain

of single-peaked preferences (Thomson, 1993; Ching and Thomson, 1996).2 and

for constant sets of agents efficiency and replacement-dominance characterize the

class of “target point functions” on the domains of single-peaked preferences and

symmetric single-peaked preferences (Vohra, 1999). Moreover, it turns out that

efficiency and population-monotonicity imply replacement-dominance and also,

that the former characterization also holds on the domain of symmetric single-

peaked preferences and on tree networks (Klaus, 2001). In addition, both afore-

mentioned characterizations hold under much looser assumptions on the set of

locations (alternatives) and the domain of preferences (Gordon, 2007a).3 Finally,

if the set of admissible preferences is constrained on attribute-based preference

domains,4 efficiency and either one of the two solidarity properties are only com-

patible on discrete trees, where equivalent characterizations are obtained (Gordon,

2015).

For the location problem on an interval, if the property of replacement-

2Each target point function is determined by its target point: if the target point is efficient, it
is chosen; if it is not efficient, the closest efficient point is chosen. Such functions are sometimes
called status quo rules or status quo solutions.

3The critical assumptions are: (i) the set of alternatives is fixed, (ii) the agents’ preferences
are defined over all alternatives, and (iii) the domain of preferences is common to all agents.

4Given a finite set of alternatives A, the non-empty and finite family of subsets H ⊆ 2A is an
attribute space if [for each attribute H ∈ H, H 6= ∅ and the complement HC ∈ H] and [for each
pair x, y ∈ A with x 6= y, there exists H ∈ H such that x ∈ H and y 6∈ H].
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dominance is weakened to ε-replacement-dominance5 the characterization of tar-

get point functions still holds for the domain of single-peaked preferences (Harless,

2015a). However, for the location problem on a circle when a constant set of agents

exists, no choice function satisfies efficiency and either replacement-dominance or

population-monotonicity on the domain of symmetric single-peaked preferences

(Gordon, 2007b).

Regarding choice correspondences, the case of providing a public good at ex-

actly two locations, when one or both of the aforementioned solidarity properties

are being considered, has been studied under different settings. On the domain

of single-peaked preferences and if the agents compare pairs of locations using

the max-extension,6 the following holds. For an interval in R and a constant

set of agents, the class of choice functions satisfying efficiency and replacement-

dominance are the “left-peaks choice function” and the “right-peaks choice func-

tion”7 (Miyagawa, 2001). However, if this model is extended to trees, then no

choice function satisfies efficiency and replacement-dominance on the symmetric

single-peaked domain (Umezawa, 2012).

For the problem of providing a public good at exactly two locations on an

interval, on the domain of single-peaked preferences and if agents compare pairs

of locations using the leximin-extension,8 the following two results have been ob-

tained that consider population-monotonicity or replacement-dominance. First,

for a constant set of agents the class of choice functions satisfying efficiency,

anonymity, and population-monotonicity is the class of “single-plateaued pref-

erence choice functions”9 (Ehlers, 2003); and second, in the same setting, the

class of choice functions satisfying efficiency and replacement-dominance is the

class of “single-peaked preference choice functions”10 (Ehlers, 2002).

5Agents’ solidarity is only required if the change in an agent’s preferences are below a certain
threshold.

6Under the max-extension, an agent prefers set X to set Y if and only if he prefers his best
point(s) in set X to his best point(s) in set Y .

7The left (right) peaks choice function chooses the two unique left-most (right-most) peaks.
8Under the leximin-extension, in the case of sets containing exactly two points, an agent

prefers set X to set Y if and only if he either [prefers his best point(s) in set X to his best
point(s) in set Y ] or [he is indifferent between his best point in set X and his best point in set
Y and prefers his second best point in set X to his second best point in set Y ].

9Each single-plateaued preference choice function is determined by fixed single-plateaued
preferences R and plateau [

¯
r, r̄]: if all the agents’ peaks lie outside of [

¯
r, r̄], then loosely speaking,

the best of the agents’ peaks and its indifferent point are chosen (according to R); otherwise,
the two locations in the convex hull of the agents’ peaks lying closest to

¯
r and r̄ respectively are

chosen.
10Each single-peaked preference choice function is essentially a single-plateaued preference

choice function determined by a fixed single-plateaued preference relation R with the plateau
being a point, i.e.,

¯
r = r̄.
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In the setting of preference aggregation problems, where agents strictly rank

a finite set of alternatives and a (not necessarily strict) social ranking over the

alternatives must be chosen, the aforementioned solidarity properties have also

been studied. It is shown that on the domain of strict rankings, efficiency and

population-monotonicity characterize the class of “strict status-quo functions”11

(Bossert and Sprumont, 2014). Moreover, in this result, population-monotonicity

can be substituted with adjacent replacement-dominance.12 Furthermore, if the

domain is enlarged to also include weak rankings, efficiency and either population-

monotonicity or adjacent replacement-dominance characterize the class of “status-

quo functions”13 (Harless, 2016).

Finally, in the binary social choice model (i.e., when there are exactly two

alternatives to choose from) and if agents can be indifferent between the two

alternatives, a choice function satisfies replacement-dominance or population-

monotonicity if and only if it is a “generalized mixed-consensus rule”14 (Harless,

2015b).

All the above mentioned work analyzes solidarity properties where at each

preference profile, either at most two alternatives are chosen or a ranking over

the alternatives is chosen. In this chapter we study a class of problems where

more than two alternatives might be chosen, which are viewed as locations to

provide a public good. This has been considered in a median voter context where

the standard choice function setup is extended to choice correspondences since

for an even number of agents or voters, a set of median voter locations exists,

hence choosing the median implies choosing a set of median points (Klaus and

Storcken, 2002). To capture the full spirit of this median voter result, Klaus and

Storcken (2002) considered choice correspondences. Our motivation for extending

11Each strict status-quo function is determined by a strict ranking R over the alternatives and
reaches a unique efficient strict ranking as follows: beginning from R it reverses the order of an
adjacently ranked pair of alternatives if all agents prefer the reverse to the initial ranking of the
pair.

12Adjacent replacement-dominance is weaker than replacement-dominance: solidarity is only
required when an agent reverses a single pair of adjacently ordered alternatives.

13Each status-quo function is determined by a ranking R̄ over the alternatives and reaches
a unique efficient ranking as follows: beginning from R̄ it reverses the order of an adjacently
ranked pair of single alternatives if all agents prefer the reverse to the initial ranking of the
pair. Moreover, it “creates” order in an indifference class (of alternatives) if all agents prefer
the alternative moved up in the order to the one (or more) alternatives moved down. Reversals
in the order between a single alternative and an indifference class or between two indifference
classes occur in a similar way.

14Each generalized mixed-consensus rule chooses for each profile either alternative a or alter-
native b. The only further requirement concerns cases where at least one agent prefers a over b
and at least one agent prefers b over a; specifically, either a is selected in all such cases or b is
selected in all such cases.
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choice from one or two locations to a set of locations is that we study situations

in which the public good is usually provided through “larger” sets of options, e.g.,

the assignment of neighborhood parking spots along a street.

On the domain of single-peaked preferences as well as the smaller domain

of symmetric single-peaked preferences, we show that the class of choice corre-

spondences satisfying efficiency and either one-sided replacement-dominance15 or

population-monotonicity, is the class of target set correspondences (Theorems 2.1

and 2.2). Each target set correspondence is determined by a target set [a, b]: if

this set is efficient, it is chosen; if it is not efficient, then its largest efficient subset

is chosen, if such a subset exists; otherwise, the closest efficient point to the target

set is chosen. We also show that efficiency and replacement-dominance character-

ize the sub-class of target set correspondences where a = b, i.e., we obtain the class

of target point functions (Corollary 2.3). Hence, we obtain corresponding results

with the literature (Thomson, 1993; Ching and Thomson, 1996; Vohra, 1999).

Our results are parallel to the case where the public good is provided via a

lottery over locations on an interval, and probabilistic target choice functions

are characterized on the basis of efficiency and either one-sided replacement-

dominance or population-monotonicity (Ehlers and Klaus, 2001).

The chapter proceeds as follows. Section 3.2 explains the model and states

some preliminary results. Section 2.3 contains the definition of target set corre-

spondences. Section 2.4 contains the solidarity properties and further preliminary

results. Section 2.5 presents characterizations of target set correspondences.

2.2 The model

Denote the set of natural numbers by N. There is a grand population of “potential”

agents, indexed by P ⊆ N, where P contains at least 3 agents. We denote the class

of non-empty and finite subsets of P by P . A set of agents N ∈ P is called a

population.

Each agent i ∈ P is equipped with preferences Ri, defined on the real line

R, that are complete, transitive, and reflexive. As usual, x Ri y is interpreted

as “x is at least as desirable as y”, x Pi y as “x is preferred to y”, and x Ii y

as “x is indifferent to y”. Moreover, for preferences Ri there exists a number

p(Ri) ∈ R, called the peak (level) of agent i, with the following property: for each

15One-sided replacement-dominance is weaker than replacement-dominance: solidarity is not
required when the preferences of the agent with the unique smallest peak are changed such that
he becomes the agent with the unique largest peak, and vice-versa.
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pair x, y ∈ R such that either y < x ≤ p(Ri), or y > x ≥ p(Ri), we have x Pi y.

We call such preferences single-peaked. We denote the domain of all single-peaked

preferences on R by R. Preferences Ri are symmetric if for each pair x, y ∈ R,

|x − p(Ri)| = |y − p(Ri)| implies x Ii y. We denote the domain of all symmetric

single-peaked preferences on R by S.

For each population N ∈ P , we denote the set of (preference) profiles R =

(Ri)i∈N where for each i ∈ N , Ri ∈ R, by RN . Similarly, we denote the set of

profiles R = (Ri)i∈N , where for each i ∈ N , Ri ∈ S by SN . For each pair of

populations N,M ∈ P , with N ⊆ M , we denote the restriction (Ri)i∈N ∈ RN

of profile R ∈ RM to population N by RN . Given profile R ∈ RN , for each

pair i, j ∈ N we also use the notation R−i instead of RN\{i} and R−i,j instead of

RN\{i,j}.

In the sequel, all notation and definitions refer to single-peaked preferences but

also apply to symmetric single-peaked preferences.

Given N ∈ P and R ∈ RN , we denote the (set of) peaks in R as p(R) =

{p(Ri)}i∈N . Let the smallest peak in R be
¯
p(R) ≡ min {p(Ri)}i∈N and the largest

peak in R be p̄(R) ≡ max {p(Ri)}i∈N . Let the convex hull of the peaks in R be

Conv(p(R)) ≡ [
¯
p(R), p̄(R)].

Denote the class of non-empty and compact subsets of R by C.16 Given a set

X ∈ C, let the minimum (point) of X be
¯
X ≡ minX and the maximum (point)

of X be X̄ ≡ maxX. Given a set X ∈ C and preferences Ri ∈ R, let the set

of most preferred point(s) or best point(s) of agent i in set X be bX(Ri) ≡ {x ∈
X : for each y ∈ X, x Ri y}. Similarly, let the set of least preferred point(s) or

worst point(s) of agent i in set X be wX(Ri) ≡ {x ∈ X : for each y ∈ X, y Ri x}.
Note that by single-peakedness the set bX(Ri) might contain two elements (when

agent i’s peak is not included in set X); in this case, agent i is indifferent between

these two elements. Similarly, wX(Ri) ⊆ {
¯
X, X̄} and in the case where wX(Ri) =

{
¯
X, X̄} and

¯
X 6= X̄, agent i is again indifferent between these two elements.

Hence, with some abuse of notation, we treat sets bX(Ri) and wX(Ri) as if they

are points and for each x ∈ X, we write bX(Ri)Ri x Ri wX(Ri).

We will consider choice correspondences that assign outcomes in C with the

interpretation that any agent “knows the set of possible outcomes . . ., but has

no information about the probabilities of those outcomes or about their likelihood

ranking” (Bossert et al., 2000, p. 295). For a survey of criteria and methods

for ranking subsets of a set of outcomes under complete uncertainty we refer to

16As discussed in Remark 2.6, the requirement for sets in C to be compact is without loss of
generality.
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Barberà et al. (2004, Section 3).

Before describing the extension of preferences over sets that we use, we first

introduce the properties of simple-monotonicity and independence that charac-

terize a small class of preference extensions over sets, albeit for a slightly different

model than ours (Bossert et al., 2000, Theorem 1). We first illustrate via two

examples why these properties are reasonable to assume in our model. Then, we

present the characterization result and finally, we discuss its consequences for our

model.

Note that below, we denote preferences defined over C by RCi (if x Pi y, then

{x} P Ci {y}).

Simple-monotonicity. Let x, y ∈ R. If x Pi y, then {x} P Ci {x, y} P Ci {y}.

Independence. Let X, Y ∈ C and z ∈ R such that z 6∈ X ∪ Y . If X P Ci Y , then

[X ∪ {z}]RCi [Y ∪ {z}].

Both examples that follow pertain to a linear city whose residents own one car

each and have single-peaked preferences over where to park.

Example 2.1 (Simple-monotonicity). All public parking is located in two

(parking) garages at x, y ∈ R, with x 6= y, that we simply refer to as zone x

and y. Neither garage’s capacity can accommodate all residents but the joint ca-

pacity is sufficient. Initially, a one-zone scheme is in place and all residents are

assigned to either zone x or zone y: residents assigned to zone x (zone y) are only

allowed to park at garage x (y), which has the capacity to accommodate them.

Later, a two-zone scheme is adopted: each resident can use either one of the two

garages. Consider a resident i of zone x who prefers x to y. Under the one-zone

scheme he always parks at x, while under the two-zone scheme he sometimes parks

at y (whenever x is full). We expect resident i to be worse off under the two-zone

scheme, that is, if x Pi y, then {x} P Ci {x, y} P Ci {y} and simple-monotonicity

holds.

Example 2.2 (Independence). Two single-zone street parking schemes, X ⊂ R
and Y ⊂ R, are being considered for adoption. Before a final decision is made,

and following a small development project on some previously unused land, an

extra single parking garage z ∈ R becomes available. Now assume that instead of

schemes X and Y , two new schemes are being considered for adoption, X ∪ {z}
and Y ∪ {z}. Suppose resident i initially prefers X to Y . Since space z was

unavailable under X and Y and is now available under both X ∪{z} and Y ∪{z},
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we expect i to find X ∪{z} at least as desirable as Y ∪{z}. That is, if z 6∈ X ∪Y ,

and X P Ci Y , then [X ∪ {z}]RCi [Y ∪ {z}] and independence holds.

The next result shows that if the two aforementioned properties are required,

an agent with linear preferences over outcomes17 only cares about his best and

worst points in each finite set.18

Bossert et al. (2000, Theorem 1). If simple-monotonicity and independence

are satisfied, then for agent i with linear preferences RL
i , and each finite set X ∈ C,

X ICi {bX(RL
i ), wX(RL

i )}.

In light of this result, two “standard” extensions that could be considered for

our model are the min-max 19 and the max-min20 preference extensions, both of

which fit our parking example since they are “consistent with the notion of limited

rationality which is familiar in the theories of organization and bounded rationality

(e.g., March (1988); March and Simon (1958)), and which suggests that, given a

complex decision problem, the agent often seeks to simplify the problem by focusing

on only a few salient features of the complex situation” (Bossert et al., 2000, pp.

300-301). However, given the problem at hand, we prefer to “not choose sides”

by adopting either the “pessimistic” min-max extension or the “optimistic” max-

min extension. Instead, we opt for the best-worst extension of preferences that

declares a preference for a set X over a set Y if and only if this preference coincides

with the preference of both the min-max extension and the max-min extension.

Note however, as we discuss later, that this preference extension is incomplete.

Finally, it is straightforward to show that the best-worst extension satisfies, simple-

monotonicity and independence, not only when based on linear linear preferences

over outcomes but also in our setting of single-peaked preferences over outcomes

and sets of alternatives that are not always finite. In the sequel, and with a small

abuse of notation, we use the same symbols to denote preferences over points and

preferences over sets.

Specifically, under the best-worst extension of preferences over sets, when com-

paring two sets, an agent only considers his best and his worst point(s) in each

17A linear preference RL is a complete, transitive, reflexive, and antisymmetric (i.e., for each
x, y ∈ R, xIL y implies x = y) binary relation. Single-peaked preferences are not antisymmetric.

18A similar result using a stronger version of independence is shown in Barberà et al. (1984).
19An agent prefers set X to set Y if and only if either [he prefers his worst point(s) in set X

to his worst point(s) in set Y ] or [he is indifferent between his worst point(s) in both sets and
prefers his best point(s) in set X to his best point(s) in set Y ].

20An agent prefers set X to set Y if and only if either [he prefers his best point(s) in set X to
his best point(s) in set Y ] or [he is indifferent between his best point(s) in both sets and prefers
his worst point(s) in set X to his worst point(s) in set Y ].
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of them. Given two sets X, Y ∈ C, an agent prefers X to Y if he prefers his best

point(s) in X to his best point(s) in Y and his worst point(s) in X to his worst

point(s) in Y . The following definition also covers three more cases arising if an

agent is indifferent between his best or worst point(s) in two sets.

Best-worst extension of preferences to sets. For each agent i ∈ P with

preferences Ri ∈ R and each pair of sets X, Y ∈ C, we have

X Ri Y if and only if


bX(Ri)Ri bY (Ri)

and

wX(Ri)Ri wY (Ri)

and

X Pi Y if and only if X Ri Y and


bX(Ri) Pi bY (Ri)

or

wX(Ri) Pi wY (Ri).

This extension of preferences is transitive, i.e., for each triple X, Y, Z ∈ C, if

X Ri Y and Y Ri Z, then X Ri Z. However, it is not complete: there exist sets

X, Y ∈ C such that neither X Ri Y nor Y RiX. To be more precise, we now make

the following definition.

Comparability. Sets X, Y ∈ C are comparable by agent i ∈ P with preferences

Ri ∈ R if and only if [bX(Ri)Pi bY (Ri) implies wX(Ri)RiwY (Ri)] and [wX(Ri)Pi

wY (Ri) implies bX(Ri)Ri bY (Ri)].

Regarding the best-worst extension of preferences over sets, we now de-

fine Pareto-efficiency, Pareto-dominance, and Pareto-equivalence, henceforth, ef-

ficiency, dominance, and equivalence respectively.

Efficiency (of sets). Let N ∈ P and R ∈ RN . Set X ∈ C is efficient if and only

if there is no set Y ∈ C such that for each i ∈ N , Y Ri X, and for at least one

j ∈ N , Y Pj X. We denote the class containing all efficient sets for R ∈ RN by

PE(R).

Dominance and equivalence. Let N ∈ P and R ∈ RN . Let pair X, Y ∈ C such

that for each i ∈ N , Y RiX. If for at least one j ∈ N , Y Pj X, then Y dominates

X, otherwise Y and X are equivalent.

We now proceed to characterize efficient sets.
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Proposition 2.1 (Efficient sets). For each N ∈ P and each R ∈ RN , a set

X ∈ C is efficient if and only if the following two conditions hold.

(i) X is a subset of the convex hull of the agents’ peaks. That is,

X ⊆ Conv(p(R)).

(ii) All of the agents’ peaks that lie in the convex hull of X are included in

X. That is,

Conv (X) ∩ p(R) ⊆ X.

We prove Proposition 2.1 in Appendix 2.A and illustrate it in Figure 2.1.

Rp(R1) p(R2) p(R3)

(a)

Rp(R1) p(R2) p(R3)

(b)

Rp(R1) p(R2) p(R3)

(c)

Rp(R1) p(R2) p(R3)

(d)

Figure 2.1: Let N = {1, 2, 3} with R ∈ RN and p(R) = {p(R1), p(R2), p(R3)}. Sets
under consideration are shown in bold. The set in (a) satisfies neither (i) nor (ii). The
set in (b) satisfies (i) but not (ii). The set in (c) does not satisfy (i) but it satisfies (ii).
The set in (d) satisfies both (i) and (ii), hence it is efficient.

When considering convex sets, the characterization in Proposition 2.1 simpli-

fies.

Remark 2.1 (Efficient convex sets). For each N ∈ P , each R ∈ RN , and each

convex set X = Conv(X) ∈ C, X ∈ PE(R) if and only if X ⊆ Conv(p(R)).

Further consequences of Proposition 2.1 are Corollaries 2.1 and 2.2. Essentially,

Corollary 2.1 states that given a population M with profile R, if X ∈ C is efficient,

then it is also efficient for each population N ( M such that the convex hull of

population N ’s peaks at profile RN , and that of population M ’s peaks at profile

R, are the same.

Corollary 2.1. Let M ∈ P, R ∈ RM , and X ∈ PE(R). Then, for each N ∈ P
such that N (M and Conv(p(RN)) = Conv(p(R)), X ∈ PE(RN).



32 CHAPTER 2: SOLIDARITY FOR PUBLIC GOODS

Proof. Let N,M ∈ P be such that N ( M , R ∈ RM , and X ∈ PE(R). By

Proposition 2.1 (i), X ⊆ Conv(p(R)). Since, Conv(p(R)) = Conv(p(RN)), X ⊆
Conv(p(RN)). By Proposition 2.1 (ii), Conv(X)∩p(R) ⊆ X. Since, p(RN) ( p(R),

Conv(X) ∩ p(RN) ⊆ X. By Proposition 2.1, X ∈ PE(RN).

Corollary 2.2 provides some consequences for efficient and equivalent sets.

Corollary 2.2. Let N ∈ P, R ∈ RN , and X ∈ PE(R). Then, Conv(X) is

equivalent to X. Moreover, if Y is equivalent to X, then Conv(Y ) = Conv(X).

We prove Corollary 2.2 in Appendix 2.A. Moreover, to simplify notation, in

the sequel we always represent any efficient set by its convex hull.

2.3 Choice correspondences

A choice correspondence F assigns to each N ∈ P and each R ∈ RN a set F (R) ∈
C, i.e., F :

⋃
N∈P RN → C. We denote the family of choice correspondences F

by F .

In the sequel, when the properties of replacement-dominance and one-sided

replacement-dominance (defined in Section 2.4) are considered, the population

of agents does not change. For this reason, we introduce fixed-population choice

correspondences, henceforth fp-choice correspondences.

Given N ∈ P , an fp-choice correspondence F for N assigns to each R ∈ RN a

set F (R) ∈ C, i.e., F : RN → C. Let FN denote the family of fp-choice correspon-

dences for N . A choice correspondence is a collection of fp-choice correspondences

indexed by N ∈ P .

Remark 2.2 (Choice functions). Given population N ∈ P , if an fp-choice

correspondence for N assigns to each R ∈ RN a set consisting of a single point, it

is essentially an fp-choice function. Similarly, if a choice correspondence assigns

to each N ∈ P and each R ∈ RN a set consisting of a single point, it is essentially

a choice function.

We now proceed to our efficiency notion for fp-choice correspondences and

choice correspondences.

Efficiency (of choice correspondences). .

(a) Let N ∈ P and F ∈ FN be an fp-choice correspondence. For each R ∈
RN , F (R) ∈ PE(R).
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(b) Let choice correspondence F ∈ F . For each N ∈ P and each R ∈ RN ,

F (R) ∈ PE(R).

The following classes of “target (choice) correspondences” and “fp-target

(choice) correspondences” play an important role in the sequel.

Any fp-target point correspondence is determined by its fixed population and

its target point. Similarly, any target point correspondence is determined by its

target point. In both cases: if the target point is efficient, then it is chosen. If the

target point is not efficient, then the (unique) closest efficient point to it is chosen.

Target point correspondences. Let a ∈ R ∪ {−∞,∞}. We define:

(a) for population N ∈ P, the fp-target

point correspondence with target a, fa ∈
FN , such that for each R ∈ RN ,

(b) the target point correspondence with

target a, fa ∈ F , such that for each N ∈
P and each R ∈ RN ,

fa(R) =


{
¯
p(R)} if a <

¯
p(R)

{p̄(R)} if a > p̄(R)

{a} otherwise.

A (fp-)target point correspondence fa is essentially a (fp-)target point func-

tion.21

Any fp-target set correspondence is determined by its population and its non-

empty, closed, and convex target set. Similarly, any target set correspondence is

determined by its non-empty, closed, and convex target set. In both cases: if the

target set is efficient, it is chosen. If the target set is not efficient, the (unique)

maximal efficient subset of the target set is chosen, if one exists; otherwise, the

(unique) closest efficient point to the target set is chosen.

Target set correspondences. Let [a, b] ⊆ R ∪ {−∞,∞}. We define:

(a) for population N ∈ P, the fp-

target set correspondence with target

[a, b], F a,b ∈ FN , such that for each

R ∈ RN ,

(b) the target set correspondence with

target set [a, b], F a,b ∈ F , such that for

each N ∈ P and each R ∈ RN ,

F a,b(R) =


{
¯
p(R)} if b <

¯
p(R)

{p̄(R)} if a > p̄(R)

[a, b] ∩ Conv(p(R)) otherwise.

21The difference is that a (fp-)target point correspondence fa only assigns singleton sets while
the corresponding (fp-)target point function assigns the points in these sets.



34 CHAPTER 2: SOLIDARITY FOR PUBLIC GOODS

Each target set correspondence is a set of fp-target set correspondences, one for

each N ∈ P , where the target set is constant and independent of the population.

Also, each (fp-)target set correspondence with a target set [a, b] ⊆ R ∪ {−∞,∞}
such that a = b, is a (fp-)target point correspondence.

By Proposition 2.1, it follows that each (fp-)target set correspondence satisfies

efficiency.

We illustrate the concept of an fp-target set correspondence in Figure 2.2.

Since each target set correspondence is a collection of fp-target set correspondences

indexed by N ∈ P , a similar example for target set correspondences can be easily

obtained if in Figure 2.2 we allow for the population to change.

Rp(R1) p(R2) p(R3)

(a)

a b

Rp(R1) p(R2) p(R3)

(b)

a b

Rp(R1) p(R2) p(R3)

(c)

a b

Figure 2.2: Let N = {1, 2, 3} with R ∈ RN and p(R) = {p(R1), p(R2), p(R3)}. Let
F a,b ∈ FN . The chosen sets in each case are shown in bold. The target set in (a) is
efficient and is chosen. The target set in (b) is not efficient but the maximal efficient
subset exists and it is chosen. The target set in (c) is not efficient and no maximal
efficient subset exists; hence the closest efficient point is chosen.

Remark 2.3 (Properties of fp-choice correspondences extend to choice

correspondences). In Section 2.4, we introduce properties of fp-choice correspon-

dences. Since a choice correspondence is a collection of fp-choice correspondences,

these properties easily extend to choice correspondences.

2.4 Properties of choice correspondences

In the sequel, all properties and results refer to single-peaked preferences but also

apply to symmetric single-peaked preferences.

We consider two solidarity properties of choice correspondences. The first

solidarity property, expresses the solidarity among agents against changes in the

population (Thomson, 1983b,a): if agents are added to the population, the agents
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initially present should all be made at least as well off or they should all be made

at most as well off by this change.

Population-monotonicity. Let F ∈ F be a choice correspondence. For each

pair N,M ∈ P such that N ⊆M and each R ∈ RM the following holds:

for each i ∈ N, F (RN)Ri F (R) or for each i ∈ N, F (R)Ri F (RN).

Population-monotonicity implies that the chosen sets, before and after the

change in population, are comparable, and in the same way in terms of their

welfare, by all agents present before and after this change.

The next lemma states that if a choice correspondence satisfies efficiency and

population-monotonicity, then if agents are added to the population, all agents

who were initially present are at most as well off.

Lemma 2.1 (Efficiency and population-monotonicity). Let choice corre-

spondence F ∈ F satisfy efficiency and population-monotonicity. Then, for each

pair N,M ∈ P such that N ⊆M , each R ∈ RM , and each i ∈ N , F (RN)RiF (R).

In particular, if Conv(p(RN)) = Conv(p(R)), then F (RN) = F (R).

Proof. Let choice correspondence F ∈ F satisfy efficiency and population-

monotonicity. Let N,M ∈ P be such that N ⊆M . Let R ∈ RM .

By efficiency, F (R) ∈ PE(R) and F (RN) ∈ PE(RN). By population-

monotonicity, for each i ∈ N , F (R)Ri F (RN) or for each i ∈ N , F (RN)Ri F (R).

If for each i ∈ N , F (R) Ri F (RN) and since F (RN) ∈ PE(RN), then for each

i ∈ N , F (RN) Ii F (R). Therefore, for each i ∈ N , F (RN)Ri F (R).

In particular, if Conv(p(RN)) = Conv(p(R)), then by F (R) ∈ PE(R) and

Corollary 2.1, F (R) ∈ PE(RN). Since for each i ∈ N , F (RN)Ri F (R), and more-

over [F (R) ∈ PE(RN) and F (RN) ∈ PE(RN)], then for each i ∈ N , F (RN)IiF (R).

By Corollary 2.2, Conv(F (RN)) = Conv(F (R)), and since we always represent any

efficient set by its convex hull, F (RN) = F (R).

Proposition 2.2 (F a,b is population-monotonic). Each target set correspon-

dence satisfies population-monotonicity.

Proof. Let F a,b ∈ F be a target set correspondence. Let N ∈ P be such that

|N | ≥ 2 and R ∈ RN . We prove population-monotonicity of F a,b by showing

that if j ∈ N leaves all remaining agents end up at least as well off, i.e., for each

i ∈ N \ {j}, F a,b(R−j)Ri F
a,b(R).
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Case 1. Conv(p(R−j)) = Conv(p(R)). Then, the chosen set remains the same,

F a,b(R−j) = F a,b(R).

Case 2. Conv(p(R−j)) 6= Conv(p(R)). Then, j has either the unique smallest

peak at R or the unique largest peak at R. By symmetry of arguments, assume

that j has the unique smallest peak at R, p(Rj) =
¯
p(R). Then,

¯
p(R) <

¯
p(R−j).

There are 3 possibilities.

(i) a, b <
¯
p(R−j). Then, F a,b(R−j) =

¯
p(R−j). Furthermore, if b ≤ p(Rj),

then F a,b(R) = p(Rj); if a ≤ p(Rj) and b > p(Rj), then F a,b(R) = [p(Rj), b]; and

if a > p(Rj), then F a,b(R) = [a, b]. Hence, for each i ∈ N \ {j}, bFa,b(R−j)(Ri) =

wFa,b(R−j)(Ri) =
¯
p(R−j), bFa,b(R)(Ri) ∈ {p(Rj), b}, and wFa,b(R)(Ri) ∈ {p(Rj), a}.

Thus, for each i ∈ N \{j}, bFa,b(R)(Ri) < bFa,b(R−j)(Ri) ≤ p(Ri) and wFa,b(R)(Ri) <

wFa,b(R−j)(Ri) ≤ p(Ri). By single-peakedness, for each i ∈ N \ {j}, the best and

worst points are improved. Hence, F a,b(R−j) Pi F
a,b(R).

(ii) a <
¯
p(R−j) and b ≥

¯
p(R−j). Then,

¯
F a,b(R) <

¯
F a,b(R−j) =

¯
p(R−j) and

F̄ a,b(R) = F̄ a,b(R−j). Thus, for each i ∈ N \ {j},
¯
F a,b(R) <

¯
F a,b(R−j) ≤ p(Ri). If

F̄ a,b(R−j) < p(Ri), then bFa,b(R)(Ri) = bFa,b(R−j)(Ri) < p(Ri) and wFa,b(R)(Ri) <

wFa,b(R−j)(Ri) < p(Ri). Hence, by single-peakedness, i’s best point is at least as

desirable and his worst point is improved. If F̄ a,b(R−j) ≥ p(Ri), then bFa,b(R)(Ri) =

bFa,b(R−j)(Ri) = p(Ri) and wFa,b(R−j)(Ri) ∈ F a,b(R−j) ⊆ F a,b(R). Thus, i’s best

and worst points are at least as desirable. Hence, for each i ∈ N \{j}, F a,b(R−j)Ri

F a,b(R).

(iii) a, b ≥
¯
p(R−j). Then, the chosen set remains the same, F a,b(R−j) =

F a,b(R).

The second solidarity property we consider expresses the solidarity among

agents against changes in preferences (Moulin, 1987): if the preferences of an

agent change, then the other agents should all be made at least as well off or they

should all be made at most as well off. We formulate this requirement for fp-

choice correspondences but as discussed in Remark 2.3, it easily extends to choice

correspondences.

Replacement-dominance. Let N ∈ P and F ∈ FN be an fp-choice correspon-

dence. For each j ∈ N , and each pair R, R̄ ∈ RN such that R−j = R̄−j the

following holds:

for each i ∈ N \ {j}, F (R)Ri F (R̄) or for each i ∈ N \ {j}, F (R̄)Ri F (R).

Replacement-dominance implies that the chosen sets, before and after the
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change in preferences of some agent, are comparable by all other agents.

Note that for a population of one or two agents, replacement-dominance im-

poses no restriction on fp-choice correspondences. Hence, for each fixed population

with one or two agents, each fp-target set correspondence satisfies replacement-

dominance. However, if the fixed population contains at least three agents, then

the target set must equal a point.

Proposition 2.3 (F [a,b] is replacement-dominant ⇔ a = b). If a population

consists of at least 3 agents, then an associated fp-target set correspondence satis-

fies replacement-dominance if and only if it is an fp-target point correspondence.

Proof. Let N ∈ P be such that |N | ≥ 3 and F a,b ∈ FN be an fp-target set

correspondence.

First, if a = b, we prove replacement-dominance of fa (F a,b, a = b) by showing

that for each pair R, R̄ ∈ RN such that R̄ ∈ RN and R−j = R̄−j, [for each

i ∈ N \ {j}, fa(R)Ri f
a(R̄)] or [for each i ∈ N \ {j}, fa(R̄)Ri f

a(R)].

Case 1. Conv(p(R̄)) = Conv(p(R)). Then, the set (point) chosen remains the

same, fa(R̄) = fa(R).

Case 2.1. Conv(p(R̄)) ( Conv(p(R)). Then, j has either the unique smallest

peak at R or the unique largest peak at R. By symmetry of arguments, assume

that p(Rj) =
¯
p(R). Then,

¯
p(R) <

¯
p(R̄) ≤ p̄(R) = p̄(R̄). There are 2 possibilities.

(i) a <
¯
p(R̄). Then, fa(R̄) = {

¯
p(R̄)}. Furthermore, if a ≤

¯
p(R), then

fa(R) = {
¯
p(R)} and if a >

¯
p(R), then fa(R) = {a}. Hence, for each i ∈ N \ {j},

fa(R) < fa(R̄) ≤ p(R̄i). Hence, by single-peakedness, for each i ∈ N \ {j},
fa(R̄) Pi f

a(R).

(ii) a ≥
¯
p(R̄). Then, the set (point) chosen remains the same, fa(R̄) = fa(R).

Case 2.2. Conv(p(R̄)) ) Conv(p(R)). Then, by Case 2.1 (with the roles of R

and R̄ reversed), for each i ∈ N \ {j}, fa(R)Ri f
a(R̄).

Case 3. Conv(p(R̄)) 6⊆ Conv(p(R)) and Conv(p(R̄)) 6⊇ Conv(p(R)). Then, j

has either [the unique smallest peak at R and the unique largest peak at R̄] or [the

unique largest peak at R and the unique smallest peak at R̄]. By symmetry of

arguments, assume that p(Rj) =
¯
p(R) and p(R̄j) = p̄(R̄). Then,

¯
p(R) <

¯
p(R̄) ≤

p̄(R) < p̄(R̄). There are 3 possibilities.

(i) a <
¯
p(R̄). Then, as shown in Case 2.1, for each i ∈ N\{j}, fa(R̄)Pif

a(R).

(ii)
¯
p(R̄) ≤ a ≤ p̄(R). Then, the set (point) chosen remains the same,

fa(R̄) = fa(R).

(iii) a > p̄(R). Then, fa(R) = {p̄(R)}. Furthermore, if a ≥ p̄(R̄), then

fa(R̄) = {p̄(R̄)} and if a < p̄(R̄), then fa(R̄) = {a}. Hence, for each i ∈ N \ {j},
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p(R̄i) ≤ fa(R) < fa(R̄). Hence, by single-peakedness, for each i ∈ N \ {j},
fa(R) Pi f

a(R̄).

Second, we prove that if a < b, then F a,b does not satisfy replacement-

dominance. Without loss of generality, assume that 1, 2, 3 ∈ N .

If a = −∞, let ā ∈ R be such that ā < b, otherwise, let ā = a. If b = ∞,

then let b̄ ∈ R be such that b̄ > ā, otherwise, let b̄ = b. Hence, [ā, b̄] ⊆ [a, b].

We divide the interval [ā, b̄] into three equal parts and use the four points a1 = ā,

a2 =
(
ā+ 1

3
(b̄− ā)

)
, a3 =

(
ā+ 2

3
(b̄− ā)

)
, and a4 = b̄ to construct (symmetric)

profilesR, R̄ ∈ SN such that p(R1) = a1, p(R2) = p(R̄2) = a2, p(R3) = p(R̄3) = a3,

p(R̄1) = a4, and for each i ∈ N \ {1, 2, 3}, p(Ri) = p(R̄i) = a2. Note that

R−1 = R̄−1.

By the definition of F a,b, we have F a,b(R) = [a1, a3] and F a,b(R̄) = [a2, a4].

Under both R and R̄, the best points of agents 2 and 3 remain the same,

bFa,b(R)(R2) = bFa,b(R̄)(R2) = p(R2) and bFa,b(R)(R3) = bFa,b(R̄)(R3) = p(R3).

However, the worst points of agent 2 and 3 change as follows. For agent 2,

wFa,b(R)(R2) = {a1, a3} and wFa,b(R̄)(R1) = {a4}. Since p(R2) = a2 < a3 < a4,

single-peakedness implies F a,b(R)P2F
a,b(R̄). For agent 3, wFa,b(R)(R3) = {a1} and

wFa,b(R̄)(R3) = {a2, a4}. Since a1 < a2 < a3 = p(R3), single-peakedness implies

F a,b(R̄) P3 F
a,b(R). This contradicts replacement-dominance.

We next introduce a property weaker than replacement-dominance in the sense

that it does not require solidarity when the preferences of the agent with the unique

smallest peak are changed such that he becomes the agent with the unique largest

peak, or vice-versa; in other words, following a change in preferences of some agent,

solidarity is required only if one side of the convex hull of the agents’ peaks has

remained the same. We formulate this requirement for fp-choice correspondences

but as discussed in Remark 2.3, it easily extends to choice correspondences.

One-sided replacement-dominance. Let N ∈ P and F ∈ FN be an fp-choice

correspondence. For each j ∈ N and each pair R, R̄ ∈ RN such that R−j = R̄−j

and Conv(p(R)) ⊆ Conv(p(R̄)) or Conv(p(R)) ⊇ Conv(p(R̄)) the following holds:

for each i ∈ N \ {j}, F (R)Ri F (R̄) or for each i ∈ N \ {j}, F (R̄)Ri F (R).

One-sided replacement-dominance implies that the chosen sets, before and

after the change in preferences of some agent, are comparable, and in the same way

in terms of their welfare, by all other agents. Moreover, replacement-dominance

implies one-sided replacement-dominance.
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The next lemma states that given a population of at least three agents

and an associated fp-choice correspondence satisfying efficiency and one-sided

replacement-dominance, if the preferences of an agent change in such a way that

the new set of peaks is a subset of the initial one, all other agents end up at least

as well off.

Lemma 2.2 (Efficiency and one-sided replacement-dominance). Let N ∈
P be such that |N | ≥ 3 and fp-choice correspondence F ∈ FN satisfy efficiency and

one-sided replacement-dominance. Then, for each j ∈ N , each pair R, R̄ ∈ RN

such that [R−j = R̄−j and Conv(p(R̄)) ⊆ Conv(p(R))], and each i ∈ N \ {j},
F (R̄)Ri F (R). In particular, if Conv(p(R̄)) = Conv(p(R)), then F (R̄) = F (R).

We prove Lemma 2.2 in Appendix 2.B. Moreover, recall that for a popula-

tion N ∈ P with one or two agents (one-sided) replacement-dominance imposes

no restriction on an associated fp-choice correspondence. The following example

illustrates why Lemma 2.2 does not hold for a population of two agents and an

associated fp-choice correspondence.

Example 2.3. Let N ∈ P be such that N = {1, 2} and F ∈ FN be an fp-choice

correspondence such that

F (R) =

p(R2) if p(R2) = 1

p(R1) otherwise.

Hence, F satisfies efficiency, and since |N | = 2, it trivially satisfies (one-

sided) replacement-dominance. Let R, R̄ ∈ RN be such that p(R1) = p(R̄1) = 0,

p(R2) = 2, and p(R̄2) = 1. Hence, Conv(p(R̄)) ( Conv(p(R)). It follows, that

F (R) = 0 and F (R̄) = 1. Hence, agent 1’s peak p(R1) = F (R) < F (R̄). By

single-peakedness, F (R) P1 F (R̄).

Proposition 2.4 (F a,b is one-sided replacement-dominant). Each fp-target

set correspondence satisfies one-sided replacement-dominance.

Proof. Let N ∈ P and F a,b ∈ FN be an fp-target set correspondence. Since for

|N | ≤ 2, (one-sided) replacement-dominance imposes no restriction on fp-choice

correspondence F a,b, fix |N | ≥ 3.

We prove that F a,b satisfies one-sided replacement-dominance, i.e., we show

that for each R, R̄ ∈ RN such that R−j = R̄−j and Conv(p(R)) ⊆ Conv(p(R̄)) or

Conv(p(R̄)) ⊆ Conv(p(R)), the following holds. For each i ∈ N \ {j}, F a,b(R) Ri

F a,b(R̄) or for each i ∈ N \ {j}, F a,b(R̄)Ri F
a,b(R).
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Case 1. Conv(p(R̄)) = Conv(p(R)). Then, the chosen set remains the same,

F a,b(R̄) = F a,b(R).

Case 2.1. Conv(p(R̄)) ( Conv(p(R)). Then, j has either the unique smallest

peak at R or the unique largest peak at R. By symmetry of arguments, assume

that j has the unique smallest peak at R, p(Rj) =
¯
p(R). Then,

¯
p(R) <

¯
p(R̄) ≤

p̄(R) = p̄(R̄). There are 3 possibilities.

(i) a, b <
¯
p(R̄). Then F a,b(R̄) =

¯
p(R̄). Furthermore, if a, b ≤

¯
p(R), then

F a,b(R) =
¯
p(R); if a ≤

¯
p(R) and b >

¯
p(R), then F a,b(R) = [

¯
p(R), b]; and if

a, b >
¯
p(R), then F a,b(R) = [a, b]. Hence, for each i ∈ N \ {j}, bFa,b(R̄)(Ri) =

wFa,b(R̄)(Ri) = {
¯
p(R̄)}, bFa,b(R)(Ri) ∈ {

¯
p(R), b}, and wFa,b(R)(Ri) ∈ {

¯
p(R), a}.

Thus, for each i ∈ N \ {j}, bFa,b(R)(Ri) < bFa,b(R̄)(Ri) ≤ p(Ri) and wFa,b(R)(Ri) <

wFa,b(R̄)(Ri) ≤ p(Ri). By single-peakedness, for each i ∈ N \ {j}, best and worst

points improve. Hence, F a,b(R̄) Pi F
a,b(R).

(ii) a <
¯
p(R̄) and b ≥

¯
p(R̄). Then, for the minima

¯
F a,b(R) and

¯
F a,b(R̄) we

have
¯
F a,b(R) <

¯
F a,b(R̄) =

¯
p(R̄) and for the maxima F̄ (R) and F̄ (R̄) we have

F̄ (R) = F̄ (R̄). Thus, for each i ∈ N \ {j}, minimum
¯
F a,b(R) <

¯
F a,b(R̄) ≤

p(Ri). If maximum F̄ a,b(R̄) < p(Ri), then bFa,b(R)(Ri) = bFa,b(R̄)(Ri) < p(Ri) and

wFa,b(R)(Ri) < wFa,b(R̄)(Ri) ≤ p(Ri). Hence, by single-peakedness, i’s best point is

at least as desirable and his worst point improves. If maximum F̄ a,b(R̄) ≥ p(Ri),

then bFa,b(R)(Ri) = bFa,b(R̄)(Ri) = p(Ri) and wFa,b(R̄)(Ri) ∈ F a,b(R̄) ⊆ F a,b(R).

Thus, i’s best and worst points are at least as desirable. It follows, that for each

i ∈ N \ {j}, F a,b(R̄)Ri F
a,b(R).

(iii) a, b ≥
¯
p(R̄). Then, the set chosen remains the same, F a,b(R̄) = F a,b(R).

Case 2.2. Conv(p(R̄)) ) Conv(p(R)). Then, by Case 2.1 (with the roles of R

and R̄ reversed), for each i ∈ N \ {j}, F a,b(R)Ri F
a,b(R̄).

The next proposition states an important relation between the two solidarity

properties we study.

Proposition 2.5 (Efficiency and population-monotonicity ⇒ one-sided

replacement-dominance). Each choice correspondence satisfying efficiency and

population-monotonicity also satisfies one-sided replacement-dominance.

We prove Proposition 2.5 in Appendix 2.C.

Finally, although the property of strategy-proofness22 is not within the scope

of this chapter, the following remark should be made.

22An agent cannot affect the chosen set in his favor by misreporting his preferences (a formal
definition in a slightly different context can be found on page 79).
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Remark 2.4 (Strategy-proofness). Each (fp-)target set correspondence is (es-

sentially) a median correspondence (defined on page 78). Specifically, an (fp-

)target set correspondence with a target set [aN , bN ], at population N , is equivalent

with a median correspondence Fα,β, where α, β ∈ A|N |+1 such that α = {−∞, aN ,
. . . , aN ,∞} and β = {−∞, bN , . . . , bN ,∞}. Therefore, it follows from The-

orems 3.4 and 3.6 that each (fp-)target set correspondence satisfies strategy-

proofness in domains R and S respectively.

2.5 Characterizing target set correspondences

In the sequel, all results presented refer to single-peaked preferences but also apply

to symmetric single-peaked preferences.

Our first theorem states that the properties of efficiency and one-sided

replacement-dominance characterize fp-target set correspondences.

Theorem 2.1 (F is efficient and one-sided replacement-dominant ⇔
F = F a,b). If a fixed population consists of at least 3 agents, then an associated

fp-choice correspondence satisfies efficiency and one-sided replacement-dominance

if and only if it is an fp-target set correspondence.

We prove Theorem 2.1 in Appendix 2.D. In addition, Corollary 2.3 that follows,

strengthens a result for choice functions by Thomson (1993).

Corollary 2.3 (F is efficient and replacement-dominant ⇔ F = fa).

If a fixed population consists of at least 3 agents, then an associated fp-choice

correspondence satisfies efficiency and replacement-dominance if and only if it is

an fp-target point correspondence.

Proof. If part. By Propositions 2.1 and 2.3, all fp-target point correspondences

satisfy efficiency and replacement-dominance.

Only if part. Let N ∈ P be such that |N | ≥ 3 and let the fp-choice correspon-

dence F ∈ FN satisfy efficiency and replacement-dominance. Then, F satisfies

one-sided replacement-dominance and by Theorem 2.1 it is an fp-target set corre-

spondence F a,b ∈ FN . By Proposition 2.3, F a,b satisfies replacement-dominance

if and only if it is an fp-target point correspondence fa ∈ FN .

We have formulated Theorem 2.1 and Corollary 2.3 for fp-choice correspon-

dences where the fixed population contains at least 3 agents. If instead we consider

choice correspondences, then efficiency and one-sided replacement-dominance
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(replacement-dominance) imply that for each population with at least 3 agents,

a different target set or target point can be chosen, while for each population

with at most 2 agents, the choice correspondence can equal any efficient fp-choice

correspondence.

Our second theorem states that the properties of efficiency and population-

monotonicity characterize target set correspondences.

Theorem 2.2 (F is efficient and population-monotonic ⇔ F = F a,b). A

choice correspondence satisfies efficiency and population-monotonicity if and only

if it is a target set correspondence.

Proof. If part. By Propositions 2.1 and 2.2, all target set correspondences

satisfy efficiency and population-monotonicity.

Only if part. Let choice correspondence F ∈ F satisfy efficiency and

population-monotonicity. By Proposition 2.5, F satisfies one-sided replacement-

dominance. Let M ∈ P be such that |M | ≥ 3. By Theorem 2.1, for each R ∈ RM ,

F = F aM ,bM ∈ FM . Define points a := aM and b := bM .

We show that for each N ∈ P and each R̄ ∈ RN , F (R̄) = F a,b(R̄). We

do so by showing that for each N ∈ P , each R̄ ∈ RN , and each R ∈ RM , if

Conv(p(R̄)) = Conv(p(R)), then F (R̄) = F a,b(R) = F a,b(R̄) (the latter equality

follows by the definition of F a,b).

Let R ∈ RM and R̄ ∈ RN . Recall that F (R) = F a,b(R). Begin from R ∈ RM

and construct R1 ∈ RM∪N by adding the population N \M with profile R̄N\M , i.e.,

R1 = (R, R̄N\M). Since Conv(R1) = Conv(p(R)), by population-monotonicity and

Lemma 2.1, F (R1) = F (R). Next, change the preferences of each i ∈ N to R̄i and

denote the new profile R2 = (R1
M\N , R̄) ∈ RM∪N . Since Conv(R2) = Conv(R1),

by population-monotonicity and Lemma 2.1, F (R2) = F (R1). Finally, remove

the population M \ N and notice that the new profile R2
N = R̄ ∈ RN . Since

Conv(p(R̄)) = Conv(R2), by population-monotonicity and Lemma 2.1, F (R̄) =

F (R2). Hence, F (R̄) = F a,b(R) = F a,b(R̄).

All the properties we consider are independent.

Remark 2.5 (Independence of properties). Note that the properties in all

our characterization results are independent. A constant choice correspondence

that always chooses a fixed set satisfies (one-sided) replacement-dominance and

population-monotonicity but violates efficiency. A choice correspondence that

always chooses the peak of the agent with the lowest index satisfies efficiency, but

it violates one-sided replacement-dominance and population-monotonicity.
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Finally, we comment on the validity of our results for some natural model

variations.

Remark 2.6 (Chosen sets are not necessarily compact). Although we only

study compact subsets of R, the compactness requirement is without loss of gen-

erality for the following reasons. First, the agents’ peaks being real numbers

and Proposition 2.1 (i) imply that unbounded sets are not efficient. Hence, by

Theorems 2.1 and 2.2, the two classes of correspondences we characterize satisfy

efficiency and therefore only select bounded sets. Second, concerning open (and

bounded) sets, after assuming that each agent is indifferent between a set and its

closure,23 all our results hold and the target sets of target set correspondences and

fp-target set correspondences can be open. Notice that in this case, the second

requirement for the efficiency of a set, that is, Proposition 2.1 (ii), must change

slightly to Conv(closure(X))∩ p(R) ⊆ closure(X); moreover, to accommodate for

the possible openness of sets, throughout the text and for each set X, references

to Conv(X) must be substituted with Conv(closure(X)).

Remark 2.7 (Monotonic preferences). Allowing for agents to have monotonic

preferences, i.e., have minus infinity or plus infinity as peaks, poses the following

problem. If all agents have minus infinity or all agents have plus infinity as their

peak, then by Proposition 2.1, no efficient set exists in C. Moreover, if unbounded

sets of R are considered, then in this case the only efficient sets are {−∞} (when

all agents have minus infinity as their peak) and {+∞} (when all agents have

plus infinity as their peak). However, a policy interpretation for these two sets, as

well as other unbounded sets, is not clear and we therefore do not add monotonic

preferences to our model.

Remark 2.8 (Closed interval alternative set). All our results hold if the

preferences of the agents are defined on some closed interval [a, b] ( R. In this case

and since efficiency is required, by Proposition 2.1 (i), the class of sets considered

equals the class of non-empty subsets of [a, b] and closedness is not required (see

Remark 2.6). Moreover, agents can have monotonic preferences, i.e., have a or

b as peaks, since the policy interpretation of “locating the public good at a” or

“locating the public good at b” is straightforward, in contrast to our original

model (see Remark 2.7). Finally, it should be mentioned that this restriction on

the set of alternatives facilitates our main proof (Theorem 2.1) as follows. Since

a profile with a as the minimum peak and b as the maximum peak can be chosen

23Given X ( R, the closure of X, closure(X), is defined as the union of X with all its limit /
boundary points.
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(in contrast to our original model, where a profile with −∞ as the minimum peak

and +∞ as the maximum peak is not available), the proof essentially follows from

Lemma 2.11.

Throughout the Appendices we use the domain of single-peaked preferences

R, with the exception of Lemma 2.9 (Appendix 2.D), where we use the domain

of symmetric single-peaked preferences S. All results proven for R also hold on

S; however, for Lemma 2.9, the proof for S requires a different approach (and

additional “proof steps”) that also holds on R.

2.A Proofs of Proposition 2.1 and Corollary 2.2

The following terms describe a set obtained by a truncation of a given set X ∈ C
on one side at a specific point x, which is added to the new set to ensure that this

new set is closed.

Left truncaddition (of a set at a point). Let point x ∈ R and set X ∈ C.
Then, set Y ∈ C is a left truncaddition of X at x if Y = [X ∩ (x,∞)] ∪ {x}.

Right truncaddition (of a set at a point). Let point x ∈ R and set X ∈ C.
Then, set Y ∈ C is a right truncaddition of X at x if Y = [X ∩ (−∞, x)] ∪ {x}.

Before proceeding with the proof of Proposition 2.1 we present two lemmas.

First, we describe some cases where a truncaddition of a set at a point makes an

agent weakly better off.

Lemma 2.3 (Truncadditions). Let agent i ∈ P with preferences Ri ∈ R and set

X ∈ C.

(i) Let minimum
¯
X < p(Ri), point

¯
x ∈ R such that

¯
X <

¯
x ≤ p(Ri), and set

Y = [X ∩ (
¯
x,∞)]∪{

¯
x} be a left truncaddition of set X at point

¯
x. Then, Y RiX.

Moreover, if the unique worst point wX(Ri) =
¯
X, then Y Pi X.

(ii) Let maximum X̄ > p(Ri), point x̄ ∈ R be such that X̄ > x̄ ≥ p(Ri), and

set Y = [X ∩ (−∞, x̄)] ∪ {x̄} be a right truncaddition of set X at point x̄. Then,

Y Ri X. Moreover, if the unique worst point wX(Ri) = X̄,then Y Pi X.

(iii) Let minimum
¯
X < p(Ri), maximum X̄ > p(Ri), and points

¯
x, x̄ ∈ R

be such that
¯
X <

¯
x ≤ p(Ri) ≤ x̄ < X̄, set Y = [X ∩ (

¯
x,∞)] ∪ {

¯
x} be a left

truncaddition of set X at point
¯
x, and set Z = [Y ∩ (−∞, x̄)] ∪ {x̄} be a right

truncaddition of set Y at point x̄. Then, Z Pi X.

Proof. Let agent i ∈ P with preferences Ri ∈ R and set X ∈ C.
(i) Let minimum

¯
X < p(Ri), point

¯
x ∈ R such that

¯
X <

¯
x ≤ p(Ri), truncad-

dition Y = [X ∩ (
¯
x,∞)] ∪ {

¯
x}, and Z be the set of truncated points, Z = X \ Y .
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By single-peakedness, for each z ∈ Z, agent i prefers
¯
x to z,

¯
x Pi z. Hence,

his best and worst points in Y are at least as desirable as his (respective) best

and worst points in X. It follows, that Y Ri X. If additionally his worst point

wX(Ri) =
¯
X 6∈ Y is unique, then X̄ Pi wX(Ri) and

¯
x Pi wX(Ri). Since by single-

peakedness, wY (Ri) ⊆ {
¯
x, X̄}, it follows that Y Pi X.

(ii) Symmetric proof to (i).

(iii) Let minimum
¯
X < p(Ri), maximum X̄ > p(Ri), points

¯
x, x̄ ∈ R be such

that
¯
X <

¯
x ≤ p(Ri) ≤ x̄ < X̄, truncaddition Y = [X ∩ (

¯
x,∞)] ∪ {

¯
x}, and

truncaddition Z = [Y ∩ (−∞, x̄)]∪{x̄}. By part (i), Y RiX. By part (ii), ZRi Y .

Hence, by transitivity, Z RiX. Moreover, by single-peakedness, his worst point(s)

wX(Ri) ⊆ {
¯
X, X̄} and wZ(Ri) ⊆ {

¯
x, x̄}. Since by single-peakedness

¯
x Pi wX(Ri)

and x̄ Pi wX(Ri), his worst point(s) improves. It follows that Z Pi X.

Second, adding a closed interval to a set, without changing its convex hull,

makes an agent indifferent, unless his best point improves, in which case he is

better off. Furthermore, removing an open interval from a set, without changing

its convex hull, makes an agent indifferent, unless his best point worsens, in which

case he is worse off.

Lemma 2.4. Let agent i ∈ P with preferences Ri ∈ R and set X ∈ C.

(i) Let closed interval [x, y] ⊆ Conv(X) and set Y = X ∪ [x, y]. Then, Y IiX

unless agent i’s best point(s) improves, i.e., bY (Ri)PibX(Ri), in which case, Y PiX.

(ii) Let open interval (x, y) ( Conv(X) and set Y = X \ (x, y). Then, X Ii Y

unless agent i’s best point(s) worsens, i.e., bX(Ri)PibY (Ri), in which case, XPiY .

Proof. Let agent i ∈ P with preferences Ri ∈ R and set Y ∈ C.
(i) Let [x, y] ⊆ Conv(X) and Y = X ∪ [x, y]. By single-peakedness, agent

i’s worst point(s) does not change, wX(Ri) = wY (Ri) ⊆ {
¯
X, X̄}. If for his best

point(s) we have bX(Ri) Ii bY (Ri), then bX(Ri) ⊆ bY (Ri) and Y Ii X. Otherwise,

bX(Ri) 6⊆ bY (Ri), his best point(s) improves, bY (Ri) Pi bX(Ri), and Y Pi X.

(ii) Let (x, y) ( Conv(X) and Y = X \ (x, y). By single-peakedness, agent

i’s worst point(s) does not change, wX(Ri) = wY (Ri) ⊆ {
¯
X, X̄}. If for his best

point(s) we have bX(Ri) Ii bY (Ri), then bX(Ri) ⊇ bY (Ri) and Y Ii X. Otherwise,

bX(Ri) 6⊇ bY (Ri), his best point(s) worsens, bX(Ri) Pi bY (Ri), and X Pi Y .

Proof of Proposition 2.1. Let population N ∈ P , profile R ∈ RN , and set

X ∈ C. Without loss of generality, assume that N = {1, . . . , n} and
¯
p(R) =

p(R1) ≤ . . . ≤ p(Rn) = p̄(R). The proof follows in three steps.
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Step 1. We show that if set X ∈ PE(R) then condition (i) holds, that is,

X ⊆ Conv(p(R)).

Let set X ∈ PE(R). Assume by contradiction that X 6⊆ Conv(p(R)). Then,

minimum
¯
X < p(R1) or maximum X̄ > p(Rn). By symmetry of arguments,

assume that
¯
X < p(R1).

Case 1. Let maximum X̄ > p(Rn). Then, for each i ∈ N , minimum
¯
X <

p(R1) ≤ p(Ri) ≤ p(Rn) < X̄. Let Y = [X ∩ (p(R1),∞)] ∪ {p(R1)} be a left

truncaddition of X at p(R1), and Z = [Y ∩ (−∞, p(Rn))] ∪ {p(Rn)} be a right

truncaddition of Y at p(Rn). Therefore, by Lemma 2.3 (iii), for each i ∈ N , ZPiX.

Hence, X 6∈ PE(R); a contradiction.

Case 2. Let maximum X̄ ≤ p(Rn). Then, for each i ∈ N , minimum
¯
X <

p(R1) ≤ p(Ri). Let Y = [X ∩ (p(R1),∞)] ∪ {p(R1)} be a left truncaddition of

X at p(R1). By Lemma 2.3 (i), for each i ∈ N , Y Ri X. Furthermore, agent n’s

worst point wX(Rn) =
¯
X is unique. Therefore, by Lemma 2.3 (i), Y PnX. Hence,

X 6∈ PE(R); a contradiction.

Step 2. We show that if set X ∈ PE(R) then condition (ii) holds, that is,

(Conv(X) ∩ p(R)) ⊆ X.

Let set X ∈ PE(R). By Step 1, X ⊆ Conv(p(R)). Assume by contradiction

that (Conv(X) ∩ p(R)) 6⊆ X. Then, there exists agent j ∈ N such that p(Rj) ∈
Conv(X) and p(Rj) 6∈ X.

Let set Y = X ∪{p(Rj)}. By Lemma 2.4 (i), for each i ∈ N , Y RiX. Further-

more, agent j’s best point bY (Rj) = p(Rj)Pj bX(Rj). Therefore, by Lemma 2.4 (i),

Y Pj X. Hence, X 6∈ PE(R); a contradiction.

Step 3. We show that if conditions (i) and (ii) hold for set X ∈ C, then

X ∈ PE(R).

Let set X ∈ C be such that X ⊆ Conv(p(R)) and (Conv(X) ∩ p(R)) ⊆ X.

Assume by contradiction that X 6∈ PE(R). Hence, there exists a set Y ⊆ R that

dominates set X, i.e., for each agent i ∈ N , Y Ri X, and for at least one agent

j ∈ N , Y Pj X.

Case 1. Let agent j’s peak p(Rj) ∈ Conv(X). By condition (ii), p(Rj) ∈ X.

Agent j’s best point bX(Rj) = p(Rj) ∈ X cannot be improved. By single-

peakedness, agent j’s worst point(s) wX(Rj) ⊆ {
¯
X, X̄}; if his worst point(s)

wY (Rj) Pj wX(Rj), by single-peakedness, minimum
¯
X <

¯
Y or maximum X̄ > Ȳ .

By symmetry of arguments, assume minimum
¯
X <

¯
Y . Consider agent 1; by

condition (i), his peak p(R1) ≤
¯
X <

¯
Y . By single-peakedness, his best point

bX(R1) P1 bY (R1). It follows that for agent 1 set Y is not at least as desirable as

set X. Hence, set Y does not dominate set X; a contradiction.
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Case 2. Let agent j’s peak p(Rj) /∈ Conv(X). Then, either p(Rj) <
¯
X or

p(Rj) > X̄. By symmetry of arguments, assume that p(Rj) > X̄. By single-

peakedness, agent j’s best point bX(Rj) = X̄ and agent j’s worst point wX(Rj) =

¯
X. If his best point(s) bY (Rj)Pj bX(Rj), by single-peakedness, maximum X̄ < Ȳ .

If his worst point(s) wY (Rj) Pj wX(Rj), by single-peakedness, minimum
¯
X <

¯
Y .

Consider now agent 1. By condition (i), his peak p(R1) ≤
¯
X ≤ X̄. By single-

peakedness, his best and worst point(s) are bX(R1) =
¯
X and wX(R1) = X̄. If

minimum
¯
X <

¯
Y , by single-peakedness, bX(R1) P1 bY (R1). If maximum X̄ < Ȳ ,

by single-peakedness, wX(R1) P1 wY (R1). It follows that for agent 1 set Y is

not at least as desirable as set X. Hence, set Y does not dominate set X; a

contradiction.

Proof of Corollary 2.2. Let population N ∈ P , profile R ∈ RN , and set X ∈
PE(R).

First, we show that Conv(X) and X are equivalent sets. By single-peakedness,

for each agent i ∈ N such that p(Ri) ∈ Conv(X), the best point bConv(X)(Ri) =

p(Ri) and by Proposition 2.1 (ii), (Conv(X) ∩ p(R)) ⊆ X. Hence, the best point

bConv(X)(Ri) = bX(Ri). By single-peakedness, for each agent i ∈ N such that

p(Ri) 6∈ Conv(X), the best point bConv(X)(Ri) ∈ {
¯
X, X̄}. Since {

¯
X, X̄} ⊆ X, the

best point bConv(X)(Ri) = bX(Ri). Moreover, since Conv(X) is a closed interval

and (trivially) Conv(X) = X ∪Conv(X), by Lemma 2.4 (i), for each agent i ∈ N ,

Conv(X) Ii X.

Second, we show that if X and Y are equivalent sets, then Conv(X) =

Conv(Y ). Let Y ∈ C be an equivalent set to X ∈ PE(R). Let agent 1 ∈ N

have the smallest peak at profile R, p(R1) =
¯
p(R). By Proposition 2.1 (i),

X, Y ⊆ Conv(p(R)), hence, p(R1) ≤
¯
X ≤ X̄ and p(R1) ≤

¯
Y ≤ Ȳ . By single-

peakedness, for agent 1, [best points are bX(R1) =
¯
X and bY (R1) =

¯
Y ] and [worst

points are wX(R1) = X̄ and wY (R1) = Ȳ ]. Since X I1 Y , bX(R1) = bY (R1) and

wX(R1) = wY (R1). Therefore, Conv(X) = Conv(Y ).

2.B Proof of Lemma 2.2

Before proceeding with the proof of Lemma 2.2, we first prove an implication of

efficiency and (one-sided) replacement-dominance.

An fp-choice correspondence satisfies extreme-peaks-onliness if the chosen set

only depends on the convex hull of the peaks of the profile. We formulate extreme-
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peaks-onliness for fp-choice correspondences but as discussed in Remark 2.3, it

easily extends to choice correspondences.

Extreme-peaks-onliness. Let fixed population N ∈ P and fp-choice correspon-

dence F ∈ FN . For each pair of profiles R, R̄ ∈ RN , if Conv(p(R)) = Conv(p(R̄)),

then F (R) = F (R̄).

Notice that extreme-peaks-onliness not only implies the properties of

anonymity24 and peaks-onliness,25 but since it only depends on the extreme agents’

peaks, it is a much stronger property.

Lemma 2.5 (Efficiency and one-sided replacement-dominance ⇒ ex-

treme-peaks-onliness). If a fixed population consists of at least 3 agents,

then each associated fp-choice correspondence satisfying efficiency and one-sided

replacement-dominance also satisfies extreme-peaks-onliness.

Proof. Let fixed population N ∈ P be such that |N | ≥ 3 and fp-choice corre-

spondence F ∈ FN satisfy efficiency and one-sided replacement-dominance. Let

the pair of profiles R, R̄ ∈ RN be such that Conv(p(R)) = Conv(p(R̄)). Without

loss of generality, assume that N = {1, 2, . . . , n} and
¯
p(R) = p(R1) ≤ p(R2) ≤

. . . ≤ p(Rn) = p̄(R). In the following, we refer to agents who have neither the

unique smallest peak nor the unique largest peak as middle agents.

We prove that F (R) = F (R̄) in three steps.

Step 1. We show that if the preferences of one agent change and the convex

hull of the peaks does not change, the chosen set does not change.

Case 1.1. The preferences of a middle agent at profile R change such that the

convex hull of the peaks does not change. Let agent k ∈ N be a middle agent

at profile R and let profile R̄ ∈ RN be such that R̄−k = R−k, and Conv(p(R̄)) =

Conv(p(R)). Notice that agent k is also a middle agent at profile R̄.26

By efficiency, F (R̄) ∈ PE(R̄) and F (R) ∈ PE(R). Since agent k is a middle

agent at both profiles R and R̄, Conv(p(R̄)) = Conv(p(R)) = Conv(p(R−k)),

and by Corollary 2.1, F (R̄), F (R) ∈ PE(R−k). Since R̄−k = R−k, by one-sided

replacement-dominance, for each agent i ∈ N \ {k}, F (R̄) Ri F (R) or for each

agent i ∈ N \ {k}, F (R) Ri F (R̄). By efficiency of both sets F (R) and F (R̄)

at profile R−k, for each agent i ∈ N \ {k}, F (R) Ii F (R̄). By Corollary 2.2,

24Anonymity : the identities of the agents do not affect the chosen set.
25Peaks-Onliness: only the peaks of the agents affect the chosen set.
26Note that if agent 1 (agent n) does not have the unique smallest (largest) peak, then he is

a middle agent.
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Conv(F (R̄)) = Conv(F (R)) and since we always represent any efficient set by its

convex hull, F (R̄) = F (R).

Case 1.2. Either the preferences of the agent with the unique smallest peak at

profiles R and R̄ change (agent 1), or the preferences of the agent with the unique

largest peak at profiles R and R̄ change (agent n), such that the convex hull of

the peaks does not change. By symmetry of arguments, assume that profile R̄ is

such that R̄−1 = R−1 and Conv(p(R̄)) = Conv(p(R)). Hence, p(R̄1) = p(R1) <

p(R2) ≤ . . . ≤ p(Rn).

Begin from profile R and construct profile R1 by changing middle agent 2’s

preferences to R1
2 = R1, i.e., R1 = (R−2, R

1
2) where Conv(R1) = Conv(p(R)). By

Case 1.1, F (R1) = F (R). Next, change middle agent 1’s preferences to R2
1 = R̄1

such that the new profile is R2 = (R1
−1, R

2
1) where Conv(R2) = Conv(R1). By

Case 1.1, F (R2) = F (R1). Finally, change middle agent 2’s preferences back to

R2 and notice that the new profile (R2
−2, R2) = R̄ where Conv(p(R̄)) = Conv(R2).

By Case 1.1, F (R̄) = F (R2). Therefore, F (R̄) = F (R).

Step 2. We show that if two agents swap preferences, then the chosen set

does not change.

Case 2.1. At least one of the swapping agents is a middle agent at profile

R. Assume profile R̄ is obtained from profile R by agents j, k ∈ N swapping

preferences, i.e., R̄−j,k = R−j,k, R̄j = Rk, and R̄k = Rj. Let agent k ∈ N

be a middle agent at profile R. Begin from profile R and construct profile R1 by

changing agent k’s preferences to R1
k = Rj, i.e., R1 = (R−k, R

1
k) where Conv(R1) =

Conv(p(R)). By Case 1.1, F (R1) = F (R). Finally, change agent j’s preferences

to R2
j = Rk and notice that the new profile (R1

−j, R
2
j ) = R̄ where Conv(p(R̄)) =

Conv(R1). By Case 1.1, F (R̄) = F (R1). Therefore, F (R̄) = F (R).

Case 2.2. None of the swapping agents is a middle agent at profile R. Hence,

p(R1) < p(R2) ≤ . . . < p(Rn). Note that in this case, R̄ ∈ RN is such that

R̄−1,n = R−1,n, R̄1 = Rn, and R̄n = R1. Begin from profile R and construct profile

R1 by swapping middle agent 2’s preferences with agent 1’s preferences, denoting

the new profile by R1. By Case 2.1, F (R1) = F (R). Next, swap middle agent

1’s preferences with agent n’s preferences, denoting the new profile by R2. By

Case 2.1, F (R2) = F (R1). Finally, swap middle agent n’s preferences with agent

2’s preferences and notice that the new profile is R̄. By Case 2.1, F (R̄) = F (R2).

Therefore, F (R̄) = F (R).

Step 3. We show how each profile R̄, where Conv(p(R̄)) = Conv(p(R)), can

be constructed from profile R by sequentially repeating the first two steps of the

proof. Let profile R̄ be such that R̄ = (R̄1̄, . . . , R̄n̄) and, without loss of generality,
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assume
¯
p(R̄) = p(R̄1̄) ≤ . . . ≤ p(R̄n̄) = p̄(R̄). Notice that set {1̄, . . . , n̄} is a

permutation of set N = {1, . . . , n}.
Begin from profile R and construct profile R1 by sequentially replacing each

agent’ preferences Ri with R̄ī, i.e., for each i ∈ N , R1
i = R̄ī. Note that the

stepwise change of agents’ preferences never changes the convex hull of peaks and

that Conv(R1) = Conv(p(R)). By Step 1, F (R1) = F (R). Finally, permute the

agents’ preferences such that each agent ī obtains the preferences of agent i, i.e.,

the new profile R2 is such that for each i ∈ N , R2
ī = R1

i . Hence, for each i ∈ N ,

R2
ī = R̄ī and R2 = R̄. Since all permutations can be obtained via sequential

pairwise swaps, by Step 2, F (R̄) = F (R).

We use Lemma 2.5 in the proof of Lemma 2.2.

Proof of Lemma 2.2. Let fixed population N ∈ P be such that |N | ≥ 3 and

fp-choice correspondence F ∈ FN satisfy efficiency and one-sided replacement-

dominance. By Lemma 2.5, F satisfies extreme-peaks-onliness. Let agent j ∈ N
and the pair of profiles R, R̄ ∈ RN be such that R−j = R̄−j.

We show that if Conv(p(R̄)) ⊆ Conv(p(R)), then all remaining agents end up at

least as well off, i.e., for each i ∈ N \{j}, F (R̄)RiF (R). Without loss of generality,

assume that N = {1, 2, . . . , n} and
¯
p(R) = p(R1) ≤ p(R2) ≤ . . . ≤ p(Rn) = p̄(R).

In the following, we refer to agents who have neither the unique smallest peak nor

the unique largest peak as middle agents.

Case 1. Let Conv(p(R̄)) = Conv(p(R)). By extreme-peaks-onliness, F (R̄) =

F (R).

Case 2. Let Conv(p(R̄)) ( Conv(p(R)). Hence, at profile R, either agent

j = 1 has the unique smallest peak or agent j = n has the unique largest peak.

By symmetry of arguments, assume that j = 1 has the unique smallest peak and

profile R̄ is such that R̄−1 = R−1.

Case 2.1. Agent 1 is a middle agent at profile R̄. Then, Conv(p(R̄)) =

Conv(p(R−1)). By efficiency, F (R̄) ∈ PE(R̄) and F (R) ∈ PE(R). By Corol-

lary 2.1, F (R̄) ∈ PE(R−1).

Assume that F (R) ⊆ Conv(p(R−1)). Since F (R) ∈ PE(R), by Proposi-

tion 2.1 (ii), Conv(F (R)) ∩ p(R) ⊆ F (R). Hence, Conv(F (R)) ∩ p(R−1) ⊆ F (R)

and by Proposition 2.1, F (R) ∈ PE(R−1). Since R̄−1 = R−1 and Conv(p(R̄)) (
Conv(p(R)), by one-sided replacement-dominance, for each agent i ∈ N \ {1},
F (R̄)Ri F (R) or for each agent i ∈ N \ {1}, F (R)Ri F (R̄). By efficiency of both

sets F (R) and F (R̄) at profile R−1, for each agent i ∈ N \ {1}, F (R) Ii F (R̄).
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By Corollary 2.2, Conv(F (R̄)) = Conv(F (R)), and since we always represent any

efficient set by its convex hull, F (R̄) = F (R).

Assume that F (R) 6⊆ Conv(p(R−1)). Then, minimum
¯
F (R) <

¯
p(R−1) ≤

¯
F (R̄) ≤ p(Rn). Hence, agent n’s worst points are wF (R)(Rn) = {

¯
F (R)} and

wF (R̄)(Rn) = {
¯
F (R̄)}. By single-peakedness, wF (R̄)(Rn) Pn wF (R)(Rn). By one-

sided replacement-dominance, agent n is better off, F (R̄) Pn F (R). Hence, by

one-sided replacement-dominance, for each agent i ∈ N \ {1}, F (R̄)Ri F (R).

Case 2.2. Recall that Conv(p(R̄)) ( Conv(p(R)) and that agent 1 has the

unique smallest peak at profile R. In addition, let agent 1 also have the unique

smallest peak at profile R̄. Then, Conv(p(R−1)) ( Conv(p(R̄)) ( Conv(p(R)).

Hence, p(R1) < p(R̄1) < p(R2) ≤ . . . ≤ p(Rn).

Begin from profile R and construct profile R1 by changing middle agent 2’s

preferences to R1
2 = R̄1, i.e., R1 = (R−2, R

1
2). Since Conv(R1) = Conv(p(R)),

by extreme-peaks-onliness, F (R1) = F (R). Next, change agent 1’s preferences

to R2
1 = R̄1 such that the new profile is R2 = (R1

−1, R
2
1). Since agent 1 has the

unique smallest peak at profile R1 and is a middle agent at profile R2, by Case

2.1, for each agent i ∈ N \ {1, 2}, F (R2) Ri F (R1). Finally, change middle agent

2’s preferences back to R2 and notice that the new profile (R2
−2, R2) = R̄. Since

Conv(p(R̄)) = Conv(R2), by extreme-peaks-onliness, F (R̄) = F (R2). Therefore,

for each agent i ∈ N \ {1, 2}, F (R̄) Ri F (R). In particular, F (R̄) Rn F (R). Since

agent n has the largest peak, efficiency and single-peakedness imply
¯
F (R) ≤

¯
F (R̄)

and F̄ (R) ≤ F̄ (R̄). Hence, either F (R̄) = F (R) or F (R̄) Pn F (R). Then, since

Conv(p(R̄)) ( Conv(p(R)) and R̄−1 = R−1, by one-sided replacement-dominance,

for each agent i ∈ N \ {1} (including agent 2 now), F (R̄)Ri F (R).

2.C Proof of Proposition 2.5

Before proceeding with the proof of Proposition 2.5, we first prove an implication

of efficiency and population-monotonicity.

Lemma 2.6. Let choice correspondence F ∈ F satisfy efficiency and population-

monotonicity. Then, for each population N ∈ P such that |N | ≥ 3 and each

profile R ∈ RN , the following hold.

(i) Without loss of generality, let agents 1, 2 ∈ N where p(R1) =
¯
p(R) and

p(R2) =
¯
p(R−1). If maximum F̄ (R) ∈ Conv(p(R−1)) and maximum F̄ (R) ∈

wF (R)(R2), then maxima F̄ (R) = F̄ (R−1). Moreover, if F (R) ⊆ Conv(p(R−1)),

then F (R) = F (R−1).
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(ii) Without loss of generality, let agents n − 1, n ∈ N where p(Rn) = p̄(R)

and p(Rn−1) = p̄(R−n). If minimum
¯
F (R) ∈ Conv(p(R−n)) and minimum

¯
F (R) ∈

wF (R)(Rn−1), then minima
¯
F (R) =

¯
F (R−n). Moreover, if F (R) ⊆ Conv(p(R−n)),

then F (R) = F (R−n).

Proof. Let choice correspondence F ∈ F satisfy efficiency and population-

monotonicity. Let population N ∈ P be such that |N | ≥ 3 and profile R ∈ RN .

(i) Let agents 1, 2 ∈ N be such that p(R1) =
¯
p(R) and p(R2) =

¯
p(R−1).

Let maximum F̄ (R) ∈ Conv(p(R−1)) and maximum F̄ (R) ∈ wF (R)(R2). Hence,

p(R2) ≤ F̄ (R). By population-monotonicity and Lemma 2.1, for each agent i ∈
N \{1}, F (R−1)RiF (R). Let agent n ∈ N \{1, 2} have the largest peak at profile

R, i.e., p(Rn) = p̄(R) = p̄(R−1). Since agent n has the largest peak at profiles

R and R−1, F (R−1) Rn F (R) and efficiency imply
¯
F (R) ≤

¯
F (R−1) ≤ p(Rn) and

F̄ (R) ≤ F̄ (R−1) ≤ p(Rn). Since agent 2 has the smallest peak at profile R−1,

p(R2) ≤ F̄ (R), and F̄ (R) ∈ wF (R)(R2), F (R−1) R1 F (R) and efficiency imply

p(R2) ≤ F̄ (R−1) ≤ F̄ (R). Therefore, maxima F̄ (R) = F̄ (R−1).

Moreover, let F (R) ⊆ Conv(p(R−1)). Hence, p(R2) ≤
¯
F (R). Since agent 2

has the smallest peak at profile R−1 and p(R2) ≤
¯
F (R), F (R−1) R1 F (R) and

efficiency imply p(R2) ≤
¯
F (R−1) ≤

¯
F (R). Therefore, minima

¯
F (R) =

¯
F (R−1)

and thus, F (R) = F (R−n).

(ii) Symmetric proof to (i).

Proof of Proposition 2.5. Let choice correspondence F ∈ F satisfy efficiency

and population-monotonicity. Recall that for each population N ∈ P , each choice

correspondence F ∈ F specifies an fp-choice correspondence F ∈ FN . Since for

each N ∈ P such that |N | ≤ 2, (one-sided) replacement-dominance imposes no

restriction on fp-choice correspondence F ∈ FN , let N ∈ P be such that |N | ≥ 3.

We show that for each profile R ∈ RN , if the preferences of an agent j ∈ N
change, such that R−j = R̄−j and Conv(p(R̄)) ⊆ Conv(p(R)), then the other

agents whose preferences remained unchanged all end up at least as well off, as they

were initially, i.e., for each i ∈ N \{j}, F (R)RiF (R̄).27 Without loss of generality,

assume that N = {1, 2, . . . , n} and
¯
p(R) = p(R1) ≤ p(R2) ≤ . . . ≤ p(Rn) = p̄(R).

In the following, we refer to agents who have neither the unique smallest peak nor

the unique largest peak as middle agents.

Case 1. Let Conv(p(R̄)) = Conv(p(R)).

Case 1.1. Let agent j be a middle agent at both profiles R and R̄. Then,

27Notice that the roles of profiles R and R̄ can be reversed, hence the case where Conv(p(R)) ⊆
Conv(p(R̄)) is also covered.
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Conv(p(R̄)) = Conv(p(R)) = Conv(p(R−j)). Remove agent j from profile R to ob-

tain profile R−j. Since Conv(p(R−j)) = Conv(p(R)), by population-monotonicity

and Lemma 2.1, F (R−j) = F (R). Next, add agent j with preferences R̄j to ob-

tain profile R̄. Since Conv(p(R̄)) = Conv(p(R−j)), by population-monotonicity

and Lemma 2.1, F (R̄) = F (R−j). Therefore, F (R̄) = F (R).

Case 1.2. Let agent j have the unique smallest (largest) peak at both profiles

R and R̄. Hence, either agent j = 1 has the unique smallest peak at both profiles

R and R̄ or agent j = n has the unique largest peak at both profiles R and R̄. By

symmetry of arguments, assume that j = 1 and profile R̄ is such that R̄−1 = R−1.

Hence, p(R1) = p(R̄1) < p(R2) ≤ . . . ≤ p(Rn).

Begin from profile R and construct profile R1 by changing agent 2’s preferences

to R1
2 = R1, i.e., R1 = (R−2, R

1
2). Since Conv(R1) = Conv(p(R)) and agent 2 is a

middle agent at both profiles R1 and R, by Case 1.1, F (R1) = F (R). Next, change

agent 1’s preferences to R2
1 = R̄1 such that the new profile is R2 = (R1

−1, R
2
1). Since

Conv(R2) = Conv(R1) and agent 1 is a middle agent at both profiles R2 and R1,

by Case 1.1, F (R2) = F (R1). Finally, change agent 2’s preferences back to R2 and

notice that the new profile (R2
−2, R2) = R̄. Since Conv(p(R̄)) = Conv(R2) and

agent 2 is a middle agent at both profiles R̄ and R2, by Case 1.1, F (R̄) = F (R2).

Therefore, F (R̄) = F (R).

Case 2. Let Conv(p(R̄)) ( Conv(p(R)). Hence, either agent j = 1 has the

unique smallest peak at profile R or agent j = n has the unique largest peak at

profile R. By symmetry of arguments, assume that j = 1 and profile R̄ is such

that R̄−1 = R−1.

Case 2.1. Let agent 1 be a middle agent at profile R̄. Then, Conv(p(R̄)) =

Conv(p(R−1)). Begin from profile R and remove agent 1 from profile R to obtain

profile R−1. By population-monotonicity and Lemma 2.1, for each agent i ∈
N\{1}, F (R−1)RiF (R). Next, add agent 1 with preferences R̄1 to obtain profile R̄.

Since Conv(p(R̄)) = Conv(p(R−1)), by population-monotonicity and Lemma 2.1,

F (R̄) = F (R−1). Therefore, for each agent i ∈ N \ {1}, F (R̄)Ri F (R).

Case 2.2. Recall that Conv(p(R̄)) ( Conv(p(R)) and let agent 1 have the

unique smallest peak at profile R. In addition, let agent 1 also have the unique

smallest peak at profile R̄. Then, Conv(p(R−1)) ( Conv(p(R̄)) ( Conv(p(R)).

Hence, p(R1) < p(R̄1) < p(R2) ≤ . . . ≤ p(Rn). The proof of this case proceeds in

two parts.

First, we show that for each agent i ∈ N \ {1, 2}, F (R̄) Ri F (R) and

F (R̄)R̄1F (R). Begin from profile R and construct profile R1 by changing agent 2’s

preferences to R1
2 = R̄1, i.e., R1 = (R−2, R

1
2). Since Conv(R1) = Conv(p(R)) and
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agent 2 is a middle agent at both profiles R1 and R, by Case 1.1, F (R1) = F (R).

Next, change agent 1’s preferences to R2
1 = R̄1 such that the new profile is R2 =

(R1
−1, R

2
1). Since agent 1 is a middle agent at profile R2, by Case 2.1, for each agent

i ∈ N \{1}, F (R2)R1
i F (R1). Hence, for each agent i ∈ N \{1, 2}, F (R2)RiF (R1)

and F (R2) R̄1 F (R1). Finally, change agent 2’s preferences back to R2 and notice

that the new profile (R2
−2, R2) = R̄. Since Conv(p(R̄)) = Conv(R2) and agent 2 is

a middle agent at both profiles R̄ and R2, by Case 1.1, F (R̄) = F (R2). Therefore,

for each agent i ∈ N \ {1, 2}, F (R̄)Ri F (R) and F (R̄) R̄1 F (R).

Second, we prove that F (R̄) R2 F (R). Since agent n has the largest peak at

both profiles R and R̄, F (R̄)RnF (R) and efficiency imply
¯
F (R) ≤

¯
F (R̄) ≤ p(Rn)

and F̄ (R) ≤ F̄ (R̄) ≤ p(Rn). Hence, either F (R̄) = F (R) or F (R̄) Pn F (R). If

F (R̄) = F (R), then F (R̄) R2 F (R). If F (R̄) Pn F (R), then (a)
¯
F (R) <

¯
F (R̄) ≤

p(Rn) or (b) F̄ (R) < F̄ (R̄) ≤ p(Rn).

If
¯
F (R) ≥ p(R2), then F (R̄) ⊆ Conv(p(R−1)) and by Lemma 2.6 (i),

F (R̄) = F (R−1). Next, consider the change from profile R to R−1. By population-

monotonicity and Lemma 2.1, for each agent i ∈ N \{1}, F (R−1)RiF (R). There-

fore, for each agent i ∈ N \ {1} (including agent 2 now), F (R̄)Ri F (R).

The remaining case is that
¯
F (R) < p(R2). Since agent 1 has the smallest peak

at profile R̄, efficiency implies p(R̄1) ≤
¯
F (R̄) ≤ F̄ (R̄). If (a)

¯
F (R) <

¯
F (R̄), then

F (R̄) R̄1F (R) implies
¯
F (R) < p(R̄1) and if (b) F̄ (R) < F̄ (R̄), then F (R̄) R̄1F (R)

implies F̄ (R) < p(R̄1) and thus,
¯
F (R) < p(R̄1).

Hence, there are two cases (2.2.α)
¯
F (R) < p(R̄1) ≤

¯
F (R̄) < p(R2) and F̄ (R) =

F̄ (R̄) and (2.2.β)
¯
F (R) ≤ F̄ (R) < p(R̄1) ≤

¯
F (R̄) < p(R2).

Case 2.2.α. If F̄ (R) = F̄ (R̄) ≤ p(R2), then bF (R)(R2) = F̄ (R) = F̄ (R̄) =

bF (R̄)(R2) ≤ p(R2) and wF (R)(R2) =
¯
F (R) <

¯
F (R̄) = wF (R̄)(R2) < p(R2). By

single-peakedness, F (R̄) P2 F (R).

If F̄ (R) = F̄ (R̄) > p(R2), then bF (R)(R2) = bF (R̄)(R2) = p(R2), wF (R)(R2) ∈
{
¯
F (R), F̄ (R)}, and wF (R̄)(R2) ∈ {

¯
F (R̄), F̄ (R̄)}. Then,

¯
F (R) <

¯
F (R̄) < p(R2) <

F̄ (R) = F̄ (R̄) and single-peakedness imply F (R̄)R2 F (R).

Case 2.2.β. Notice that bF (R)(R2) = {F̄ (R)} and wF (R)(R2) = {
¯
F (R)}.

If F̄ (R̄) ≤ p(R2), then F̄ (R̄) ∈ bF (R̄)(R2) and
¯
F (R̄) ∈ wF (R̄)(R2). Since then

¯
F (R) ≤ F̄ (R) <

¯
F (R̄) ≤ F̄ (R̄) ≤ p(R2), by single-peakedness, F (R̄) P2 F (R).

If F̄ (R̄) > p(R2), then bF (R̄)(R2) = {p(R2)} and wF (R̄)(R2) ⊆ {
¯
F (R̄), F̄ (R̄)}.

Hence, bF (R̄)(R2)P2 bF (R)(R2). Since
¯
F (R) <

¯
F (R̄) < p(R2), by single-peakedness,

¯
F (R̄) P2

¯
F (R) = wF (R)(R2).

If
¯
F (R̄) ∈ wF (R̄)(R2), then wF (R̄)(R2) P2 wF (R)(R2) and F (R̄) P2 F (R).

Finally, if
¯
F (R̄) 6∈ wF (R̄)(R2), then wF (R̄)(R2) = {F̄ (R̄)}. Note that F̄ (R̄) ∈
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Conv(p(R−1)). By Lemma 2.6 (i), F̄ (R̄) = F̄ (R−1). Consider the change from

profile R to R−1. By population-monotonicity and Lemma 2.1, for each agent

i ∈ N \ {1}, F (R−1)Ri F (R). In particular, F (R−1)R2 F (R) and wF (R−1)(R2)R2

wF (R)(R2). Since agent 2 has the smallest peak at profile R−1, efficiency and

single-peakedness imply that F̄ (R−1) ∈ wF (R−1)(R2). Hence, F̄ (R̄) ∈ wF (R−1)(R2)

and wF (R̄)(R2) = F̄ (R̄)R2 wF (R)(R2). Therefore, F (R̄)R2 F (R).

2.D Proof of Theorem 2.1

Before proceeding with the proof of Theorem 2.1, we first prove some implications

of efficiency and (one-sided) replacement-dominance. The first implication is peak-

monotonicity, introduced by Ching (1994). The definition follows.

An fp-choice correspondence satisfies peak-monotonicity if whenever an agent’s

preferences change such that his peak moves to the left (right), the chosen set

moves to the left (right). We formulate peak-monotonicity for fp-choice correspon-

dences but as discussed in Remark 2.3, it easily extends to choice correspondences.

Peak-monotonicity. Let fixed population N ∈ P and fp-choice correspondence

F ∈ FN . For each agent j ∈ N and each pair of profiles R, R̄ ∈ RN such that

R−j = R̄−j,

if p(R̄j) ≤ p(Rj), then


minimum

¯
F (R̄) ≤

¯
F (R)

and

maximum F̄ (R̄) ≤ F̄ (R).

Lemma 2.7 (Efficiency and one-sided replacement-dominance ⇒ peak–

monotonicity). If a fixed population consists of at least 3 agents, then an associ-

ated fp-choice correspondence that satisfies efficiency and one-sided replacement-

dominance also satisfies peak-monotonicity.

Proof. Let fixed population N ∈ P such that |N | ≥ 3 and fp-choice corre-

spondence F ∈ FN satisfy efficiency and one-sided replacement-dominance. Let

agent j ∈ N and the pair of profiles R, R̄ ∈ RN be such that R−j = R̄−j and

p(R̄j) ≤ p(Rj). By efficiency, F (R) ∈ PE(R) and F (R̄) ∈ PE(R̄). In the follow-

ing, we refer to agents who have neither the unique smallest peak nor the unique

largest peak as middle agents.

Case 1. Let agent j be a middle agent or have the smallest peak at profile

R. Hence,
¯
p(R̄) ≤

¯
p(R) ≤ p̄(R̄) = p̄(R) and Conv(p(R)) ⊆ Conv(p(R̄)). By
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one-sided replacement-dominance and Lemma 2.2, for each agent i ∈ N \ {j},
F (R)RiF (R̄). Finally, let agent n ∈ N \{j} have the largest peak at profile R, i.e.,

p(Rn) = p̄(R) = p̄(R̄). By F (R) Rn F (R̄) and efficiency,
¯
F (R̄) ≤

¯
F (R) ≤ p(Rn)

and F̄ (R̄) ≤ F̄ (R) ≤ p(Rn).

Case 2. Let agent j have the unique largest peak at profile R.

Case 2.1. Let agent j have the unique largest peak at profile R and be a

middle agent at profile R̄. Hence,
¯
p(R̄) =

¯
p(R) ≤ p̄(R̄) < p̄(R). By the symmetric

argument of Case 1 (with agent n being a middle agent at profile R̄ instead of agent

1 being a middle agent at profile R, and with agent n’s peak moving to the right

instead of agent 1’s peak moving to the left),
¯
F (R̄) ≤

¯
F (R) and F̄ (R̄) ≤ F̄ (R).

Case 2.2. Let agent j have the unique largest peak at profile R and the unique

smallest peak at profile R̄. Hence,
¯
p(R̄) <

¯
p(R) ≤ p̄(R̄) < p̄(R). Begin from profile

R and construct profile R1 by changing agent j’s preferences to R1
j such that his

peak p(R1
j ) =

¯
p(R), i.e., R1 = (R−j, R

1
j ). Since agent j has the unique largest

peak at profile R and is a middle agent at profile R1, by Case 2.1,
¯
F (R1) ≤

¯
F (R)

and F̄ (R1) ≤ F̄ (R). Finally, change agent j’s preferences to R̄j and notice that

the new profile (R1
−j, R̄j) = R̄. Since agent j is a middle agent at profile R1, by

Case 1,
¯
F (R̄) ≤

¯
F (R1) ≤

¯
F (R) and F̄ (R̄) ≤ F̄ (R1) ≤ F̄ (R).

The second implication of efficiency and (one-sided) replacement-dominance

is uncompromisingness, introduced by Border and Jordan (1983). The definition

follows.

Loosely speaking, an fp-choice correspondence satisfies uncompromisingness if

whenever an agent’s preferences change such that his peaks, before and after this

change, both lie on the same side of the minimum (maximum) point chosen, the

minimum (maximum) point chosen does not change. We formulate uncompromis-

ingness –and later set-uncompromisingness– for fp-choice correspondences but as

discussed in Remark 2.3, they easily extend to choice correspondences.

Uncompromisingness. Let fixed population N ∈ P and fp-choice correspondence

F ∈ FN . For each agent j ∈ N and each pair of profiles R, R̄ ∈ RN such that

R−j = R̄−j,

if


p(Rj) <

¯
F (R) and p(R̄j) ≤

¯
F (R)

or

p(Rj) >
¯
F (R) and p(R̄j) ≥

¯
F (R),

then minima
¯
F (R) =

¯
F (R̄)

and
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if


p(Rj) > F̄ (R) and p(R̄j) ≥ F̄ (R)

or

p(Rj) < F̄ (R) and p(R̄j) ≤ F̄ (R),

then maxima F̄ (R) = F̄ (R̄).

Uncompromisingness immediately implies the following notion of set-

uncompromisingness.

Set-uncompromisingness. Let fixed population N ∈ P and fp-choice correspon-

dence F ∈ FN . For each agent j ∈ N and each pair of profiles R, R̄ ∈ RN such

that R−j = R̄−j,

if


p(Rj) <

¯
F (R) and p(R̄j) ≤

¯
F (R)

or

p(Rj) > F̄ (R) and p(R̄j) ≥ F̄ (R),

then F (R) = F (R̄).

Lemma 2.8 (Uncompromisingness ⇒ set-uncompromisingness). Each

fp-choice correspondence satisfying uncompromisingness also satisfies set-

uncompromisingness.

Proof. Follows trivially by the definitions of uncompomisingness and set-

uncompromisingness.

Before stating in Lemma 2.10 some conditions under which an fp-choice corre-

spondence satisfies uncompromisingness, we first state a result for the domain of

symmetric single-peaked preferences S (Lemma 2.9). This is the only result where

we have to change the proof technique when dealing with domain S.28 Specifi-

cally, we prove Lemma 2.9 using a so-called “leapfrogging” argument. During

each leapfrog we right (left) extend the convex hull of the peaks by some distance

and if this distance is not enough we repeat this argument as many (finite) times

as necessary. Notice that Lemma 2.9 also holds on the domain of single-peaked

preferences R.

Lemma 2.9. Let fixed population N ∈ P be such that |N | ≥ 3 and fp-choice

correspondence F ∈ FN satisfy efficiency and one-sided replacement-dominance.

For each agent j ∈ N and each pair of profiles R, R̄ ∈ RN such that R−j = R̄−j

and Conv(p(R)) ( Conv(p(R̄)),

28Recall that all steps in all other proofs are for domain R but they automatically apply to
domain S.
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(i) if minimum
¯
F (R) < p̄(R) < p(R̄j), then minima

¯
F (R̄) =

¯
F (R). More-

over, if also maximum F̄ (R) < p̄(R), then F (R̄) = F (R),

(ii) if maximum F̄ (R) >
¯
p(R) > p(R̄j), then maxima F̄ (R̄) = F̄ (R). More-

over, if also minimum
¯
F (R) >

¯
p(R), then F (R̄) = F (R).

Proof. Let fixed population N ∈ P be such that |N | ≥ 3 and fp-choice corre-

spondence F ∈ FN satisfy efficiency and one-sided replacement-dominance. By

Lemmas 2.5 (Appendix 2.B) and 2.7, F satisfies extreme-peaks-onliness and peak-

monotonicity.

Let agent j ∈ N and the pair of profiles R, R̄ ∈ RN be such that R−j = R̄−j

and Conv(p(R)) ( Conv(p(R̄)). By efficiency, F (R) ∈ PE(R). By extreme-peaks-

onliness, it is without loss of generality to assume that both profiles R and R̄ are

symmetric, i.e., R, R̄ ∈ SN .29 In the following, we refer to agents who have neither

the unique smallest peak nor the unique largest peak as middle agents. Moreover,

we only prove (i) since the proof of (ii) is symmetric.

Let minimum
¯
F (R) < p̄(R) < p(R̄j). Since p̄(R) < p(R̄j) and F (R) ∈ PE(R),

by Proposition 2.1 (i),
¯
p(R) ≤

¯
F (R) ≤ F̄ (R) ≤ p̄(R) < p(R̄j). Since also

Conv(p(R)) ( Conv(p(R̄)), agent j either [is a middle agent at profile R and

has the unique largest peak at profile R̄] or [has the unique largest peak at both

profiles R and R̄].

Case 1. Let agent j be a middle agent at profile R and have the unique largest

peak at profile R̄. Let agent n ∈ N \ {j} have the largest peak at profile R, i.e.,

p(Rn) = p̄(R). Hence, minimum
¯
F (R) < p̄(R) and efficiency imply

¯
F (R) < p(Rn)

and F̄ (R) ≤ p(Rn). By single-peakedness, bF (R)(Rn) = F̄ (R) and wF (R)(Rn) =

¯
F (R).

Let the distance between minimum
¯
F (R) and peak p(Rn) be δ0 = |

¯
F (R) −

p(Rn)|. Let point x1 ∈ R be on the right side of peak p(Rn), i.e., x1 > p(Rn) =

p̄(R), such that the distance between minimum
¯
F (R) and point x1 is δ1 = |

¯
F (R)−

x1| = 3
2
δ0. Hence, distance |p(Rn)− x1| = |

¯
F (R)− x1| − |

¯
F (R)− p(Rn)| = 1

2
δ0 =

1
2
|
¯
F (R)− p(Rn)| and point x1 is closer to peak p(Rn) than minimum

¯
F (R) is.

Step 1. Begin from profile R and construct profile R1 by changing agent j’s

preferences to R1
j ∈ S such that his peak

p(R1
j ) =

p(R̄j) if p(R̄j) ≤ x1

x1 otherwise,

29For each agent i ∈ N , we can replace preferences Ri, R̄i ∈ R by preferences R′i, R̄
′
i ∈ S such

that p(Ri) = p(R′i) and p(R̄i) = p(R̄′i). Then, by extreme-peaks-onliness, F (R) = F (R′) and
F (R̄) = F (R̄′).
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i.e., R1 = (R−j, R
1
j ). Hence, R1

−j = R−j. By efficiency and Proposition 2.1 (i),

¯
p(R) =

¯
p(R1) ≤

¯
F (R1) ≤ F̄ (R1) ≤ p̄(R1) = p(R̄j). Since p(R1

j ) > p(Rj),

by peak-monotonicity, minimum
¯
F (R1) ≥

¯
F (R) and maximum F̄ (R1) ≥ F̄ (R).

Hence,
¯
F (R1) ∈ [

¯
F (R), p(R̄j)] and F̄ (R1) ∈ [F̄ (R), p(R̄j)]. Since Conv(p(R)) (

Conv(R1), by one-sided replacement-dominance and Lemma 2.2, agent n ends

up at most as well off, F (R) Rn F (R1). Hence, bF (R)(Rn) Rn bF (R1)(Rn) and

wF (R)(Rn)Rn wF (R1)(Rn).

If
¯
F (R1) ∈ [p(Rn), p(R̄j)], then wF (R1)(Rn) = F̄ (R1) ∈ [p(Rn), p(R̄j)]. The

distance of agent n’s worst point F̄ (R1) to peak p(Rn) is |p(Rn) − F̄ (R1)| ≤
|p(Rn)−p(R1

j )| ≤ |p(Rn)−x1| = 1
2
δ0 = 1

2
|
¯
F (R)−p(Rn)|, which is smaller than the

distance of minimum
¯
F (R) to peak p(Rn). By symmetric single-peakedness, agent

n prefers wF (R1)(Rn) = F̄ (R1) to wF (R)(Rn) =
¯
F (R); a contradiction. Hence,

¯
F (R1) ∈ [

¯
F (R), p(Rn)) and wF (R1)(Rn) =

¯
F (R1). Since

¯
F (R1) < p(Rn), for agent

n to find wF (R)(Rn) =
¯
F (R) at least as desirable as wF (R1)(Rn) =

¯
F (R1), then

minimum
¯
F (R) ≥

¯
F (R1). Hence, minima

¯
F (R1) =

¯
F (R).

Moreover, let maximum F̄ (R) < p̄(R) = p(Rn). Then, bF (R)(Rn) = F̄ (R).

Recall that F̄ (R1) ∈ [F̄ (R), p(R̄j)]. If F̄ (R1) ∈ [p(Rn), p(R̄j)], then agent n prefers

bF (R1)(Rn) = p(Rn) to bF (R)(Rn) = F̄ (R); a contradiction. Hence, F̄ (R1) ∈
[F̄ (R), p(Rn)) and bF (R1)(Rn) = F̄ (R1). Since F̄ (R1) < p(Rn), for agent n to find

bF (R)(Rn) = F̄ (R) at least as desirable as bF (R1)(Rn) = F̄ (R1), then maximum

F̄ (R) ≥ F̄ (R1). Hence, maxima F̄ (R1) = F̄ (R) and F (R1) = F (R).

If p(R1
j ) = p(R̄j), then Conv(R1) = Conv(p(R̄)) and by extreme-peaks-

onliness, F (R1) = F (R̄) and we are done. If p(R1
j ) 6= p(R̄j), then note that

agent n is now a middle agent and agent j has the unique largest peak at pro-

file R1. We now explain the term “leapfrogging” in order to explain the proof

technique: in Step 1, the peak of agent j moves to the right of agent n’s peak

by figuratively leapfrogging over agent n. In Step 2, the roles of agents j and n

reverse, and agent n leapfrogs over agent j to the right, etc.

Let point x2 ∈ R be on the right side of peak p(R1
j ), i.e., x2 > p(R1

j ) = p̄(R1),

such that the distance between minimum
¯
F (R) and point x2 is δ2 = |

¯
F (R)−x2| =

3
2
δ1. Hence, distance |p(R1

j ) − x2| = |
¯
F (R) − x2| − |

¯
F (R) − p(R1

j )| = 1
2
δ1 =

1
2
|
¯
F (R)− p(R1

j )| and point x2 is closer to peak p(R1
j ) than minimum

¯
F (R) is.

Step 2. Begin from profile R1 and construct profile R2 by changing agent n’s

preferences to R2
n ∈ S such that his peak

p(R2
n) =

p(R̄j) if p(R̄j) ≤ x2

x2 otherwise,
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i.e., R2 = (R1
−n, R

2
n). Hence, R2

−n = R1
−n. By the arguments described in the

previous step (with profiles R and R1 replaced by profiles R1 and R2 and with

agent n in the role of agent j), minima
¯
F (R2) =

¯
F (R1) =

¯
F (R).

Moreover, let maximum F̄ (R) < p̄(R). Then, maximum F̄ (R) = F̄ (R1) <

p̄(R1) = p(R1
j ) and by the arguments described in the previous step (with profiles

R and R1 replaced by profiles R1 and R2 and with agent n in the role of agent j),

F (R2) = F (R1) = F (R).

If p(R2
n) = p(R̄j), then Conv(R2) = Conv(p(R̄)) and by extreme-peaks-

onliness, F (R2) = F (R̄) and we are done. If p(R2
j ) 6= p(R̄j). Then, according

to the reasoning described below, repeat the leapfrogging steps described above

ν ∈ N+ amount of times.

Recall that δ1 = 3
2
δ0 and δ2 = 3

2
δ1. Hence, δν = 3

2
δν−1 =

(
3
2

)ν
δ0 and since

δ0 6= 0, in the limit, limν→∞ δν = ∞. Thus, for each profile R̄ ∈ RN such that

R̄−j = R−j and p(R̄j) > p(Rj), there exists a finite ν ∈ N+ such that the distance

δν > |
¯
F (R) − p(R̄j)|. Therefore, for each profile R̄ ∈ RN such that R̄−j = R−j

and p(R̄j) > p(Rj), there exists a profile Rν such that Conv(Rν) = Conv(p(R̄))

and the following holds. If minimum
¯
F (R) < p̄(R) = p(Rn) < p(R̄j), then minima

¯
F (Rν) =

¯
F (R) and moreover, if also maximum F̄ (R) < p̄(R), then F (Rν) = F (R).

Since Conv(Rν) = Conv(p(R̄)), by extreme-peaks-onliness, F (Rν) = F (R̄) and we

are done.

Case 2. Let agent j = n have the unique largest peak at profiles R and R̄.

Let agent k ∈ N \ {j} be a middle agent at profile R and construct profile R1

by changing his preferences to R1
k such that his peak p(R1

k) = p̄(R), i.e., R1 =

(R−k, R
1
k). Since Conv(R1) = Conv(p(R)), by extreme-peaks-onliness, F (R1) =

F (R). Therefore, since minimum
¯
F (R) < p̄(R) = p̄(R1) = p(R1

k) < p(R̄j), by

Case 1, minima
¯
F (R̄) =

¯
F (R1) =

¯
F (R) and moreover, if also maximum F̄ (R) <

p̄(R) = p̄(R1), by Case 1, F (R̄) = F (R1) = F (R).

Lemma 2.10 (Efficiency and one-sided replacement-dominance ⇒ un-

compromisingness). If a fixed population consists of at least 3 agents, then

an associated fp-choice correspondence that satisfies efficiency and one-sided

replacement-dominance also satisfies uncompromisingness.

Proof. Let fixed population N ∈ P be such that |N | ≥ 3 and fp-choice corre-

spondence F ∈ FN satisfy efficiency and one-sided replacement-dominance. By

Lemmas 2.5 (Appendix 2.B) and 2.7, F satisfies extreme-peaks-onliness and peak-

monotonicity. Let agent j ∈ N and the pair of profiles R, R̄ ∈ RN be such that

R−j = R̄−j. In the following, we refer to agents who have neither the unique
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smallest peak nor the unique largest peak as middle agents.

(i) We show that if [p(Rj) <
¯
F (R) and p(R̄j) ≤

¯
F (R)] or [p(Rj) >

¯
F (R)

and p(R̄j) ≥
¯
F (R)], then minima

¯
F (R) =

¯
F (R̄). By efficiency, F (R) ∈ PE(R).

Hence by Proposition 2.1 (i), F (R) ⊆ Conv(p(R)). Notice that Conv(p(R̄)) ⊆
Conv(p(R)) or Conv(p(R̄)) ⊇ Conv(p(R)).

Case 1. Let p(Rj) <
¯
F (R) and p(R̄j) ≤

¯
F (R). Hence, since F (R) ⊆

Conv(p(R)), p(Rj) 6= p̄(R).

Case 1.1. Let Conv(p(R̄)) = Conv(p(R)). By extreme-peaks-onliness, F (R) =

F (R̄).

Case 1.2. Let Conv(p(R̄)) ( Conv(p(R)). Hence, agent j has the unique

smallest peak at profile R and minimum
¯
F (R) ≥ p(R̄j) ≥

¯
p(R̄) > p(Rj). Begin

from profile R and construct profile R̄ by changing agent j’s preferences to R̄j,

i.e., R̄ = (R−j, R̄j). Since p(R̄j) > p(Rj) and R̄−j = R−j, by peak-monotonicity,

minimum
¯
F (R̄) ≥

¯
F (R). If minimum

¯
F (R̄) >

¯
F (R) ≥ p(R̄j), then F (R̄) 6= F (R)

and minimum
¯
F (R̄) >

¯
p(R̄) > p(Rj). Since R̄−j = R−j, by Lemma 2.9 (ii) (with

the roles of R and R̄ reversed), F (R̄) = F (R) 6= F (R̄), a contradiction. Therefore,

minima
¯
F (R̄) =

¯
F (R).

Case 1.3. Let Conv(p(R̄)) ) Conv(p(R)). Hence, agent j has the unique

smallest peak at profile R̄ and minimum
¯
F (R) > p(Rj) ≥

¯
p(R) > p(R̄j). By

Lemma 2.9 (ii), F (R̄) = F (R).

Case 2. Let p(Rj) >
¯
F (R) and p(R̄j) ≥

¯
F (R). Hence, since F (R) ⊆

Conv(p(R)), p(Rj) 6=
¯
p(R).

Case 2.1. Let Conv(p(R̄)) = Conv(p(R)). By extreme-peaks-onliness, F (R) =

F (R̄).

Case 2.2. Let Conv(p(R̄)) ( Conv(p(R)). Hence, agent j has the unique

largest peak at profile R and minimum
¯
F (R) ≤ p(R̄j) ≤ p̄(R̄) < p(Rj). Begin

from profile R and construct profile R̄ by changing agent j’s preferences to R̄j,

i.e., R̄ = (R−j, R̄j). Since p(R̄j) < p(Rj) and R̄−j = R−j, by peak-monotonicity,

minimum
¯
F (R̄) ≤

¯
F (R). If minimum

¯
F (R̄) <

¯
F (R) ≤ p(R̄j), then minimum

¯
F (R̄) < p̄(R̄) < p(Rj). Since R̄−j = R−j, by Lemma 2.9 (i) (with the roles of

R and R̄ reversed), minimum
¯
F (R̄) =

¯
F (R) 6=

¯
F (R̄), a contradiction. Therefore,

minima
¯
F (R̄) =

¯
F (R).

Case 2.3. Let Conv(p(R̄)) ) Conv(p(R)). Hence, agent j has the unique

largest peak at profile R̄ and minimum
¯
F (R) < p(Rj) ≤ p̄(R) < p(R̄j). By

Lemma 2.9 (i), minima
¯
F (R̄) =

¯
F (R).

(ii) The proof that if [p(Rj) > F̄ (R) and p(R̄j) ≥ F̄ (R)] or [p(Rj) < F̄ (R)

and p(R̄j) ≤ F̄ (R)], then maxima F̄ (R) = F̄ (R̄) is symmetric to the proof of
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(i).

The next result is crucial in the proof of Theorem 2.1.

Lemma 2.11. Let fixed population N ∈ P be such that |N | ≥ 3 and fp-choice

correspondence F ∈ FN satisfy efficiency and one-sided replacement-dominance.

Let fp-target set correspondence F a,b ∈ FN . For each pair of profiles R, R̄ ∈ RN

such that Conv(p(R̄)) ⊆ Conv(p(R)), if F (R) = F a,b(R), then F (R̄) = F a,b(R̄).

Proof. Let fixed population N ∈ P be such that |N | ≥ 3 and fp-choice corre-

spondence F ∈ FN satisfy efficiency and one-sided replacement-dominance. Let

fp-target set correspondence F a,b ∈ FN . By Propositions 2.1 and 2.4, F a,b satisfies

efficiency and one-sided replacement-dominance. By Lemma 2.5 (Appendix 2.B),

Lemma 2.10, and Lemma ??, F and F a,b satisfy extreme-peaks-onliness, uncom-

promisingness, and set-uncompromisingness.

Let the pair of profiles R, R̄ ∈ RN be such that F (R) = F a,b(R) and

Conv(p(R̄)) ⊆ Conv(p(R)). Without loss of generality, assume that N =

{1, . . . , n} and
¯
p(R) = p(R1) ≤ · · · ≤ p(Rn) = p̄(R). We show that F (R̄) =

F a,b(R̄).

Case 1. Let Conv(p(R̄)) = Conv(p(R)). By extreme-peaks-onliness and the

definition of F a,b, F (R̄) = F (R) = F a,b(R) = F a,b(R̄).

Case 2. Let Conv(p(R̄)) ( Conv(p(R)) be such that
¯
p(R̄) >

¯
p(R) and p̄(R̄) =

p̄(R). By extreme-peaks-onliness, it is without loss of generality to assume that

at both profiles R and R̄, agent 1 has the smallest peak and all other agents

have the largest peak, i.e., R = (R1, Rn, . . . , Rn) such that p(R1) ≤ p(Rn) and

R̄ = (R̄1, Rn, . . . , Rn) such that p(R̄1) ≤ p(Rn). Hence, R−1 = R̄−1 and
¯
p(R) <

¯
p(R̄) ≤ p̄(R̄) = p̄(R). By efficiency and Proposition 2.1 (i), p(R1) =

¯
p(R) ≤

¯
F (R) ≤ F̄ (R) ≤ p̄(R) and p(R̄1) =

¯
p(R̄) ≤

¯
F (R̄) ≤ F̄ (R̄) ≤ p̄(R̄).

Case 2.1. Recall that Conv(p(R̄)) ( Conv(p(R)) is such that [
¯
p(R̄) >

¯
p(R)

and p̄(R̄) = p̄(R)] and in addition, let p(R̄1) =
¯
p(R̄) ≤

¯
F (R). Then, p(R1) =

¯
p(R) <

¯
F (R). By set-uncompromisingness, F (R̄) = F (R) = F a,b(R) and by the

definition of F a,b, point a ≥
¯
p(R̄). If point a ≤ p̄(R) = p̄(R̄), then F a,b(R) =

[a, b] ∩ Conv(p(R)) = [a, b] ∩ Conv(p(R̄)) = F a,b(R̄). If point a > p̄(R) = p̄(R̄),

then, F a,b(R) = {p̄(R)} = F a,b(R̄). Therefore, F (R̄) = F a,b(R̄).

Case 2.2. Recall that Conv(p(R̄)) ( Conv(p(R)) is such that [
¯
p(R̄) >

¯
p(R)

and p̄(R̄) = p̄(R)] and in addition, let p(R̄1) =
¯
p(R̄) >

¯
F (R) and p(R̄1) =

¯
p(R) ≤

F̄ (R). Then,
¯
F (R) 6= F̄ (R) and p(R1) < F̄ (R). By uncompromisingness, maxima

F̄ (R̄) = F̄ (R). Recall that by efficiency and Proposition 2.1 (i), minimum
¯
F (R̄) ≥

¯
p(R̄) = p(R̄1). Next, assuming that minimum

¯
F (R̄) >

¯
p(R̄) = p(R̄1) >

¯
F (R)
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results in a contradiction as follows: since p(R̄1) <
¯
F (R̄) and p(R1) <

¯
F (R̄), by

uncompromisingness, minimum
¯
F (R) =

¯
F (R̄) 6=

¯
F (R), a contradiction. Hence,

minimum
¯
F (R̄) =

¯
p(R̄) and thus, F (R̄) = [

¯
p(R̄), F̄ (R)]. Since Conv(p(R̄)) (

Conv(p(R)) and F (R) = [a, b]∩Conv(p(R)), F (R̄) = F (R)∩Conv(p(R̄)) = [a, b]∩
Conv(p(R̄)). Therefore, by the definition of F a,b, F (R̄) = [a, b] ∩ Conv(p(R̄)) =

F a,b(R̄).

Case 2.3. Recall that Conv(p(R̄)) ( Conv(p(R)) is such that [
¯
p(R̄) >

¯
p(R)

and p̄(R̄) = p̄(R)] and in addition, let p(R̄1) =
¯
p(R̄) > F̄ (R) ≥

¯
F (R). By the

definition of F a,b, points a, b <
¯
p(R̄). Next, assuming that maximum F̄ (R̄) >

¯
p(R̄) = p(R̄1) > F̄ (R) results in a contradiction as follows: since p(R̄1) < F̄ (R̄)

and p(R1) < F̄ (R̄), by uncompromisingness, maximum F̄ (R) = F̄ (R̄) 6= F̄ (R), a

contradiction. Hence, maximum F̄ (R̄) =
¯
p(R̄) and thus F (R̄) = {

¯
p(R̄)}. Since

point b <
¯
p(R̄), by the definition of F a,b, F (R̄) = {

¯
p(R̄)} = F a,b(R̄).

Case 3. Let Conv(p(R̄)) ( Conv(p(R)) be such that
¯
p(R̄) =

¯
p(R) and p̄(R̄) <

p̄(R). By a symmetric proof to Case 2, F (R̄) = F a,b(R̄).

Case 4. Let Conv(p(R̄)) ( Conv(p(R)) be such that
¯
p(R̄) >

¯
p(R) and p̄(R̄) <

p̄(R). Let profile R1 ∈ RN be such that
¯
p(R1) =

¯
p(R̄) >

¯
p(R) and p̄(R1) = p̄(R).

By Case 2, F (R1) = F a,b(R1). Next, since
¯
p(R̄) =

¯
p(R1) and p̄(R̄) < p̄(R1), by

Case 3, F (R̄) = F a,b(R̄).

Proof of Theorem 2.1. If part. By Propositions 2.1 and 2.4, each fp-target

set correspondence satisfies efficiency and one-sided replacement-dominance.

Only if part. Let fixed population N ∈ P be such that |N | ≥ 3 and fp-choice

correspondence F ∈ FN satisfy efficiency and one-sided replacement-dominance.

By Lemma 2.5 (Appendix 2.B), Lemma 2.10, and Lemma ??, F satisfies extreme-

peaks-onliness, uncompromisingness, and set-uncompromisingness.

For each pair of points α, β ∈ R such that α ≤ β, define a profile Rα,β ∈ RN

to be such that
¯
p(Rα,β) = α and p̄(Rα,β) = β. Without loss of generality, assume

that N = {1, . . . , n} and α = p(Rα,β
1 ) ≤ . . . ≤ p(Rα,β

n ) = β. By efficiency and

Proposition 2.1 (i), α ≤
¯
F (Rα,β) ≤ F̄ (Rα,β) ≤ β.

We prove that there exists an fp-target set correspondence F a,b ∈ FN such

that for each profile R ∈ RN , F (R) = F a,b(R).

There are four cases. Loosely speaking, in all but the last case the proof

proceeds as follows. Given a profile Rα,β ∈ RN and for each profile R ∈ RN

we select a profile such that the convex hull of its peaks is a superset of both

Conv(Rα,β) and Conv(p(R)) and then, we apply Lemma 2.11 to show that F (R) =

F a,b(R).
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Case 1. There exist α, β ∈ R such that for Rα,β ∈ RN , α <
¯
F (Rα,β) ≤

F̄ (Rα,β) < β. Define points a :=
¯
F (Rα,β) and b := F̄ (Rα,β). Since F (Rα,β) =

[a, b] = [a, b] ∩ Conv(Rα,β), by the definition of F a,b, F (Rα,β) = F a,b(Rα,β). Let

R ∈ RN . Begin from profile Rα,β and construct profile R1 by changing agent 1’s

preferences to R1
1 such that his peak

p(R1
1) =

p(R
α,β
1 ) if p(Rα,β

1 ) ≤
¯
p(R)

¯
p(R) otherwise,

i.e., R1 = (Rα,β
−1 , R

1
1). Since p(Rα,β

1 ) <
¯
F (Rα,β) and p(R1

1) <
¯
F (Rα,β), by set-

uncompromisingness, F (R1) = F (Rα,β) = [a, b]. Then, change agent n’s prefer-

ences to R2
n such that his peak

p(R2
n) =

p(R1
n) if p(R1

n) ≥ p̄(R)

p̄(R) otherwise,

i.e., R2 = (R1
−n, R

2
n). Since p(R1

n) > F̄ (R1) and p(R2
n) > F̄ (R1), by set-

uncompromisingness, F (R2) = F (R1) = [a, b]. Since F (R2) = [a, b] = [a, b] ∩
Conv(R2), by the definition of F a,b, F (R2) = F a,b(R2). Since, F (R2) = F a,b(R2)

and Conv(p(R)) ⊆ Conv(R2), by Lemma 2.11, F (R) = F a,b(R).

Case 2. There exist α, β ∈ R such that for Rα,β ∈ RN , α =
¯
F (Rα,β) ≤

F̄ (Rα,β) < β, and for each ᾱ ≤ α and its associated Rᾱ,β ∈ RN , ᾱ =
¯
F (Rᾱ,β) ≤

F̄ (Rᾱ,β) < β.

Case 2.1. There exist α, β ∈ R as specified in Case 2 and in addition, α =

¯
F (Rα,β) < F̄ (Rα,β) < β. Define points a := −∞ and b := F̄ (Rα,β). Since

F (Rα,β) = [
¯
p(Rα,β), b] = [a, b] ∩ Conv(Rα,β), by the definition of F a,b, F (Rα,β) =

F a,b(Rα,β). Let R ∈ RN . Begin from profile Rα,β and construct profile R1 by

changing agent 1’s preferences to R1
1 such that his peak

p(R1
1) =

p(R
α,β
1 ) if p(Rα,β

1 ) ≤
¯
p(R)

¯
p(R) otherwise,

i.e., R1 = (Rα,β
−1 , R

1
1). Since

¯
p(R1) ≤ α and p̄(R1) = β, as specified in Case 2

and by extreme-peaks-onliness,
¯
p(R1) =

¯
F (R1). Since p(Rα,β

1 ) < F̄ (Rα,β) and

p(R1
1) < F̄ (Rα,β), by uncompromisingness, maxima F̄ (R1) = F̄ (Rα,β) = b. Hence,
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F (R1) = [
¯
p(R1), b]. Then, change agent n’s preferences to R2

n such that his peak

p(R2
n) =

p(R1
n) if p(R1

n) ≥ p̄(R)

p̄(R) otherwise,

i.e., R2 = (R1
−n, R

2
n). Since p(R1

n) > F̄ (R1) and p(R2
n) > F̄ (R1), by set-

uncompromisingness, F (R2) = F (R1) = [
¯
p(R2), b]. Since F (R2) = [

¯
p(R2), b] =

[a, b] ∩ Conv(R2), by the definition of F a,b, F (R2) = F a,b(R2). Since F (R2) =

F a,b(R2) and Conv(p(R)) ⊆ Conv(R2), by Lemma 2.11, F (R) = F a,b(R).

Case 2.2. There exist α, β ∈ R, as specified in Case 2 and in addition, α =

¯
F (Rα,β) = F̄ (Rα,β) < β, and for each ᾱ ≤ α and its associated Rᾱ,β ∈ RN ,

ᾱ =
¯
F (Rᾱ,β) = F̄ (Rᾱ,β) < β. Define points a, b := −∞. Since b <

¯
p(Rα,β)

and F (Rα,β) = {
¯
p(Rα,β)}, by the definition of F a,b, F (Rα,β) = F a,b(Rα,β). Let

R ∈ RN . Begin from profile Rα,β and construct profile R1 by changing agent 1’s

preferences to R1
1 such that his peak

p(R1
1) =

p(R
α,β
1 ) if p(Rα,β

1 ) ≤
¯
p(R)

¯
p(R) otherwise,

i.e., R1 = (Rα,β
−1 , R

1
1). Since

¯
p(R1) ≤ α and p̄(R1) = β, as specified in this case and

by extreme-peaks-onliness, F (R1) = {
¯
p(R1)}. Then, change agent n’s preferences

to R2
n such that his peak

p(R2
n) =

p(R1
n) if p(R1

n) ≥ p̄(R)

p̄(R) otherwise,

i.e., R2 = (R1
−n, R

2
n). Since p(R1

n) > F̄ (R1) and p(R2
n) > F̄ (R1), by set-

uncompromisingness, F (R2) = F (R1) = {
¯
p(R2)}. Since b <

¯
p(R2), by the def-

inition of F a,b, F (R2) = F a,b(R2). Since F (R2) = F a,b(R2) and Conv(p(R)) ⊆
Conv(R2), by Lemma 2.11, F (R) = F a,b(R).

Case 3. There exist α, β ∈ R such that for Rα,β ∈ RN , α <
¯
F (Rα,β) ≤

F̄ (Rα,β) = β, and for each β̄ ≥ β and its associated Rα,β̄ ∈ RN , α <
¯
F (Rα,β̄) ≤

F̄ (Rα,β̄) = β̄. The proof of this case is symmetric to Case 2.

Case 4. For each α, β ∈ R such that α ≤ β and its associated Rα,β ∈ RN ,

α =
¯
F (Rα,β) ≤ F̄ (Rα,β) = β. Define points a := −∞ and b := ∞. Since for

each α, β ∈ R and its associated Rα,β ∈ RN , α =
¯
F (Rα,β) ≤ F̄ (Rα,β) = β, by

extreme-peaks-onliness, for each R ∈ RN , F (R) = Conv(p(R)). Therefore, since
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a <
¯
p(R) and b > p̄(R), by the definition of F a,b, F (R) = F a,b(R).



Chapter 3

On strategy-proofness and single-

peakedness: median-voting over intervals

Abstract

We study correspondences that choose an interval of alternatives when agents have

single-peaked preferences. Similar to Klaus and Storcken (2002), we ordinally extend

these preferences over intervals. Loosely speaking, we extend the results of Moulin (1980)

to our setting and show that the results of Ching (1997) cannot always be similarly ex-

tended. Our main results are the following. First, strategy-proofness and peaks-onliness

characterize the class of generalized median correspondences. Second, we characterize

the anonymous sub-class of generalized median correspondences, the class of median

correspondences. Third, although peaks-onliness cannot be replaced by the “weaker”

property of continuity in the aforementioned results -as is the case in Ching (1997)-

this equivalence is achieved when voter-sovereignty is also required, in the characteriza-

tions of the classes of efficient generalized median correspondences and efficient median

correspondences. Finally, when preferences are symmetric and single-peaked, only the

characterizations for the classes of efficient generalized median correspondences and effi-

cient median correspondences can be extended; moreover, in these results the properties

of peaks-onliness and continuity are unnecessary.

3.1 Introduction

We study the problem where an interval of alternatives is chosen on the interval

[0, 1] based on the preferences of a finite number of agents. This interval can

be considered as the political spectrum, while the chosen interval can in turn be

considered as the legislative constitution or the governmental coalition (in the

sense that some “extreme” views are not accounted for by the constitution or are

not represented by any member(s) of the governmental coalition). We assume

67
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that agents have single-peaked preferences defined over all alternatives on [0, 1];

that is, an agent’s welfare is strictly increasing up to his “peak” (his favorite

alternative), and is strictly decreasing thereafter. These agents, when comparing

two intervals, only consider their best (most favorite) alternative and their worst

(least favorite) alternative(s) on each interval. Moreover, we look into the situation

where the voting mechanism choosing the interval of alternatives guarantees that

the agents announce their true preferences; in other words, we are interested in

voting mechanisms -which we call (choice) correspondences- that are strategy-proof.

Although the classic result of Gibbard and Satterthwaite establishes that on

the full domain of preferences -with more than two alternatives available- strategy-

proofness and non-dictatorship are incompatible (Gibbard, 1973; Satterthwaite,

1975), this is not true for the domain of single-peaked preferences, the domain of

interest in this paper.

This compatibility between the two aforementioned properties has been well

studied in the context of (choice) functions and for infinite sets of alternatives,

where following the announcement of the agents’ (single-peaked) preferences one

alternative is chosen. Specifically, it has been shown that strategy-proofness and

peaks-onliness (the agents only announce their peak) characterize the class of

generalized median rules (described in Section 3.3.1) (Moulin, 1980). Moreover,

when also requiring the property of either efficiency (in the Pareto sense), or

anonymity (the names of the agents don’t matter), or both to be satisfied, the

sub-classes of either efficient generalized median rules (Section 3.3.1), or median

rules (Section 3.3.2), or efficient median rules (Section 3.3.2) are characterized

(Moulin, 1980). A similar result also holds for the one-dimensional case, when the

range of the function is closed and not connected (Barberà and Jackson, 1994).

In addition, on the smaller domain of quadratic and separable preferences1 and on

dimensions equal or larger to 1, peaks-onliness can be substituted by unanimity

(when a common best alternative exists, it is chosen) (Border and Jordan, 1983);

furthermore, it turns out that in these results two of the required properties can be

weakened; specifically, peak-onliness and efficiency can be substituted by continu-

ity (a small change in the announced preferences does not change the outcome a

lot) and voter-sovereignty (no alternative is a priori excluded from being chosen)

respectively (Ching, 1997).2 Finally, a measure of manipulability was recently

1In this domain, an agent’s welfare depends on the distance of the alternative chosen from
his peak, projected in every dimension. Specifically, the larger the sum of all such projected
distances, the smaller the welfare gained.

2Although technically continuity is not weaker than peaks-onliness, loosely speaking, it im-
poses fewer restrictions on the result.
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proposed, that can be used to compare two generalized median rules (via some

necessary and sufficient conditions) (Arribillaga and Massó, 2016).

For the case where a single alternative is chosen among a finite set (of alter-

natives), strategy-proofness and voter-sovereignty characterize, on the domain of

strict preferences, a class of functions similar to the class of efficient generalized

median rules (Barberà et al., 1993). Moreover, the admissible preferences of all

agents being top-connected3 characterize the maximal domain in which (i) every

strategy-proof and unanimous function is a generalized median rule, and (ii) every

generalized median rule is strategy-proof (Achuthankutty and Roy, 2017).

When departing from the setting where agents have single-peaked preferences

and only one alternative is chosen, a few more results should be mentioned. First,

in the case of probabilistic functions,4 where the agents’ single-peaked preferences

are ordinarily extended over probability distributions via first-order stochastic

dominance, similar results to Moulin’s results (1980) were achieved (Ehlers et al.,

2002). Next, if agents have single-dipped preferences,5 strategy-proofness and una-

nimity characterize the class of collections of 0-decisive sets with a tie-breaker 6

(Manjunath, 2014). Last but not least, we must mention the two following results

where the agents’ preferences are single-peaked and two alternatives can be chosen,

with the agents comparing different pairs of alternatives using the max-extension.7

(i) Strategy-proofness, continuity, anonymity, and users-only8 characterize

the class of double median functions9 (Heo, 2013).

(ii) Efficiency and replacement-dominance10 characterize the class of rules

3For every agent and every pair of “neighboring” alternatives (a, b) there exist admissible
preferences such that a is the most favorite alternative and b is the second most favorite alter-
native.

4Given the agents’ preferences, a probability distribution over all alternatives is chosen.
5An agent’s welfare is strictly decreasing up to his “dip” (his least favorite alternative), and

is strictly increasing thereafter.
6Each such function chooses either the minimum or the maximum alternative. Loosely speak-

ing, if all agents are indifferent between the two alternatives the choice depends on the preference
profile (over all other alternatives). Otherwise, the choice depends on the number of agents pre-
ferring the minimum over the maximum alternative, their identities, and their preferences.

7When comparing two pairs of alternatives X = {x1, x2} and Y = {y1, y2}, an agent first
locates in each pair the alternative he ranks higher, say x∗ and y∗. If he prefers x∗ to y∗, then
he also prefers X to Y . If he is indifferent between x∗ and y∗, then he is also indifferent between
X and Y .

8For each pair of chosen alternatives (a, b), the choice of a depends only on agents preferring
a over b.

9A double median function can be decomposed into two median rules, where for each prefer-
ence profile each one selects one alternative.

10If the preferences of an agent change, then the other agents should all be made at least as
well off or they should all be made at most as well off. See page 36 for a formal definition.
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comprised of the left-peaks function and the right-peaks function11 Miyagawa

(2001).

The above two results are -loosely speaking- similar to the results of this paper;

in Section 3.5.5 we discuss them and compare them with the results of this paper.

In line with most of the related literature, our main results also make use of

either the property of peaks-onliness or a version of continuity adapted for our

context (i.e., where an interval of alternatives is chosen). In addition, we also study

the sub-cases where correspondences are either efficient, or anonymous, or both.

Concisely, our results are the following. First, in the domain of single-peaked pref-

erences, strategy-proofness and peaks-onliness characterize the class of generalized

median correspondences (Theorem 3.1); and if anonymity is also required, then

the sub-class of median correspondences is characterized (Theorem 3.2). Second,

neither of these results holds in the domain of symmetric and single-peaked pref-

erences, nor can in these results continuity substitute peaks-onliness (the counter-

example on page 84). Third, in the domain of single-peaked preferences, strategy-

proofness, voter-sovereignty, and either peaks-onliness or continuity characterize

the class of efficient generalized median correspondences (Theorem 3.3); and if

anonymity is also required, then the sub-class of efficient median correspondences

is characterized (Theorem 3.4). Finally, in the domain of symmetric and single-

peaked preferences, the classes of efficient generalized median correspondences

and efficient median correspondences can be similarly characterized with one dif-

ference; due to peaks-onliness being inherent in the domain, continuity plays no

role.

The chapter proceeds as follows. Section 3.2 explains the model and states

a preliminary result. Section 3.3 includes the definitions of choice functions and

correspondences, as well as the definition of the classes of such functions and cor-

respondence we characterize. Section 3.4 contains the properties we are interested

in and some further preliminary results. Finally, Section 3.5 contains all main

results and characterizations, as well as a table summarizing our results.

3.2 The model

Consider a coalition (of agents) N ≡ {1, . . . , n}, such that n ≥ 2, and a set

of alternatives A ≡ [0, 1].12 We denote generic agents by i and j, and generic

11The left (right) peaks function chooses the two unique left-most (right-most) peaks.
12The set of alternatives is chosen without loss of generality. Essentially, our results hold for

any closed interval in R.
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alternatives by x and y. Each i is equipped with preferences Ri, defined over

A, that are complete, transitive, and reflexive. As usual, x Ri y is interpreted as

“x is at least as desirable as y”, x Pi y as “x is preferred to y”, and x Ii y as

“x is indifferent to y”. Moreover, for preferences Ri there exists an alternative

pi ∈ A, called the peak of i, with the following property: if either y < x ≤ pi or

y > x ≥ pi, we have x Pi y. We call such preferences single-peaked and denote the

domain of single-peaked preferences by R. Furthermore, if for preferences Ri ∈ R,

|x− pi| = |y − pi| implies x Ii y, then we say these preferences are symmetric and

denote the domain of symmetric preferences by S.

In the sequel, all notation and definitions refer to domain R but also apply to

domain S. Moreover, all results presented in this section hold in both domains.

Let RN be the set of profiles R ≡ (Ri)i∈N such that for each i ∈ N , Ri ∈ R.

Given R ∈ RN and j ∈ N , we also use R and (R−j, Rj) interchangeably. For each

R ∈ RN , we denote the vector of peaks of R by p ≡ (pi)i∈N . Let the smallest peak

in R be
¯
p ≡ min({pi}i∈N) and the largest peak in R be p̄ ≡ max({pi}i∈N). Finally,

let the convex hull of peaks in R be Conv(p) ≡ [
¯
p, p̄].

Let the class of closed intervals in A be denoted byA. We denote generic sets in

A by X and Y . We denote the minimum of X by
¯
X ≡ min(X) and the maximum

of X by X̄ ≡ max(X). For each Ri ∈ R, we denote the best alternative(s) of i in

X by bRi
(X) ≡ {x ∈ X : for each y ∈ X, x Ri y} and the worst alternative(s) of i

in X by wRi
(X) ≡ {x ∈ X : for each y ∈ X, y Ri x}. Note that single-peakedness

of Ri and non-emptiness of X imply that the sets bRi
(X) and wRi

(X) contain

one or two elements; specifically, if bRi
(X) (respectively, wRi

(X)) contains two

elements, agent i is indifferent between them. It is with some abuse of notation

that we treat sets bRi
(X) and wRi

(X) as if they are points and for each x ∈ X,

we write bRi
(X)Ri x Ri wRi

(X).

We extend all preferences Ri ∈ R, defined over A, to preferences defined over

A according to the “best-worst” extension of preferences characterized by Barberà

et al. (1984).13 Specifically, when comparing two sets, an agent only considers his

best and his worst point(s) in each of them. Therefore, an agent prefers X to Y if

he prefers his best point(s) in X to his best point(s) in Y and his worst point(s)

in X to his worst point(s) in Y . The following definition also covers three more

cases arising when an agent is indifferent between his best or worst point(s) in the

13Preferences RAi defined over A satisfy weak-dominance (xPAi y implies {x}PAi {x, y}PAi {y})
and weak-independence (given triple X,Y, Z ∈ A such that [X ∩ Z] = [Y ∩ Z] = ∅, X PAi Y
implies [X ∪ Z] RAi [Y ∪ Z]) if and only if i compares sets in A according to the “best-worst”
extension of preferences. Examples illustrating the reasoning behind requiring these properties
(in a slightly different model) are provided in Klaus and Protopapas (2016).
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two sets.

With some abuse of notation, we use the same symbols to denote preferences

over alternatives and preferences over sets of alternatives.

Best-worst extension of preferences. For each i ∈ N with preferences Ri ∈ R,

and each pair X, Y ∈ A,

X Ri Y if and only if


bRi

(X)Ri bRi
(Y )

and

wRi
(X)Ri wRi

(Y ).

and

X Pi Y if and only if X Ri Y and


bRi

(X) Pi bRi
(Y )

or

wRi
(X) Pi wRi

(Y ).

This extension of preferences is transitive: for each triple X, Y, Z ∈ A, if XRiY

and Y Ri Z, then X Ri Z. However, it is not complete: there exist X, Y ∈ A such

that neither X Ri Y nor Y Ri X. To be precise, we now introduce the following

definition.

Comparability. Given preferences Ri ∈ R, sets X, Y ∈ A are comparable if and

only if [bRi
(X)Pi bRi

(Y ) implies wRi
(X)RiwRi

(Y )] and [wRi
(X)PiwRi

(Y ) implies

bRi
(X)Ri bRi

(Y )].

Based on the best-worst extension of preferences, we now define (Pareto) effi-

cient sets.

Efficient sets. Given profile R ∈ RN , set X ∈ A is efficient if and only if there

is no set Y ∈ A such that for each i ∈ N , Y Ri X, and for at least one j ∈ N ,

Y Pj X; we denote the class containing all efficient sets at R by E(R).

We now present a characterization of efficient sets in this setting that follows

from Klaus and Protopapas (2016). Note that the original result is a little more

complicated since it holds for all compact sets.

Proposition 3.1 (Klaus and Protopapas (2016)). At profile R ∈ RN , a closed

interval is efficient if and only if it is a subset of the convex hull of peaks in R.
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3.3 Choice functions and correspondences

In the sequel, all notation and definitions refer to domain R but also apply to

domain S. Moreover, all results presented in this section hold in both domains.

Each i ∈ N , announces preferences Vi ∈ R with associated announced peak

vi ∈ A. Given (true) profile R ∈ RN , if Vi = Ri, we say that i is sincere;

otherwise, if Vi 6= Ri, we say that i deviates. All terminology, notation, and

results of Section 3.2, defined for preferences Ri ∈ R, are carried over to announced

preferences Vi ∈ R by replacing R and p by V and v respectively, and adding the

term “announced” as necessary. For example, since in profile R ∈ RN the smallest

peak is denoted by
¯
p ≡ min({pi}i∈N), in announced profile VN ∈ RN the smallest

announced peak is denoted by
¯
v ≡ min({vi}i∈N).

A (choice) correspondence F assigns to each V ∈ RN a set F (V ) ∈ A, i.e.,

F : RN → A. Given V ∈ RN , let the minimum of F (V ) be
¯
F (V ) ≡ min{F (V )}

and the maximum of F (V ) be F̄ (V ) ≡ max{F (V )}. We denote the family of

correspondences by F . Moreover, if a correspondence F ∈ F assigns to each

V ∈ RN an interval consisting of a single point we will refer to it as a function

and use notation f ∈ f, i.e., f : RN → A.

Before defining in Sections 3.3.1 and 3.3.2 two classes of functions and corre-

spondences that our results revolve around, the following definition is necessary:

for each odd and positive integer k, and each vector T ∈ Rk, label the coordi-

nates of T such that t1 ≤ · · · ≤ tk; we define the median (coordinate) of T by

med(T ) ≡ t k+1
2

Finally, we (would like the reader to notice) that the classes of generalized

median rules and correspondences, defined in Section 3.3.1, are as the name sug-

gests, a generalization of the classes of median rules and correspondences, defined

in Section 3.3.2. Loosely speaking, this generalization boils down to the agents

influencing the chosen interval non-symmetrically. This is discussed in Remark 3.3

(Section 3.3.2). The reason behind this sequencing is simple: our results for the

classes of generalized median rules and correspondences can be easily shown to

hold for the subclasses of median rules and correspondences respectively.

3.3.1 Generalized median rules and correspondences

The first class of functions we consider was introduced under the name

strategy-proof voting schemes and characterized by strategy-proofness14 and peaks-

14No agent gains by deviating.
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onliness15 (Moulin, 1980, Proposition 3). It was later shown that peaks-onliness

can be substituted with the “weaker” property of continuity16 (Ching, 1997, Theo-

rem). In order to provide a useful intuition in understanding this class, we present

an example inspired by the one provided in Arribillaga and Massó (2016, p. 564).

Example 3.1. Consider the two agent case, i.e., N = {1, 2} and choose a 4-

dimensional vector α = (α∅, α{1}, α{2}, αN) such that αN ≤ α{1} ≤ α{2} ≤ α∅.

Next, define the function fα ∈ f as follows. For each V ∈ RN , if v1 ≤ v2,

choose α̃v = (α∅, α{1}, αN) and set fα(V ) = med(α̃v, v), and if v1 > v2, choose

α̃v = (α∅, α{2}, αN) and set fα(V ) = med(α̃v, v).

Notice that if α{1} 6= α{2}, then the agents have asymmetric power in influenc-

ing the chosen alternative. Before discussing further this asymmetry, in an effort

to shed more light on the behavior of fα, we first provide a second definition of it.

For each V ∈ RN , fα(V ) =



αN if v1, v2 ≤ αN

v2 if v1 ≤ αN ≤ v2 ≤ α{1}

α{1} if v1 ≤ αN ≤ α{1} ≤ v2

med(v1, v2, α{1}) if αN ≤ v1 ≤ α{1}

v1 if α{1} ≤ v1 ≤ α{2}

med(v1, v2, α{2}) if α{2} ≤ v1 ≤ α∅

α{2} if v2 ≤ α{2} ≤ α∅ ≤ v1

v2 if α{2} ≤ v2 ≤ α∅ ≤ v1, and

α∅ if α∅ ≤ v1, v2.

It is easy to see from this second definition that the range of fα equals [αN , α∅].

Hence, this function can be interpreted as one assigning to agents 1 and 2 the

power to choose an alternative from the interval [αN , α∅]. Furthermore, as already

briefly discussed, this power is not symmetric among the agents but depends on

the choice of α{1} and α{2}. For instance in this example, since α{1} ≤ α{2}, agent

1 has a greater power than agent 2 in influencing the chosen alternative. To see

this, first consider agent 1. He can make sure that the chosen alternative is not

larger than α{1} and not smaller than v1 (by announcing v1 ≤ α{1}), or that it

is not larger than v1 and not smaller than α{1} (by announcing v1 ≥ α{1}). In

15The chosen alternative only depends on the vector of announced peaks.
16If the announced preferences change a “little”, the chosen alternative does not change “a

lot”.
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addition, he is a dictator on the interval [α{1}, α{2}].

Next, consider agent 2. He only has the power to influence the chosen alterna-

tive if agent 1 “allows” him to do so. That is, if αN ≤ v1 ≤ α{1}, then agent 2 can

pinpoint the chosen alternative on the interval [v1, α{1}], and if v1 ≤ αN ≤ α{1},

then agent 2 can pinpoint the chosen alternative on the interval [αN , α{1}]. Simi-

larly, if α{2} ≤ v1 ≤ α∅, then agent 2 can pinpoint the chosen alternative on the

interval [α{2}, v1], and if α{2} ≤ α∅ ≤ v1, then agent 2 can pinpoint the chosen

alternative on the interval [α{2}, α∅].

The general n-agent case works as follows. First, take a vector α in A2n ,

i.e., the dimension of α equals the number of all sub-coalitions in N (including

the empty set). Specifically, let α ≡ (αM)M⊆N , such that for each L ⊆ M ,

αL ≥ αM . Next, for an announced profile V with associated vector of announced

peaks v, label the agents such that v1̄ ≤ · · · ≤ vn̄.17 Finally, construct vector α̃v

in An+1 such that α̃v = (α∅, α{1̄}, α{1̄,2̄}, . . . , αN) and notice that by construction,

αN ≤ · · · ≤ α{1̄,2̄} ≤ α{1̄} ≤ α∅. The generalized median rule associated with

vector α chooses alternative med(v, α̃v).

Generalized median rules. Let vector α ∈ A2n be such that α ≡ (αM)M⊆N ,

where for each pair L,M ⊆ N with L ( M , αL ≥ αM . Also, for each V ∈ RN ,

let bijection π : N → N be such that vπ(1) ≤ · · · ≤ vπ(n) and construct vector α̃v =

(α∅, α{π(1)}, α{π(1),π(2)}, . . . , αN). We denote the generalized median rule associated

with vector α by fαG, where for each V ∈ RN , fαG(V ) ≡ med(v, α̃v). Finally, we

denote the class of generalized median rules by fG.18

Clearly, if all agents announce different peaks, a unique ordering of them by

their announced peak exists. Moreover, for the case where some agents announce

the same peak and hence such a unique ordering does not exist, the chosen al-

ternative does not depend on the particular ordering chosen; as shown in Ching

(1997, Remark 1).

The first class of correspondences we characterize in Section 3.5 extends the

spirit of generalized median rules to correspondences. Specifically, take two vectors

α ≤ β, each of dimension 2n, such that α ≡ (αM)M⊆N and β ≡ (βM)M⊆N . Next,

for an announced profile V with associated vector of announced peaks v, label the

17Whenever two agents announce the same peak, no unique way to label the agents exists.
However, the specific choice of labels does not affect the chosen alternative (Ching, 1997, Re-
mark 1).

18It should be noted that in the literature a generalized median rule fαG ∈ fG is often described
as follows: For each V ∈ RN , fαG(V ) = min

M⊆N
max
i∈M
{vi, αM}.
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agents such that v1 ≤ · · · ≤ vn and construct vectors α̃v and β̃v, each of dimension

n + 1, such that α̃v = (α∅, α{1}, α{1,2}, . . . , αN) and β̃v = (β∅, β{1}, β{1,2}, . . . , βN).

The generalized median correspondence associated with vectors α and β chooses

the interval where the minimum alternative is med(v, α̃v) and the maximum al-

ternative is med(v, β̃v).

Generalized median correspondences. Let vectors α, β ∈ A2n be such that

α ≡ (αM)M⊆N and β ≡ (βM)M⊆N , with α ≤ β, and for each pair L,M ⊆ N ,

with L ( M , αL ≥ αM and βL ≥ βM . Also, for each V ∈ RN , let bi-

jection π : N → N such that vπ(1) ≤ · · · ≤ vπ(n) and construct vectors α̃v =

(α∅, α{π(1)}, α{π(1),π(2)}, . . . , αN) and β̃v = (β∅, β{π(1)}, β{π(1),π(2)}, . . . , βN). We de-

note the generalized median correspondence associated with vectors α and β by

Fα,β
G , where for each V ∈ RN , Fα,β

G (V ) ≡ [med(v, α̃v),med(v, β̃v)]. Finally, we

denote the class of generalized median correspondences by FG.

Remark 3.1. By definition of FG and fG, for each profile V , Fα,β
G (V ) ≡

[med(v, α̃v),med(v, β̃v)] = [fαG(V ), fβG(V )]. Therefore, a generalized median cor-

respondence Fα,β
G can be decomposed into two generalized median rules fαG and

fβG.

The next result considers single-valued generalized median correspondences.

Lemma 3.1. A generalized median correspondence Fα,β
G is single-valued if and

only if α = β. Moreover, in this case Fα,β
G is essentially a generalized median

rule.19

Proof. Let Fα,β
G ∈ FG and fαG, f

β
G ∈ fG. Let V ∈ RN . By Remark 3.1, Fα,β

G (V ) =

[fαG(V ), fβG(V )]. If α = β, then Fα,β
G (V ) = {fαG(V )}. Hence, Fα,β

G is single-valued.

If Fα,β
G is single-valued, then Fα,β

G (V ) = [fαG(V ), fβG(V )] implies fαG(V ) = fβG(V ).

Assuming α 6= β results in a contradiction as follows. Since α 6= β, there exists a

coalition M ⊆ N such that αM 6= βM . Let |M | = m and specify V such that for

each agent i ∈M , vi = 0, and for each agent j ∈ N \M , vj = 1. Hence, at profile

V , the mth coordinate of vectors α̃v and β̃v will be αM and βM respectively.

Moreover, by definition of FG, αN ≤ α{1,...,n−1} ≤ · · · ≤ α{1} ≤ α∅ and βN ≤
β{1,...,n−1} ≤ · · · ≤ β{1} ≤ β∅. Thus, there are at least n+ 1−m coordinates of α̃v

not larger than αM (i.e., coordinates αM , . . . , αN) and at least m+1 coordinates of

α̃v not smaller than αM (i.e., coordinates α∅, . . . , αM). Similarly, there are at least

19To be precise, a single-valued generalized median correspondence assigns singleton sets of
alternatives while the corresponding generalized median rule assigns the alternatives contained
in these sets.
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n + 1 − m coordinates of β̃v not larger than βM and at least m + 1 coordinates

of β̃v not smaller than βM . Hence, Fα,β
G = [med(v, α̃v),med(v, β̃v)] = [αM , βM ]

contradicting that Fα,β
G is single-valued. Therefore, Fα,β

G (V ) being single-valued

implies α = β.

Our results in Section 3.5 will also concern efficient generalized median corre-

spondences. Formally, given Fα,β
G ∈ FG, if for each V ∈ RN , Fα,β

G ∈ E(V ), we say

that Fα,β
G is an efficient generalized median correspondence and denote the class

of efficient generalized median correspondences by FEG. The next result concerns

this class of correspondences.

Lemma 3.2. A generalized median correspondence Fα,β
G is an efficient generalized

median correspondence if and only if vectors α, β are such that αN = βN = 0 and

α∅ = β∅ = 1.

Proof. Let Fα,β
G ∈ FG. Assuming that Fα,β

G ∈ FEG such that α, β are not as

described above, results in a contradiction as follows.

If αN 6= 0 or βN 6= 0, choose V ∈ RN such that v = (0, . . . , 0). By Propo-

sition 3.1, E(V ) = {0} and by the definition of FG, Fα,β
G (V ) = [αN , βN ]. Hence,

Fα,β
G (V ) 6∈ E(V ). Similarly, if α∅ 6= 1 or β∅ 6= 1, choose V ∈ RN such that

v = (1, . . . , 1). Again, by Proposition 3.1, E(V ) = {1} and by the definition of

FG, Fα,β
G (V ) = [α∅, β∅]. Hence, Fα,β

G (V ) 6∈ E(V ).

Finally, if αN = βN = 0 and α∅ = β∅ = 1, then for each V ∈ RN , med(v, α̃v) ∈
Conv(v) and med(v, β̃v) ∈ Conv(v). Hence, by the definition of FG, Fα,β

G (V ) ⊆
Conv(v), and thus by Proposition 3.1, Fα,β

G (V ) ∈ E(V ).

3.3.2 Median rules and correspondences

The second class of functions we consider was introduced under the name strategy-

proof and anonymous voting schemes and characterized by strategy-proofness,

peaks-onliness, and anonymity20 (Moulin, 1980, Proposition 2). As discussed in

Remark 3.3, this class of functions is a subclass of generalized median rules since

now all agents possess the same power in influencing the chosen alternative. For

the 2-agent case, it suffices to set α{1} = α{2} in Example 3.1 (page 74).

The general n-agent case works as follows. Take a vector a in An+1. For an

announced profile V with associated vector of announced peaks v, the median rule

associated with a chooses alternative med(v, a).

20The names of the agents do not affect the chosen alternative.
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Median rules. Let vector a ∈ An+1 be such that a ≡ (a1, . . . , an+1), where a1 ≤
· · · ≤ an+1. We denote the median rule associated with vector a by faM , where for

each V ∈ RN , faM(V ) ≡ med(v, a). Finally, we denote the class of median rules

by fM .

The second class of correspondences we characterize in Section 3.5 extends the

spirit of median rules to correspondences. Specifically, take two vectors a ≤ b ,

each of dimension n + 1. For an announced profile V with associated vector of

announced peaks v, the median correspondence associated with a and b chooses the

interval where the minimum alternative is med(v, a) and the maximum alternative

is med(v, b).

Median correspondences. Let vectors a, b ∈ An+1 be such that a ≡
(a1, . . . , an+1) and b ≡ (b1, . . . , bn+1), with a ≤ b, a1 ≤ · · · ≤ an+1, and

b1 ≤ · · · ≤ bn+1. We denote the median correspondence associated with vectors a

and b by fa,bM , where for each V ∈ RN , F a,b
M (V ) ≡ [med(v, a),med(v, b)]. Finally,

we denote the class of median correspondences by FM .

Remark 3.2. By definition of FM and fM , for each profile V , F a,b
M (V ) ≡

[med(v, a),med(v, b)] = [faM(V ), f bM(V )]. Therefore, a median correspondence F a,b
M

can be decomposed into two median rules faM and f bM .

Remark 3.3. The class of median rules (correspondences) is a subclass of the

class of generalized median rules (correspondences). That is, given F a,b
M ∈ FM , let

Fα,β
G ∈ FG by choosing vectors α, β ∈ A2n such that the weight of each coalition

only depends on its cardinality. Specifically, for each M ⊆ N , choose αM =

an+1−|M | (i.e., choose α∅ = an+1, for each i ∈ N , choose α{i} = an, for each

i, j ∈ N with i 6= j, choose α{i,j} = an−1, and so on) and βM = bn+1−|M |. It follows

that for each V ∈ RN , α̃v = a and β̃v = b, implying F a,b
M (V ) = Fα,β

G (V ).

The next result considers single-valued median correspondences.

Lemma 3.3. A median correspondence F a,b
M is single-valued if and only if a = b.

Moreover, in this case F a,b
M is essentially a median rule.21

Lemma 3.3 follows from Lemma 3.1 and Remark 3.3.

Our results in Section 3.5 also concern efficient median correspondences. For-

mally, given F a,b
M ∈ FM , if for each V ∈ RN , F a,b

M ∈ E(V ), we say that F a,b
M is

an efficient median correspondence and denote the class of efficient median cor-

respondences by FEM . The next result concerns this class of correspondences.

21To be precise, a single-valued median correspondence assigns singleton sets of alternatives
while the corresponding median rule assigns the alternatives contained in these sets.
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Lemma 3.4. A median correspondence F a,b
M is an efficient median correspondence

if and only if vectors a, b are such that a1 = b1 = 0 and an+1 = bn+1 = 1.

Lemma 3.4 follows from Lemma 3.2 and Remark 3.3.

Remark 3.4. As discussed in Section 3.5, both classes of generalized median

correspondences and median correspondences are strategy-proof 22, similar to the

results on functions by Moulin (1980). However, it should be noted that in contrast

to Moulin’s results these classes of correspondences are not group strategy-proof.23

The following example illustrates this.

Example 3.2. Let N = {1, 2, 3} and F a,b ∈ FEM such that a = {0, 0, 0, 1} and

b = {0, 0, 1, 1}. In addition, let V, V ′ ∈ S be such that v1 = v′1 = 0, v2 = 0.5,

v′2 = 0.6, and v3 = v′3 = 1. Then, F (V ) = [0, 0.5] and F (V ′) = [0, 0.6]. Therefore,

assuming V are the true preferences of the agents implies that although agent 2

is indifferent to deviating, by announcing V ′2 , agent 3 gains by this deviation.

3.4 Properties of correspondences

In the sequel, all properties are defined for correspondences in domain R but also

apply to correspondences in domain S. Moreover, all results presented in this

section hold in both domains.

The first two properties we consider are related; the first is our efficiency notion

for correspondences while the second, being weaker than the first, requires no

alternative in A to be a priori excluded from being selected.

Efficiency. For each V ∈ RN , F (V ) ∈ E(V ).

Voter-sovereignty. For each x ∈ A, there exists V ∈ RN such that F (V ) = {x}.

The next property, which is central in our results, requires no agent to gain by

deviating. Moreover, it implies comparability between the chosen sets before and

after an agent’s deviation.

Strategy-proofness. For each i ∈ N , each Ri ∈ R, and each V ∈ RN ,

F (V−i, Ri)Ri F (V−i, Vi).

The next property requires the chosen set to depend only on the vector of

announced peaks.

22No agent gains by deviating. See Section 3.5.1 for a formal proof.
23No group of agents can deviate such that some members of the group gain and no member

of the group loses.
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Peaks-onliness. For each pair V, V ′ ∈ RN such that v = v′, F (V ) = F (V ′).

Loosely speaking, the next property requires when the announced preferences

of an agent change “a little”, the minimum and maximum alternatives chosen to

not change “a lot”. Before describing it formally, we must first define the three

following notions. First, the “indifference relation”, which -loosely speaking- given

preferences Vi ∈ R, maps each alternative x to an alternative y, that i finds

indifferent to x, according to Vi. Formally, for each Vi ∈ R, the indifference

relation rVi : [0, 1] → [0, 1] is defined as follows. For each x ∈ [0, vi], rVi(x) = y

if y ∈ [vi, 1] exists such that y Ii x, or rVi(x) = 1 otherwise; while for each x ∈
[vi, 1], rVi(x) = y if y ∈ [0, vi] exists such that y Ii x, or rVi(x) = 0 otherwise.

Second, the distance between a pair Vi, V
′
i ∈ R, which is measured using the

indifference relation. Formally, it is defined to be d(Vi, V
′
i ) ≡ maxx∈[0,1] |rVi(x) −

rV ′i (x)|. Finally, the notion of convergence. Specifically, for k ∈ N+, a sequence

{V k
i } in R converges to Vi, if k → ∞ implies the distance d(Vi, V

k
i ) → 0. We

denote this convergence by V k
i → Vi.

Min/max continuity. For each V ∈ RN , each i ∈ N , and each {V k
i } in R,

if V k
i → Vi, then

¯
F (V−i, V

k
i )→

¯
F (V ), and

F̄ (V−i, V
k
i )→ F̄ (V ).

Notice that min/max continuity for functions is equivalent to the regular con-

tinuity property for functions (with respect to the preference profile). Moreover,

in Appendix 3.A we show the equivalence of this property with the standard

continuity properties for correspondences, upper-hemi continuity and lower-hemi

continuity.

The next property requires that the agents’ identities do not matter.

Anonymity. For each bijection σ : N → N and each pair V, V ′ ∈ RN such that

for each i ∈ N , Vi = V ′σ(i), F (V ) = F (V ′).

The last property we consider depends only on the announced peaks of the

agents. Loosely speaking, following a change in an agent’s announced preferences,

if before and after this change both announced peaks lie on the same side of the

minimum (maximum) chosen alternative, then the minimum (maximum) chosen

alternative does not change.

Uncompromisingness. For each i ∈ N and each pair V, V ′ ∈ RN such that



3.5. RESULTS 81

V ′−i = V−i,

if

vi < ¯
F (V ) and v′i ≤ ¯

F (V ) or

vi >
¯
F (V ) and v′i ≥ ¯

F (V ),
then

¯
F (V ) =

¯
F (V ′), and

if

vi < F̄ (V ) and v′i ≤ F̄ (V ) or

vi > F̄ (V ) and v′i ≥ F̄ (V ),
then F̄ (V ) = F̄ (V ′).

When a correspondence does not satisfy uncompromisingness, we say that it

is compromised.

3.5 Results

We begin by presenting in Section 3.5.1 results concerning interrelations between

the properties presented in Section 3.4. Said results are then used in our char-

acterization results presented in Sections 3.5.2 and 3.5.3. Loosely speaking, in

Section 3.5.2, we extend the characterizations of Moulin (1980, Propositions 2

and 3)24 to correspondences in domain R; while in Section 3.5.3, we show which

of these characterizations can be extended in domain S. Next, in section 3.5.4 we

show that the properties in all our characterization results are independent; and

finally, in section 3.5.5 we compare these results to those of Miyagawa (2001) and

Heo (2013).

3.5.1 Interrelations between properties

Our first result in this section holds in domain S. It shows that if strategy-

proofness is satisfied, then efficiency and voter-sovereignty are equivalent.

Proposition 3.2. For strategy-proof correspondences efficiency and voter-

sovereignty are equivalent in domain S.

We prove Proposition 3.2 in Appendix 3.B. In addition, a similar equivalence

result holds in domain R, albeit slightly weaker since peaks-onliness or min/max

continuity is also required. By Proposition 3.2, this result trivially holds in domain

S as well.

24Proposition 2: A function satisfies strategy-proofness, peaks-onliness, and anonymity in R
if and only if it is a median rule. Proposition 3: A function satisfies strategy-proofness and
peaks-onliness in R if and only if it is a generalized median rule.
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Proposition 3.3. The following two statements for strategy-proof correspon-

dences hold.

(i) If peaks-onliness is satisfied, then efficiency and voter-sovereignty are equiv-

alent.

(ii) If min/max continuity is satisfied, then efficiency and voter-sovereignty

are equivalent.

We prove Proposition 3.3 in Appendix 3.B. Moreover, the next result holds only

in domain R.25 It shows that strategy-proofness and peaks-onliness are equivalent

with uncompromisingness.

Proposition 3.4. The following two statements for correspondences are equiva-

lent in domain R.

(i) Strategy-proofness and peaks-onliness are satisfied.

(ii) Uncompromisingness is satisfied.

We prove Proposition 3.4 in Appendix 3.C. Moreover, the next result is in the

spirit of Proposition 3.4 and holds in domain S.

Proposition 3.5. The following two statements for correspondences are equiva-

lent in domain S.

(i) Strategy-proofness and voter-sovereignty are satisfied.

(ii) Uncompromisingness and voter-sovereignty are satisfied.

We prove Proposition 3.5 in Appendix 3.C. Moreover, our final result also

concerns uncompromisingness. It holds in both domains R and S.

Proposition 3.6. Each correspondence satisfying strategy-proofness, min/max

continuity, and voter-sovereignty also satisfies uncompromisingness.

We prove Proposition 3.6 in Appendix 3.C.

3.5.2 Results in the single-peaked domain R

We now present our characterization results for (generalized) median correspon-

dences, as well as a counter-example justifying the absence of such results in some

cases. All results hold in domain R. The extension of these results in domain S
is discussed in Section 3.5.3.

Our first result concerns the class of generalized median correspondences.

25An example of Proposition 3.4 not holding in domain S is illustrated by the counter-example
on page 84.
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Theorem 3.1. The following three statements for a correspondence F ∈ F are

equivalent.

(i) F satisfies strategy-proofness and peaks-onliness.

(ii) F satisfies uncompromisingness.

(iii) F is a generalized median correspondence.

The equivalence of statements (i) and (ii) follows from Propostion 3.4. We

prove the equivalence of statements (ii) and (iii) in Appendix 3.D; note that this

part of the proof also holds in domain S.

Our second result concerns the class of median correspondences.

Theorem 3.2. The following three statements for a correspondence F ∈ F are

equivalent.

(i) F satisfies strategy-proofness, peaks-onliness, and anonymity.

(ii) F satisfies uncompromisingness and anonymity.

(iii) F is a median correspondence.

Proof. The equivalence of statements (i) and (ii) follows from Propostion 3.4.

We proceed by showing the equivalence of statements (ii) and (iii) in two steps;

note that this part of the proof also holds in domain S.

Step 1 - (statement (ii) implies statement (iii)): Let F ∈ F satisfy

uncompromisingness and anonymity, and V ∈ R. By Theorem 3.1, there exists

Fα,β
G ∈ FG such that F (V ) = Fα,β

G (V ). Moreover, anonymity implies for α, β ∈
A2n that for each pair L,M ⊆ N , if |L| = |M |, then αL = αM and βL = βM . Thus,

for each M ⊆ N , let an+1−|M | = αM and bn+1−|M | = βM , to effectively construct

vectors a, b ∈ An+1. Next, let F a,b
M ∈ FM and notice that for each V ∈ RN ,

Fα,β
G (V ) = [med(v, α̃v),med(v, β̃v)] = [med(v, a),med(v, b)] = F a,b

M (V ).

Step 2 - (statement (iii) implies statement (ii)): Let F a,b
M ∈ FM .

In addition, let Fα,β
G ∈ FG by choosing vectors α, β ∈ A2n such that the

weight of each coalition only depends on its cardinality; specifically, for each

M ⊆ N , αM = an+1−|M | and βM = bn+1−|M |. Hence, for each V ∈ RN ,

Fα,β
G (V ) = [med(v, α̃v),med(v, β̃v)] = [med(v, a),med(v, b)] = F a,b

M (V ). There-

fore, by Theorem 3.1, F a,b
M satisfies uncompromisingness and by the definition of

FM , F a,b
M satisfies anonymity.

Next, we show that in Theorems 3.1 and 3.2 peaks-onliness cannot be substi-

tuted with min/max continuity. We illustrate this in the counter-example that fol-

lows by exhibiting a correspondence satisfying strategy-proofness, min/max con-

tinuity, and anonymity and violating voter-sovereignty -and more importantly-
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uncompromisingness; which, as shown in the aforementioned theorems, is satis-

fied by both classes of generalized median correspondences and median correspon-

dences. Moreover, as explained in Section 3.5.3, this example also illustrates that

the aforementioned theorems cannot be extended in domain S.

Counter-example. Let |N | ≥ 1 and define r∗V ≡ max{rVi(0)}i∈N , that is, at

announced profile V , among the indifferent announced alternatives to 0 of each

agent i ∈ N , r∗V is the largest one. Next, define F ∗ ∈ F as follows. For each

V ∈ RN , F ∗(V ) = [0, r∗V ]. By definition, it follows that F ∗ satisfies min/max

continuity and anonymity, and that it violates voter-sovereignty. We proceed in 2

steps

Step 1: We show F ∗ satisfies strategy-proofness. Let V ∈ RN (V ∈ SN) be

such that i ∈ N is sincere, i.e., Vi = Ri. Also, let V ′i ∈ R (V ′i ∈ S) be such that

V ′i 6= Vi. There are two cases.

Case 1. Let rVi(0) = r∗V . By single-peakedness, bRi
(F ∗(V )) = {pi}, implying

i’s best point does not improve by deviating at V , and 0 ∈ wRi
(F ∗(V )). By the

definition of F ∗, 0 ∈ F ∗(V−i, V
′
i ), hence i’s worst point(s) does not improve by

deviating at V . Therefore, F ∗(V )Ri F
∗(V−i, V

′
i ).

Case 2. Let rVi(0) < r∗V . By single-peakedness, bRi
(F ∗(V )) = {pi}, implying

i’s best point does not improve by deviating at V , and wVi(F
∗(V )) = {r∗V }. By

the definition of F ∗, r∗V ∈ F ∗(V−i, V ′i ), hence i’s worst point does not improve by

deviating at V . Therefore, F ∗(V )Ri F
∗(V−i, V

′
i ).

Step 2: We show that F ∗ can be compromised. Let N = {1, 2, 3}. Let pair

V, V ′ ∈ SN be defined as follows: v1 = 0.2, v′1 = 0.3, and v2 = v′2 = v3 = v′3 = 0.

Hence, r∗V = rV1(0) = 0.4 and r∗V ′ = rV ′1 (0) = 0.6. Therefore, F (V ) = [0, 0.4] and

F (V ′) = [0, 0.6]. Clearly, F is compromised.

We conclude this section by presenting the “efficient versions” of Theorems 3.1

and 3.2. Notice that now peaks-onliness and min/max continuity become substi-

tutable.

Theorem 3.3. The following four statements for a correspondence F ∈ F are

equivalent.

(i) F satisfies strategy-proofness, peaks-onliness, and voter-sovereignty.

(ii) F satisfies uncompromisingness and voter-sovereignty.

(iii) F satisfies strategy-proofness, min/max continuity, and voter-

sovereignty.

(iv) F is an efficient generalized median correspondence.
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Proof. The equivalence of statements (i) and (ii) follows from Proposition 3.4.

The equivalence of statement (ii) and (iv) is shown as follows. By Theorem 3.1,

statement (ii) implies F ∈ FG. Hence, by the definition of FG, F satisfies peaks-

onliness. Thus, Proposition 3.3 and the definition of FEG imply F ∈ FEG, i.e.,

statement (ii) implies statement (iv). Moreover, by Theorem 3.1 and FEG (
FG, statement (iv) implies F satisfies uncompromisingness; in addition, by the

definition of FEG, statement (iv) implies F satisfies efficiency and therefore voter-

sovereignty, i.e., statement (iv) implies statement (ii). Finally, notice that this

equivalence of statements (ii) and (iv) also holds in domain S.

Next, by Proposition 3.6, statement (iii) implies statement (ii). We

complete the proof by showing statement (ii) implies statement (iii). By

Step 1 of the proof of Theorem 3.1(statement (ii) implies statement (iii)) on

page 106, if F ∈ F satisfies uncompromisingness, then for V ∈ RN and

each i ∈ N the following holds. If V 0
i is such that v0

i = 0 and V 1
i is such

that v1
i = 1, then

¯
F (V ) = med(

¯
F (V ),

¯
F (V−i, V

0
i ),

¯
F (V−i, V

1
i )) and F̄ (V ) =

med(F̄ (V ), F̄ (V−i, V
0
i ), F̄ (V−i, V

1
i )). Hence clearly statement (ii) implies F sat-

isfies min/max continuity. Finally, by the equivalence of statements (i) and (ii),

statement (ii) implies F satisfies strategy-proofness.

Theorem 3.4. The following four statements for a correspondence F ∈ F are

equivalent.

(i) F satisfies strategy-proofness, peaks-onliness, anonymity, and voter-

sovereignty.

(ii) F satisfies uncompromisingness, anonymity, and voter-sovereignty.

(iii) F satisfies strategy-proofness, min/max continuity, anonymity, and

voter-sovereignty.

(iv) F is an efficient median correspondence.

Proof. The equivalence of statements (i), (ii), and (iii) follows from Theorem 3.3.

The equivalence of statements (ii) and (iv) is shown as follows. By Theorem 3.2,

statement (ii) implies F ∈ FM . Hence, Proposition 3.3 and the definition of FEM
imply F ∈ FEM , i.e., statement (ii) implies statement (iv). Moreover, by Theo-

rem 3.2 and FEM ( FM , statement (iv) implies F satisfies uncompromisingness,

and anonymity ; in addition, by the definition of FEM , statement (iv) implies

F satisfies efficiency and therefore voter-sovereignty, i.e., statement (iv) implies

statement (ii). Finally, notice that this equivalence of statements (ii) and (iv) also

holds in domain S.
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3.5.3 Results in the single-peaked and symmetric domain

S

We now show the characterizations in domain S that are -loosely speaking- equiva-

lent to those presented in Section 3.5.2 for domainR. Specifically, the non-efficient

characterizations in domain R (Theorems 3.1 and 3.2) cannot be extended in do-

main S. This is illustrated by the counter-example presented on page 84, where

the given correspondence satisfies strategy-proofness, anonymity, and min/max

continuity in domain S but violates uncompromisingness. This violation is of im-

portance because as shown by the proof of Theorem 3.1 (statement (iii) implies

statement (ii)) on page 103 -this part of the proof also holds in domain S- both

classes of generalized median correspondences and median correspondences satisfy

uncompromisingness.

Concerning the efficient characterizations in domainR (Theorems 3.3 and 3.4),

these do extend in domain S. Moreover, since peaks-onliness is an inherent prop-

erty of domain S, min/max continuity is unnecessary in these characterizations.

Theorem 3.5. The following three statements for a correspondence F ∈ F are

equivalent.

(i) F satisfies strategy-proofness and voter-sovereignty.

(ii) F satisfies uncompromisingness and voter-sovereignty.

(iii) F is an efficient generalized median correspondence.

Proof. The equivalence of statements (i) and (ii) constitutes Proposition 3.5. The

equivalence of statements (ii) and (iii) follows from Theorem 3.3 (recall that as

noted on page 85, statements (ii) and (iv) of Theorem 3.3 are also equivalent in

domain S).

Theorem 3.6. The following three statements for a correspondence F ∈ F are

equivalent.

(i) F satisfies strategy-proofness, voter-sovereignty, and anonymity.

(ii) F satisfies uncompromisingness, voter-sovereignty, and anonymity.

(iii) F is an efficient median correspondence.

Proof. The equivalence of statements (i) and (ii) constitutes Proposition 3.5. The

equivalence of statements (ii) and (iii) follows from Theorem 3.4 (recall that as

noted on page 85, statements (ii) and (iv) of Theorem 3.4 are also equivalent in

domain S).
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3.5.4 Independence of properties

Concerning the independence of the properties used in our results, consider the

following four correspondences. First, correspondence F ∗ proposed by the counter-

example on page 84. Second, let correspondence F1 ∈ F choose the minimum

announced peak when more than two agents prefer it against the maximum an-

nounced peak, and choose the maximum announced peak otherwise; in both do-

mains R and S, it satisfies strategy-proofness, anonymity, and voter-sovereignty

but violates peaks-onliness (in domain R), min/max continuity, and uncompro-

misingness. Third, for a small and positive value ε let correspondence F2 ∈ F
choose the minimum of: (a) the minimum announced peak plus ε and (b) the maxi-

mum peak; in both domainsR and S, it satisfies all the properties we are interested

in except for strategy-proofness and uncompromisingness. Finally, let F3 ∈ F be

the “constant” correspondence always choosing 0; in both domains R and S, it

satisfies all the properties we are interested in except for voter-sovereignty.

Table 3.1 summarizes our results and also depicts that correspondences F ∗,

F 1, F 2, and F 3 suffice to show the independence of the properties used in our

results.

FG FEG FM FEM F ∗ F1 F2 F3

Domain R # À Á À Á Â À À À Á À Á Â À À

Domain S  À À À Í Î À À À Í Î

.
Strategy-proofness À À À Á À Í À À À À Á À Í À 3 3 7 3

Peaks-onliness (in R) À À À À À À À À À À À À À À 7 7 3 3

Min/max continuity À Á À À À À Á À À À 3 7 3 3

Voter-sovereignty À Á Â Í Î À Á Â Í Î 7 3 3 7

Anonymity À Á À Á Â Í Î 3 3 3 3

Uncompromisingness À Á À À Â À Î À Á À À Â À Î 7 7 7 3

The table above has a double purpose. First, columns FG, FEG, FM , and FEM , denoting the charac-
terized classes of correspondences, defined in Sections 3.3.1 and 3.3.2, summarize our characterization
results, with all results in domain R shown by circled black numbers in a white background and all
results in domain S shown by circled white numbers in a black background. For example, in the
column referring to FEG, the white circles containing number 4 show that in domain S, strategy-
proofness and voter-sovereignty characterize this class of correspondences. Second, the table shows
the independence of the properties used in each characterization result. Specifically, all combinations
of properties that must be checked are satisfied by at least one of the four non-median correspon-
dences F ∗, F1, F2, and F3, defined in Section 3.5.4 (with the exception of the combinations showing
the independence of anonymity in the characterizations of FM and FEM ; these combinations are
satisfied directly by the characterizations of FG and FEG respectively).

Table 3.1: Summary of the main results and independence of properties
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3.5.5 Discussion

The classes of generalized median correspondences and median correspondences

characterized in this chapter seem very similar to the class of double median func-

tions characterized in Heo (2013). Moreover, the reader might have noticed that

the left-peaks (right-peaks) function, characterized in Miyagawa (2001), resembles

a special case of a median correspondence. However, there are some notable dif-

ferences between these results and the results of this paper, which are summarized

in the following three points.

(i) By using the max-extension of preferences in our setting, as is the case in

the two aforementioned papers, it is straightforward to show that the only efficient

correspondence would be the one always choosing the interval of the peaks, that

is, for all V ∈ R, F (V ) = [
¯
v, v̄]. This follows from the agents only caring about

their best alternative in a set, and from our setting not limiting the number of

alternatives that may be chosen at a given profile.

(ii) Concerning the results of Heo (2013), the class of double median functions

seems to be equivalent to the class of median correspondences. Specifically, the

pair of alternatives (x1, x2) chosen by a double median function are essentially the

minimum and maximum alternatives of the interval chosen by a median correspon-

dence. However, apart from the distinction made in point (i), we should note the

following: Heo’s characterization result makes use of users-only, a property that

partitions each coalition of agents into two sub-coalitions; one preferring x1 over

x2, and everyone else, with only the first partition (second partition) influencing

the choice of alternative x1 (x2). In our setting, for each F a,b ∈ FM , the choice of

both vectors a and b depends on the preferences of all the agents.

(iii) Concerning the results of Miyagawa (2001) and apart of the distinction

made in point (i), although the left-peaks function seems to be a special case of a

median correspondence, this is not the case; the left-peaks function always chooses

the two distinct left-most peaks, and moreover, the setting of Miyagawa requires

that at least two distinct peaks exist in each profile. In our setting, the median

correspondence that looks “similar” to the left-peaks function is F a,b ∈ F where

a = (0, . . . , 0) and b = (0, . . . , 0, 1). Although this correspondence seems to choose

the two left-most peaks, when two or more agents share the minimum peak, it only

chooses the minimum peak. Furthermore, it should be noted that in Chapter 2 the

same properties with Miyagawa (namely, efficiency and replacement-dominance)

are considered, under (almost) the same setting as in this chapter. There, it is

shown that each correspondence satisfying said properties is essentially a function,
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reconfirming the characterization of Vohra (1999) for (fixed population) target-

point functions.26 In addition, after weakening replacement-dominance to one-

sided replacement-dominance27, (fixed population) target set correspondences28 are

characterized, a sub-class of efficient median correspondences which -as discussed

above- does not include either the left-peaks rule or the right-peaks rule.

3.A On min/max continuity

In the sequel, all properties are defined for correspondences in domain R but also

apply to correspondences in domain S. Moreover, all results presented in this

section, hold in both domains.

Upper-hemi continuity. For each V ∈ RN , each i ∈ N , each {V k
i } in R such

that V k
i → Vi, and each {xk} in A such that xk → x, the following holds. If for

each k ∈ N+, xk ∈ F (V−i, V
k
i ), then x ∈ F (V ).

Lower-hemi continuity. For each V ∈ RN , each i ∈ N , and each {V k
i } in R

such that V k
i → Vi, the following holds. If x ∈ F (V ), then there exists {xk} in A

such that xk → x and for each k ∈ N+, xk ∈ F (V−i, V
k
i ).

Lemma 3.5. The following two statements for correspondences are equivalent.

(i) Min/max continuity is satisfied.

(ii) Upper-hemi continuity and lower-hemi continuity are satisfied.

Proof of Lemma 3.5. Let F ∈ F . If F satisfies upper-hemi continuity and

lower-hemi continuity then trivially, it also satisfies min/max continuity. Next,

let F satisfy min/max continuity, V ∈ RN , and {V k
i } be in R. We show that F

satisfies upper-hemi continuity and lower-hemi continuity in two steps.

Step 1. We show F satisfies upper-hemi continuity. Let {xk} in A such

that xk → x and for each k ∈ N+, xk ∈ F (V−i, V
k
i ). Hence, for each k ∈ N+,

¯
F (V−i, V

k
i ) ≤ xk ≤ F̄ (V−i, V

k
i ). Moreover, by min/max continuity,

¯
F (V−i, V

k
i ) →

¯
F (V ) and F̄ (V−i, V

k
i )→ F̄ (V ), which implies

¯
F (V ) ≤ x ≤ F̄ (V ) since otherwise,

min/max continuity would imply that there exists k∗ ∈ N+ such that xk∗ 6∈
F (V−i, V

k∗
i ). Therefore, x ∈ F (V ).

Step 2. We show F satisfies lower-hemi continuity. Let x ∈ F (V ) and V k
i →

Vi. Hence, for all k ∈ N+,
¯
F (V−i, V

k
i ) ≤ F̄ (V−i, V

k
i ) and by min/max continuity,

26Each target point function is determined by its target point: if the target point is efficient,
it is chosen; if it is not efficient, the closest efficient point is chosen.

27See page 38 for a formal definition.
28See page 33 for a formal definition.
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[
¯
F (V−i, V

k
i ) →

¯
F (V ) and F̄ (V−i, V

k
i ) → F̄ (V )]. It follows that there exists {xk}

in A such that xk → x and for each k ∈ N+,
¯
F (V−i, V

k
i ) ≤ xk ≤ F̄ (V−i, V

k
i ).

3.B Proofs of Propositions 3.2 and 3.3

Before proceeding to the proofs of Propositions 3.2 and 3.3, we show the following.

When strategy-proofness is satisfied, voter sovereignty is equivalent with unanim-

ity ; a property stronger than voter-sovereignty but weaker than efficiency, that

requires when all agents announce the same peak, only this peak to be chosen.29

This result holds in both domains.

Lemma 3.6. For strategy-proof correspondences, voter-sovereignty and unanim-

ity are equivalent.

Proof. Let F ∈ F . Trivially, unanimity implies voter sovereignty. Hence, let F

satisfy strategy-proofness and voter-sovereignty. We show that F satisfies una-

nimity.

Let a ∈ A and R ∈ RN be such that p = (a, . . . , a). By voter-sovereignty,

there exists V ∈ RN such that F (V ) = a. Let M ⊆ N contain all the agents

in N whose announced peak at V is not a, i.e., for each i ∈ M , vi 6= a, and for

each j ∈ N \M , vj = pj = a. Without loss of generality, index the agents in N

such that M = {1, . . . ,m}. Next, consider profile V 1 = (V−1, R1). By strategy-

proofness, F (V 1) R1 F (V ). Hence, single-peakedness and F (V ) = a = p1 imply

F (V 1) = a. Finally, for each k = {2, . . . ,m} in increasing indexing order, consider

profile V k = (V k−1
−k , Rk). By the arguments presented for V 1, F (V k) = F (V ) = a.

Therefore, since V m = R, F (V m) = F (R) = a.

We proceed with the proof of Proposition 3.2, which makes use of Lemma 3.6.

This proof holds only in domain S because it makes use of the inherent peaks-

onliness of this domain.

Proof of Proposition 3.2. Let F ∈ F satisfy strategy-proofness. The equiva-

lence of unanimity and voter-sovereignty follows by Lemma 3.6. In addition, it is

trivial to show that efficiency implies unanimity. Therefore, it remains to show

that unanimity implies efficiency. We do so by contradiction; specifically, we show

that if F (V ) 6∈ E(V ), then unanimity is violated.

29Formally, given F ∈ F , for each V ∈ RN such that v = (x, . . . , x), F (V ) = {x}.
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Let V ∈ SN and without loss of generality, assume v1 ≤ · · · ≤ vn. By Propo-

sition 3.1, there are two cases.

Case 1. Let v̄ < F̄ (V ). For all agents i ∈ N , define V ′i ∈ S to be such that

v′i = vn.

First, consider agent 1, where
¯
v = v1 ≤ v̄ < F̄ (V ). By single-peakedness,

either [F̄ (V ) ∈ wV1(F (V )) and thus wV1(F (V )) 6∈ E(V )] or [
¯
F (V ) = wV1(F (V ))

and thus v1 =
¯
v < F̄ (V ) and single-peakedness imply

¯
F (V ) <

¯
v, and there-

fore, wV1(F (V )) 6∈ E(V )]. Next, recall the indifference relation rVi and let x1 =

rV1(wV1(F (V ))).30 If F̄ (V ) ∈ wV1(F (V )), then v1 < F̄ (V ) and single-peakedness

imply x1 < v1 =
¯
v and hence, x1 6∈ E(V ). Similarly, if

¯
F (V ) = wV1(F (V )),

then
¯
F (V ) <

¯
v ≤ v̄ < F̄ (V ) and single-peakedness imply x1 > v̄ and hence,

x1 6∈ E(V ). Finally, assume R1 = V1 and consider V 1 = (V−1, V
′

1). By strategy-

proofness, wR1(F (V ))R1 wR1(F (V 1)); hence, wV1(F (V )) 6∈ E(V ), x1 6∈ E(V ), and

single-peakedness implies wR1(F (V 1)) 6∈ E(V ). Then, since E(V 1) ⊆ E(V ) implies

wR1(F (V 1)) 6∈ E(V 1); and thus, F (V 1) 6∈ E(V 1).

Next, consider agent 2 at profile V 1 and recall that wR1(F (V 1)) 6∈ E(V 1) and

x1 6∈ E(V ). Let x2 = rV2(wV2(F (V 1))). If
¯
F (V 1) ⊆ wR1(F (V 1)), then

¯
F (V 1) <

v1; hence, v1 ≤ v2, single-peakedness, and V2 ∈ S imply
¯
F (V 1) ⊆ wV2(F (V 1))

and x2 ≥ F̄ (V ).31 Thus, wV2(F (V 1)), x2 6∈ E(V 1). If F̄ (V 1) = wR1(F (V 1)),

then v̄1 < F̄ (V 1); hence, v2 ≤ v̄1 and single-peakedness imply either [F̄ (V 1) ⊆
wV2(F (V 1)) and x2 <

¯
v1] or [

¯
F (V 1) = wV2(F (V 1)) and v̄1 < F̄ (V 1) < x2]. Thus,

wV2(F (V 1)), x2 6∈ E(V 1). Therefore, by the arguments presented for V 1, F (V 2) 6∈
E(V 2).

Finally, for each k ∈ {3, . . . , n− 1}, in increasing order, consider profile V k =

(V k−1
−k , V ′k). By the arguments presented for agents 1 and 2 above, F (V k) 6∈ E(V k).

Therefore, at profile V n−1 where vn−1 = (vn, . . . , vn), F (V n−1) 6∈ E(V n−1) implying

F (V n−1) 6= {vn} which contradicts unanimity.

Case 2. Let
¯
v >

¯
F (V ). The proof is symmetric to Case 1.

Notice that although for didactic reasons Proposition 3.3 proceeds Proposi-

tion 3.4 in the main text, the proof of Proposition 3.3 makes use of Proposition 3.4

(proof in Appendix 3.C). Recall that this result holds in both domains.

30To be precise, if agent 1 has two worst points on F (V ), then with some abuse of notation,
assume wV1

(F (V )) is the smallest of the two worst points, which implies that x1 is then the
largest of the two worst points.

31To be precise, if agent 2 has two worst points on F (V 1), then with some abuse of notation,
assume wV2

(F (V 1)) is the smallest of the two worst points, which implies that x2 is then the
largest of the two worst points.
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Proof of Proposition 3.3. Let F ∈ F satisfy strategy-proofness. By

Lemma 3.6, unanimity and voter-sovereignty are equivalent. In addition, it is

easy to show that efficiency implies unanimity.

The proof proceeds in three steps. In Step 1 we show that if in addition to

strategy-proofness, F satisfies peaks-onliness and unanimity, the following holds.

Given an announced profile where an efficient set is chosen, if an agent with the

minimum -but not unique- announced peak changes his announcement by moving

his announced peak to the right, an efficient set is chosen again. Step 2 shows the

same result but for the case where in addition to strategy-proofness, F satisfies

min/max continuity and unanimity. Finally in Step 3, by unanimity and the

intermediate results of Steps 1 and 2, we show that F satisfies efficiency.

Step 1. In addition to strategy-proofness, let F satisfy peaks-onliness and

unanimity. By Proposition 3.4, F also satisfies uncompromisingness. Let V ∈ RN

and i ∈ N be such that F (V ) ∈ E(V ) and vi =
¯
v but where i does not have

the unique minimum peak. Hence, by Proposition 3.1, F (V ) ⊆ Conv(v). In

addition, let V ′i ∈ R be such that v′i ≥ v̄. Assuming
¯
F (V−i, V

′
i ) <

¯
v implies

¯
F (V−i, V

′
i ) < vi ≤ v′i. Hence, by uncompromisingness,

¯
F (V−i, V

′
i ) =

¯
F (V ) <

¯
v,

which contradicts F (V ) ∈ E(V ). Similarly, assuming F̄ (V−i, V
′
i ) > v′i implies

F̄ (V−i, V
′
i ) > v′i ≥ vi. Hence, by uncompromisingness, F̄ (V−i, V

′
i ) = F̄ (V ) > v̄,

which contradicts F (V ) ∈ E(V ). Therefore, F (V−i, V
′
i ) ∈ E(V ).

Step 2. In addition to strategy-proofness, let F satisfy min/max continuity

and unanimity. Define V ∈ RN and V ′i ∈ R as in Step 1. By single-peakedness,

wV ′i (F (V )) =
¯
F (V ). We show that F (V−i, V

′
i ) ∈ E(V−i, V

′
i ) by discrediting all

three cases where F (V−i, V
′
i ) 6∈ E(V−i, V

′
i ).

Case 1. Let
¯
F (V−i, V

′
i ) <

¯
v. In addition, let Ri = V ′i . By

single-peakedness,
¯
F (V )Pi

¯
F (V−i, V

′
i ), hence wRi

(F (V )) =
¯
F (V ) implies

wRi
(F (V ))PiwRi

(F (V−i, V
′
i )). Therefore, if at profile (V−i, V

′
i ) agent i deviates

by announcing Vi, his worst point improves. This contradicts strategy-proofness.

Case 2. Let
¯
F (V−i, V

′
i ) > v′i. Since

¯
F (V ) ≤ F̄ (V ) ≤ v′i, by min/max continuity,

there exists some profile V ′′i ∈ R such that V ′′i 6= V ′i and v′i ∈ F (V−i, V
′′
i ). Let

Ri = V ′i ; hence, bRi
(F (V−i, V

′′
i )) = v′i implying bRi

(F (V−i, V
′′
i ))PibRi

(F (V−i, V
′
i )).

Therefore, if at profile (V−i, V
′
i ) agent i deviates by announcing V ′′i , his best point

improves. This contradicts strategy-proofness.

Case 3. Let
¯
v ≤

¯
F (V−i, V

′
i ) ≤ v′i and F̄ (V−i, V

′
i ) > v′i. In the following, we

describe a series of actions that when performed in sequence construct -after a

finite number of “moves”- profile V ′, such that v′ = (v′i, . . . , v
′
i) and F (V ′) 6= v′i,

i.e., a profile at which unanimity is violated.
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Action 1. Let profile V 0 = (V−i, V
′
i ). Let N1 ( N be such that j ∈ N1

if and only if v0
j 6= v′i and v0

j <
¯
F (V 0). If N1 = ∅, then proceed to Ac-

tion 2. Otherewise, let j ∈ N1. By v0
j < ¯

F (V 0) ≤ F̄ (V 0) and single-peakedness,

bV 0
j

(F (V 0)) =
¯
F (V 0) and wV 0

j
(F (V 0)) = F̄ (V 0). Let V 1

j = V ′i and profile V 1 =

(V 0
−j, V

1
j ). Assume Rj = V 0

j . By strategy-proofness, bRj
(F (V 0))RjbRj

(F (V 1)) and

wRj
(F (V 0)) Rj wRj

(F (V 1)); hence, by single-peakedness, either [
¯
F (V 0) ≤

¯
F (V 1)

and F̄ (V 0) ≤ F̄ (V 1)] or [
¯
F (V 1) ≤ F̄ (V 1) < v0

j ]. However, if
¯
F (V 1) ≤ F̄ (V 1) < v0

j ,

then by min/max continuity there exist preference V ∗j ∈ R such that v0
j ∈

F (V 0
−j, V

∗
j ). This violates strategy-proofness since if at profile V 0 agent j de-

viates by announcing V ∗, his best point improves. Hence,
¯
F (V 0) ≤

¯
F (V 1) and

F̄ (V 0) ≤ F̄ (V 1). Therefore, v′i < F̄ (V 1).

Next, let N2 ( N be such that k ∈ N2 if and only if v1
k 6= v′i and v1

k < ¯
F (V 1). If

N2 = ∅, then proceed to Action 2. Otherwise, let k ∈ N2. In addition, let V 2
k = V ′i

and profile V 2 = (V 1
−k, V

2
k ). By the process described in the previous paragraph

for agent j, v′i < F̄ (V 2).

Finally, repeat this process µ times (where µ is smaller than the number of

agents, µ ≤ n − 1) until the following holds. Set Nµ ( N , constructed similarly

to N1 and N2, is empty. When this occurs, proceed to Action 2.

Action 2. Let profile V̄ 0 = V µ−1. Let N̄1 ( N be such that j ∈ N̄1 if and only

if v̄0
j 6= v′i and F̄ (V̄ 0) ⊆ wV̄ 0

j
(F (V̄ 0)). Recall that F̄ (V̄ 0) > v′i. If N̄1 = ∅, then

proceed to Action 3. Otherwise, let j ∈ N̄1 and notice that by Nµ = ∅ (as defined

in Action 1), the choice of N̄1 implies
¯
F (V̄ 0) ≤ v̄0

j < F̄ (V̄ 0). Define V̄ 1
j ∈ R such

that v̄1
j = v′i and wV̄ 1

j
(F (V̄ 0)) =

¯
F (V̄ 0), and let profile V̄ 1 = (V̄ 0

−j, V̄
1
j ). Assume

that Rj = V̄ 0
j . By strategy-proofness, wRj

(F (V̄ 0)) Rj wRj
(F (V̄ 1)); hence, by

single-peakedness, F̄ (V̄ 0) ≤ F̄ (V̄ 1) and perhaps,
¯
F (V̄ 0) >

¯
F (V̄ 1). Assume that

Rj = V̄ 1
j . If

¯
F (V̄ 1) <

¯
F (V̄ 0) < v̄1

j , then single-peakedness implies wRj
(F (V̄ 0)) Pj

wRj
(F (V̄ 1)). This violates strategy-proofness since if at profile V̄ 1 agent j deviates

by announcing V̄ 0
j , his worst point improves. Therefore, F̄ (V̄ 0) ≤ F̄ (V̄ 1) and

¯
F (V̄ 0) ≤

¯
F (V̄ 1). Hence, v′i < F̄ (V̄ 1).

Next, if
¯
F (V̄ 0) <

¯
F (V̄ 1), perhaps there exist some agents j̄ ∈ N such that

vj̄ < ¯
F (V̄ 1) ≤ F̄ (V̄ 1). If this is the case, then repeat the process described in

Action 1 and denote the resulting profile (again) by V̄ 1. If no such agents exist,

then V̄ 1 is the profile constructed in the end of the previous paragraph.

Following this, let N̄2 ( N be such that k ∈ N̄2 if and only if v̄1
k 6= v′i and

F̄ (V̄ 1) ⊆ wV̄ 1
k

(F (V̄ 1)), where F̄ (V̄ 1) > v′i. If N̄2 = ∅, then proceed to Action 3.

Otherwise, let k ∈ N̄2 and notice that either by Nµ = ∅ (as defined in Action 1),

or by Action 1 being repeated in the previous paragraph, the choice of N̄2 implies
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¯
F (V̄ 1) ≤ v̄1

k < F̄ (V̄ 1). Define V̄ 2
k ∈ R such that v̄2

k = v′i and wV̄ 2
k

(F (V̄ 1)) =
¯
F (V̄ 1),

and let profile V̄ 2 = (V̄ 1
−k, V̄

2
k ). By the process described above for agent j,

F̄ (V̄ 1) ≤ F̄ (V̄ 2) and
¯
F (V̄ 1) ≤

¯
F (V̄ 2). Moreover, if

¯
F (V̄ 1) <

¯
F (V̄ 2), perhaps

Action 1 needs to be repeated as explained in the previous paragraph. In this

case, V̄ 2 is the resulting profile after repeating Action 1, otherwise, V̄ 2 remains

unchanged. In both cases, v′i < F̄ (V̄ 2).

Finally, repeat this process for a finite integer µ (where µ is smaller than the

number of agents, µ ≤ n− 1) until the following holds. Set N̄µ ( N , constructed

similarly to N̄1 and N̄2, is empty. Notice that v′i < F̄ (V̄ µ−1) and proceed to

Action 3.

Action 3. Let profile V̂ 0 = V̄ µ−1 and recall that v′i < F̄ (V̂ 0). Let N̂ (
N be such that j ∈ N̂ if and only if v̂0

j 6= v′i and wV̂ 0
j

(F (V̄ 0)) =
¯
F (V̂ 0). Let

j ∈ N̂ and notice that by v̂0
j < v′i < F̄ (V̂ 0) and single-peakedness,

¯
F (V̂ 0) <

v̂0
j < F̄ (V̂ 0). Define V̂ 1

j ∈ R such that v̂1
j = v′i and wV̂ 1

j
(F (V̂ 0)) = F̄ (V̂ 0),

and let profile V̂ 1 = (V̂ 0
−j, V̂

1
j ). Assume that Rj = V̂ 0

j . By strategy-proofness,

wRj
(F (V̂ 0))Rj wRj

(F (V̂ 1)); hence, by single-peakedness, either [
¯
F (V̂ 0) ≥

¯
F (V̂ 1)]

or [
¯
F (V̂ 0) <

¯
F (V̂ 1) and F̄ (V̂ 0) < F̄ (V̂ 1)].

Next, assume that Rj = V̂ 1
j . If F̄ (V̂ 1) > F̄ (V̂ 0) > v̂1

j , then single-

peakedness implies wRj
(F (V̂ 0)) Pj wRj

(F (V̂ 1)). This violates strategy-proofness

since if at profile V̂ 1 agent j deviates by announcing V̂ 0
j , his worst point im-

proves. In addition, if F̄ (V̂ 1) < v̂1
j = bRj

(F (V̂ 0)), then single-peakedness im-

plies bRj
(F (V̂ 0)) Pj bRj

(F (V̂ 1)). This violates strategy-proofness since if at pro-

file V̂ 1 agent j deviates by announcing V̂ 0
j , his best point improves. Therefore,

¯
F (V̂ 0) ≥

¯
F (V̂ 1) and in addition, v′i ≤ F̄ (V̂ 1) ≤ F̄ (V̂ 0). Hence, v′i > ¯

F (V̂ 1).

Finally, notice that by single-peakedness,
¯
F (V̂ 0) ≥

¯
F (V̂ 1) and v′i ≤ F̄ (V̂ 1) ≤

F̄ (V̂ 0) the following holds; for each agent k ∈ N̂ , wV̂ 0
k

(F (V̄ 0)) =
¯
F (V̂ 0) implies

wV̂ 1
k

(F (V̄ 1)) =
¯
F (V̂ 1). Hence, by the process described above for agent j, the

announced peaks of all agents k ∈ N̂ , such that k 6= j, can be sequentially changed

to v′i and profile V̂ |N̂ | can be constructed. Therefore, since v̂|N̂ | = (v′i, . . . , v
′
i),

V̂ |N̂ | = V ′, and hence, v′i > ¯
F (V ′) implies unanimity is violated.

Step 3. Let V ∈ RN . Without loss of generality, index the agents in N such

that v1 ≤ · · · ≤ vn. Let V ′ ∈ RN be such that V ′ = (V1, . . . , V1). By unanimity,

F (V ′) = v1, hence by Proposition 3.1, F (V ′) ∈ E(V ′). Next, consider profile

V 2 = (V ′−2, V2) where v2 ≥ v′2 = v1,
¯
v2 =

¯
v′, and v̄2 ≥ v̄′. Step 1 or Step 2,

and F (V ′) ∈ E(V ′) imply F (V 2) ∈ E(V 2). Finally, for each k = {3, . . . , n}, in

increasing order, consider profile V k = (V k−1
−k , Vk). By the arguments presented

for V 2, F (V k) ∈ E(V k). Therefore, since V n = V , F (V ) ∈ E(V ).
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3.C Proofs of Propositions 3.4, 3.5, and 3.6

Before proceeding to the proof of Proposition 3.4 we present a lemma that holds

only in domainR32 and concerns strategy-proof correspondences satisfying peaks-

onliness. Loosely speaking, following an agent’s announcement change, there are

restrictions on the chosen set.

Lemma 3.7. For each F ∈ F satisfying strategy-proofness and peaks-onliness,

each i ∈ N , and each pair V, V ′ ∈ RN such that V−i = V ′−i, the following hold.

(i) If vi < F̄ (V ), then F̄ (V ) ≤ F̄ (V ′), and if in addition vi <
¯
F (V ), then

¯
F (V ) ≤

¯
F (V ′).

(ii) If vi >
¯
F (V ), then

¯
F (V ) ≥

¯
F (V ′), and if in addition vi > F̄ (V ), then

F̄ (V ) ≥ F̄ (V ′).

Proof. We prove statement (i), the proof of statement (ii) is symmetric. Let

F ∈ F satisfy strategy-proofness and peaks-onliness. Let pair V, V ′ ∈ RN and

i ∈ N be such that V−i = V ′−i and vi < F̄ (V ).

Suppose Ri is such that pi = vi and 0Pi F̄ (V ). By peaks-onliness, F (V−i, Ri) =

F (V ). Hence, by single-peakedness and the choice of Ri, wRi
(F (V−i, Ri)) = F̄ (V ).

Thus, since V ′ = (V−i, V
′
i ), strategy-proofness implies F̄ (V )RiwRi

(F (V ′)). There-

fore, single-peakedness, the choice of Ri, and 0 ≤ vi < F̄ (V ) imply wRi
(F (V ′)) ≥

F̄ (V ), and hence, F̄ (V ′) ≥ F̄ (V ).

If in addition vi <
¯
F (V ), then by single-peakedness, bRi

(F (V−i, Ri)) =
¯
F (V ).

Thus, since V ′ = (V−i, V
′
i ), strategy-proofness implies

¯
F (V )Ri bRi

(F (V ′)). There-

fore, single-peakedness, F̄ (V ′) ≥ F̄ (V ), and vi <
¯
F (V ) imply

¯
F (V ′) ≥

¯
F (V ).

The proof of Proposition 3.4 follows and holds only in domain R because it

makes use of Lemma 3.7.

Proof of Proposition 3.4. The proof is split in two parts.

Part 1: We show that strategy-proofness and peaks-onliness imply uncom-

promisingness.

Let F ∈ F satisfy strategy-proofness and peaks-onliness. Let pair V, V ′ ∈ RN

and i ∈ N be such that V−i = V ′−i. If vi = v′i, then peaks-onliness implies

uncompromisingness. Hence, let vi 6= v′i, and by symmetry of arguments, let

vi < v′i. There are four cases. Notice that Case 1.1 overlaps with Case 2.1, while

Case 1.2 overlaps with Cases 2.1 and 2.2.

32It does not hold in domain S because the proof makes use of non-symmetrical single-peaked
preferences.
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Case 1.1. Let vi < v′i ≤ ¯
F (V ). By Lemma 3.7(i),

¯
F (V ) ≤

¯
F (V ′). Moreover,

assuming
¯
F (V ) <

¯
F (V ′) results in a contradiction as follows. Since v′i < ¯

F (V ′),

Lemma 3.7(i) implies
¯
F (V ′) ≤

¯
F (V ). Therefore,

¯
F (V ) =

¯
F (V ′).

Case 1.2. Let
¯
F (V ) < vi < v′i. By Lemma 3.7(ii),

¯
F (V ′) ≤

¯
F (V ). Hence,

¯
F (V ′) < v′i, and by Lemma 3.7(ii),

¯
F (V ) ≤

¯
F (V ′). Therefore,

¯
F (V ) =

¯
F (V ′).

Case 2.1. Let vi < v′i ≤ F̄ (V ). By Lemma 3.7(i), F̄ (V ) ≤ F̄ (V ′). Moreover,

assuming F̄ (V ) < F̄ (V ′) results in a contradiction as follows. Since v′i < F̄ (V ′),

Lemma 3.7(i) implies F̄ (V ′) ≤ F̄ (V ) < F̄ (V ′). Therefore, F̄ (V ) = F̄ (V ′).

Case 2.2. Let F̄ (V ) < vi < v′i. By Lemma 3.7(ii), F̄ (V ′) ≤ F̄ (V ). Hence,

F̄ (V ′) < v′i, and by Lemma 3.7(ii), F̄ (V ) ≤ F̄ (V ′). Therefore, F̄ (V ) = F̄ (V ′).

Part 2: We show that uncompromisingness implies strategy-proofness and

peaks-onliness. Notice that this part of the proof also hold in domain S.

Let F ∈ F satisfy uncompromisingness. Let i ∈ N and pair V, V ′ ∈ RN be

such that V−i = V ′−i and Vi 6= V ′i . We proceed in two steps.

Step 1. We show that F satisfies peaks-onliness.

Let vi = v′i. If vi =
¯
F (V ), then assuming

¯
F (V ′) 6=

¯
F (V ) results in a contra-

diction, since v′i = vi 6=
¯
F (V ′) and uncompromisingness imply

¯
F (V ) =

¯
F (V ′).

Similarly, if vi = F̄ (V ), then assuming F̄ (V ′) 6= F̄ (V ′) results in a contradiction,

since v′i = vi 6= F̄ (V ′) and uncompromisingness imply F̄ (V ) = F̄ (V ′). Finally, if

vi 6=
¯
F (V ) and vi 6= F̄ (V ), then by uncompromisingness, F (V ) = F (V ′). There-

fore, F satisfies peaks-onliness.

Step 2. We show that F satisfies strategy-proofness. Recall that Vi 6= V ′i

and by symmetry of arguments, let vi ≤ v′i. By Step 1, F satisfies peaks-onliness,

hence, if vi = v′i, then strategy-proofness is satisfied. By symmetry of arguments,

let vi < v′i. We proceed in two stages.

Stage 1. We show that
¯
F (V ) ≤

¯
F (V ′) and F̄ (V ) ≤ F̄ (V ′). There are 3 cases.

Case 1. Let vi <
¯
F (V ). If vi < v′i ≤ ¯

F (V ), then by uncompromisingness,

¯
F (V ) =

¯
F (V ′). Otherwise, if

¯
F (V ) < v′i, then consider the following. Assuming

¯
F (V ′) <

¯
F (V ) results in a contradiction as follows. Let V 1

i be such that v1
i =

¯
F (V ′). Since vi <

¯
F (V ) and v1

i < ¯
F (V ), by uncompromisingness,

¯
F (V−i, V

1
i ) =

¯
F (V ). However, since

¯
F (V ′) < v′i and v1

i =
¯
F (V ′), by uncompromisingness,

¯
F (V ′−i, V

1
i ) =

¯
F (V ′). Hence,

¯
F (V ) ≤

¯
F (V ′).

Case 2. Let vi =
¯
F (V ) < v′i. Assuming

¯
F (V ′) <

¯
F (V ) results in a contradic-

tion as follows. Since
¯
F (V ′) < vi < v′i, by uncompromisingness,

¯
F (V ′) =

¯
F (V ).

Hence,
¯
F (V ) ≤

¯
F (V ′).

Case 3. Let vi >
¯
F (V ). Since vi < v′i, by uncompromisingness,

¯
F (V ) =

¯
F (V ′).

Stage 2. By Stage 1,
¯
F (V ) ≤

¯
F (V ′) and F̄ (V ) ≤ F̄ (V ′). We show that F
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satisfies strategy-proofness. Let Ri = Vi. There are five cases.

Case 1. Let pi <
¯
F (V ). By peaks-onliness, bRi

(F (V )) =
¯
F (V ), wRi

(F (V )) =

F̄ (V ), bRi
(F (V ′)) =

¯
F (V ′), and wRi

(F (V ′)) = F̄ (V ′). Hence, by single-

peakedness, i’s best and worst points do not improve by deviating at V . Therefore,

F (V )Ri F (V ′).

Case 2. Let pi =
¯
F (V ). By peaks-onliness, bRi

(F (V )) = pi and wRi
(F (V )) =

F̄ (V ), implying i can’t improve on his best point. Regarding his worst point, since

F̄ (V ) ≤ F̄ (V ′), by peaks-onliness, wRi
(F (V ))Ri F̄ (V ′). Therefore, F (V )RiF (V ′).

Case 3. Let
¯
F (V ) < pi < F̄ (V ). By peaks-onliness, bRi

(F (V )) = pi

and wRi
(F (V )) ⊆ {

¯
F (V ), F̄ (V )}, implying agent i can’t improve on his best

point. Regarding his worst point(s), since
¯
F (V ) < pi ≤ v′i, by uncompro-

misingness,
¯
F (V ) =

¯
F (V ′). Since also F̄ (V ) ≤ F̄ (V ′), by peaks-onliness,

wRi
(F (V ))Ri wRi

(F (V ′)). Therefore, F (V )Ri F (V ′).

Case 4. Let pi = F̄ (V ). By peaks-onliness, bRi
(F (V )) = pi and wRi

(F (V )) =

¯
F (V ), implying i can’t improve on his best point. Regarding his worst point, if

¯
F (V ) < F̄ (V ), then since

¯
F (V ) < pi ≤ v′i, and by uncompromisingness,

¯
F (V ) =

¯
F (V ′). Hence, F̄ (V ) ≤ F̄ (V ′) implies wRi

(F (V )) Ri wRi
(F (V ′)). Otherwise, if

¯
F (V ) = F̄ (V ), then wRi

(F (V )) = pi, implying i can’t improve on his worst point.

Therefore, in both cases F (V )Ri F (V ′).

Case 5. Let pi > F̄ (V ). Since F̄ (V ) < pi ≤ v′i, by uncompromisingness,

F (V ) = F (V ′). Therefore, F (V ) Ii F (V ′).

Before proceeding to the proof of Proposition 3.5 we present two lemmata

that hold only in domain S (because they make use of Proposition 3.2) and con-

cern strategy-proof correspondences satisfying voter-sovereignty. Loosely speak-

ing, both show cases where following a change in the preferences of some agents,

there are restrictions in the minimum and maximum chosen alternatives.

Lemma 3.8. For each F ∈ F satisfying strategy-proofness and voter-sovereignty,

each V ∈ SN , and each x ∈ A the following hold.

(i) Let V ′ ∈ SN be as follows. For each each i ∈ N , if vi ≤ x, then v′i = x,

otherwise v′i = vi. Then, x ≤ F̄ (V ) implies F̄ (V ) ≤ F̄ (V ′); in addition, x ≤
¯
F (V )

implies
¯
F (V ) ≤

¯
F (V ′).

(ii) Let V ′ ∈ SN be as follows. For each i ∈ N , if vi ≥ x, then v′i = x,

otherwise v′i = vi. Then, x ≥
¯
F (V ) implies

¯
F (V ) ≥

¯
F (V ′); in addition, x ≥ F̄ (V )

implies F̄ (V ) ≥ F̄ (V ′).

Proof. We prove statement (i), the proof of statement (ii) is symmetric. Let

F ∈ F satisfy strategy-proofness and voter-sovereignty. By Proposition 3.2, F also
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satisfies efficiency. Let V ∈ SN and x ∈ A be such that x ≤ F̄ (V ); and without

loss of generality, let v1 ≤ · · · ≤ vn. Moreover, let V ′ ∈ SN be defined as follows.

For each i ∈ N , if vi ≤ x, then v′i = x, otherwise v′i = vi. Let M = {1, . . . ,m} ⊆ N

be such that i ∈M implies v′i = x. Hence, V ′ = (Vx, . . . , Vx, Vm+1, . . . , Vn), where

Vx ∈ S and vx = x.

Begin from profile V . By efficiency and Proposition 3.1, F (V ) ⊆ Conv(V ).

Let R1 = V1, hence v1 ≤ x ≤ F̄ (V ) implies wR1(F (V )) = F̄ (V ). Next, let V 1
1 = Vx

and consider profile V 1 = (V−1, V
1

1 ). By efficiency and Proposition 3.1, F (V 1) ⊆
Conv(V 1), and by strategy-proofness, wR1(F (V )) R1 wR1(F (V 1)). Therefore, by

single-peakedness, v1 ≤ F̄ (V ) ≤ F̄ (V 1). If V 1 = V ′, then we are done. Otherwise,

for each k ∈ {2, . . . ,m}, in increasing order, consider profile V k = (V k−1
−k , V k

k ). By

the arguments presented for V 1, F̄ (V k−1) ≤ F̄ (V k). Therefore, V m = V ′ implies

F̄ (V ) ≤ F̄ (V ′).

If in addition x ≤
¯
F (V ), then bR1(F (V )) =

¯
F (V ). In this case, begin from

profile V and construct profile V ′ as shown above. By the same arguments to the

ones presented above, but expressed for the best alternative instead of the worst,

it follows that
¯
F (V ) ≤

¯
F (V ′).

Lemma 3.9. For each F ∈ F satisfying strategy-proofness and voter-sovereignty,

and each V ∈ SN the following hold.

(i) Let M ⊆ N be such that i ∈M implies vi =
¯
v. Let V ′ ∈ SN be as follows.

For each i ∈ N , if i ∈M , then v′i ≤ vi, otherwise v′i = vi. Then,
¯
v < F̄ (V ) implies

F̄ (V ) ≤ F̄ (V ′); in addition,
¯
v <

¯
F (V ) implies

¯
F (V ) ≤

¯
F (V ′).

(ii) Let M ⊆ N be such that i ∈M implies vi = v̄. Let V ′ ∈ SN be as follows.

For each i ∈ N , if i ∈M , then v′i ≥ vi, otherwise v′i = vi. Then, v̄ >
¯
F (V ) implies

¯
F (V ) ≥

¯
F (V ′); in addition, v̄ > F̄ (V ) implies F̄ (V ) ≥ F̄ (V ′).

Proof. We prove statement (i), the proof of statement (ii) is symmetric. Let

F ∈ F satisfy strategy-proofness and voter-sovereignty, and V ∈ SN be such that

¯
v < F̄ (V ). By Proposition 3.2, F also satisfies efficiency ; hence, Proposition 3.1

implies
¯
v < F̄ (V ) ≤ v̄. In addition, let M ⊆ N be such that i ∈M implies vi =

¯
v,

and without loss of generality, let M = (1, . . . ,m); hence,
¯
v < v̄ implies M ( N .

Moreover, let V ′ ∈ SN be as follows. For each i ∈ N , if i ∈ M , then v′i ≤ vi,

otherwise v′i = vi. Finally, without loss of generality, let v′1 ≤ · · · ≤ v′m < v′m+1 ≤
· · · ≤ v′n.

Begin from profile V and let δ = |̄v − F̄ (V )| > 0. Assume R1 = V1. By

single-peakedness, wR1(F (V )) = F̄ (V ). Change the announced preferences of

agent 1 to V 1
1 ∈ S as follows. If |v′m − ¯

v| < δ, then set v1
1 = v′m, otherwise, set
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v1
1 =

¯
v − δ

2
. By efficiency and Proposition 3.1, F (V−1, V

1
1 ) ⊆ Conv(V−1, V

1
1 ). By

strategy-proofness, wR1(F (V ))R1wR1(F (V−1, V
1

1 )). Therefore, |v1
1−¯

v| < δ implies

(in domain S) that F̄ (V ) ≤ F̄ (V−1, V
1

1 ). Following this, sequentially repeat this

process for all agents i ∈ {2, . . . ,m} (if such agents exist) and construct profile

V 1 = (V 1
1 , . . . , V

1
m, Vm+1, . . . , Vn), where F̄ (V ) ≤ F̄ (V 1). If v1

1 = v′m, proceed to the

next paragraph. Otherwise, let δ1 = |̄v1−F̄ (V 1)| > 0, assume R1 = V 1
1 , and repeat

the process to construct profile V 2, where F̄ (V ) ≤ F̄ (V 2). If v2
1 = v′m, proceed

to the next paragraph. Otherwise, keep repeating this process until the profile

V̄ m = (V ′m, . . . , V
′
m, Vm+1, . . . , Vn) has been constructed, where F̄ (V ) ≤ F̄ (V̄ m).

Next, repeat the process described above for all agents i ∈
{1, . . . ,m − 1} (if such agents exist) and construct profile V̄ m−1 =

(V ′m−1, . . . , V
′
m−1, V

′
m, Vm+1, . . . , Vn), where F̄ (V ) ≤ F̄ (V̄ m−1).

Finally, continue repeating this whole process until the profile V̄ 1 = V ′ =

(V ′1 , . . . , V
′
m, Vm+1, . . . , Vn) has been constructed, where F̄ (V ) ≤ F̄ (V ′).

If in addition,
¯
v <

¯
F (V ), begin from profile V , let δ = |̄v −

¯
F (V )| > 0, and

construct profile V ′ as shown above. By the same arguments to the ones presented

above, but expressed for the best alternative instead of the worst, it follows that

¯
F (V ) ≤

¯
F (V ′).

We now proceed with the proof of Proposition 3.5 that holds only in domain

S because it makes indirect use of Proposition 3.2 through Lemmas 3.8 and 3.9.

Proof of Proposition 3.5. Let F ∈ F . Part 2 of Proposition 3.4 on page 96

(which also holds in S) shows that if F satisfies uncompromisingness then it also

satisfies strategy-proofness. Hence, it follows that statement (ii) implies statement

(i). Next, we show that statement (i) implies statement (ii).

Let F satisfy strategy-proofness and voter-sovereignty. Let i ∈ N and pair

V, V ′ ∈ SN be such that V−i = V ′−i. Without loss of generality, assume v1 ≤ · · · ≤
vn. Since vi = v′i trivially satisfies uncompromisingness in domain S, let vi 6= v′i.

There are six cases.

Case 1.1. Let v′i < vi ≤
¯
F (V ). Since vi =

¯
F (V ) = F̄ (V ) trivially satisfies

uncompromisingness, let vi < F̄ (V ). In addition, let M ( N be such that j ∈M
if and only if vj ≤ vi. Begin from profile V and consider profile V 1 to be such

that V−M = V 1
−M and where each agent j ∈ M announces preferences V 1

j = Vi.

By construction of V 1 and Lemma 3.8(i),
¯
F (V 1) ≥

¯
F (V ) and F̄ (V 1) ≥ F̄ (V ).

Moreover, begin from profile V 1 and consider profile V . Since for each j ∈M , vj ≤
v1
j =

¯
v1, and for each k ∈ N \M , vk = v1

k > ¯
v1, by Lemma 3.9(i), F̄ (V ) ≥ F̄ (V 1)
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and in addition, if vi <
¯
F (V ), then

¯
F (V ) ≥

¯
F (V 1). Therefore,

¯
F (V 1) =

¯
F (V )

and F̄ (V 1) = F̄ (V ).

Next, begin from profile V 1 and consider profile V ′. Since for each j ∈M , v′j ≤
v1
j =

¯
v1, and for each k ∈ N \M , v′k = v1

k > ¯
v1, by Lemma 3.9(i), F̄ (V ′) ≥ F̄ (V 1),

and in addition, if vi <
¯
F (V 1) =

¯
F (V ), then

¯
F (V ′) ≥

¯
F (V 1). Finally, begin from

profile V ′ and consider profile V 1. Since for each j ∈M , v′j ≤ v1
j = v′i, and for each

k ∈ N \M , v′k = v1
k > v′i, by Lemma 3.8(i), F̄ (V 1) ≥ F̄ (V ′) and

¯
F (V 1) ≥

¯
F (V ′).

Therefore, F̄ (V 1) = F̄ (V ) = F̄ (V ′) and
¯
F (V 1) =

¯
F (V ) =

¯
F (V ′).

Case 1.2. Let v′i > vi ≥ F̄ (V ). The proof is symmetric to Case 1.1.

Case 2.1. Let vi ≤
¯
F (V ) and vi < v′i. If v′i > F̄ (V ), then uncompromisingness

is trivially satisfied; hence, let v′i ≤ F̄ (V ). In addition, let M ( N be such that

j ∈ M if and only if vj ≤ v′i. Begin from profile V and consider profile V 1 to

be such that V−M = V 1
−M and where each agent j ∈ M announces preferences

V 1
j = V ′i . By construction of V 1 and Lemma 3.8(i), F̄ (V 1) ≥ F̄ (V ) and in

addition, if v′i ≤ ¯
F (V ), then

¯
F (V 1) ≥

¯
F (V ). Moreover, begin from profile V 1 and

consider profile V . Since for each j ∈ M , vj ≤ v1
j =

¯
v1, and for each k ∈ N \M ,

vk = v1
k >

¯
v1, by Lemma 3.9(i), if vi < F̄ (V 1), then F̄ (V ) ≥ F̄ (V 1) and in

addition, if vi <
¯
F (V 1), then

¯
F (V ) ≥

¯
F (V 1). Therefore, F̄ (V 1) = F̄ (V ) and in

addition, if v′i ≤ ¯
F (V ), then

¯
F (V 1) =

¯
F (V ). There are three sub-cases.

(i) Let v′i = F̄ (V ). Assume Ri = V ′i . Hence, bRi
(F (V )) = F̄ (V ). Since

V−i = V ′−i, by strategy-proofness, F̄ (V ) = v′i ∈ F (V ′). Thus, F̄ (V ′) ≥ F̄ (V ).

Moreover, begin from profile V ′ and consider profile V 1. Since for each j ∈ M ,

v′j ≤ v1
j = v′i, and for each k ∈ N \M , v′k = v1

k > v′i, by Lemma 3.8(i), F̄ (V 1) ≥
F̄ (V ′). Therefore, F̄ (V 1) = F̄ (V ) = F̄ (V ′).

(ii) Let v′i < F̄ (V ). Begin from profile V 1 and consider profile V ′. Since

for each j ∈ M , v′j ≤ v1
j =

¯
v1, and for each k ∈ N \ M , v′k = v1

k >
¯
v1, by

v′i < F̄ (V ) and Lemma 3.9(i), F̄ (V ′) ≥ F̄ (V 1), and in addition, if v′i < ¯
F (V ),

then
¯
F (V ′) ≥

¯
F (V 1). Moreover, begin from profile V ′ and consider profile V 1.

Since for each j ∈ M , v′j ≤ v1
j = v′i, and for each k ∈ N \M , v′k = v1

k > v′i, by

v′i < F̄ (V ) and Lemma 3.8(i), F̄ (V 1) ≥ F̄ (V ′), and in addition, if v′i < ¯
F (V ′),

then
¯
F (V 1) ≥

¯
F (V ′). Therefore, F̄ (V 1) = F̄ (V ′) = F̄ (V ) and in addition, if

v′i < ¯
F (V ), then

¯
F (V 1) =

¯
F (V ′) =

¯
F (V ).

(iii) Let v′i =
¯
F (V ). If v′i =

¯
F (V ) = F̄ (V ), then uncompromisingness is

trivially satisfied; hence, let v′i =
¯
F (V ) < F̄ (V ). As shown in the previous sub-

case, F̄ (V ′) = F̄ (V ). Assume Ri = Vi. Since vi < v′i, by single-peakedness,

bRi
(F (V )) =

¯
F (V ) and wRi

(F (V )) = F̄ (V ). Hence, V ′−i = V−i and strategy-

proofness imply bRi
(F (V )) Ri bRi

(F (V ′)). Thus, by F̄ (V ′) = F̄ (V ) and single-
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peakedness, bRi
(F (V )) =

¯
F (V ) ≤

¯
F (V ′). Finally, assume Ri = V ′i . Since v′i ≤

¯
F (V ′) ≤ F̄ (V ′), by single-peakedness, bRi

(F (V ′)) =
¯
F (V ′) and wRi

(F (V ′)) =

F̄ (V ′). Hence, V ′−i = V−i and strategy-proofness imply bRi
(F (V ′)) Ri bRi

(F (V )).

Thus, by F̄ (V ′) = F̄ (V ) and single-peakedness, bRi
(F (V ′)) =

¯
F (V ′) ≤

¯
F (V ).

Therefore,
¯
F (V ) =

¯
F (V ′).

Case 2.2. Let vi ≥ F̄ (V ) and vi > v′i. The proof is symmetric to Case 2.1.

Case 3.1. Let
¯
F (V ) < vi < F̄ (V ) and v′i > vi. In addition, let M ( N be such

that j ∈ M if and only if vj ≥ v′i. Begin from profile V and consider profile V 1

to be such that V−M = V 1
−M and where each agent j ∈ M announces preferences

V 1
j = V ′i . By construction of V 1 and Lemma 3.8(ii),

¯
F (V ) ≥

¯
F (V 1). Moreover,

begin from profile V 1 and consider profile V . Since for each j ∈M , vj ≥ v1
j = v̄1,

and for each k ∈ N \ M , vk = v1
k < v̄1, by v′i > ¯

F (V 1) and Lemma 3.9(ii),

¯
F (V 1) ≥

¯
F (V ′). Therefore,

¯
F (V ) =

¯
F (V 1).

Next, begin from profile V 1 and consider profile V ′. Since for each j ∈ M ,

v′j ≥ v1
j = v̄1, and for each k ∈ N \ M , v′k = v1

k < v̄1, by v̄1 >
¯
F (V 1) and

Lemma 3.9(ii),
¯
F (V ′) ≤

¯
F (V 1). Finally, begin from profile V ′ and consider profile

V 1. Since for each j ∈M , v′j ≥ v1
j = v′i, and for each k ∈ N \M , v′k = v1

k < v′i, by

Lemma 3.8(ii),
¯
F (V 1) ≤

¯
F (V ′). Therefore,

¯
F (V 1) =

¯
F (V ) =

¯
F (V ′).

If v′i > F̄ (V ), then we are done. If v′i ≤ F̄ (V ), then let L ( N be such that

j ∈ L if and only if vj ≤ v′i. Begin from profile V and consider profile V 2 to be such

that V−L = V 2
−L and where each agent j ∈ L announces preferences V 2

j = V ′i . By

construction of V 2 and Lemma 3.8(i), F̄ (V ) ≤ F̄ (V 2). There are two sub-cases.

(i) Let v′i < F̄ (V ). Begin from profile V 2 and consider profile V . Since for

each j ∈ L, v′j ≤ v2
j =

¯
v2, and for each k ∈ N \ L, v′k = v2

k > ¯
v2, by

¯
v2 < F̄ (V 2)

and Lemma 3.9(i), F̄ (V 2) ≤ F̄ (V ). Therefore, F̄ (V ) = F̄ (V 2).

Next, begin from profile V ′ and consider profile V 2. Since for each j ∈ L,

v′j ≤ v2
j = v′i, and for each k ∈ N \ L, v′k = v2

k < v′i, by Lemma 3.8(i), F̄ (V 2) ≥
F̄ (V ′). Finally, begin from profile V 2 and consider profile V ′. Since for each

j ∈ L, v′j ≤ v2
j =

¯
v2, and for each k ∈ N \ L, v′k = v2

k > ¯
v2, by

¯
v2 < F̄ (V 2) and

Lemma 3.9(i), F̄ (V ′) ≥ F̄ (V 2). Therefore, F̄ (V 2) = F̄ (V ) = F̄ (V ′).

(ii) Let v′i = F̄ (V ). Assume Ri = V ′i . By single-peakedness, bRi
(F (V )) = v′i.

Hence, V−i = V ′−i and strategy-proofness imply v′i ∈ F (V ′). Thus, F̄ (V ′) ≥ F̄ (V ).

Assuming F̄ (V ′) > F̄ (V ) results in a contradiction as follows. Begin from

profile V and consider profile V 2. Since for each j ∈ L, vj ≤ v2
j = v′i, and for each

k ∈ N \ L, vk = v2
k > v′i, by Lemma 3.8(i), F̄ (V ) ≤ F̄ (V 2). Moreover, begin from

profile V 2 and consider profile V . Since for each j ∈ L, vj ≤ v2
j =

¯
v2, and for

each k ∈ N \ L, vk = v2
k > ¯

v2, by
¯
v2 < F̄ (V 2) and Lemma 3.9(i), F̄ (V ) ≥ F̄ (V 2).
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Therefore, F̄ (V ) = F̄ (V 2).

Next, begin from profile V ′ and consider profile V 2 as described in the previous

sub-case. Since for each j ∈ L, v′j ≤ v2
j = v′i, and for each k ∈ N \L, v′k = v2

k > v′i,

by Lemma 3.8(i), F̄ (V ′) ≤ F̄ (V 2). Finally, begin from profile V 2 and consider

profile V ′. Since for each j ∈ L, v′j ≤ v2
j =

¯
v2, and for each k ∈ N \L, v′k = v2

k > ¯
v2,

by
¯
v2 < F̄ (V 2) and Lemma 3.9(i), F̄ (V ′) ≥ F̄ (V 2). Therefore, F̄ (V 2) = F̄ (V ′).

Therefore, F̄ (V 2) = F̄ (V ) = F̄ (V ′).

Case 3.2. Let
¯
F (V ) < vi < F̄ (V ) and v′i < vi. The proof is symmetric to

Case 3.1.

Finally, we present the proof of Proposition 3.6.

Proof of Proposition 3.6. Let F ∈ F satisfy strategy-proofness, min/max

continuity, and voter-sovereignty. By Proposition 3.3, F also satisfies efficiency.

Let pair V, V ′ ∈ RN and i ∈ N be such that V−i = V ′−i. There are five cases.

Case 1.1. Let vi <
¯
F (V ) and v′i ≤ F̄ (V ). Notice that if Ri = Vi, by single-

peakedness, bRi
(F (V )) =

¯
F (V ) and wRi

(F (V )) = F̄ (V ).

Assuming vi ≥
¯
F (V ′) leads to a contradiction as follows. By min/max con-

tinuity, there exists V ∗i ∈ R such that
¯
F (V−i, V

∗
i ) = vi. Assume Ri = Vi. By

single-peakedness, bRi
(F (V−i, V

∗
i )) = vi 6∈ F (V ). Hence, if at profile V agent i

deviates by announcing V ∗i , his best point improves. This contradicts strategy-

proofness. Therefore, vi <
¯
F (V ′) ≤ F̄ (V ′).

Next, assuming
¯
F (V ′) <

¯
F (V ) or F̄ (V ′) < F̄ (V ) leads to a contradiction

as follows. Assume Ri = Vi. By vi <
¯
F (V ′) ≤ F̄ (V ′) and single-peakedness,

bRi
(F (V ′))PibRi

(F (V )) or wRi
(F (V ′))PibRi

(F (V )). Hence, if at profile V agent

i deviates by announcing V ′i , his best point or his worst point improves. This

contradicts strategy-proofness. Therefore,
¯
F (V ′) ≥

¯
F (V ) and F̄ (V ′) ≥ F̄ (V ).

Finally, assuming
¯
F (V ) <

¯
F (V ′) or F̄ (V ) < F̄ (V ′) leads to a contradiction

as follows. Assume Ri = V ′i . By v′i ≤ ¯
F (V ) ≤ F̄ (V ) and single-peakedness,

bRi
(F (V ))PibRi

(F (V ′)) or wRi
(F (V ))PibRi

(F (V ′)). Hence, if at profile V ′ agent

i deviates by announcing Vi, his best point or his worst point improves. This

contradicts strategy-proofness.

Therefore, F̄ (V ′) = F̄ (V ) and in addition, if v′i ≤ ¯
F (V ), then

¯
F (V ′) =

¯
F (V ).

Case 1.2. Let vi =
¯
F (V ) and v′i ≤ F̄ (V ). By the same arguments to the ones

presented in Case 1.1 for the maximum point chosen, it follows that F̄ (V ′) = F̄ (V ).

Case 2.1. Let vi > F̄ (V ) and v′i ≥ ¯
F (V ). By symmetric arguments to those

presented in Case 1.1, it follows that
¯
F (V ′) =

¯
F (V ) and in addition, if v′i ≥ F̄ (V ),

then F̄ (V ′) = F̄ (V ).
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Case 2.2. Let vi = F̄ (V ) and v′i ≥ ¯
F (V ). By symmetric arguments to those

presented in Case 1.2, it follows that
¯
F (V ′) =

¯
F (V ).

Case 3. Let
¯
F (V ) < vi < F̄ (V ). By symmetry of arguments, let vi ≥ v′i.

Without loss of generality, let v1 ≤ · · · ≤ vn and notice that by efficiency and

Proposition 3.1, F (V ) ⊆ Conv(V ); hence, agent i 6∈ {1, n}. In addition, for each

agent j ∈ N \ {i}, define preferences V̄j ∈ R be such that V̄j = V ′i .

Begin from profile V and consider profile V 1 = (V−1, V̄1). By efficiency and

Proposition 3.1, F (V ) ⊆ Conv(V ). Hence, since v1 =
¯
v, by either Case 1.1

(if v1 <
¯
F (V )) or Case 1.2 (if v1 =

¯
F (V )), F̄ (V 1) = F̄ (V ). Moreover, by ef-

ficiency and Proposition 3.1, F (V 1) ⊆ Conv(V 1); hence, v2 =
¯
v1. Next, for

agents k ∈ {2, . . . , i}, in increasing order, consider profile V k = (V k−1
−k , V̄k).

By the arguments presented for V 1, F̄ (V k) = F̄ (V ). Therefore, at profile

V i = (V̄1, . . . , V̄i, Vi+1, . . . , Vn), F̄ (V i) = F̄ (V ). Finally, begin from profile V ′.

By the same technique as the one described for profile V , change the prefer-

ences of agents k ∈ {1, . . . , i − i}, in increasing order, to again construct profile

V i = (V̄1, . . . , V̄i, Vi+1, . . . , Vn). Therefore, F̄ (V i) = F̄ (V ′) = F̄ (V ).

Similarly, if v′i ≤ ¯
F (V ), then once can show that

¯
F (V ′) =

¯
F (V ), by using sym-

metrical arguments to the ones presented above. Specifically, begin from profile

V and change the preferences of agents k ∈ {i, . . . , n}, in decreasing order, and

show that
¯
F (V1, . . . , Vi−1, V̄i, . . . , V̄n) =

¯
F (V ). Finally, begin from profile V ′ and

change the preferences of agents k ∈ {i+ 1, . . . , n}, in decreasing order, and show

that
¯
F (V1, . . . , Vi−1, V̄i, . . . , V̄n) =

¯
F (V ′) =

¯
F (V ).

3.D Proof of Theorem 3.1 (equivalence of statements (ii)

and (iii))

We first show for Theorem 3.1 that statement (iii) implies statement (ii) in domain

R. Moreover, as discussed in Section 3.5.3, this result also holds in domain S.

Proof of Theorem 3.1 (statement (iii) implies statement (ii)). Let Fα,β
G ∈

FG. By the definition of FG, to show that Fα,β
G satisfies uncompromisingness, it

suffices to show that the minimum and maximum chosen alternatives by Fα,β
G are

not compromised. Moreover, by symmetry of arguments, we only need to show

that
¯
Fα,β
G (V ) is not compromised.

Let V ∈ RN and without loss of generality, let v1 ≤ · · · ≤ vn. Let i ∈ N

and V ′ ∈ RN be such that V−i = V ′−i. Moreover, let vi 6=
¯
Fα,β
G (V ). Hence,

¯
Fα,β
G (V ) = med(v, α̃v) and

¯
Fα,β
G (V ′) = med(v′, α̃v′). There are two cases.
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Case 1. Let j ∈ N and
¯
Fα,β
G (V ) = med(v, α̃v) = vj. Hence, vi 6=

¯
Fα,β
G (V )

implies i 6= j. Since at V , v1 ≤ · · · ≤ vn, at least j agents announce peaks smaller

than or equal to vj and at least n − j + 1 agents announce peaks larger than

or equal to vj. Thus, since there are n agents in total and α̃v ∈ An+1, by the

median operator, vector α̃v contains at least n− j+ 1 coordinates smaller than or

equal to vj and at least j coordinates larger than or equal to vj. Therefore, since

αN ≤ · · · ≤ α∅, if j = 1, α{1} ≤ vj ≤ α∅, and otherwise, α{1,...,j} ≤ vj ≤ α{1,...,j−1}.

There are two sub-cases.

(i) Let vi <
¯
Fα,β
G (V ) = vj, that is, i ∈ {1, . . . , j − 1}. This implies j ∈

{2, . . . , n} and α{1,...,j} ≤ vj ≤ α{1,...,j−1}. In addition, let v′i ≤ vj. Thus, at

profile V ′, at least j agents announce peaks smaller than or equal to vj (i.e.,

agents 1, . . . , j) and at least n − j + 1 agents announce peaks larger than or

equal to vj (i.e., agents j, . . . , n). Moreover, V−i = V ′−i and v′i ≤ vj imply that

v′i ≤ vj ≤ vj+1 ≤ · · · ≤ vn, that is, the agents announcing the j − 1 smallest

peaks at V (i.e., agents 1, . . . , j− 1) also announce the j− 1 smallest peaks at V ′.

Similarly, the agents announcing the j smallest peaks at V (i.e., agents 1, . . . , j)

also announce the j smallest peaks at V ′. Hence, coordinates α{1,...,j} and α{1,...,j−1}

are included in vector α̃v′ . Thus, α{1,...,j} ≤ vj ≤ α{1,...,j−1} and the definition of

FG implies that vector α̃v′ contains at least n − j + 1 coordinates smaller than

or equal to vj and at least j coordinates larger than or equal to vj. Therefore,

¯
Fα,β
G (V ′) = med(v′, α̃v′) = vj =

¯
Fα,β
G (V ).

(ii) Let vi >
¯
Fα,β
G (V ) = vj, that is, i ∈ {j+1, . . . , n}. The proof is symmetric

to (i).

Case 2. Let M ⊆ N such that |M | = m. Let
¯
Fα,β
G (V ) = med(v, α̃v) = αM , such

that for each i ∈ N , vi 6= αM . Hence, if |M | = 0, αM = α∅, and otherwise, αM =

α{1,...,m}. Since αN ≤ · · · ≤ α∅, vector α̃v contains at least n−m + 1 coordinates

smaller than or equal to αM (i.e., coordinates α{1,...,m}, . . . , αN) and at least m+ 1

coordinates larger than or equal to αM (i.e., coordinates α∅, . . . , α{1,...,m}). Thus,

since there are n agents in total and none of their announced peaks equals αM ,

by the median operator, at V , m agents announce peaks smaller than αM (i.e.,

agents 1, . . . ,m) and n − m agents announce peaks larger than αM (i.e., agents

m + 1, . . . , n). Therefore, since v1 ≤ · · · ≤ vn, if m = 0, αM = α∅ < v1, if m = n,

αM = αN > vn, and otherwise, vm < αM = α{1,...,m} < vm+1. There are four

sub-cases.

(i) Let m = 0. Hence, αM = α∅ < v1 ≤ vi. In addition, let αM =
¯
Fα,β
G ≤ v′i.

Thus, at V ′, all n agents announce peaks larger than αM . In addition, since
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αN ≤ · · · ≤ α∅ = αM , vector α̃v′ contains at least n + 1 coordinates smaller than

or equal to αM (i.e., coordinates α∅, . . . , αN) and at least 1 coordinate larger than

or equal to αM (i.e., coordinate α∅). Therefore,
¯
Fα,β
G (V ′) = med(v′, α̃v′) = αM =

¯
Fα,β
G (V ).

(ii) Let m = n. The proof is symmetric to (i).

(iii) Let m ∈ {1, . . . , n− 1} and vi < α{1,...,m} = αM . Hence, vi ≤ vm < αM <

vm+1. In addition, let v′i ≤ αM . Thus, at V ′, at least m agents announce peaks

smaller than or equal to αM (i.e., agents 1, . . . ,m) and n − m agents announce

peaks larger than αM (i.e., agents m+1, . . . , n). Moreover, V−i = V ′−i and v′i ≤ αM

imply that v′i ≤ αM < vm+1 ≤ · · · ≤ vn, that is, the agents announcing the m

smallest peaks at V (i.e., agents 1, . . . ,m) also announce the m smallest peaks at

V ′. Hence, coordinate α{1,...,m} is included in vector α̃v′ . Thus, the definition of

FG implies that vector α̃v′ contains at least n−m+ 1 coordinates smaller than or

equal to αM and at least m+1 coordinates larger than or equal to αM . Therefore,

¯
Fα,β
G (V ′) = med(v′, α̃v′) = αM =

¯
Fα,β
G (V ).

(iv) Let m ∈ {1, . . . , n− 1} and vi > α{1,...,m} = αM . The proof is symmetric

to (iii).

Before showing for Theorem 3.1 that statement (ii) implies statement (iii), we

first prove the following intermediate result that holds in both domains R and S.

Lemma 3.10. Let F ∈ F satisfy strategy-proofness, peaks-onliness, and un-

compromisingness. Then, for each i ∈ N and each pair V, V ′ ∈ RN such that

V ′−i = V−i, if vi ≤ v′i, then
¯
F (V ) ≤

¯
F (V ′) and F̄ (V ) ≤ F̄ (V ′).33

Proof. Let F ∈ F satisfy strategy-proofness, peaks-onliness, and uncompromis-

ingness. Let i ∈ N and pair V, V ′ ∈ RN be such that V ′−i = V−i. Since by

peaks-onliness, vi = v′i implies F (V ) = F (V ′), let vi < v′i. There are three cases.

Case 1. Let vi <
¯
F (V ) and vi < v′i. Concerning the maximum alternative

chosen, if v′i ≤ F̄ (V ), then by uncompromisingness, F̄ (V ) = F̄ (V ′). Let V 1
i ∈ R

be such that v1
i = F̄ (V ). Hence, by uncompromisingness, F̄ (V−i, V

1
i ) = F̄ (V ). If

v′i > F̄ (V ), then assuming F̄ (V ′) < F̄ (V ) leads to a contradiction as follows. Begin

from V ′ and let agent i change his announcement to V 1
i . Since F̄ (V ′) < v1

i < v′i,

by uncompromisingness, F̄ (V ′−i, V
1
i ) = F̄ (V ′). Thus, F̄ (V ′−i, V

1
i ) = F̄ (V−i, V

1
i )

contradicts F̄ (V ′) < F̄ (V ). Therefore, in both cases, F̄ (V ′) ≥ F̄ (V ).

33Notice that this result simply shows that strategy-proofness and uncompromisingness imply
peak-monotonicity, a property that we refrain from introducing formally since it is only used in
the “only if” part of Theorem 3.1. Loosely speaking, this property requires the following: if an
agent’s announced peak moves to the right (left), then the chosen set also moves to the right
(left).
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Concerning the minimum alternative chosen, assume Ri = Vi. Since vi <
¯
F (V )

and F̄ (V ) ≤ F̄ (V ′), if
¯
F (V ′)) <

¯
F (V ), then single-peakedness implies bRi

(F (V ′)Ri

bRi
(F (V )). Hence, if at profile V agent i deviates by announcing V ′i , his best point

improves. This contradicts strategy-proofness. Therefore,
¯
F (V ′) ≥

¯
F (V )

Case 2. Let
¯
F (V ) ≤ vi < F̄ (V ) and vi < v′i. Concerning the maximum alter-

native chosen, by the arguments presented in Case 1, F̄ (V ′) ≥ F̄ (V ). Concerning

the minimum alternative chosen, if
¯
F (V ′) <

¯
F (V ), then

¯
F (V ′) < vi < v′i and un-

compromisingness imply
¯
F (V ′) =

¯
F (V ′−i, Vi) =

¯
F (V ). Therefore,

¯
F (V ′) ≥

¯
F (V ).

Case 3. Let F̄ (V ) ≤ vi and vi < v′i. Concerning the maximum alternative

chosen, if F̄ (V ′) < F̄ (V ), then F̄ (V ) ≤ vi < v′i and uncompromisingness im-

ply F̄ (V ′) = F̄ (V ′−i, Vi) = F̄ (V ). Similarly, concerning the minimum alternative

chosen, if
¯
F (V ′) <

¯
F (V ), then

¯
F (V ) ≤ vi < v′i and uncompromisingness imply

¯
F (V ′) =

¯
F (V ′−i, Vi) =

¯
F (V ).

The last part of the proof of Theorem 3.1 follows. Notice that this part holds

in both domains R and S.

Proof of Theorem 3.1 (statement (ii) implies statement (iii)). Let F ∈ F
satisfy uncompromisingness. By Proposition 3.4, F satisfies strategy-proofness

and peaks-onliness. For each i ∈ N , let pair V min
i , V max

i ∈ R be such that vmin
i = 0

and vmax
i = 1. We proceed in three steps.

Step 1. We show that at each announced profile V ∈ RN and for each i ∈ N ,

the minimum chosen alternative is the median of: (i) the announced peak of i at

profile V (i.e., vi), (ii) the minimum chosen alternative if i changes his announce-

ment to V min
i (i.e.,

¯
F (V−i, V

min
i )), and (iii) the minimum chosen alternative if i

changes his announcement to V max
i (i.e.,

¯
F (V−i, V

max
i )). By symmetry of argu-

ments, we do not show the equivalent result for the maximum chosen alternative.

Let i ∈ N and V ∈ RN . Consider profiles V min = (V−i, V
min
i ) and V max =

(V−i, V
max
i ). Since V−i = V min

−i = V max
−i and vmin

i ≤ vi ≤ vmax
i , by Lemma 3.10,

¯
F (V min) ≤

¯
F (V ) ≤

¯
F (V max). There are three cases.

Case 1. Let vi <
¯
F (V min) ≤

¯
F (V ). Since 0 = vmin

i ≤ vi <
¯
F (V ), un-

compromisingness implies
¯
F (V min) =

¯
F (V ). Therefore,

¯
F (V min) =

¯
F (V ) =

med(
¯
F (V min), vi,

¯
F (V max)).

Case 2. Let vi >
¯
F (V max) ≥

¯
F (V ). Symmetric proof to Case 1.

Case 3. Let
¯
F (V min) ≤ vi ≤

¯
F (V max). Assuming vi <

¯
F (V ) and thus

¯
F (V min) <

¯
F (V ) results in a contradiction as follows. Since 0 = vmin

i ≤
vi <

¯
F (V ), uncompromisingness implies

¯
F (V min) =

¯
F (V ). Similarly, assuming

¯
F (V ) < vi and thus

¯
F (V ) <

¯
F (V max) results in a contradiction as follows. Since
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¯
F (V ) < vi ≤ vmax

i , uncompromisingness implies
¯
F (V ) =

¯
F (V max). Therefore,

¯
F (V ) = vi = med(

¯
F (V min), vi,

¯
F (V max)).

Step 2. We construct two vectors α and β. In this step of the proof and in

contrast to the rest of the paper, we will use a different letter to label announced

profiles (U instead of V ). This is done in an attempt to facilitate the notation

used in Step 3 of the proof that follows.

For eachM ⊆ N , let UM ∈ RN be such that all agents inM announce 0 as their

peak and all other agents announce 1 as their peak, i.e., uM = (0, . . . , 0︸ ︷︷ ︸
i ∈M

, 1, . . . , 1︸ ︷︷ ︸
i ∈ N \M

).

Next, let vectors α = (αM)M⊆N and β = (βM)M⊆N be such that αM =
¯
F (UM)

and βM = F̄ (UM), hence, αM ≤ βM . Moreover, for each L,M ⊆ N such that

L ( M notice the following. For each i ∈ M \ L, uLi = 1 > 0 = uMi , and

for each j 6∈ M \ L, UL
j = UM

j . Begin from profile UL and consider that all

agents i (sequentially) change their announcements to UM
i . Since uLi > uMi , by

(sequentially) applying Lemma 3.10,both αL ≥ αM and βL ≥ βM .

Step 3. We show that F is a generalized median correspondence associated

with vectors α and β constructed in Step 2.

Let V ∈ RN . Without loss of generality, index the agents in N such that

v1 ≤ · · · ≤ vn. Recall vectors α, β and profiles UM , for M ⊆ N , defined in

Step 2. Let vectors α̃v, β̃v ∈ An+1 be such that α̃v = (α∅, α{1}, α{1,2}, . . . , αN) and

β̃v = (β∅, β{1}, β{1,2}, . . . , βN).

Since the coordinates of α̃v are such that 0 ≤ αN ≤ · · · ≤ α∅ ≤ 1 and u∅ =

(1, . . . , 1),
¯
F (U∅) = med(u∅, α̃v) = α∅. Moreover, for each i ∈ {1, . . . , n}, u{1,...,i} =

( 0, . . . , 0︸ ︷︷ ︸
j ∈ {1, . . . , i}

, 1, . . . , 1︸ ︷︷ ︸
j ∈ {i+ 1, . . . , n}

) implies
¯
F (U{1,...,i}) = med(u{1,...,i}, α̃v) = α{1,...,i}. Simi-

larly for β̃v, F̄ (U∅) = β∅ and for each i ∈ {1, . . . , n}, F̄ (U{1,...,i}) = β{1,...,i}.

Next, for each i ∈ {1, . . . , n}, let V i ∈ RN be such that V i =

(V1, . . . , Vi, V
max
i+1 , . . . , V

max
n ) and notice that V n = V . We show that F (V ) =

Fα,β
G (V ) by induction, in two stages.

Stage 1. We show that F (V 1) = Fα,β
G (V 1).

Consider profile V 1 = (V1, V
max

2 , . . . , V max
n ). Recall profiles U{1} =

(V min
1 , V max

2 , . . . , V max
n ) and U∅ = (V max

1 , . . . , V max
n ). Hence, U{1} = (V 1

−1, V
min

1 )

and U∅ = (V 1
−1, V

max
1 ). By Step 1,

¯
F (V 1) = med(

¯
F (U{1}), v1,

¯
F (U∅)) and

F̄ (V 1) = med(F̄ (U{1}), v1, F̄ (U∅)). Hence,
¯
F (V 1) = med(α{1}, v1, α{∅}) and

F̄ (V 1) = med(β{1}, v1, β{∅}). Moreover, since αN ≤ · · · ≤ α∅ ≤ v2 = · · · = vn and

βN ≤ · · · ≤ β∅ ≤ v2 = · · · = vn,
¯
F (V 1) = med(v, α̃v1) and F̄ (V 1) = med(v, β̃v1).

Therefore, F (V 1) = Fα,β
G (V 1).
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Stage 2. Let i ∈ {2, . . . , n} be such that F (V i−1) = Fα,β
G (V i−1). We show

that F (V i) = Fα,β
G (V i). Notice that we only show

¯
F (V i) =

¯
Fα,β
G (V i). The proof

showing F̄ (V i) = F̄α,β
G (V i) is symmetric, that is, it can be obtained using the same

arguments but after replacing all references to the minimum chosen alternative

and α̃vi with the equivalent references to the maximum chosen alternative and β̃vi

respectively.

Recall that V i−1 = (V1, . . . , Vi−1, V
max
i , . . . , V max

n ) and V i = (V i−1
−i , Vi). There

are three cases.

Case 1. Let vi >
¯
F (V i). Since V i−1

−i = V i
−i and

¯
F (V i) < vi ≤ vmax

i , by

uncompromisingness,
¯
F (V i) =

¯
F (V i−1) = med(vi−1, α̃vi). Thus, V i−1

−i = V i
−i and

med(vi−1, α̃vi) < vi ≤ vmax
i implies

¯
F (V i) = med(vi, α̃vi) =

¯
Fα,β
G (V i).

Case 2. Let vi <
¯
F (V i) and recall that U{1,...,i} =

(V min
1 , . . . , V min

i , V max
i+1 , . . . , V

max
n ). Since v1 ≤ · · · ≤ vn and vi <

¯
F (V i),

for each j ∈ {1, . . . , i}, vmin
j ≤ vj <

¯
F (V i); hence, by uncompromising-

ness,
¯
F (V i

−j, V
min
j ) =

¯
F (V i). Therefore, beginning from profile V i and

considering that all agents j ∈ {1, . . . , i} (sequentially) change their announce-

ments to V min
j , implies by (sequentially applying) uncompromisingness, that

¯
F (V i) =

¯
F (U{1,...,i}) where as shown above

¯
F (U{1,...,i}) = α{1,...,i}. There-

fore, since at profile V i, for each j ∈ {1, . . . , i}, vij < α{1,...,i}, and for each

k ∈ {i + 1, . . . , n}, vik = vmax
k = 1 ≥ α{1,...,i}, by the median operator,

¯
F (V i) = med(vi, α̃vi) =

¯
Fα,β
G (V i).

Case 3. Let vi =
¯
F (V i). Since V i−1

−i = V i
−i and vi ≤ vmax

i , by Lemma 3.10,

¯
F (V i) ≤

¯
F (V i−1). Thus, v1 ≤ · · · ≤ vn and vi =

¯
F (V i), imply vii−1 = vi−1

i−1 ≤

¯
F (V i−1). There are two sub-cases.

(i) Let vii−1 =
¯
F (V i−1). Thus, vii−1 = vi =

¯
F (V i) =

¯
F (V i−1). Hence,

¯
F (V i−1) =

¯
Fα,β
G (V i−1) implies med(vi−1, α̃vi−1) = vi ≤ vmax

i . Therefore, by the

median operator,
¯
F (V i) = vi = med(vi, α̃vi) =

¯
Fα,β
G (V i).

(ii) Let vii−1 <
¯
F (V i−1). Recall that at profiles U{1,...,i−1} =

(V min
1 , . . . , V min

i−1 , V
max
i , . . . , V max

n ) and U{1...,i} = (V
{1,...,i−1}
−i , V min

i ),
¯
F (U{1,...,i−1}) =

α{1,...,i−1} and
¯
F (U{1,...,i}) = α{1,...,i}. Since vi =

¯
F (V i) ≤

¯
F (V i−1), it follows that

vi ≤ α{1,...,i−1}.

Next, begin from profile U{1,...,i} and consider that all agents j ∈ {1, . . . , i}
(sequentially) change their announcements to Vj, i.e., the final new profile is

V i = (V1, . . . , Vi, V
max
i+1 , . . . , V

max
n ). Since vj ≥ vmin

j , by (sequentially) apply-

ing Lemma 3.10,
¯
F (V i) ≥

¯
F (U{1,...,i}) = α{1,...,i}. Hence, vi ≥ α{1̄,...,i} and it

follows, that α{1,...,i} ≤ vi ≤ α{1,...,i−1}. Thus, since αN ≤ · · · ≤ α∅, vector
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α̃vi contains at least n + 1 − i coordinates not larger than vi (i.e., coordinates

α{1,...,i}, . . . , αN) and at least i coordinates not smaller than vi (i.e., coordinates

α∅, . . . , α{1,...,i−1}). In addition, since v1 ≤ · · · ≤ vn, at least i agents announce

peaks not larger than vi (i.e., agents 1, . . . , i) and n− i+ 1 agents announce peaks

not smaller than vi (i.e., agents i, . . . , n). Therefore, by the median operator,

¯
F (V i) = med(vi, α̃vi) = vi =

¯
Fα,β
G (V i).
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