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Preamble 
This appendix provides methodological detail for estimating the Healthcare Access and Quality Index as 
well as supplementary results. The appendix is organized into broad sections following the structure of 
the main paper. This study complies with the Guidelines for Accurate and Transparent Health Estimates 
Reporting (GATHER) recommendations. It includes detailed indicator modeling write-ups and flowcharts, 
and information on data sourcing to maximize transparency in our estimation processes and provides a 
comprehensive account of analytical steps. We intend this to be a living document, to be updated with 
each annual iteration of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD).   
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GATHER Statement 
 

This study complies with the Guidelines for Accurate and Transparent Health Estimates Reporting 
(GATHER) recommendations.1 We have documented the steps involved in our analytical procedures and 
detailed the data sources used in compliance with the GATHER. For additional GATHER reporting, please 
refer to Appendix Table 1 on pages 7. 
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Appendix Table 1 GATHER Checklist 
GATHER checklist of information that should be included in reports of global health estimates, with 
description of compliance and location of information 

  

# GATHER checklist item Description of compliance Reference 
Objectives and funding  
1 Define the indicator(s), populations 

(including age, sex, and geographic entities), 
and time period(s) for which estimates were 
made. 

Description of indicators, 
definitions, relevant time periods, 
and populations in paper and 
appendix. 

Main Text Methods; 
Appendix, Part 1, Section 
1; Appendix Table 3;  

2 List the funding sources for the work. Funding sources listed in paper. Main Text Summary 
Data inputs  
     For all data inputs from multiple sources that are synthesized as part of the study:  
3 Describe how the data were identified and 

how the data were accessed.  
Narrative description of data 
seeking methodology provided. 

Appendix, Part 1, Section 1 

4 Specify the inclusion and exclusion criteria. 
Identify all ad-hoc exclusions. 

Narrative about inclusion and 
exclusion criteria by data type 
provided in linked materials. 

Inclusion and exclusion 
criteria, and ad-hoc 
exclusions are included in 
cause-specific write-ups 
(Appendix, Part 4) 

5 Provide information on all included data 
sources and their main characteristics. For 
each data source used, report reference 
information or contact name/institution, 
population represented, data collection 
method, year(s) of data collection, sex and age 
range, diagnostic criteria or measurement 
method, and sample size, as relevant.  

An interactive, online data source 
tool that provides metadata for 
data sources by component, 
geography, cause, risk, or 
impairment. 

Available upon publication 
at:  
https://ghdx.healthdata.or
g/gbd-2019/  
 

6 Identify and describe any categories of input 
data that have potentially important biases 
(e.g., based on characteristics listed in item 5). 

Summary of known biases 
included in paper    

Main Text Methods  

     For data inputs that contribute to the analysis but were not synthesized as part of the study: 
7 Describe and give sources for any other data 

inputs.  
An interactive, online data source 
tool that provides metadata for 
data sources by component, 
geography, cause, risk, or 
impairment. 

Appendix Methods, Part 3;  
https://ghdx.healthdata.or
g/gbd-2019/  
 

     For all data inputs: 
8 Provide all data inputs in a file format from 

which data can be efficiently extracted (e.g., a 
spreadsheet as opposed to a PDF), including 
all relevant meta-data listed in item 5. For any 
data inputs that cannot be shared due to 
ethical or legal reasons, such as third-party 
ownership, provide a contact name or the 

Downloads of input data are 
available through online tools, 
including data visualization tools 
and data query tools.  

Appendix Methods, Part 3;  
https://ghdx.healthdata.or
g/gbd-2019/ 
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name of the institution that retains the right 
to the data. 

Data analysis 
9 Provide a conceptual overview of the data 

analysis method. A diagram may be helpful.  
Flow diagrams of the overall 
methodological processes, as well 
as cause-specific modelling 
processes have been provided. 

Main text methods, 
Appendix Methods, Part 1 

10 Provide a detailed description of all steps of 
the analysis, including mathematical formulae. 
This description should cover, as relevant, 
data cleaning, data pre-processing, data 
adjustments and weighting of data sources, 
and mathematical or statistical model(s). 

Provided in the methodological 
write-ups. 

Main text methods, 
Appendix Methods, Part 1 

11 Describe how candidate models were 
evaluated and how the final model(s) were 
selected. 

Provided in the methodological 
write-ups.  

Main text methods, 
Appendix Methods, Part 1 

12 Provide the results of an evaluation of model 
performance, if done, as well as the results of 
any relevant sensitivity analysis. 

Provided in the methodological 
write-ups.  

Main text methods, 
Appendix Methods, Part 1 

13 Describe methods for calculating uncertainty 
of the estimates. State which sources of 
uncertainty were, and were not, accounted for 
in the uncertainty analysis. 

Provided in the methodological 
write-ups.  

Main text methods  

14 State how analytic or statistical source code 
used to generate estimates can be accessed. 

Access statement provided. Links to code will be 
updated at time of 
publication and can be 
found here: 
http://ghdx.healthdata.o
rg/gbd-2019/  
 

Results and Discussion 
15 Provide published estimates in a file format 

from which data can be efficiently extracted. 
GBD 2019 results are available 
through online data visualization 
tools, the Global Health Data 
Exchange, and the online data 
query tool. 

 Available upon 
publication at:  
https://ghdx.healthdata.or
g/gbd-2019/  
 

16 Report a quantitative measure of the 
uncertainty of the estimates (e.g., uncertainty 
intervals). 

Uncertainty intervals are 
provided with all results. 

Main Text, Results 

17 Interpret results in light of existing evidence. If 
updating a previous set of estimates, describe 
the reasons for changes in estimates. 

 Main Text, Discussion 

18 Discuss limitations of the estimates. Include a 
discussion of any modelling assumptions or 
data limitations that affect interpretation of 
the estimates. 

Discussion of limitations provided 
in the main text. 

Main Text, Methods and 
Discussion  
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Part 1. Estimating the Healthcare Access and Quality Index 
 
Overview 
 
This study drew on the results of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD 
2019) to estimate Healthcare Access and Quality (HAQ) Index scores for 204 countries and territories  
for the period from 1990 to 2019. This HAQ analysis improves on earlier iterations2,3 by assessing 
variation in HAQ by age over time. This study drew on the results of the Global Burden of Diseases, 
Injuries, and Risk Factors Study (GBD 2019) to estimate Healthcare Access and Quality (HAQ) Index 
scores for 204 countries and territories for the period from 1990 to 2019. This HAQ analysis improves on 
earlier iterations by assessing variation in HAQ by age over time.2,3 
 
Many of the methodologies described below have been presented in prior HAQ Index studies and in 
other GBD publications.2–7 The major methodological difference in the HAQ methodology this round 
included using the arithmetic mean rather than principal component analysis (PCA) to construct the 
composite index and special considerations related to constructing the HAQ Index for each of the three 
age groups. 
 
Section 1. Healthcare Access and Quality Index overview 
 
We used the measurement of amenable mortality to assess the accessibility and quality of health care 
worldwide. Our research process was focused on first creating a list of causes of amenable mortality and 
then transforming the indicators to ensure that results would be valid and comparable across locations. 
 
Causes of amenable mortality 
 
Instead of attempting to measure health-care access and quality by looking directly at service availability 
and quality variables, we sought to infer health-care access and quality by measuring a set of carefully 
selected health outcomes. This approach avoided the difficulty of attempting to identify, compare, and 
collect data for a standard set of health-care services across all of the locations in our analysis. 

We drew on the work of Nolte and McKee to compile a list of causes of mortality that can be avoided 
with access to good quality health-care.8–10 These are known as causes of amenable mortality. From the 
list produced by Nolte and McKee, we selected 32 causes of amenable mortality that we were able to 
map to the GBD cause hierarchy. Being able to identify corresponding causes of mortality in the GBD 
cause list was important in order to be able to use outputs from the most recent GBD research cycle. 

As we note in the main text, the original list of causes of amenable mortality that Nolte and McKee 
produced contained 34 causes.8 Benign prostatic hyperplasia and thyroid diseases were two causes from 
Nolte and McKee’s list that did not have corresponding causes in the GBD cause hierarchy. Thyroid 
diseases are captured in a residual causes group in the GBD cause hierarchy, and benign prostatic 
hyperplasia is not included because is not considered a cause of death in the GBD study. In addition, we 
disaggregated the category of “other infections” in Nolte and McKee to separately estimate diphtheria 
and tetanus. We did not include the two other infections from this group. 
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Section 2. Overview of modelling strategy for the Healthcare Access and Quality Index 
 
Modelling overview 
The flowchart below represents the overall modelling strategy we used to assemble the HAQ Index by 
age. 

Appendix Figure 1. Reference information for cause of death methods 

 

Inputs and modelling strategies 
This analysis used results from the GBD 2019 research cycle. We used three broad categories of data to 
construct the index: cause-specific mortality rate estimates; comparative risk estimates; and mortality-
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to-incidence ratios. Data were used from 910 locations, 23 age groups, two sexes, and 5 years spanning 
a 29-year range. These years were: 1990, 2000, 2005, 2010, 2019. 

Detailed summaries of how causes were modelled in the GBD 2019 research cycle are available in Part 4 
of this appendix.  

Input data and estimates will be available for download from the Global Health Data Exchange (GHDx) 
online at: http://ghdx.healthdata.org/gbd-2019.Following methods from GBD 2016, joint population-
attributable fractions (PAF) were estimated for each cause of death using comparative risk estimates 
from GBD 2019.11 For each cause, all environmental and behavioral risks, excluding high blood pressure, 
high total cholesterol, and high fasting plasma glucose, were used to estimate the joint PAF. The three 
metabolic risks were excluded from standardization on the basis that they are measures that are 
amenable to personal healthcare. To determine how much one risk is mediated through another, 
published studies were used to estimate mediation factors for every two risk-factors for an outcome. 
The calculation of this resulted in a matrix of parameters that gave the aggregated burden by disease 
and for all risk factors. The formula for this computation is: 

𝑃𝑃𝑃𝑃𝑃𝑃𝐽𝐽,𝑜𝑜,𝑎𝑎,𝑠𝑠,𝑙𝑙,𝑡𝑡 = 1 −  �(1 −  𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗,𝑜𝑜,𝑎𝑎,𝑠𝑠,𝑙𝑙,𝑡𝑡��1 −𝑀𝑀𝑃𝑃𝑗𝑗,𝑖𝑖,𝑜𝑜�
𝐽𝐽

𝑖𝑖=1

)
𝐽𝐽

𝑗𝑗=1

 

 

where J is a set of risk factors for the aggregation; PAFj,o,a,s,l,t is the PAF for risk j for cause o, GBD age 
group a, sex s, location l, and year t; and MFj,I,o is the mediation factor for risk j mediated through i for 
cause o.  

Risk-standardisation 
 
Our standardisation process in this HAQ Index analysis followed the methodology used in the GBD 2016 
HAQ Index study.3 We wanted the HAQ Index to capture differences across locations and time in access 
to quality health-care, and not variation across locations in exposure to risk. Standardisation was 
completed by replacing local levels of exposure to risks with the global level of exposure for a given 
year. We used the following formula to risk-standardise:  

𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙,𝑦𝑦,𝑔𝑔,𝑠𝑠 = 𝑅𝑅𝑙𝑙,𝑦𝑦,𝑎𝑎,𝑠𝑠  × (1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙,𝑦𝑦,𝑎𝑎,𝑠𝑠) ×
1

1 −  𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎,𝑠𝑠
 

where RSDl,y,a,s is the risk-standardised deaths in location l, year y, HAQ age a, and sex s; Dl,y,g,s are the 
deaths for the given specifications; PAFl,y,a,s is the PAF for the given specifications; and GPAFa,s is the 
global PAF for all years for age group a, and sex s.  

For causes that either had no attributable risks, had a PAF of zero, or had a PAF of one, the observed 
death rate was used. Additionally, if any cause had a maximum observed PAF greater than 0·9 but less 
than 1 for a given age and sex, the PAFs across all locations and years were scaled downwards so that 
the maximum PAF was 0·9. This was done to recognize that while there are marginal differences 
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between 90 percent and 100 percent of a death being attributed to population risk factors, there still 
exists room for standardization especially for causes that high variability of PAFs across locations. 

In the case of ischaemic heart disease, new data on the interplay of household air pollution, blood 
pressure, and ischaemic heart disease mortality resulted in implausible risk-standardised death rates for 
many low-SDI to low-middle SDI countries when we only accounted for joint exposures to metabolic 
risks considered amenable to health care. We thus included household and outdoor air pollution in risk 
standardisation and plan to further examine these risk mediation pathways in the future. We excluded 
three metabolic risk factors that are amenable to healthcare through proper diagnosis and treatment: 
high LDL, high fasting plasma glucose, and high systolic blood pressure (amenable, for example, due to 
diagnosis and treatment of diabetes and hypertension, respectively).  

Mortality-incidence ratios     

First implemented in HAQ 2016, MIRs are an additional measure for measuring access and quality in 
health systems. By looking at amenable deaths relative to total incidence, a stronger signal of health 
system performance is captured. The formula used to calculate MIRs is the following: 

𝑀𝑀𝑀𝑀𝑅𝑅𝑙𝑙,𝑦𝑦,𝑔𝑔,𝑠𝑠 =
𝑅𝑅𝑙𝑙,𝑦𝑦,𝑔𝑔,𝑠𝑠

𝑀𝑀𝑙𝑙,𝑦𝑦,𝑔𝑔,𝑠𝑠
 

where MIRl,y,g,s is a mortality-incidence ratios in location l, year y, HAQ age group a, and sex s; Dl,y,a,s are 
deaths in location l, year y, HAQ age group g, and sex s; and Il,y,a,s is incidence in location l, year y, HAQ 
age group g, and sex s. 

Risk-standardised death vs mortality-incidence ratios 

Due to improvements seen from the use of MIRs for cancers in the 2016 HAQ Index, MIR expansion was 
tested for all causes that were non-chronic and for which GBD measures incidence. When determining 
whether to use an RSD or an MIR, healthy average life expectancy (HALE) was set as the gold standard 
measure for better health. The correlation across years and locations for both HALE and an RSD and 
HALE and an MIR was calculated; the measure that had the highest correlation between the two was 
chosen. Appendix Table 2 indicates for which causes an MIR was used instead of an RSD. For ischemic 
heart disease, a RSD was used because incidence was only measured for myocardial infarction while 
deaths measured all deaths from ischemic heart disease.  

 

 
Appendix Table 2: The correlation of MIRs and RSDs, 
respectively, with HALE, for causes tested   

  

  Cause 
MIR Correlation 

with HALE  
RSD Correlation 

with HALE    

  
Tuberculosis* -0.82  -0.78  
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Diarrheal diseases* -0.77  -0.74  

  

  

Lower respiratory 
infections  -0.70  -0.88 

  

  

Upper respiratory 
infections  -0.55 -0.59  

  

  
Diphtheria  -0.26  -0.42  

  

  
Whooping cough* -0.75  -0.67  

  

  
Tetanus  -0.14  -0.41  

  

  
Measles  0.09  -0.57  

  

  
Maternal disorders  -0.59  -0.79  

  

  
Neonatal disorders  --  -0.85  

  

  
Breast cancer* -0.93  -0.38  

  

  
Cervical cancer* -0.83  -0.76  

  

  
Uterine cancer* -0.92  -0.21  

  

  

Colon and rectum 
cancer* -0.91  0.14  

  

  
Testicular cancer*  -0.92  0.01  

  

  
Hodgkin lymphoma*  -0.85  -0.46  
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Leukemia* -0.69  -0.03  

  

  

Rheumatic heart 
disease  0.38  -0.57  

  

  

Hypertensive heart 
disease  --  -0.64  

  

  
Peptic ulcer disease  -0.57  -0.81  

  

  
Appendicitis  -0.49  -0.82  

  

  

Chronic kidney 
disease  -0.34  -0.47  

  

  

Congenital heart 
anomalies  --  -0.61  

  

  

Adverse effects of 
medical treatment* -0.74  -0.65  

  

  

Non-melanoma skin 
cancer (squamous-
cell carcinoma)* 

-0.57  -0.44  
  

  
*Mortality incidence ratio used instead of risk-standardized death rate.  

  
     

 

Age-group analyses 

To complete the age-group analyses special considerations were needed to fit within the Nolte and 
McKee and GBD framework. Age groups of 0-14, 15-64, and 65+ were determined from demographic 
literature a priori and then constrained within the Nolte and McKee amenable age groups. These 
translated into the young (0-14), working (15-64), and post-working (65-74) age groups. Based on the 
Nolte and McKee amenable age groups, causes were then either included or excluded depending on the 
age groups10. For the young HAQ Index 26 causes were included. For the working age index 27 causes 
were included. And for the post-working index 22 causes were included. Additionally, due to GBD 
estimation limits, not all causes had estimates across the full age range of what Nolte and McKee 
considered amenable. An example of this is seen in maternal disorders for which Nolte and McKee 
specify amenability from age 0-74 while GBD produces estimates only between ages 10-50. In these 
scenarios, the estimates that were available were used. A full breakdown of this can be by age group in 
Appendix Table 3. 
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Appendix Table 3. Causes for which mortality is amenable to health care, mapped to GBD causes, and 
amenable age ranges 

 
 
 

Communicable, maternal, neonatal, and nutritional diseases 

Amenable age 
ranges (years) 

Tuberculosis* 0-14, 15-64, 65-74 
Diarrhoea, lower & upper respiratory, and vaccine-preventable diseases  

Diarrheal diseases* 0-14 
Lower respiratory infections 0-14, 15-64, 65-74 
Upper respiratory infections 0-14, 15-64, 65-74 
Diphtheria 0-14, 15-64 
Whooping cough* 0-14 
Tetanus 0-14, 15-64, 65-74 
Measles 0-14 

Maternal disorders 0-14, 15-64 
Neonatal disorders 0-14 
Non-communicable diseases 
Neoplasms  

Colon and rectum cancer* 0-14, 15-64, 65-74 
Non-melanoma skin cancer (squamous-cell carcinoma)* 15-64, 65-74 
Breast cancer* 15-64, 65-74 
Cervical cancer* 15-64, 65-74 
Uterine cancer* 15-64 
Testicular cancer* 0-14, 15-64, 65-74 
Hodgkin lymphoma* 0-14, 15-64, 65-74 
Leukemia* 0-14, 15-64 

Cardiovascular diseases  

Rheumatic heart disease 0-14, 15-64, 65-74 
Ischemic heart disease 15-64, 65-74 
Stroke 0-14, 15-64, 65-74 
Hypertensive heart disease 15-64, 65-74 

Chronic respiratory diseases 0-14 
Digestive diseases  

Peptic ulcer disease 0-14, 15-64, 65-74 
Appendicitis 0-14, 15-64, 65-74 
Inguinal, femoral, and abdominal hernia 0-14, 15-64, 65-74 
Gallbladder and biliary diseases 0-14, 15-64, 65-74 

Neurological disorders  

Idiopathic epilepsy 0-14, 15-64, 65-74 
Diabetes, urogenital, blood, and endocrine diseases  

Diabetes mellitus 0-14, 15-64 
Chronic kidney disease 0-14, 15-64, 65-74 

Other non-communicable diseases  
Congenital heart anomalies 0-14, 15-64, 65-74 

Injuries 
Unintentional injuries 

Adverse effects of medical treatment* 
 

0-14, 15-64, 65-74 

Although 0 (at birth) to 1 are listed as the lower bound of age ranges, age restrictions are applied for many causes such 
that mortality estimates are not produced before a given age group (eg, 15–19 years for many non-communicable 
diseases). Causes are ordered on the basis of the GBD cause list and corresponding group hierarchies. 
GBD=Global Burden of  Disease.  *Mortality incidence ratio used instead of risk-standardized death rate. 

Appendix Table 3. Causes for which mortality is amenable to health care, mapped to GBD causes, and amenable age ranges. 
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Age-standardisation    

For both the composite and the age-group analyses, mortality and incidence were age standardised to 
control for differing age structures across locations. To standardize each cause, we compiled risk-
standardised deaths for non-cancers and the initial components of cancer MIRs (i.e., mortality and 
incidence) for both sexes by location, year, age group, and amenable cause and computed the following: 

𝑅𝑅𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑙𝑙,𝑦𝑦,𝑔𝑔 = �𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙,𝑦𝑦,𝑔𝑔,𝑎𝑎  ×  𝑃𝑃𝑃𝑃𝑅𝑅𝑎𝑎

𝑛𝑛

𝑎𝑎=1

  

Where 𝑅𝑅𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑙𝑙,𝑦𝑦,𝑔𝑔,𝑑𝑑 is the age-standardised risk-standardised deaths or component parts for MIRs for 
location 𝑙𝑙, year 𝑦𝑦, and HAQ age group 𝑔𝑔, 𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙,𝑦𝑦,𝑔𝑔,𝑎𝑎 is the risk-standardised deaths or component parts 
for MIRs in location 𝑙𝑙, year 𝑦𝑦, HAQ age group 𝑔𝑔 and GBD age group 𝑎𝑎; and 𝑃𝑃𝑃𝑃𝑅𝑅𝑎𝑎 the population age 
standard for GBD age group 𝑎𝑎. 
 

Although the highest age seen in the analyses was 74, GBD produces age weights from birth to 95+. To 
reconcile the differences in age groups, cause-specific age weights were recalculated by summing the 
age weights within each age group to be rescaled to 1 within each age group (young, working and post-
working, as well as the composite). 

Scaling Causes 
 
Age-standardised MIRs and age-standardised RSDs were further standardized by scaling them from 0 to 
100 using the following formula:   

𝑅𝑅𝑀𝑀𝑙𝑙,𝑦𝑦,𝑔𝑔 =  
log�𝑀𝑀𝑐𝑐,𝑙𝑙,𝑦𝑦,𝑔𝑔� − 1𝑠𝑠𝑠𝑠(log�𝑀𝑀′𝑐𝑐,𝑔𝑔�)

99𝑠𝑠ℎ�log�𝑀𝑀′𝑐𝑐,𝑔𝑔�� − 1𝑠𝑠𝑠𝑠(log�𝑀𝑀′𝑐𝑐,𝑔𝑔�)
 

Where SIl,y,d is equal to the scaled indicator for each MIR or RSD and Ic,l,y,d  represents the age-
standardised RSD or MIR for a cause c, location l, year y, and HAQ age group g prior to scaling.  I’c,d  
represents the 1st and 99th percentiles of draws that set the minimum and maximum value for each 
cause across locations and years. A log-offset of 10−6 was added to all unscaled indicators prior to being 
scaled in log space in order to eliminate zeroes in a small number of age-cause combinations.  

The scaling of each cause is done independently by age group. The scale of a given cause is not the same 
for the young age group as the scales for the working, post-working or composite groups, respectively.  
Thus, scaling of a given cause is comparable across countries within an age group but not across age 
groups.      

Creating the HAQ Index 
 
The final HAQ Index for the composite and each age group is comprised of the mean of the scaled 
causes, with the scaled causes computed for each HAQ Index group independently. For the composite 
index, 32 causes were used, while for the young, working, and post-working age group indicators, 26, 
27, and 22 causes, respectively, were used. Because each HAQ Index is based on independently scaled 
causes, the values of each of the four HAQ Indices are not comparable except with respect to 
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representing the distance for each cause to the maximum/minimum values and the scale between the 
maximum and minimum values across each HAQ Index group, as discussed in “Scaling Causes” section.    
 
Taking the arithmetic mean of the scaled causes to compute each HAQ Index differed from the two 
previous iterations of HAQ, which constructed the index based on cause-weights derived from the 
relative contribution to a composite PCA factor. In this iteration of the HAQ Index, the arithmetic mean 
was used in order to improve the external interpretability of the HAQ Index while maintaining the cross-
country patterns of the PCA-weighted version of the index. The mean weighted HAQ Index and the PCA-
weighted HAQ Index were very similar, with a very strong correlation as shown in Figures 2a-2c which 
plot the HAQ Index based on the mean versus the HAQ Index based on PCA weights and depict the 
correlation between the two. Additionally, we elected to use the arithmetic mean over the geometric 
mean. The arithmetic and geometric means weighted HAQ indices were also very similar, with a strong 
correlation as show in figures 3a-3d.  
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Appendix Figure 2a. HAQ PCA Weighted Overall Index (0-74) vs Mean Overall Index (0-74), 2017 

 

 

 

 

 

 

 

 

23



Appendix Figure 2b. HAQ PCA Weighted Young Index (0-14) vs Mean Young Index (0-14), 2017 
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Appendix Figure 2c. HAQ PCA Weighted Working Index (15-64) vs Mean Working Index (15-64), 2017 
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Appendix Figure 2d. HAQ PCA Weighted Post-working Index (65-74) vs Mean Post-working Index (65-
74), 2017 
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Appendix Figure 3a. HAQ Geometric Mean Overall Index (0-74) vs Arithmetic Mean Overall Index (0-
74), 2019 
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Appendix Figure 3b. HAQ Geometric Mean Young Index (0-14) vs Arithmetic Mean Young Index (0-14), 
2019 
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Appendix Figure 3c. HAQ Geometric Mean Working Index (15-64) vs Arithmetic Mean Working Index 
(15-64), 2019 
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Appendix Figure 3d. HAQ Geometric Mean Post-working Index (65-74) vs Arithmetic Mean Working 
Index (65-74), 2019 

 

 
Uncertainty analysis 
 
We created 1000 draws for each input into the HAQ Index, where an input is a location-year for each of 
the 32 causes for the composite index, 26 causes for the young HAQ Index, 27 causes for the working 
HAQ Index and 22 causes for the post-working HAQ Index. For each draw, the mean of all causes was 
computed to calculate the HAQ and the uncertainty intervals are represented by the 2.5 and 97.5 
percentiles of the 1000 calculated HAQ Index draws, computed separately for each age group and the 
composite score.   
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Part 2. Estimating convergence  
 
For each age group, we examine the convergence with the top country performers on the HAQ Index. 
We consider convergence as representing health system performance worldwide becoming closer to the 
best observed performance across countries, examined separately by age group. We consider three 
forms of convergence.   
 
Beta convergence  
 
First, we examine “beta” convergence or whether the countries with the lowest scores caught up with, 
or increased faster than, increases in the top scores. We do this by regressing the 2019 HAQ Index on 
the absolute change between 1990 and 2019 in the HAQ Index score. Appendix Table 4a presents the 
results of these from these ordinary least squares regressions, representing absolute convergence. 
These results are discussed in the main text. Absolute convergence is observed only in the overall HAQ 
Index and the young HAQ Index (Appendix Table 4a). Appendix Table 4b captures relative convergence, 
depicting a regression of annualized percent change in the HAQ Index between 1990 and 2019 on the 
1990 HAQ Index. Relative convergence is observed in all groups (Appendix Table 4b). For smaller 1990 
values, which tend to be in low SDI countries, the same absolute change represents larger annualized 
percent change – results are subject to the “base rate” effect. Because of this effect and the fact that 
the limits of the index (0, 100) can change each time we update the HAQ Index – there are not so-called 
natural bounds or limits to the HAQ Index – we focus on absolute convergence rather than relative 
convergence in our main analysis. The results from Appendix Table 4b are also depicted in Appendix 
Figure 5.   
 

  

Appendix Table 4a: Absolute change in HAQ Index, 1990 to 
2019, by select age group   

  Term Estimate 
Std. 

Error P value   

 
Overall 1990 HAQ Index  0.060 0.023 0.01  

  
Young 1990 HAQ Index -0.132 0.022 < .0001   

 
Working 1990 HAQ Index 0.113 0.026 < .0001  

 
Post-working 1990 HAQ Index 0.207 0.031 < .0001  
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Appendix Table 4b: Annualized percent change in HAQ Index, 
1990 to 2019, by select age group   

  Term Estimate 
Std. 

Error P value   

 
Overall 1990 HAQ Index -0.022 0.002 < .0001  

  
Young 1990 HAQ Index -0.030 0.002 < .0001   

 
Working 1990 HAQ Index -0.013 0.002 < .0001  

 
Post-working 1990 HAQ Index -0.006 0.002 0.01  
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Appendix Figure 4: Absolute change in HAQ Index, 1990-2019, versus 1990 HAQ Index by select age 
group 
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Appendix Figure 5. Annualized percent change in HAQ Index, 1990-2019, versus 1990 HAQ Index by 
select age group 

 

 
 
Sigma convergence  
 
Second, we considered “sigma” convergence, which is whether scores become more similar overall. This 
is represented by Appendix Table 5, which depicts the standardized normal deviation (the standard 
deviation divided by the mean) for each of the three age groups in 1990 and 2019.   
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Appendix Table 5: Normalized Standard Deviation HAQ, 
1990 and 2019  

  

  Age Group 

Normalized 
Standard 

Deviation, 1990 

Normalized 
Standard 

Deviation, 2019   

  Young 0.418 0.289   

  Working 0.397 0.358   

  
Post-working 0.359 0.345 

  
      

 
 
Convergence with High SDI quintile countries  
 
Third, we examined convergence as defined by the average distance from the contemporaneous 
average HAQ Index in High SDI quintile countries, taken collectively as a representation of the best 
performance in the HAQ Index for each year. This is represented in Figures 6a-6d, which show the 
average distance to the High SDI country average for each SDI quintile and the overall and select age 
group HAQ Index scores.       
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Appendix Figure 6a. Trends in average gap with mean HAQ Index in the High SDI Quintile by select age 
group, Low SDI quintile, 1990-2019 
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Appendix Figure 6b. Trends in average gap with mean HAQ Index in the High SDI Quintile by select age 
group, Low-middle SDI quintile, 1990-2019 
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Appendix Figure 6c. Trends in average gap with mean HAQ Index in the High SDI Quintile by select age 
group, Middle SDI quintile, 1990-2019 
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Appendix Figure 6d. Trends in average gap with mean HAQ Index in the High SDI Quintile by select age 
group, High-middle SDI quintile, 1990-2019 
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Appendix Table 6: HAQ Index regressed on SDI over 
1990-2019 by select age group  

  

  

  Select age group Estimate Std. Error P value R2   

  Overall 96.23 3.036 <0.001 0.83   

 Young 101.41 2.262 <0.001 0.89  

  Working 87.76 3.371 <0.001 0.75   

  
Post-working 

77.10 2.718 <0.001 0.77   
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Part 3. Online tools and glossary of terms 
 

Section 1. Online tools 
 

Data for all underlying causes used in the HAQ Index can be located and downloaded here: 
http://ghdx.healthdata.org/gbd-2019. 

 

Section 2. List of abbreviations 
 
GATHER – Guidelines for Accurate and Transparent Health Estimates Reporting 
GBD – Global Burden of Diseases, Injuries, and Risk Factors Study  
GHDx – Global Health Data Exchange 
HAQ Index – Healthcare Access and Quality Index 
MIRs – Mortality-to-incidence ratios 
PCA – Principal Component Analysis 
SDI – Socio-demographic Index 
UI – Uncertainty Interval 
 
Section 3. List of ISO3 codes and location names 

 
ABW Aruba  

AFG Afghanistan  

AGO Angola  

AIA Anguilla  

ALA Åland Islands  

ALB Albania  

AND Andorra  

ANT Netherlands Antilles  

ARE United Arab Emirates  

ARG Argentina  

ARM Armenia  

ASM American Samoa  

ATA Antarctica  

ATF French Southern Territories  
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ATG Antigua and Barbuda  

AUS Australia  

AUT Austria  

AZE Azerbaijan  

BDI Burundi  

BEL Belgium  

BEN Benin  

BFA Burkina Faso  

BGD Bangladesh  

BGR Bulgaria  

BHR Bahrain  

BHS Bahamas  

BIH Bosnia and Herzegovina  

BLM Saint Barthélemy  

BLR Belarus  

BLZ Belize  

BMU Bermuda  

BOL Bolivia, Plurinational State of  

BRA Brazil  

BRB Barbados  

BRN Brunei Darussalam  

BTN Bhutan  

BVT Bouvet Island  

BWA Botswana  

CAF Central African Republic  

CAN Canada  

CCK Cocos (Keeling) Islands  

CHE Switzerland  

CHL Chile  
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CHN China  

CIV Côte d'Ivoire  

CMR Cameroon  

COD Congo, the Democratic Republic of the  

COG Congo  

COK Cook Islands  

COL Colombia  

COM Comoros  

CPV Cape Verde  

CRI Costa Rica  

CUB Cuba  

CXR Christmas Island  

CYM Cayman Islands  

CYP Cyprus  

CZE Czech Republic  

DEU Germany  

DJI Djibouti  

DMA Dominica  

DNK Denmark  

DOM Dominican Republic  

DZA Algeria  

ECU Ecuador  

EGY Egypt  

ERI Eritrea  

ESH Western Sahara  

ESP Spain  

EST Estonia  

ETH Ethiopia  

FIN Finland  
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FJI Fiji  

FLK Falkland Islands (Malvinas)  

FRA France  

FRO Faroe Islands  

FSM Micronesia, Federated States of  

GAB Gabon  

GBR United Kingdom  

GEO Georgia  

GGY Guernsey  

GHA Ghana  

GIB Gibraltar  

GIN Guinea  

GLP Guadeloupe  

GMB Gambia  

GNB Guinea-Bissau  

GNQ Equatorial Guinea  

GRC Greece  

GRD Grenada  

GRL Greenland  

GTM Guatemala  

GUF French Guiana  

GUM Guam  

GUY Guyana  

HKG Hong Kong  

HMD Heard Island and McDonald Islands  

HND Honduras  

HRV Croatia  

HTI Haiti  

HUN Hungary  
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IDN Indonesia  

IMN Isle of Man  

IND India  

IOT British Indian Ocean Territory  

IRL Ireland  

IRN Iran, Islamic Republic of  

IRQ Iraq  

ISL Iceland  

ISR Israel  

ITA Italy  

JAM Jamaica  

JEY Jersey  

JOR Jordan  

JPN Japan  

KAZ Kazakhstan  

KEN Kenya  

KGZ Kyrgyzstan  

KHM Cambodia  

KIR Kiribati  

KNA Saint Kitts and Nevis  

KOR Korea, Republic of  

KWT Kuwait  

LAO People's Democratic Republic  

LBN Lebanon  

LBR Liberia  

LBY Libyan Arab Jamahiriya  

LCA Saint Lucia  

LIE Liechtenstein  

LKA Sri Lanka  
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LSO Lesotho  

LTU Lithuania  

LUX Luxembourg  

LVA Latvia  

MAC Macao  

MAF Saint Martin (French part)  

MAR Morocco  

MCO Monaco  

MDA Moldova, Republic of  

MDG Madagascar  

MDV Maldives  

MEX Mexico  

MHL Marshall Islands  

MKD Macedonia, the former Yugoslav Republic of  

MLI Mali  

MLT Malta  

MMR Myanmar  

MNE Montenegro  

MNG Mongolia  

MNP Northern Mariana Islands  

MOZ Mozambique  

MRT Mauritania  

MSR Montserrat  

MTQ Martinique  

MUS Mauritius  

MWI Malawi  

MYS Malaysia  

MYT Mayotte  

NAM Namibia  
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NCL New Caledonia  

NER Niger  

NFK Norfolk Island  

NGA Nigeria  

NIC Nicaragua  

NIU Niue  

NLD Netherlands  

NOR Norway  

NPL Nepal  

NRU Nauru  

NZL New Zealand  

OMN Oman  

PAK Pakistan  

PAN Panama  

PCN Pitcairn  

PER Peru  

PHL Philippines  

PLW Palau  

PNG Papua New Guinea  

POL Poland  

PRI Puerto Rico  

PRK Korea, Democratic People's Republic of  

PRT Portugal  

PRY Paraguay  

PSE Palestinian Territory, Occupied  

PYF French Polynesia  

QAT Qatar  

REU Réunion  

ROU Romania  
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RUS Russian Federation  

RWA Rwanda  

SAU Saudi Arabia  

SDN Sudan  

SEN Senegal  

SGP Singapore  

SGS South Georgia and the South Sandwich Islands  

SHN Saint Helena, Ascension and Tristan da Cunha  

SJM Svalbard and Jan Mayen  

SLB Solomon Islands  

SLE Sierra Leone  

SLV El Salvador  

SMR San Marino  

SOM Somalia  

SPM Saint Pierre and Miquelon  

SRB Serbia  

STP Sao Tome and Principe  

SUR Suriname  

SVK Slovakia  

SVN Slovenia  

SWE Sweden  

SWZ Swaziland  

SYC Seychelles  

SYR Syrian Arab Republic  

TCA Turks and Caicos Islands  

TCD Chad  

TGO Togo  

THA Thailand  

TJK Tajikistan  

48



TKL Tokelau  

TKM Turkmenistan  

TLS Timor-Leste  

TON Tonga  

TTO Trinidad and Tobago  

TUN Tunisia  

TUR Turkey  

TUV Tuvalu  

TWN Taiwan, Province of China  

TZA Tanzania, United Republic of  

UGA Uganda  

UKR Ukraine  

UMI United States Minor Outlying Islands  

URY Uruguay  

USA United States  

UZB Uzbekistan  

VAT Holy See (Vatican City State)  

VCT Saint Vincent and the Grenadines  

VEN Venezuela, Bolivarian Republic of  

VGB Virgin Islands, British  

VIR Virgin Islands, U.S.  

VNM Viet Nam  

VUT Vanuatu  

WLF Wallis and Futuna  

WSM Samoa  

YEM Yemen  

ZAF South Africa  

ZMB Zambia  

ZWE Zimbabwe 
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Section 4. SDI reference quintiles and country-specific SDI values 
 

         

  Appendix Table 7. SDI reference quintiles and country-specific SDI 
values 

  

          

  SDI quintile Location SDI Estimate   

  High SDI (0.81-1.00)   

   Switzerland 0.93   

   Norway 0.91   

   Monaco 0.90   

   Germany 0.90   

   Luxembourg 0.89   

   Andorra 0.89   

   Denmark 0.89   

   San Marino 0.88   

   Netherlands 0.88   

   United Arab Emirates 0.88   

   Republic of Korea 0.88   

   Canada 0.87   

   Sweden 0.87   

   Japan 0.87   

   Iceland 0.87   

   Taiwan (Province of China) 0.87   

   Ireland 0.87   

   Singapore 0.86   

   United States of America 0.86   

   Finland 0.86   
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   Kuwait 0.85   

   Belgium 0.85   

   Austria 0.85   

   United Kingdom 0.85   

   Lithuania 0.84   

   Cyprus 0.84   

   Slovenia 0.84   

   New Zealand 0.84   

   Australia 0.84   

   Estonia 0.84   

   France 0.83   

   Qatar 0.83   

   Czechia 0.83   

   Brunei Darussalam 0.82   

   Latvia 0.82   

   Puerto Rico 0.81   

   Bermuda 0.81   

   Guam 0.81   

   Slovakia 0.81   

  High-middle SDI (0.69-0.81)   

   Saudi Arabia 0.81   

   Russian Federation 0.81   

   Israel 0.80   

   Poland 0.80   

   Malta 0.80   

   Italy 0.80   

   United States Virgin Islands 0.80   
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   Bahamas 0.80   

   Croatia 0.79   

   Greece 0.79   

   Hungary 0.79   

   Montenegro 0.79   

   Oman 0.78   

   Northern Mariana Islands 0.77   

   Spain 0.77   

   Serbia 0.77   

   Cook Islands 0.76   

   Bulgaria 0.76   

   Greenland 0.76   

   Romania 0.76   

   Chile 0.76   

   Trinidad and Tobago 0.76   

   Bahrain 0.75   

   Turkey 0.75   

   Saint Kitts and Nevis 0.75   

   Belarus 0.74   

   North Macedonia 0.74   

   Portugal 0.74   

   Antigua and Barbuda 0.74   

   Barbados 0.74   

   Palau 0.74   

   Malaysia 0.74   

   Ukraine 0.74   

   Jordan 0.73   
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   Dominica 0.73   

   Seychelles 0.72   

   Kazakhstan 0.72   

   Bosnia and Herzegovina 0.72   

   American Samoa 0.71   

   Niue 0.71   

   Libya 0.71   

   Lebanon 0.71   

   Argentina 0.71   

   Mauritius 0.71   

   Georgia 0.70   

   Uruguay 0.70   

   Republic of Moldova 0.70   

   Sri Lanka 0.69   

  Middle SDI (0.61-0.69)   

   Armenia 0.69   

   Thailand 0.69   

   China 0.69   

   Panama 0.69   

   Equatorial Guinea 0.69   

   Jamaica 0.68   

   Azerbaijan 0.68   

   Albania 0.68   

   Costa Rica 0.68   

   South Africa 0.68   

   Tunisia 0.67   

   Iraq 0.67   
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   Turkmenistan 0.67   

   Iran (Islamic Republic of) 0.67   

   Saint Lucia 0.67   

   Grenada 0.67   

   Cuba 0.67   

   Fiji 0.66   

   Indonesia 0.66   

   Egypt 0.66   

   Gabon 0.66   

   Algeria 0.65   

   Mexico 0.65   

   Peru 0.65   

   Samoa 0.64   

   Ecuador 0.64   

   Brazil 0.64   

   Paraguay 0.64   

   Suriname 0.64   

   Tonga 0.64   

   Botswana 0.63   

   Colombia 0.63   

   Uzbekistan 0.63   

   Saint Vincent and the Grenadines 0.63   

   Tokelau 0.63   

   Philippines 0.62   

   Syrian Arab Republic 0.62   

   Nauru 0.62   

   Guyana 0.62   
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   Viet Nam 0.62   

   Namibia 0.61   

  Low-middle SDI (0.45-0.61)   

   Venezuela (Bolivarian Republic of) 0.61   

   Mongolia 0.61   

   Belize 0.60   

   Kyrgyzstan 0.60   

   Dominican Republic 0.59   

   Tuvalu 0.59   

   Palestine 0.59   

   Micronesia (Federated States of) 0.58   

   Eswatini 0.58   

   El Salvador 0.57   

   Congo 0.57   

   Bolivia (Plurinational State of) 0.57   

   India 0.57   

   Maldives 0.56   

   Democratic People's Republic of Korea 0.56   

   Ghana 0.56   

   Morocco 0.55   

   Marshall Islands 0.54   

   Tajikistan 0.54   

   Kiribati 0.53   

   Guatemala 0.53   

   Cabo Verde 0.52   

   Myanmar 0.52   

   Nicaragua 0.52   
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   Nigeria 0.52   

   Sudan 0.52   

   Timor-Leste 0.51   

   Kenya 0.51   

   Lesotho 0.51   

   Zambia 0.51   

   Sao Tome and Principe 0.50   

   Honduras 0.50   

   Mauritania 0.50   

   Lao People's Democratic Republic 0.49   

   Cameroon 0.49   

   Vanuatu 0.48   

   Bangladesh 0.48   

   Zimbabwe 0.48   

   Angola 0.47   

   Cambodia 0.47   

   Djibouti 0.46   

   Bhutan 0.46   

  Low-SDI (0.00-0.45)   

   Comoros 0.45   

   Pakistan 0.45   

   Haiti 0.43   

   Rwanda 0.43   

   United Republic of Tanzania 0.42   

   Nepal 0.42   

   Togo 0.42   

   Yemen 0.41   
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   C√¥te d'Ivoire 0.41   

   Solomon Islands 0.41   

   Uganda 0.40   

   Gambia 0.40   

   Madagascar 0.40   

   Eritrea 0.40   

   Papua New Guinea 0.39   

   Senegal 0.39   

   Malawi 0.38   

   Democratic Republic of the Congo 0.38   

   Liberia 0.37   

   South Sudan 0.36   

   Guinea-Bissau 0.36   

   Benin 0.35   

   Sierra Leone 0.35   

   Afghanistan 0.34   

   Ethiopia 0.34   

   Guinea 0.32   

   Mozambique 0.31   

   Burundi 0.28   

   Central African Republic 0.27   

   Mali 0.26   

   Burkina Faso 0.26   

   Chad 0.24   

   Niger 0.16   

   Somalia 0.08   
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Part 4. Cause write-ups 
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Tuberculosis 

 

 
Input data 
Input data for modelling tuberculosis (TB) mortality among HIV-negative individuals include vital 
registration, verbal autopsy, and surveillance data. Vital registration data were adjusted for garbage 
coding (including ill-defined codes and the use of intermediate causes) following GBD algorithms and 
misclassified HIV deaths (ie, HIV deaths being assigned to other underlying causes of death such as 
tuberculosis or diarrhoea because of stigma or misdiagnosis).  

Verbal autopsy data in countries with age-standardised HIV prevalence greater than 5% were removed 
because of a high probability of misclassification, as verbal autopsy studies have poor validity in 
distinguishing HIV deaths from HIV-TB deaths.  

Modelling strategy  
A general CODEm modelling strategy was used. In GBD 2019, we made a small change with regard to the 
alcohol litres per capita covariate where we exchanged it for an all-age and both-sex equivalent that 
aligns better with the covariate framework for CODEm. We continued to use the TB strain prevalence-
weighted transmission risk and cigarettes per capita covariate that were introduced in GBD 2017. Other 
location-level covariates included in the CODEm model were the same as in previous GBD cycles: adult 
underweight proportion, alcohol (litres per capita), diabetes (fasting plasma glucose mmol/L), education 
(years per capita), Healthcare Access and Quality Index, lag-distributed income, indoor air pollution, 
outdoor air pollution, population density, prevalence of active tuberculosis, prevalence of latent 
tuberculosis infection, smoking prevalence, Socio-demographic Index, and a summary exposure variable 
reflecting the average exposure to all of the risk factors.  
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Covariate table 
 

Covariate Direction 

Level 1 TB prevalence 
Latent TB infection prevalence 
SEV scalar  
Litres of alcohol consumed per capita 
Smoking prevalence 
Cigarettes per capita 
Fasting plasma glucose 
TB strain prevalence-weighted transmission risk 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Level 2 HAQ Index 
Adult underweight proportion 
Indoor air pollution 
Outdoor air pollution 
Population density 

- 
+ 
+ 
+ 
+ 

Level 3 Log LDI 
Education (years per capita) 
Socio-demographic Index (SDI) 

- 
- 
- 

 

Correcting for a potential misclassification of tuberculosis deaths as pneumonia deaths in 
children 
Since GBD 2017, we have addressed the potential for misclassification of TB deaths as pneumonia 
deaths among children in locations with high TB burden. First, we estimated the proportion of 
tuberculosis among pneumonia cases as a function of age-standardised TB incidence using data from 
eight clinical studies2,3,4,5,6,7,8,9 reporting the proportion of pneumonia cases that had tuberculosis (or the 
data to calculate them) and the age-standardised TB incidence estimates. We used a logarithmic trend 
line to fit these data. In GBD 2019, we applied the estimated proportions to pneumonia deaths reported 
in data among children younger than 15 years to compute the number of deaths diagnosed with both 
pneumonia and TB, which were then added to child TB data. Following this correction in our input data, 
the CODEm model was run to provide location-year-age-sex specific estimates. This is a departure from 
GBD 2017, where the estimated proportions were applied after CODEm. Finally, the CODEm estimates 
were adjusted using CoDCorrect, which ensures that the number of deaths from each cause add up to 
all-cause mortality deaths for a given year. 
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TB strain prevalence-weighted transmission risk covariate 
In GBD 2017, we incorporated a TB covariate that incorporated data on the global distribution of TB 
strains and the relative risk of transmission associated with those strains. We continued the use of this 
covariate in GBD 2019. For this covariate, we defined TB strains according to the seven phylogenetic 
lineages of the Mycobacterium tuberculosis complex (MTBC) identified by S. Gagneaux and colleagues.1 
We determined the global distribution of these strains using a systematic review of human TB molecular 
epidemiology studies from 1990 to 2017 in PubMed and Scopus, as described in greater detail 
elsewhere.2 All studies that used population-based sampling methods or collected isolates from all 
culture-positive TB cases in a given location and time period were included. All genotypes that could be 
converted to phylogenetic lineages were extracted, including genotypes determined by spoligotyping, 
MIRU-VNTR typing, and PCR or whole-genome sequencing. Studies of sub-populations, such as prison 
populations or drug-resistant cases only, were excluded. In total, 206 studies representing 85 countries 
and over 200,000 bacterial isolates were included. In GBD 2019, the systematic review was updated, 
which yielded an additional 18 studies published between 2017 and 2019. A map of these strains 
highlighted the widespread global distribution of Euro-American Lineage 4 strains and East Asian 
Lineage 2 strains, and the geographical restriction of Lineage 5 and 6 strains to West Africa. Thirty of 
these studies also reported transmission chains associated with bacterial genotypes, as defined by 
genetic clustering.3 
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We used spatiotemporal Gaussian process regression (ST-GPR) to model the distribution of each strain 
in each GBD location across all ages and sexes, as described in greater detail elsewhere.4 The covariates 
tested in each model included HIV age-standardised prevalence, population density, and a custom-made 
human movement covariate. The human movement covariate took into account (1) immigration and 
emigration patterns5 and (2) airplane passenger flow6 to and from each country. In the ST-GPR models 
we assumed strong correlation and smoothing over both space and time. We then used a random-
effects meta-analysis to determine the relative risk (RR) of transmission associated with each strain, as 
defined by genetic clustering. We used the most widespread strains, Euro-American Lineage 4 strains, as 
the reference group. We found that East Asian Lineage 2 strains were associated with increased risk of 
transmission overall (relative risk [95% CI] = 1.24 [1.07, 1.45]), while West African Lineage 5 and 6 strains 
were associated with reduced transmission (relative risk [95% CI] = 0.61 [0.43, 0.86]). We used the 
following formula to calculate a TB strain prevalence-weighted risk of transmission based on these 
estimates: 
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Lower respiratory infections 
 

 

Input data 
Cause of death 
Lower respiratory infection (LRI) mortality was estimated in CODEm. We estimated LRI mortality 
separately for males and females and for children under 5 years and older than 5 years. We used all 
available data from vital registration systems, surveillance systems, and verbal autopsy. We checked for 
and excluded outliers from our data by country or region. We also excluded ICD9-coded mortality data 
in Sri Lanka (1982, 1987–1992), ICD9-coded neonatal mortality data in Guatemala (1980, 1981, 1984, 
2000–2004), and medically coded cause of death data and Civil Registration System data in many Indian 
states (1986–2013).  

Aetiologies 

We updated our systematic review of scientific literature for the proportion of LRI that tested positive 
for influenza and respiratory syncytial virus (RSV) to include all data from GBD 2017 and from studies 
published between August 1, 2018 and February 7, 2019. We performed the search using PubMed and 
the following search string:  

((“lower respiratory”[title] OR pneumonia[title]) AND (2018/08/01[PDat] : 2019/2/7[PDat) AND 
((incidence OR prevalence OR epidemiology) OR (etiolog*[title/abstract] OR influenza[title/abstract] OR 

“respiratory syncytial virus”[title/abstract])) AND Humans[MeSH Terms]) 
NOT(autoimmune[title/abstract] OR COPD [title/abstract] OR “cystic fibrosis”[title/abstract] OR 

Review[ptyp]) 
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Inclusion criteria were studies that had a sample size of at least 100, studies that were at least one year 
in duration, and studies describing lower respiratory infections, pneumonia, or bronchiolitis as the case 
definition. During our literature review we identified 121 studies, of which two met our inclusion criteria 
and were extracted. We excluded studies that described pandemic H1N1 influenza solely and studies 
that used influenza-like illness as the case definition. An age pattern based on age-specific data was 
estimated and then used to split data where the age range was more than 25 years.  

We also conducted a systematic literature review of studies on the Haemophilus influenzae type B (Hib) 
vaccine and pneumococcal conjugate vaccine (PCV) effectiveness studies against x-ray-confirmed 
pneumonia and against pneumococcal and Hib disease until May 2017. This review was not updated for 
GBD 2019. For PCV studies, we extracted, if available, the distribution of pneumococcal pneumonia 
serotypes and the serotypes included in the PCV used in the study. We excluded observational and case-
control studies due to implausibly high vaccine efficacy estimates. Hib trial data were exclusively from 
children under 5 years, so we did not include the effect of Hib on ages over 5 years. PCV trial data are 
also frequently limited to younger populations. To understand the contribution of pneumococcal 
pneumonia in older populations, we also included PCV efficacy studies that used before-after 
approaches. 

Modelling strategy  
Cause of death. LRI fatal modelling occurs using CODEm. Because of starkly different patterns, LRI 
CODEm models include under-5 years and 5–95+ years. Like all models of mortality in GBD, LRI mortality 
models are single-cause, requiring in effect that the sum of all mortality models must be equal to the all-
cause mortality envelope. We correct LRI mortality estimates, and other causes of mortality, by rescaling 
them according to the uncertainty around the cause-specific mortality rate. This process is called 
CoDCorrect and is essential to ensure internal consistency among causes of death.  

Table 1. Covariates used in LRI mortality modelling. Table 1A is for children under 5 and Table 1B 
shows the covariates used for ages 5–95+. The Level is the associated strength of relationship between 
the covariate and LRI mortality, ranked from 1 (proximally related) to 3 (distally related). Direction is the 
direction of the association between the covariate and LRI mortality.  

Table 1A. Covariates used in under 5 years model 

Level Covariate Direction 

1 

Childhood stunting summary exposure value 
(SEV) + 
Childhood underweight SEV  + 
Childhood wasting SEV + 
Indoor air pollution + 
LRI SEV + 
Antibiotics for LRI - 
Hib vaccine coverage - 
PCV coverage - 
Vitamin A deficiency + 

2 

Secondhand smoking prevalence + 
Zinc deficiency + 
DTP3 vaccine coverage - 
Healthcare Access and Quality Index - 
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Ambient particulate matter SEV + 
Household air pollution + 
Outdoor air pollution (PM2.5) + 
Handwashing SEV + 

3 

Sanitation SEV + 
Population density > 1000/km2 + 
Population density < 150/km2 + 
Maternal education  - 
Socio-demographic Index - 

 

Table 1B. Covariates used in 5-95+ years model 

Level Covariate Direction 

1 

Indoor air pollution + 
LRI SEV + 
Outdoor air pollution + 
Secondhand smoking prevalence + 
Smoking prevalence + 

2 

DTP3 vaccine coverage - 
Adult underweight + 
Healthcare Access and Quality Index - 
PCV coverage - 
Handwashing access + 

3 

Education years per capita - 
Lag distributed income per capita - 
Socio-demographic Index - 
Sanitation SEV + 

 

 

Aetiologies  

We estimated LRI aetiologies separately from overall LRI mortality using two distinct counterfactual 
modelling strategies to estimate population attributable fractions (PAFs), described in detail below. The 
PAF represents the relative reduction in LRI mortality if there was no exposure to a given aetiology. As 
LRIs can be caused by multiple pathogens and the pathogens may co-infect, PAFs can overlap and are 
not scaled to sum to 100%. Separate strategies were used for viral (influenza and RSV) and bacterial 
(Streptococcus pneumoniae and Hib) aetiologies. We did not attribute aetiologies to neonatal 
pneumonia deaths due to a dearth of reliable data in this age group. We calculated uncertainty of our 
PAF estimates from 1,000 draws of each parameter using normal distributions in log space.  

Influenza and RSV. We calculated the PAF from the proportion of severe LRI cases positive for influenza 
and RSV. We assumed that hospitalised LRI cases are a proxy of severe cases. We used the following 
formula to estimate the PAF:1 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑚𝑚𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) ∗ (1 −
1
𝑂𝑂𝑂𝑂

) 
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Where Proportion is the proportion of LRI cases that test positive for influenza or RSV and OR is the odds 
ratio of LRI given the presence of the pathogen. There are two published estimates of the odds ratios of 
influenza and RSV. One is based on detection in children younger than 5 years and the second is based 
on adults over 65 years. We applied the separate odds ratios for those age groups and log-linearly 
interpolated values between those ages to determine odds ratios for ages between those groups.2, 3

We modelled the proportion data using the meta-regression tool DisMod-MR to estimate the 
proportion of LRI cases that are positive for influenza and RSV, separately, by location/year/age/sex. To 
make disparate data types directly comparable such as the diagnostic technique (detection by PCR 
served as our reference), studies that investigated RSV or influenza exclusively (multi-pathogen studies 
were our reference), and studies from inpatient populations (community-based sample populations was 
our reference), we performed a meta-regression of the ratios of the reference to non-reference 
definitions. These meta-regression results were used to adjust the mean and variance of nonreference 
data. The value for the ratio of community to inpatient LRI was used as a scalar in our final estimate of 
fatal attributable fractions because we assumed that the frequency of influenza or RSV in hospitalised 
episodes of LRI represented the frequency in fatal LRI. 

As the case-fatality of viral causes of pneumonia is lower than for bacterial causes, we adjusted for 
differential case-fatality by determining the aetiological fractions for mortality attributable to RSV and 
influenza (Table 2). We measured the aetiological fractions by applying a relative case-fatality 
adjustment based on in-hospital case-fatality, which we coded to specific pneumonia aetiologies. 
Hospital admissions data of this type were limited to data from Austria, Brazil, Chile, China, Ecuador, 
Italy, Kenya, Mexico, New Zealand, the Philippines, Portugal, and the United States. We generated the 
pooled estimate of the case-fatality differential between bacterial (pneumococcus, Hib) and viral 
aetiologies (RSV, influenza) using DisMod-MR to determine an age pattern for this ratio. Therefore, the 
final attributable fraction for fatal LRI was: 

𝑃𝑃𝐹𝐹𝑃𝑃𝐹𝐹𝑚𝑚 𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ �1 −
1
𝑂𝑂𝑂𝑂

� ∗ 𝐼𝐼𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑚𝑚𝑃𝑃𝑃𝑃 𝑠𝑠𝑠𝑠𝐹𝐹𝑚𝑚𝐹𝐹𝑃𝑃 ∗ 𝐶𝐶𝐹𝐹𝑠𝑠𝑚𝑚 𝑓𝑓𝐹𝐹𝑃𝑃𝐹𝐹𝑚𝑚𝑃𝑃𝑃𝑃𝑓𝑓 𝑠𝑠𝑠𝑠𝐹𝐹𝑚𝑚𝐹𝐹𝑃𝑃

Pneumococcal pneumonia and Hib. For Streptococcus pneumoniae (pneumococcal pneumonia) and Hib, 
we calculated the PAF using a vaccine probe design.4,5 The ratio of vaccine effectiveness against 
nonspecific pneumonia to pathogen-specific disease represents the fraction of pneumonia cases 
attributable to each pathogen.  

To estimate the PAF for Hib and pneumococcal pneumonia, we calculated the ratio of vaccine 
effectiveness against nonspecific pneumonia to pathogen-specific pneumonia (equations 1 and 3). We 
estimated a study-level estimate of the PAF from a meta-analysis of these ratios. To estimate the PAF for 
Hib, we only used randomised controlled trials because of implausibly high values of vaccine efficacy in 
case-control studies. To estimate the PAF for pneumococcal pneumonia, we included RCTs and before 
and after vaccine introduction longitudinal studies. 

We adjusted the study-level PAF estimate by vaccine coverage and expected vaccine performance to 
estimate country- and year-specific PAF values. For pneumococcal pneumonia, we adjusted the PAF by 
the final Hib PAF estimate and by vaccine serotype coverage. Finally, we used an age distribution of the 
PAF modelled in DisMod to determine the PAF by age. Because of an absence of data describing vaccine 
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efficacy against Hib in children older than 2 years, we did not attribute Hib to episodes of LRI in ages 5 
years and older. 

We used a vaccine probe design to estimate the PAF for pneumococcal pneumonia and Hib by first 
calculating the ratio of vaccine effectiveness against nonspecific pneumonia to pathogen-specific 
pneumonia at the study level (equations 1 and 2).4–6 We then adjusted this estimate by vaccine coverage 
and expected vaccine performance to estimate country- and year-specific PAF values (equations 3 and 
4). 

1) 𝐻𝐻𝑃𝑃𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑉𝑉𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑉𝑉𝑉𝑉𝐻𝐻𝑃𝑃𝐻𝐻 

 

 

2) 𝑃𝑃𝑃𝑃𝑚𝑚𝑃𝑃𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =  𝑉𝑉𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗(1−𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝑃𝑃𝐻𝐻∗𝑉𝑉𝑉𝑉𝐻𝐻𝑃𝑃𝐻𝐻 𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂)
𝑉𝑉𝑉𝑉𝑆𝑆𝑂𝑂𝑆𝑆𝑃𝑃𝑂𝑂𝑂𝑂𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆∗𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑂𝑂𝑆𝑆𝑂𝑂𝑃𝑃

 

 

 

3) 𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻 =  𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ∗
�1−𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝑃𝑃𝐻𝐻∗𝑉𝑉𝑉𝑉𝐻𝐻𝑃𝑃𝐻𝐻 𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂�

(1−𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑆𝑆𝑃𝑃∗𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝑃𝑃𝐻𝐻∗𝑉𝑉𝑉𝑉𝐻𝐻𝑃𝑃𝐻𝐻 𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂)
 

 

4) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑃𝑃𝐶𝐶 = 𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑆𝑆𝑃𝑃∗�1−𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃∗𝑉𝑉𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃 𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂�

�1−𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝑃𝑃𝐻𝐻∗𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝑃𝑃𝐻𝐻∗𝑉𝑉𝑉𝑉𝐻𝐻𝑃𝑃𝐻𝐻 𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂�∗�1−
𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃∗𝑃𝑃𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃 𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂
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Where 𝑉𝑉𝑉𝑉𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃𝐻𝐻𝐵𝐵 is the vaccine efficacy against nonspecific pneumonia, 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻𝐻𝐻 is the vaccine efficacy 
against invasive Hib disease, 𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝑆𝑆𝑆𝑆𝐶𝐶𝑆𝑆𝐶𝐶𝑆𝑆𝑆𝑆𝑃𝑃𝐵𝐵 is the vaccine efficacy against serotype-specific 
pneumococcal pneumonia, 𝐶𝐶𝑃𝑃𝐶𝐶𝐵𝐵𝐵𝐵𝑆𝑆𝐶𝐶𝑆𝑆𝑠𝑠𝑆𝑆𝐵𝐵  is the serotype-specific vaccine coverage for PCV,7  
𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻𝐻𝐻 𝑂𝑂𝑆𝑆𝑆𝑆𝐻𝐻𝑃𝑃𝐵𝐵𝑂𝑂  is the Hib effectiveness in the community (0.8),8  𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻 is the final PAF for Hib, 𝐶𝐶𝑃𝑃𝐶𝐶𝑃𝑃𝐶𝐶𝑉𝑉  is 
the PCV coverage, 𝐶𝐶𝑃𝑃𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻 is the Hib coverage by country, and 𝑉𝑉𝑉𝑉𝑃𝑃𝐶𝐶𝑉𝑉 𝑂𝑂𝑆𝑆𝑆𝑆𝐻𝐻𝑃𝑃𝐵𝐵𝑂𝑂  is the vaccine effectiveness 
in the community (0.8).9  

For Hib, we assumed that the vaccine efficacy against invasive Hib disease is the same against Hib 
pneumonia. For pneumococcal pneumonia, a recent study in adults10 found that the vaccine efficacy 
against invasive pneumococcal disease may be significantly higher than against pneumococcal 
pneumonia. We used this ratio to adjust estimates of vaccine efficacy against invasive pneumococcal 
disease from other studies. However, recognising that the study is unique in that it uses a urine antigen 
test among adults, we added uncertainty around our adjustment using a wide uniform distribution 
(median 0.65, 0.3–1.0). This has increased the estimates of pneumococcal pneumonia mortality in a 
meaningful way. 
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Table 2: The median values for the ratio of viral to bacterial pneumonia case-fatality ratio by age is 
shown. These estimates are modelled using hospital-based, ICD-coded admissions and mortality for 
aetiology-specified pneumonia. Values in parentheses represent 95% uncertainty interval. 

Age group Ratio 
Early neonatal 0.59 (0.36–0.84) 
Late neonatal 0.58 (0.37–0.84) 
Post neonatal 0.58 (0.41–0.77) 
1 to 4 0.69 (0.64–0.74) 
5 to 9 0.85 (0.77–0.93) 
10 to 14 0.84 (0.79–0.89) 
15 to 19 0.83 (0.78–0.87) 
20 to 24 0.82 (0.77–0.87) 
25 to 29 0.82 (0.78–0.86) 
30 to 34 0.82 (0.79–0.85) 
35 to 39 0.82 (0.8–0.85) 
40 to 44 0.82 (0.8-0.85) 
45 to 49 0.82 (0.8–0.85) 
50 to 54 0.82 (0.79–0.85) 
55 to 59 0.82 (0.79–0.86) 
60 to 64 0.82 (0.79–0.86) 
65 to 69 0.82 (0.8–0.85) 
70 to 74 0.82 (0.79–0.85) 
75 to 79 0.82 (0.78–0.85) 
80 to 84 0.83 (0.8–0.87) 
85 to 89 0.86 (0.83–0.89) 
90 to 94 0.89 (0.85–0.93) 
95 to 99 0.92 (0.86–0.97) 

 

Changes from GBD 2017 

The main changes from GBD 2017 involved methods used in determining the attributable fractions for 
influenza and RSV. For GBD 2019, we applied a consistent and reproducible approach to estimating the 
ratio of reference to nonreference data. For example, we found the ratio of the proportion of LRI that 
tested positive for RSV among community episodes and divided that by the proportion positive in 
inpatient populations.  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝑆𝑆𝑠𝑠

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝑃𝑃𝑆𝑆𝐵𝐵𝑆𝑆𝐻𝐻𝐵𝐵𝑃𝑃𝑆𝑆
 

This value was the input in a meta-regression to find the mean relative difference in those values. This 
scalar was used to adjust all inpatient data to the expected value if it used a community sample instead. 
The approach described here was used to make inpatient, non-PCR, and single etiology studies more 
similar to our reference definitions.  
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The second main change implemented in GBD 2019 was the differential odds ratios by age. Previously, 
we used a single study of the odds ratio of influenza and RSV for children younger than 5 and applied 
that to all ages. With a recently published article on the odds for these pathogens in adults over 65 
years, we were able to have different values by age.  
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Input data and methodological summary for upper respiratory infections 
Input data 
Vital registration and surveillance data from the cause of death (CoD) database were used. Outliers were 
identified by systematic examination of datapoints. Datapoints that violated well-established age or 
time trends, were inconsistent with other country- or region-specific points, or that resulted in 
extremely high or low mortality rates were determined to be outliers. 

Modelling strategy  
A generic CODEm approach was used to estimate mortality due to upper respiratory infections (URI) in 
GBD 2019. In GBD 2016, mortality from URI was modelled using a negative binomial regression. It was 
determined that a negative binomial regression was an appropriate approach for estimating URI due to 
a small number of deaths due to URI in the CoD database. However, due to changes in how we 
redistribute cause of death codes, more deaths were attributed to URI in the CoD database, and thus it 
was determined that a generic CODEm approach was feasible for estimating URI mortality in GBD 2017. 
The covariates used are displayed below.  We have made no substantive changes to the modelling 
strategy in 2019. 

 

Level Covariate Direction 

1 Smoking prevalence + 

2 

Indoor pollution + 

Outdoor pollution (PM2.5) + 

Healthcare Access and Quality 
Index - 

3 

Socio-demographic Index - 
Lag distributed income - 

Education (years per capita) - 

 

71



Diarrhoeal diseases 
Flowchart 

 

Diarrhoeal diseases are a cause of death in GBD. We also estimated the attributable deaths 
from 13 diarrhoeal aetiologies using an independent modelling strategy. These pathways are 
shown in the flowchart above and will both be described in this report. 

Input data 
Cause of death. We used all available data from vital registration systems, surveillance systems, 
and verbal autopsy. Data points that violated well-established age or time trends were 
determined to be outliers. We also excluded early neonatal mortality data in the Philippines 
(1994–1998), India Civil Registration System data, and medically certified cause of death 
(MCCD) data in all states (1986–2013).  

Aetiologies. The second type of data describes diarrhoea aetiologies. There are 13 aetiologies 
in GBD 2019 for diarrhoea: adenovirus, aeromonas, campylobacter, vibrio cholerae, clostridium 
difficile, cryptosporidium, entamoeba histolytica, typical enteropathogenic E. coli (typical EPEC), 
heat-stable toxin producing enterotoxigenic E. coli (ST-ETEC), norovirus, rotavirus, non-
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typhoidal salmonella, and shigella. We extracted data on all aetiologies except C. difficile from 
scientific literature that reported the proportion of diarrhoea cases that tested positive for each 
pathogen. We completed a systematic literature review covering the time period May 2018 to 
February 2019 for diarrhoea prevalence, incidence, and all diarrhoea aetiologies. Inclusion 
criteria included diarrhoea as the case definition, studies with a sample size of at least 100, and 
studies with at least one year of follow up. We excluded studies that reported on diarrhoeal 
outbreaks exclusively and those that used acute gastroenteritis with or without diarrhoea. 

We searched articles using a PubMed search term that combined nonspecific and aetiology-
specific diarrhoea in February 2019 using the following search string:  

(diarrhoea[title/abstract] OR diarrhea[title/abstract]) AND (2018/07/30:2019/2/7[PDat]) AND 
Humans[MeSH Terms] AND (incidence[title/abstract] OR prevalence[title/abstract] OR 

epidemiology[title/abstract] OR salmonella[title/abstract] OR aeromona*[title/abstract] OR 
shigell*[title/abstract] OR enteropathogenic[title/abstract] OR enterotoxigenic[title/abstract] 
OR campylobacter[title/abstract] OR amoebiasis[title/abstract] OR entamoeb*[title/abstract] 
OR cryptosporid*[title/abstract] OR rotavirus[title/abstract] OR norovirus[title/abstract] OR 
adenovirus[title/abstract] OR etiology[title/abstract]) NOT (appendicitis[title/abstract] OR 

esophag*[title/abstract] OR surger*[title/abstract] OR gastritis[title/abstract] OR 
liver[title/abstract] OR case report[title] OR case-report[title] OR therapy[title] OR 
treatment[title] Crohn[title/abstract] OR “inflammatory bowel”[title/abstract] OR 

irritable[title/abstract] OR travel*[title] OR Outbreak[title] OR Review[ptyp] OR 
vomiting[title/abstract). 

We identified 82 studies, of which three met our inclusion criteria. We extracted data for 
location, sex, year, and age.  

We used the Global Enteric Multicenter Study (GEMS), a seven-site, case-control study of 
moderate-to-severe diarrhoea in children under 5 years,1 and the MAL-ED study,2 a multi-site 
birth cohort, to calculate odds ratios for the diarrhoeal pathogens. We analysed raw data for a 
systematic reanalysis, representative of the distribution of cases and controls by age and site 
that were tested for the presence of pathogen using quantitative polymerase chain reaction 
(qPCR).3  

Data that did not use qPCR for detection were adjusted for sensitivity and specificity prior to 
modelling in order to standardize data regardless of detection method. Adjusting these data 
prior to modelling allowed us to adjust only data that did not use qPCR, as well as better control 
for values at extreme bounds, and capture uncertainty in modelling.  

Modelling strategy 
Cause of death. Diarrhoeal disease mortality was estimated in the Cause of Death Ensemble 
modelling platform (CODEm). We estimated diarrhoea mortality separately for males and 
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females and for children under 5 years and older than 5 years. We used country-level covariates 
to inform our CODEm models (Table 1).  

Table 1. The covariates used in diarrhoea mortality modelling. Table 1A shows the covariates 
used in the 0–4 years model, and Table 2B shows the covariates used in the 5–95+ years 
model. The Level represents the strength of the association between the covariate and 
diarrhoea mortality from 1 (proximally related) to 3 (distally related). The Direction indicates 
the positive or negative association between the covariate and diarrhoea mortality.  

Table 1A. The covariates used in the 0–4 years model 

Level Covariate Direction 

       1 

Oral rehydration solution treatment - 
Safe sanitation access - 
Safe water access - 
Rotavirus vaccine - 

2 
Vitamin A deficiency + 
Zinc deficiency + 
Zinc treatment for diarrhoea - 

3 

Handwashing access - 
Lag distributed income (LDI) per capita - 
Maternal education years - 
Healthcare Access and Quality Index - 
Socio-demographic Index (SDI) - 

Table 1B. The covariates used in the 5–95+ years model. 

Level Covariate Direction 

1 

Diarrhoea summary exposure value (SEV) + 
Unsafe sanitation SEV + 
Unsafe water SEV + 
Sanitation access - 
Improved water source access - 

2 
Healthcare Access and Quality Index - 
Rotavirus vaccine coverage - 

3 

Education years per capita - 
LDI per capita - 
Adult underweight + 
SDI - 
Oral rehydration accesss - 
Population density less than 150/km2 + 
Population density greater than 1000/km2 + 

 

Aetiologies. We estimated diarrhoeal disease aetiologies independently from overall diarrhoea 
mortality using a counterfactual strategy for enteric adenovirus, aeromonas, entamoeba 
histolytica (amoebiasis), campylobacter, cryptosporidium, typical EPEC, enterotoxigenic 
Escherichia coli (ETEC), norovirus, non-typhoidal salmonella infections, rotavirus, and shigella. 
Vibrio cholerae and C. difficile were modelled separately.  
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Diarrhoeal aetiologies are attributed to diarrhoeal deaths using a counterfactual approach. We 
calculated a population attributable fraction (PAF) from the proportion of severe diarrhoea 
cases that are positive for each aetiology. The PAF represents the relative reduction in 
diarrhoea mortality if there was no exposure to a given aetiology. As diarrhoea can be caused 
by multiple pathogens and the pathogens may co-infect, PAFs can overlap and are not scaled to 
sum to 100%. We calculated the PAF from the proportion of severe diarrhoea cases that are 
positive for each aetiology. We assumed that hospitalised diarrhoea cases are a proxy of severe 
and fatal cases. We used the following formula to estimate PAF:4 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 ∗ (1 −
1
𝑂𝑂𝑂𝑂

) 

Where Proportion is the proportion of diarrhoea cases positive for an aetiology and OR is the 
odds ratio of diarrhoea given the presence of the pathogen. 

We dichotomised the continuous qPCR test result using the value of the cycle threshold (Ct) 
that most accurately discriminated between cases and controls. The Ct values range from 0 to 
35 cycles representing the relative concentration of the target gene in the stool sample. A low 
value indicates a higher concentration of the pathogen while a value of 35 indicates the 
absence of the target in the sample. We used the lower Ct value when we had multiple Ct 
values for the cutpoint. The case definition for each pathogen is a Ct value that is below the 
established cutoff point.  

We used a mixed effects conditional logistic regression model to calculate the odds ratio for 
under 1 year and 1–4 years old for each of our pathogens. The stool samples from cases and 
controls in GEMS were used exclusively to calculate these odds ratios as we assumed that the 
association between pathogens and moderate-to-severe diarrhoea is a proxy for fatal 
outcomes. The odds ratio for 1–4 years was applied to all GBD age groups over 5 years. There 
were three pathogen-age odds ratios that were not statistically significant: aeromonas and 
amoebiasis in under 1 year and campylobacter in 1–4 years. The mean value of the odds ratio 
was above 1 in all three cases, so we transformed the odds ratios for these three exceptions 
only in log space such that exponentiated values could not be below 1. The transformation was: 

Odds ratio = exp(log(OR) – 1)) + 1 

We modelled the proportion data using the Bayesian meta-regression tool DisMod-MR to 
estimate the proportion of positive diarrhoea cases for each separate aetiology by 
location/year/age/sex and to adjust for the covariates. We used the estimated sensitivity and 
specificity of the original laboratory diagnostic test results from the pooled GEMS and MAL-ED 
qPCR stool samples compared to the qPCR test result to adjust our proportion before we 
modelled the proportions:5 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =
(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑂𝑂𝑂𝑂𝑂𝑂𝑇𝑇𝑇𝑇𝑂𝑂𝑇𝑇𝑂𝑂 + 𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆 − 1)

(𝑆𝑆𝑆𝑆𝑛𝑛𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆 + 𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆 − 1)
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We used this correction to account for the fact that the proportions we used are based on a 
new test that is not consistent with the laboratory-based case definition (qPCR versus GEMS 
conventional laboratory testing for pathogens).6 Because differences in the type of PCR used in 
the original (nonreference qPCR diagnostic) between GEMS and MAL-ED in detecting norovirus, 
we combined the sensitivity and specificity results for norovirus such that 50% of the draws 
were coming from GEMS test results exclusively and 50% of the draws were coming from MAL-
ED test results exclusively. Additionally, because the original laboratory diagnostic technique 
used for campylobacter in MAL-ED was one not commonly used, we only used GEMS to 
determine the sensitivity and specificity of bacterial culture compared to qPCR in detecting 
campylobacter.7 

Our literature review extracted the proportion of any EPEC without differentiating between 
typical (tEPEC) and atypical (aEPEC). In order to be consistent with the odds ratios that we 
obtained, we adjusted our proportion estimates of any EPEC to typical EPEC only. This 
adjustment was informed by a subset of our literature review that reported both atypical and 
typical EPEC. We estimated a ratio by super-region of tEPEC to any EPEC and adjusted our 
proportion estimates accordingly. We found that the majority of EPEC diarrhoea cases were 
positive for atypical EPEC, consistent with other published work.8 We applied the same 
approach to differentiate between heat-stable toxin (ST) and heat labile toxin producing (LT) 
ETEC. For the first time, GBD 2019 split these serotypes so that estimates in GBD 2019 
represent the diarrhoeal disease burden attributable to ST-ETEC. This was based on work 
showing that ST-ETEC was much more pathogenic than LT-ETEC. As our proportion data were 
extracted for any ETEC, we determined a proportion of all ETEC that produced ST from the 
GEMS and MAL-ED studies and applied that ratio to our input data so that they represented ST-
ETEC only. We re-estimated the sensitivity and specificity values as well as the odds ratios for 
our new definition of ST-ETEC. 

For vibrio cholerae (cholera), we used the literature review to estimate the expected number of 
cholera cases for each country-year using the incidence of diarrhea (estimated using DisMod-
MR) and the proportion of diarrhoea cases that are positive for cholera. We assigned cholera 
PAF using odds ratios from the qPCR results to estimate a number of cholera-attributable cases. 
We compared this expected number of cholera cases to the number reported to the World 
Health Organization at the country-year level.9 We modelled the underreporting fraction to 
correct the cholera case notification data for all countries using health system access and the 
diarrhoea SEV scalar to predict total cholera cases. We used the age-specific proportion of 
positive cholera samples in DisMod-MR and our incidence estimates to predict the number of 
cholera cases for each age/sex/year/location. Finally, we modelled the case fatality ratio of 
cholera using DisMod-MR and to estimate the number of cholera deaths.  

For C. difficile, we modelled incidence and mortality in DisMod-MR for each age, sex, year, 
location. DisMod-MR is a Bayesian meta-regression tool that uses spatiotemporal information 
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as priors to estimate prevalence, incidence, remission, and mortality for C. difficile infection. 
DisMod-MR uses a compartmental model to relate prevalence, incidence, remission, and 
mortality. We set remission in our model to 1 month.  

For rotavirus, we made a change to the process of estimating attributable fraction to explicitly 
account for rotavirus vaccine efficacy in GBD 2019. The impact of the rotavirus vaccine is 
dependent on modelled vaccine coverage for a location-year and on the rotavirus vaccine 
efficacy (VE). There are numerous studies that demonstrate a difference in VE by location.10 We 
determined that SDI was the best predictor of rotavirus VE, and we used a meta-regression 
with this covariate to predict the rotavirus VE by location where the VE was higher in areas with 
larger SDI values and followed a logit-linear distribution.  

For GBD 2019, we explicitly incorporated the results from our analysis of VE to produce more 
robust estimates of the proportion of diarrhoea that has rotavirus over time and space. We 
assumed that the impact of the vaccine can be represented as one minus the product of the 
estimated vaccine coverage and VE.    

𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆𝑃𝑃𝑛𝑛𝑆𝑆 𝑃𝑃𝑚𝑚𝑃𝑃𝑉𝑉𝑆𝑆𝑃𝑃 = 1 − 𝑆𝑆𝑉𝑉𝑆𝑆𝑆𝑆𝑃𝑃𝑛𝑛𝑆𝑆 𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃𝑉𝑉𝑐𝑐𝑆𝑆 ∗ 𝑆𝑆𝑉𝑉𝑆𝑆𝑆𝑆𝑃𝑃𝑛𝑛𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑉𝑉𝑆𝑆𝑆𝑆 

Both of these values vary in time and space but not by age. To avoid discontinuities in our 
model, we adjusted the input proportion data to remove the impact of the rotavirus vaccine by 
dividing the observed proportion by the vaccine impact.  

𝑂𝑂𝑃𝑃𝑃𝑃𝑉𝑉𝑆𝑆𝑃𝑃𝑃𝑃𝑅𝑅𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝐴𝐴𝑂𝑂𝐴𝐴𝑇𝑇𝑂𝑂𝐴𝐴𝑇𝑇𝑂𝑂 =
𝑂𝑂𝑃𝑃𝑃𝑃𝑉𝑉𝑆𝑆𝑃𝑃𝑃𝑃𝑅𝑅𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛

1 − 𝐶𝐶𝑃𝑃𝑆𝑆𝑅𝑅𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅 ∗ 𝑉𝑉𝑉𝑉𝑀𝑀𝑅𝑅𝑂𝑂𝑇𝑇𝑀𝑀𝑇𝑇𝑂𝑂
 

The result is the modelled proportion of diarrhoea positive for rotavirus in the absence of the 
vaccine. This modelled value is then multiplied by the impact of the rotavirus vaccine to 
determine the estimated proportion of diarrhoea positive for rotavirus in the presence of the 
vaccine. Our modified attributable fraction is then:   

𝐷𝐷𝑃𝑃𝑆𝑆𝐷𝐷𝑃𝑃𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐷𝐷𝑃𝑃𝐷𝐷𝑆𝑆𝑀𝑀𝑆𝑆𝐷𝐷 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 (𝑆𝑆𝑃𝑃𝑃𝑃𝑚𝑚 𝐷𝐷𝑃𝑃𝑆𝑆𝐷𝐷𝑃𝑃𝐷𝐷) ∗ �1 −
1
𝑂𝑂𝑂𝑂�

 

The last step is to account for the expected impact of the rotavirus vaccine. We do this using 
the equation below: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝐴𝐴𝑅𝑅 = 𝐷𝐷𝑃𝑃𝑆𝑆𝐷𝐷𝑃𝑃𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃 ∗
(1 − 𝐶𝐶𝑃𝑃𝑆𝑆𝑅𝑅𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅 ∗ 𝑉𝑉𝑉𝑉𝑀𝑀𝑅𝑅𝑂𝑂𝑇𝑇𝑀𝑀𝑇𝑇𝑂𝑂)

(1 − 𝐷𝐷𝑃𝑃𝑆𝑆𝐷𝐷𝑃𝑃𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝐶𝐶𝑃𝑃𝑆𝑆𝑅𝑅𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅 ∗ 𝑉𝑉𝑉𝑉𝑀𝑀𝑅𝑅𝑂𝑂𝑇𝑇𝑀𝑀𝑇𝑇𝑂𝑂)
 

Where the final attributable fraction for rotavirus is the product of the PAF estimated in 
DisMod-MR and the expected reduction in that PAF given modelled vaccine coverage and 
modelled VE by location-year, and this value is only applied to children 28 days to 5 years old. 
The product of the rotavirus attributable fraction and the number of deaths or cases of 
diarrhoea is the number of deaths and cases caused by rotavirus.    
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Input data 
Diphtheria cause of death (COD) data for GBD 2019 included vital registration, verbal autopsy, and 
surveillance sources from all locations as available. We excluded COD data if they were highly 
incongruent with other available data from the same location or locations with similar 
sociodemographic characteristics.   
 
Modelling strategy 
We used two distinct methods to estimate diphtheria mortality for different countries based on the 
quality of vital registration data available. We used a counts-based Cause of Death Ensemble modeling 
strategy (CODEm) for countries with well-defined vital registration (ie, “data-rich” countries), and for 
remaining countries a custom count negative binomial regression model. Each approach is further 
described in more detail below. 
 
1. Data-rich countries 
We used CODEm counts models rather than standard rate-space CODEm models, as the models in count 
space had lower out-of-sample root mean squared error (RMSE) than those in rate-space. For data-rich 
locations, we used the covariates outlined in Table 1 to inform CODEm predictions. New covariates in 
the GBD 2019 models were age- and sex-specific summary exposure values (SEV) for child wasting to 
replace the wasting proportion covariate; Healthcare Access and Quality (HAQ) Index and Socio-
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demographic Index (SDI) were used to capture the effect of the maternal care and immunisation (MCI) 
covariate used in prior GBD cycles.  

 
Table 1. Covariates. Summary of covariates used in the data-rich diphtheria cause of death model   

Level Covariate Direction 

1 

Diphtheria-tetanus-pertussis third-dose 
vaccination coverage (DTP3) - 

Healthcare Access and Quality (HAQ) Index - 
Age- and sex-specific SEV for child wasting + 

3 
Lag-distributed income (LDI) - 
Socio-demographic Index (SDI) - 
Mean years of education per capita - 

 
 
2. Custom count model  
Our custom counts mortality model for all non-data-rich locations also used COD data as available by 
location. We excluded data with extremely high cause fractions (ie, greater than the 99th percentile of all 
diphtheria cause fractions). Using a negative binomial regression with a log link, cause fractions 
representing the number of deaths due to diphtheria as a proportion of the all-cause mortality envelope 
were regressed using five-year rolling diphtheria-pertussis-tetanus third-dose (DPT3) vaccine coverage 
as a covariate, with dummy variables for each GBD age group as predictors: 
 

Yij = β0 + β1 DTP3ij + βa agea + eij , 
where Yij is the log-transformed cause fraction (counts of deaths with an offset of the total number of 
deaths); β0 is the fixed-effect intercept; β1 is the fixed-effects slope on vaccine coverage; βa is the fixed-
effects slope on agea, the dummy variable for each GBD age group in the estimation; eij is the residual; i 
is the year; and j is the location. In past GBD cycles, estimates of routine DTP3 coverage among infants in 
the modeled year were used as the routine immunization input into this model rather than the average 
DTP3 coverage over the previous five years.  
 
Uncertainty was estimated by predicting 1000 draws based on the variance-covariance matrix, and a 
random sample of the dispersion parameter from a gamma distribution. Results were summarised as 
the mean of all draws and an associated 95% uncertainty interval (the 2.5th and 97.5th quantile of all 
draws). 
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Pertussis (whooping cough) 
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Modelling strategy overview 
The GBD 2019 pertussis mortality estimates were generated one of two ways depending on the quality 
of available vital registration data for the country. For countries with well-defined vital registration (ie, 
“data-rich” countries), we used a Cause of Death Ensemble model (CODEm). For the remaining 
countries, we leveraged a natural history model approach, drawing from preceding non-fatal case 
estimates. For all countries, we made estimates for all age groups between post-neonatal and 59 years.  
 
1. Data-rich countries 
For data-rich countries modeled in CODEm, we used the covariates listed in Table 1 to inform 
predictions. New this cycle, the maternal care and immunisation (MCI) covariate was removed in favor 
of using measures of health access and quality (HAQ) and sociodemographic index (SDI) to predict. In 
addition, age- and sex-specific summary exposure values (SEV) for child underweight were added to the 
model to replace the malnutrition proportion covariate used in prior GBD cycles.  
 
Table 1. Covariates. Summary of covariates used in the data-rich pertussis cause of death model 

Level Covariate Direction 

1 

Diphtheria-tetanus-pertussis third-dose 
vaccination coverage (DTP3) - 

Age- and sex-specific SEV for child underweight + 
Healthcare Access and Quality (HAQ) Index - 
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3 
Lag-distributed income (LDI) - 
Socio-demographic Index (SDI) - 
Mean years of education per capita - 

 
 
2. Natural history model 
The pertussis natural history model uses GBD estimates of non-fatal pertussis cases and an 
intermediate, custom model of pertussis case fatality rate (CFR) to produce estimates in non-data-rich 
locations where pertussis mortality data are sparse. As described in the non-fatal pertussis modelling 
text, case notifications informing the pertussis non-fatal model come from the World Health 
Organization (WHO) Joint Reporting Form (JRF) and historical documentation of pertussis cases and 
vaccination from the UK. The pertussis CFR data are compiled through systematic reviews of the 
literature. This systematic review was not updated for GBD 2019.  
 
With the available pertussis CFR input data, we make location- and year-specific estimates using a 
negative binomial model with the Healthcare Access and Quality (HAQ) Index as a covariate: 

Yij = β0 + β1HAQij + uj + eij , 

 
Pertussis log-transformed incidence – modelled independently – is generated from a mixed effects 
linear regression model predicting pertussis cases as a function of vaccination coverage. Combining 
these estimates of incidence for every estimated location and year with location-/year-specific 
estimates of pertussis CFR, pertussis deaths were calculated as:  

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑠𝑠 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶 . 

This calculation was replicated at the draw level 1000 times in order to produce estimates of total 
deaths by location and year and associated uncertainty. These draw-level estimates were age- and sex-
split using an age-sex distribution based on global-level age- and sex-specific patterns found in the cause 
of death data, then summarised as the mean of the draws and a 95% uncertainty interval (the 2.5th and 
97.5th quantile of all draws). 
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Input data 
Tetanus cause of death (COD) data for GBD 2019 included vital registration, verbal autopsy, and 
surveillance sources from all locations as available. We excluded prepared COD data if they were highly 
incongruent with other available data from the same location or locations of similar sociodemographic 
characteristics.  
 
Modelling strategy  
We used a Cause of Death Ensemble modelling approach (CODEm) to compute age-, sex-, location-, and 
year-specific estimates. Given the relative rarity of tetanus mortality, we modelled directly in count-
space. These models in count space had lower out-of-sample root mean squared error (RMSE) than rate-
space models, and thus were frequently the top models selected in the ensemble.  
 
Separate, sex-specific models were run for neonatal tetanus (under-1-year age groups) and all other 
tetanus (1 year to 95+ age groups). We also stratified models by vital registration data quality, running 
both “data-rich” and global models for each age- and sex-specific group. Following model completion, 
the data-rich and global model outputs were combined to produce a single set of estimates for all 
locations by sex and age (under-1 and over-1 age groups). 
 
Table 1a lists the covariates used in the data-rich and global under-1 models, and table 1b the covariates 
in the over-1 model. In both the under-1 and over-1 models, Healthcare Access and Quality (HAQ) Index 
and Socio-demographic Index (SDI) were used to capture the effect of the maternal care and 
immunisation (MCI) covariate used in prior GBD cycles.   
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Table 1a. Covariates. Summary of covariates used in the under-1 tetanus cause of death model  
Level Covariate Direction 

1 
Diphtheria-tetanus-pertussis third-dose 
vaccination coverage (DTP3) - 

Tetanus toxoid coverage - 

2 
In-facility deliveries (proportion) - 
Skilled birth attendance (proportion) - 
Healthcare Access and Quality (HAQ) Index - 

3 
Lag-distributed income (LDI) - 
Socio-demographic Index (SDI) - 
Mean years of education per capita - 

 
Table 1b. Covariates. Summary of covariates used in the over-1 tetanus cause of death model  

Level Covariate Direction 

1 Diphtheria-tetanus-pertussis third-dose 
vaccination coverage (DTP3) - 

2 Healthcare Access and Quality (HAQ) Index - 

3 

Sanitation access (proportion) - 
Lag-distributed income (LDI) - 
Socio-demographic Index (SDI) - 
Mean years of education per capita - 
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Modelling strategy overview 
The GBD 2019 measles mortality estimates were generated in one of two ways depending on the quality 
of available vital registration data for the country. For countries with well-defined vital registration 
(ie, “data-rich” countries), we used a Cause of Death Ensemble model (CODEm). For the remaining 
countries, we leveraged a natural history model approach, drawing from preceding non-fatal case 
estimates. For all countries, we made estimates for all age groups between post-neonatal and 59 years.   

Data-rich countries 
For data-rich countries modeled in CODEm, we used the covariates listed in Table 1 to inform 
predictions. New this cycle, the Healthcare Access and Quality (HAQ) Index and Socio-demographic 
Index (SDI) covariates were used to capture the effect of the maternal care and immunisation (MCI) 
covariate used in prior GBD cycles.  
 
Table 1. Covariates. Summary of covariates used in the data-rich measles cause of death model   

Level Covariate Direction 
1 Measles-containing vaccination dose one (MCV1) - 
2 Healthcare Access and Quality (HAQ) Index - 

3 
Socio-demographic index (SDI) - 
Mean years of education per capita - 
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Natural history model  
A natural history model is used to estimate measles mortality in non-data-rich locations where mortality 
data are sparse. GBD estimates of non-fatal measles cases are combined with estimates of measles case-
fatality rate (CFR) generated by an intermediate, custom CFR model to produce this output. As described 
in the non-fatal measles modelling methods text, case notifications informing the measles non-fatal 
model come from the World Health Organization (WHO) Joint Reporting Form (JRF) and additional case 
notification sources identified by collaborators (eg, Japan and USA subnational measles surveillance 
data). The measles CFR data are compiled through systematic reviews of the literature, and this search 
was updated in GBD 2019. This search was conducted in PubMed using the following search string: 
((((measles[MeSH Terms] OR measles) AND (mortality[MeSH Terms] OR mortality OR "case fatality rate" 
OR "case fatality ratio" OR "case fatality"))) AND ("2016"[Date - Publication] : "2019"[Date - 
Publication])).  
 
With the available measles CFR input data, we make location- and year-specific death estimates using a 
negative binomial model with Socio-demographic Index (SDI) as a country-level covariate, additionally 
accounting for three indicators (hospital-based or not; outbreak or not; and rural or urban/mixed) as 
study-level covariates, with country random effects: 

Yij = β0 + β1SDIij + β2hospitalij + β3outbreakij + β4ruralij + uj + eij  

 
where Yij is the number of deaths (using measles cases as the offset term); β0 is the fixed-effect 
intercept; β1, β2, β3, and β4 are the fixed-effects slopes on the Socio-demographic Index (SDI) and 
hospital, outbreak, and rurality study-level covariates; uj is country-level random effects; eij is the 
residual; i is the year; and j is the location. Uncertainty was estimated by taking 1000 iterations of the 
predictions based on the variance-covariance matrix and uncertainty in country random effects.  
 
Measles log-transformed incidence – modelled independently – is generated from a mixed effects linear 
regression model predicting measles cases as a function of vaccination coverage (rolling means of MCV1 
and MCV2 over the preceding five years, and five-year lagged SIA coverage) given WHO case notification 
data from countries in the high-income, central Europe/eastern Europe/central Asia, and Latin America 
and Caribbean super-regions. Combining these estimates of incidence for every estimated location-year 
with location- and year-specific estimates of measles CFR, measles deaths were calculated as:   

 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑠𝑠 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶 

 
This calculation was replicated at the draw level 1000 times, producing draw-level estimates of total 
measles deaths for each location and year, which were then split by age and sex using an age-sex 
distribution based on global-level age- and sex-specific patterns found in the cause of death data. All 
draw-level estimates were then summarised as the mean of the draws along with a 95% uncertainty 
interval (the 2.5th and 97.5th quantile of all draws). 
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Maternal disorders  
Flowchart 

 
Input data 
CODEm models of overall maternal mortality were informed by centrally prepped data stored in the 
cause of death (COD) database. All data were corrected for incidental HIV deaths by combining 
estimated HIV prevalence in pregnancy with relative risk (RR) of mortality during pregnancy for HIV-
positive women to calculate a population attributable fraction (PAFs) that was then divided between 
incidental and maternal deaths based on RR of death in HIV-positive women during pregnancy. 
Incidental HIV deaths were removed from sibling history and census data, while maternal HIV deaths 
were added to vital registration, verbal autopsy, and surveillance data. This process is described in more 
detail in the appendix section on HIV/AIDS estimation. 

For cause-specific maternal mortality, we used data from the COD database, other data sources and 
reports from the Global Health Data Exchange, and data from published studies identified through the 
search below. All data from all geographies were reviewed in CODEm models. Outliers were identified as 
those data where age patterns or temporal patterns were inconsistent with neighbouring age groups or 
locations or where sparse data were predicting implausible overall temporal or age patterns for a given 
location.  

Our systematic literature review for maternal disorders is completed annually and encompasses all 
aspects of maternal disorder burden estimation including overall maternal mortality, cause-specific 
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maternal mortality, incidence of pregnancy complications by type, relative risk of mortality in pregnancy 
in HIV-positive versus HIV-negative women, and relative risk of mortality in HIV-positive women who are 
pregnant versus non-pregnant. We completed this search May 10, 2019, using the following search 
string:  

(((( "Postpartum Hemorrhage" OR "Uterine Hemorrhage"  ) OR   ( maternal[Title/Abstract] OR 
pregnan*[Title/Abstract] OR mothers )   AND ( haemorrhag*[Title/Abstract] OR hemorrhag*[Title/Abstract] )   NOT 
"case report"[All fields]   )   OR   (  ( "induced abortion" OR "Therapeutic abortion"  OR "legal Abortion" OR "medical 
abortion" OR "miscarriage"  OR  "Abortion, Induced"[Mesh] OR "Abortion, Therapeutic"[Mesh]  OR "Abortion, 
Legal"[Mesh]  OR "ectopic Pregnancy"  )  NOT (  "case report"[Title/Abstract] OR "birth defect"[Title/Abstract] OR 
congenital[Title/Abstract]  )  )  OR      (  "obstructed labour" OR "obstructed labor" OR "labour dystocia" OR "labor 
dystocia" OR dystocia OR "cephalopelvic disproportion"  OR "cephalo-pelvic disproportion" ) OR    (  (   "obstetric 
fistula" OR "vesicovaginal fistula"  ) OR "rectovaginal fistula"  )  OR      (   (  "Puerperal Infection"[Mesh] OR  "Puerperal 
Infection" OR   (   (maternal[Title/Abstract] OR pregnan*[Title/Abstract]   )   AND (   Sepsis OR infection[Title/Abstract]    
)   )  )  NOT "case report" )   OR    (  (  pre-eclampsia[Title/Abstract] OR preeclampsia[Title/Abstract] OR 
eclampsia[Title/Abstract] OR Pre-Eclampsia[Mesh] OR Eclampsia[Mesh] OR "Hypertension, Pregnancy-
Induced"[Mesh] OR "pregnancy induced hypertension"[Title/Abstract] OR "gestational hypertension"[Title/Abstract] 
OR "Hypertensive disorders of pregnancy"[Title/Abstract]  ) NOT ( "case report" OR "kidney donor"[Title/Abstract] OR 
"kidney donors"[Title/Abstract] OR polymorphism*[Title/Abstract] OR endotheli*[Title/Abstract] )    ) ) OR((( 
"maternal mortality"[Title/Abstract] OR "maternal death"[Title/Abstract] OR "maternal deaths"[Title/Abstract]  OR 
"MM"[Title/Abstract] OR "confidential enquiry"[Title/Abstract]  OR "confidential inquiry"[Title/Abstract] OR  (( 
obstetric[Title/Abstract] OR pregnan*[Title/Abstract]  ) AND (etiology[Title/Abstract]  OR cause[Title/Abstract] OR 
pattern[Title/Abstract]  ) AND (death[Title/Abstract] OR mortality[Title/Abstract]  )  )  ) NOT (  fetal[Title/Abstract] OR 
newborn*[Title/Abstract] OR neonatal[Title/Abstract] OR "case report" [Title/Abstract] OR "case study" 
[Title/Abstract] OR pathogenesis[Title/Abstract] OR thromboprophylaxis[Title/Abstract]  )  ) OR ((("maternal 
mortality"[Title/Abstract] OR "maternal death"[Title/Abstract] OR "maternal deaths"[Title/Abstract] OR 
"MMR"[Title/Abstract]  ) AND  (    "Afghanistan"[Title/Abstract] OR "Albania"[Title/Abstract] OR 
"Algeria"[Title/Abstract] OR "Andorra"[Title/Abstract] OR "Angola"[Title/Abstract] OR "Antigua and 
Barbuda"[Title/Abstract] OR "Argentina"[Title/Abstract] OR "Armenia"[Title/Abstract] OR "Azerbaijan"[Title/Abstract] 
OR "Bahrain"[Title/Abstract] OR "Bangladesh"[Title/Abstract] OR "Barbados"[Title/Abstract] OR 
"Belarus"[Title/Abstract] OR "Belize"[Title/Abstract] OR "Benin"[Title/Abstract] OR "Bhutan"[Title/Abstract] OR 
"Bolivia"[Title/Abstract] OR "Bosnia and Herzegovina"[Title/Abstract] OR "Botswana"[Title/Abstract] OR 
"Brazil"[Title/Abstract] OR "Brunei"[Title/Abstract] OR "Bulgaria"[Title/Abstract] OR "Burkina Faso"[Title/Abstract] OR 
"Burundi"[Title/Abstract] OR "Cambodia"[Title/Abstract] OR "Cameroon"[Title/Abstract] OR "Cape 
Verde"[Title/Abstract] OR "Central African Republic"[Title/Abstract] OR "Chad"[Title/Abstract] OR 
"China"[Title/Abstract] OR "Colombia"[Title/Abstract] OR "Comoros"[Title/Abstract] OR "Congo"[Title/Abstract] OR 
"Costa Rica"[Title/Abstract] OR "Croatia"[Title/Abstract] OR "Cuba"[Title/Abstract] OR "Cyprus"[Title/Abstract] OR 
"Côte d’Ivoire"[Title/Abstract] OR "Democratic Republic of the Congo"[Title/Abstract] OR "Djibouti"[Title/Abstract] 
OR "Dominica"[Title/Abstract] OR "Dominican Republic"[Title/Abstract] OR "Ecuador"[Title/Abstract] OR 
"Egypt"[Title/Abstract] OR "El Salvador"[Title/Abstract] OR "Equatorial Guinea"[Title/Abstract] OR 
"Eritrea"[Title/Abstract] OR "Ethiopia"[Title/Abstract] OR "Federated States of Micronesia"[Title/Abstract] OR 
"Fiji"[Title/Abstract] OR "Gabon"[Title/Abstract] OR "Georgia"[Title/Abstract] OR "Ghana"[Title/Abstract] OR 
"Grenada"[Title/Abstract] OR "Guatemala"[Title/Abstract] OR "Guinea"[Title/Abstract] OR "Guinea-
Bissau"[Title/Abstract] OR "Guyana"[Title/Abstract] OR "Haiti"[Title/Abstract] OR "Honduras"[Title/Abstract] OR 
"India"[Title/Abstract] OR "Indonesia"[Title/Abstract] OR "Iran"[Title/Abstract] OR "Iraq"[Title/Abstract] OR 
"Jamaica"[Title/Abstract] OR "Jordan"[Title/Abstract] OR "Kazakhstan"[Title/Abstract] OR "Kenya"[Title/Abstract] OR 
"Kiribati"[Title/Abstract] OR "Kuwait"[Title/Abstract] OR "Kyrgyzstan"[Title/Abstract] OR "Laos"[Title/Abstract] OR 
"Latvia"[Title/Abstract] OR "Lebanon"[Title/Abstract] OR "Lesotho"[Title/Abstract] OR "Liberia"[Title/Abstract] OR 
"Libya"[Title/Abstract] OR "Lithuania"[Title/Abstract] OR "Macedonia"[Title/Abstract] OR 
"Madagascar"[Title/Abstract] OR "Malawi"[Title/Abstract] OR "Malaysia"[Title/Abstract] OR 
"Maldives"[Title/Abstract] OR "Mali"[Title/Abstract] OR "Malta"[Title/Abstract] OR "Marshall Islands"[Title/Abstract] 
OR "Mauritania"[Title/Abstract] OR "Mauritius"[Title/Abstract] OR "Moldova"[Title/Abstract] OR 
"Mongolia"[Title/Abstract] OR "Montenegro"[Title/Abstract] OR "Morocco"[Title/Abstract] OR 
"Mozambique"[Title/Abstract] OR "Myanmar"[Title/Abstract] OR "Namibia"[Title/Abstract] OR 
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"Nepal"[Title/Abstract] OR "Nicaragua"[Title/Abstract] OR "Niger"[Title/Abstract] OR "Nigeria"[Title/Abstract] OR 
"North Korea"[Title/Abstract] OR "Oman"[Title/Abstract] OR "Pakistan"[Title/Abstract] OR "Palestine"[Title/Abstract] 
OR "Panama"[Title/Abstract] OR "Papua New Guinea"[Title/Abstract] OR "Paraguay"[Title/Abstract] OR 
"Peru"[Title/Abstract] OR "Philippines"[Title/Abstract] OR "Qatar"[Title/Abstract] OR "Romania"[Title/Abstract] OR 
"Russia"[Title/Abstract] OR "Rwanda"[Title/Abstract] OR "Saint Lucia"[Title/Abstract] OR "Saint Vincent and the 
Grenadines"[Title/Abstract] OR "Samoa"[Title/Abstract] OR "Saudi Arabia"[Title/Abstract] OR 
"Senegal"[Title/Abstract] OR "Serbia"[Title/Abstract] OR "Seychelles"[Title/Abstract] OR "Sierra Leone"[Title/Abstract] 
OR "Singapore"[Title/Abstract] OR "Solomon Islands"[Title/Abstract] OR "Somalia"[Title/Abstract] OR "South 
Africa"[Title/Abstract] OR "South Sudan"[Title/Abstract] OR "Sri Lanka"[Title/Abstract] OR "Sudan"[Title/Abstract] OR 
"Suriname"[Title/Abstract] OR "Swaziland"[Title/Abstract] OR "Syria"[Title/Abstract] OR "São Tomé and 
Principe"[Title/Abstract] OR "Taiwan"[Title/Abstract] OR "Tajikistan"[Title/Abstract] OR "Tanzania"[Title/Abstract] OR 
"Thailand"[Title/Abstract] OR "The Bahamas"[Title/Abstract] OR "The Gambia"[Title/Abstract] OR "Timor-
Leste"[Title/Abstract] OR "Togo"[Title/Abstract] OR "Tonga"[Title/Abstract] OR "Trinidad and Tobago"[Title/Abstract] 
OR "Tunisia"[Title/Abstract] OR "Turkmenistan"[Title/Abstract] OR "Uganda"[Title/Abstract] OR 
"Ukraine"[Title/Abstract] OR "United Arab Emirates"[Title/Abstract] OR "Uruguay"[Title/Abstract] OR 
"Uzbekistan"[Title/Abstract] OR "Vanuatu"[Title/Abstract] OR "Venezuela"[Title/Abstract] OR 
"Vietnam"[Title/Abstract] OR "Yemen"[Title/Abstract] OR "Zambia"[Title/Abstract] OR "Zimbabwe"[Title/Abstract]   )   
)  NOT ( "demographic and health survey"[Title/Abstract] OR   "demographic and health surveys  "[Title/Abstract]  OR 
DHS[Title/Abstract] OR "reproductive health survey"[Title/Abstract] OR "reproductive health surveys"[Title/Abstract]  
OR RHS[Title/Abstract]  ) ) OR ((  HIV[Title/Abstract]  OR "Acquired Immunodeficiency Syndrome"[Title/Abstract]  OR 
AIDS[Title/Abstract] )  AND ( pregnan*[Title/Abstract] OR "postpartum"[Title/Abstract] OR "post 
partum"[Title/Abstract]  ) AND (  "mortality"[Title/Abstract] OR "death"[Title/Abstract]  )  NOT "case report" )) AND (  
2017/07/01[PDat] : 3000[PDat]  )    NOT ( animals[MeSH] NOT humans[MeSH]  ))   

A total of 12 964 literature sources were reviewed for their title and abstract. Of the 272 sources 
selected for full text review, 81 were extracted to inform maternal disorder models (fatal and non-fatal). 
There were no new sources extracted for maternal deaths aggravated by HIV. All cause-specific 
maternal mortality data were extracted as maternal mortality ratio (MMR; cause-specific deaths per live 
birth). All cause-specific COD data, along with any sources that reported cause-specific maternal deaths 
in cause fraction or population rate terms, were converted to MMR using all-cause mortality, 
population, and age-specific fertility results estimated in GBD 2019.  

One exception was late maternal death, where only raw, unprocessed COD data were included from the 
COD database, and only for the subset of locations where the proportion of late maternal deaths coded 
in VR exceeded the lowest published rate from a comprehensive study.1 Our assumption is that any 
location that has never reported a late maternal death in its VR does not capture any late maternal 
deaths. These data were supplemented with late maternal death data, all of which was extracted and 
prepped as proportion of the total. for the subset of locations where they were reliably coded in raw VR. 
All cause-specific MMR and proportion (late only) data were uploaded to the non-fatal database.  

Modelling strategy  
Overall maternal mortality 
Overall maternal mortality was estimated with CODEm. Covariates included in this model, their level, 
and directionality are show in the table below:  
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Table 1: Covariates used in CODEm models of overall maternal mortality 

Level Covariate Direction 

Level 1 

Age-specific fertility rate 
Total fertility rate (log-transformed) 
Maternal education (years per capita) 
In-facility delivery (proportion) 
Skilled birth attendance (proportion) 
Neonatal mortality ratio (log-transformed) 
Age-specific HIV mortality in females 10-54 (log-transformed) 

+ 
+ 
– 
– 
– 
+ 
+ 

Level 2 

Antenatal care 1-visit coverage (proportion) 
Antenatal care 4-visits coverage (proportion) 
Age-standardised wasting (weight-for-height) summary exposure value 
(SEV) 
Age-standardised stunting (height-for-age) SEV 
Healthcare Access and Quality Index 
Age- and sex-specific SEV for high body-mass index (BMI) 
Age- and sex-specific SEV for high blood pressure (SBP) 
Underweight women of reproductive age 

- 
- 
+ 
 

+ 
- 
+ 
+ 
+ 

Level 3 

Socio-demographic Index 
Mortality shock (cumulative rate in last 10 years) 
LDI (log-transformed) 
Hospital beds (per 1,000 population) 

- 
+ 
- 
– 

Cause-specific maternal mortality  
We used spatiotemporal Gaussian process regression (ST-GPR) to estimate MMRs for each of the eight 
maternal subcauses. This modeling strategy requires data to be in standard GBD age groups. To achieve 
this, we used the global age pattern of the COD data for each cause and applied it to all data that were 
not in the standard GBD age groups. ST-GPR also requires variance for each datapoint. In order to 
compute variance, we ran a Lowess regression on the data by year and used the variance of the 
residuals resulting from the difference between the data and the predicted values.  

The first step in the past has been a mixed-effects ordinary least squares regression of the quantity of 
interest and a specified set of location-level covariates. For GBD 2019 we revised this first step to 
instead be informed by an ensemble of regressions where weighting of each component model was 
based on out-of-sample coverage prediction performance. This approach allowed us to test a larger 
number of covariates and also specify the directionality of relationships between location-level 
covariates and the outcome of interest. Country covariates were specific for each subcause model, as 
shown in the table below:  
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Table 2: Covariates used in generation of ensemble stage 1 predictions of cause-specific maternal 
mortality ST-GPR models 

Maternal subcause Country-level covariates Direction 

Maternal haemorrhage In-facility delivery (proportion) 
Skilled birth attendance (proportion) 
Age- and sex-specific SEV for unsafe sanitation 
Neonatal mortality ratio (log-transformed) 
Maternal education 
Healthcare Access and Quality Index 

- 
- 
+ 
+ 
- 
- 

Maternal hypertensive 
disorders 

Age- and sex-specific SEV for fasting plasma glucose (FPG) 
Age- and sex-specific SEV for high body-mass index (BMI) 
Age- and sex-specific SEV for high blood pressure (SBP) 
Neonatal mortality ratio (log-transformed) 
Hospital beds (per 1000 population) 
Antenatal care 1-visit coverage (proportion) 
Antenatal care 4-visits coverage (proportion) 
Healthcare Access and Quality Index 

+ 
+ 
+ 
+ 
- 
- 
- 
- 

Obstructed labour and 
uterine rupture 

In-facility delivery (proportion) 
Skilled birth attendance (proportion) 
Underweight women of reproductive age 
Neonatal mortality ratio (log-transformed) 
Hospital beds (per 1000 population) 
Age-standardised wasting (weight-for-height) SEV 
Age-standardised stunting (height-for-age) SEV 

- 
- 
+ 
+ 
- 
+ 
+ 

Abortion and 
miscarriage 

Abortion legality 
Antenatal care 1-visit coverage (proportion) 
Antenatal care 4-visits coverage (proportion) 
Hospital beds (per 1,000 population) 
Maternal education 
Healthcare Access and Quality Index 

- 
- 
- 
- 
- 
- 

Ectopic pregnancy  Abortion legality 
Pelvic inflammatory disease age-standardised prevalence 
Antenatal care 1-visit coverage (proportion) 
Antenatal care 4-visits coverage (proportion) 
Hospital beds (per 1,000 population) 
Maternal education 
Healthcare Access and Quality Index 

- 
+ 
- 
- 
- 
- 
- 

Maternal sepsis and 
other maternal 
infections  

In-facility delivery (proportion) 
Skilled birth attendance (proportion) 
Age- and sex-specific SEV for unsafe sanitation 
Age- and sex-specific SEV for fasting plasma glucose (FPG) 
Antenatal care 1-visit coverage (proportion) 
Antenatal care 4-visits coverage (proportion) 
LDI (log-transformed) 
Healthcare Access and Quality Index 

- 
- 
+ 
+ 
- 
- 
- 
- 

Other maternal deaths In-facility delivery (proportion) 
Skilled birth attendance (proportion) 
Antenatal care 1-visit coverage (proportion) 
Antenatal care 4-visits coverage (proportion) 

- 
- 
- 
- 
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LDI (log-transformed) 
Age- and sex-specific SEV for high body-mass index (BMI) 
Maternal education 
Healthcare Access and Quality Index 

- 
+ 
- 
- 

Indirect maternal 
deaths  

In-facility delivery (proportion) 
Skilled birth attendance (proportion) 
Antenatal care 1-visit coverage (proportion) 
Antenatal care 4-visits coverage (proportion) 
LDI (log-transformed) 
Age- and sex-specific SEV for high body-mass index (BMI) 
Maternal education 
Healthcare Access and Quality Index 

- 
- 
- 
- 
- 
+ 
- 
- 

 

Late maternal death and model processing  
Aetiology-specific estimates were derived by scaling the results from the ST-GPR subcause-specific 
models scaled in relation to each other to equal one and then multiplying them by the total maternal 
deaths, corrected for late maternal deaths, for that age group, location, and year. A single parameter 
proportion model was run in Dismod-MR 2.1 for late maternal deaths using the data described above. 
The proportions coming for the VR data sources were taken before any of the central data processing. 
We used the Healthcare Access and Quality Index as a country-level covariate for the model.  
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Neonatal disorders 
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Input Data and Methodological Summary for Neonatal Disorders 
Mortality for five causes are modeled within “neonatal disorders”: neonatal preterm birth 
complications, neonatal encephalopathy due to birth asphyxia and trauma, neonatal sepsis and other 
neonatal infections, hemolytic disease and other neonatal jaundice, and other neonatal disorders. An 
overall neonatal disorders “parent” envelope is also estimated, to which all neonatal causes are 
squeezed. 

Input data 
Vital registration and surveillance were the majority of data sources used for GBD 2019 to estimate 
number of deaths from each condition. In Indian states, only verbal autopsy were used to inform 
estimates. Only deaths among males and females under age 5 were modelled, in four separate age 
groups: early neonatal period, late neonatal period, post-neonatal period, and 1-4 years. Data points 
were selected as outliers if they were implausibly high, low, or significantly conflicted with established 
age or temporal patterns. A significant new data source in GBD 2019 is Child Health and Mortality 
Prevention Surveillance (CHAMPS) in Bangladesh, Kenya, Mozambique, South Africa and Mali. 

Modeling strategy  
The standard CODEm modelling approach was used to model each of the neonatal conditions. Varying 
levels of data quality and coding issues may have affected our results. Validation studies suggest that 
verbal autopsy methods tend to be less accurate for cause of death ascertainment in the neonatal age 
groups.1-4 Thus, for GBD 2019, except for the Indian states, the majority of verbal autopsy data were 
excluded. All neonatal causes used the following pool of covariates in covariate selection: 

Table 1. Covariates used in neonatal disorders mortality modelling 

Level Covariate Direction 

1 

Maternal care and immunization - 
Age-standardized SEV for Ambient particulate matter + 
Age-standardized SEV for Household air pollution + 
Age-standardized SEV for Short gestation + 
Age-standardized SEV for Low birth weight + 
Age-standardized SEV for Smoking + 
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2 

Proportion of the population with at least 12 years of education, maternal - 
Proportion of the population with at least 6 years of education, maternal - 
Live Births 35+ (proportion) + 
Socio-demographic Index - 
Healthcare access and quality index - 

3 

Antenatal Care (1 visit) Coverage (proportion) - 
Antenatal Care (4 visits) Coverage (proportion) - 
In-Facility Delivery (proportion) - 
LDI (I$ per capita) - 
Skilled Birth Attendance (proportion) - 
Total Fertility Rate + 
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Cancers 
Input data and methodological summary for all cancers except for non-melanoma skin cancer 
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Data 
The cause of death (COD) database contains multiple sources of cancer mortality data. These sources 
include vital registration, verbal autopsy, and cancer registry data. The cancer registry mortality 
estimates that are uploaded into the COD database stem from cancer registry incidence data that have 
been transformed to mortality estimates through the use of mortality-to-incidence ratios (MIR). 

 
Data-seeking processes 
Cancer mortality data in the cause of death database other than cancer registry data 
Sources for cancer mortality data other than cancer registry data are described in the COD database 
description (Appendix Section 2.2).  

Cancer registry data 
Cancer registry data were used from publicly available sources or provided by collaborators. We used all 
data from GBD 2017 and added registry data from Argentina, Australia, Austria, Bermuda, Canada, Chile, 
China, Colombia, Germany, Netherlands, Switzerland, United Kingdom, Uruguay, and Yemen. 
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Inclusion and exclusion criteria 
Only population-based cancer registries were included, and only those that included all cancers (no 
specialty registries), data for all age groups (except for paediatric cancer registries), and data for both 
sexes. Pathology-based cancer registries were included if they had a defined population. Hospital-based 
cancer registries were excluded.  
Cancer registry data were excluded from either the final incidence data input or the MI model input if a 
more detailed source (eg, providing more detailed age or diagnostic groups) was available for the same 
population. Preference was given to registries with national coverage over those with only local 
coverage, except those from countries where the GBD study provides subnational estimates. 
Data were excluded if the coverage population was unknown.  
 
Bias of categories of input data 
Cancer registry data can be biased in multiple ways. A high proportion of ill-defined cancer cases in the 
registry data requires redistribution of these cases to other cancers, which introduces a potential for 
bias. Changes between coding systems can lead to artificial differences in disease estimates; however, 
we adjust for this bias by mapping the different coding systems to the GBD causes. Underreporting of 
cancers that require advanced diagnostic techniques (eg, leukaemia, brain, pancreatic, and liver cancer) 
can be an issue in cancer registries from low-income countries. On the other hand, misclassification of 
metastatic sites as primary cancer can lead to overestimation of cancer sites that are common sites for 
metastases, like the brain or liver. Since many cancer registries are located in urban areas, the 
representativeness of the registry for the general population can also be problematic. The accuracy of 
mortality data reported in cancer registries usually depends on the quality of the vital registration 
system. If the vital registration system is incomplete or of poor quality, the mortality-to-incidence ratio 
can be biased to lower ratios. 

Data for liver cancer aetiology splits 
To find the proportion of liver cancer cases due to the five aetiology groups included in GBD (1. Liver 
cancer due to hepatitis B, 2. Liver cancer due to hepatitis C, 3. Liver cancer due to alcohol, 4. Liver cancer 
due to non-alcoholic steatohepatitis (NASH), 5. Liver cancer due to other causes), a systematic literature 
search was performed in PubMed on 10/24/2016 using the following search string: “("liver 
neoplasms"[All Fields]  OR "HCC"[All Fields]  OR "liver cancer"[All Fields] OR "Carcinoma, 
Hepatocellular"[Mesh]) AND (("hepatitis B"[All Fields]  OR "Hepatitis B"[Mesh] OR "Hepatitis B 
virus"[Mesh] OR "Hepatitis B Antibodies"[Mesh] OR "Hepatitis B Antigens"[Mesh]) OR ("hepatitis C"[All 
Fields]  OR "Hepatitis C"[Mesh] OR "hepatitis C antibodies"[MESH] OR "Hepatitis C Antigens"[Mesh] OR 
"Hepacivirus"[Mesh]) OR  ("alcohol"[All Fields] OR "Alcohol Drinking"[Mesh] OR "Alcohol-Related 
Disorders"[Mesh] OR "Alcoholism"[Mesh] OR  "Alcohol-Induced Disorders"[Mesh])) NOT 
(animals[MeSH] NOT humans[MeSH])”. Also, studies not found through this search but included in the 
meta-analysis by de Martel and colleagues were included.10 We also included the study by Hong and 
colleagues after the authors provided us with additional data on the overlap in risk factors.11  

Studies were included if the study population was representative of liver cancer for the respective 
location. For each study, the proportions of liver cancer due to the five specific risk factors were 
calculated. Cases were considered to be due to NASH when the manuscript explicitly listed the aetiology 
to be NASH or non-alcoholic fatty liver disease (NAFLD). Cases where the aetiology was listed as 
“cryptogenic”, “idiopathic”, or “unknown” were included within the “other causes” category. In 
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manuscripts where the aetiology for a case was not known but major categories could not be ruled out 
(for example, the study tested for hepatitis B and C, but did not assess alcohol use), these cases were 
excluded from the numerator of the study (in other words, did not contribute to the proportion of any 
aetiology). Remaining risk factors were included under a combined “other” group (for example, 
haemochromatosis, autoimmune hepatitis, Wilson’s disease, etc.). If multiple risk factors were reported 
for an individual patient, these were apportioned proportionally to the individual risk factors. These 
estimated proportions are then used to split the overall liver cancer estimates into estimates for their 
respective aetiologies. 

Methods 
 
Steps of analysis and data transformation processes 
Cancer registry data went through multiple processing steps before integration with the COD database. 
First, the original data were transformed into standardised files, which included standardisation of 
format, categorisation, and registry names (#1 in flowchart).  
 
Second, some cancer registries report individual codes as well as aggregated totals (eg, C18, C19, and 
C20 are reported individually, but the aggregated group of C18-C20 [colorectal cancer] is also reported 
in the registry data). The data-processing step “subtotal recalculation” (#2 in flowchart) verifies these 
totals and subtracts the values of any individual codes from the aggregates. 
 
In the third step (#3 in the flowchart), cancer registry incidence data and cancer registry mortality data 
are mapped to GBD causes. A different map is used for incidence data and for mortality data because of 
the assumption that there are no deaths for certain cancers. One example is basal-cell carcinoma of the 
skin. In the cancer registry incidence data, basal-cell carcinoma is mapped to “non-melanoma skin 
cancer (basal-cell carcinoma)”. However, if basal-cell skin cancer is recorded in the cancer registry 
mortality data, the deaths are instead mapped to “non-melanoma skin cancer (squamous-cell 
carcinoma)” under the assumption that they were indeed squamous-cell skin cancers that had been 
misclassified as basal-cell skin cancers. Other examples are benign or in situ neoplasms. Benign or in situ 
neoplasms found in the cancer registry incidence dataset were simply dropped from that dataset. The 
same neoplasms reported in a cancer registry mortality dataset were mapped to the respective invasive 
cancer (eg, melanoma in situ in the cancer registry incidence dataset was dropped from the dataset; 
melanoma in situ in the cancer registry mortality dataset was mapped to melanoma). 
 
In the fourth data-processing step (#4 in the flowchart) cancer registry data were standardised to the 
GBD age groups. Age-specific incidence rates were generated using all datasets that include microdata, 
and datasets that report age groups up to 95+ years of age, while age-specific mortality rates were 
generated from the CoD data through a method described in Appendix section 2.5. Age-specific 
proportions were then generated by applying the age-specific rates to a given registry population that 
required age-splitting to produce the expected number of cases/deaths for that registry by age. The 
expected number of cases/deaths for each sex, age, and cancer were then normalised to 1, creating 
final, age-specific proportions. These proportions were then applied to the total number of cases/deaths 
by sex and cancer to get the age-specific number of cases/deaths.  
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In the rare case that the cancer registry only contained data for both sexes combined, the now-age-
specific cases/deaths were split and reassigned to separate sexes using the same weights that are used 
for the age-splitting process. Starting from the expected number of deaths, proportions were generated 
by sex for each age (eg, if for ages 15 to 19 years old there are six expected deaths for males and four 
expected deaths for females, then 60% of the combined-sex deaths for ages 15-19 years would be 
assigned to males and the remaining 40% would be assigned to females).  
 
In the fifth step (#5 in the flowchart) data for cause entries that are aggregates of GBD causes were 
redistributed. Examples of these aggregated causes include some registries reporting ICD10 codes C00-
C14 together as, “lip, oral cavity, and pharyngeal cancer.” These groups were broken down into sub-
causes that could be mapped to single GBD causes. In this example, those include lip and oral cavity 
cancer (C00-C08), nasopharyngeal cancer (C11), cancer of other parts of the pharynx (C09-C10, C12-
C13), and “Malignant neoplasm of other and ill-defined sites in the lip, oral cavity, and pharynx” (C14).  
To redistribute the data, weights were created using the same “rate-applied-to-population” method 
employed in age-sex splitting (see step four above). For the undefined code (C14 in the example) an 
“average all cancer” weight was used, which was generated by adding all cases from 
SEER/NORDCAN/CI5 and dividing the total by the combined population. Then, proportions were 
generated by sub-cause for each aggregate cause as in the sex-splitting example above (see step four). 
The total number of cases from the aggregated group (C00-C14) was then recalculated for each 
subgroup and the undefined code (C14). C14 was then redistributed as a “garbage code” in step six. 
Distinct proportions were used for C44 (non-melanoma skin cancer) and C46 (Kaposi’s sarcoma). Non-
melanoma skin cancer processing is described under section “Input data and methodological summary 
for non-melanoma skin cancer (squamous-cell carcinoma).” C46 entries were redistributed as “other 
cancer” and HIV using proportions described in Appendix Section 2. 
 
In the sixth step (#6 in the flowchart) unspecified codes (“garbage codes”) were redistributed. 
Redistribution of cancer registry incidence and mortality data mirrored the process of the redistribution 
used in the cause of death database (Appendix Section 2.7).  
 
In the seventh step (#7 in the flowchart) duplicate or redundant sources were removed from the 
processed cancer registry dataset. Duplicate sources were present if, for example, the cancer registry 
was part of the CI5 database but we also had data from the registry directly. Redundancies occurred and 
were removed as described in “Inclusion and Exclusion Criteria,” where more detailed data were 
available, or when national registry data could replace regionally representative data. From here, two 
parallel selection processes were run to generate input data for the MI models and to generate 
incidence for final mortality estimation. When creating the final incidence input, higher priority was 
given to registry data from the most standardised source; whereas for the MI model input, only sources 
that reported both incidence and mortality were used.  
 
In the eighth step (#8 in the flowchart) the processed incidence and mortality data from cancer 
registries were matched by cancer, age, sex, year, and location to generate MI ratios. These MI ratios 
were used as input for a three-step modelling approach using ST-GPR, with HAQ Index as a covariate in 
the linear step mixed effects model using a logit link function. Predictions were made without the 
random effects. The ST-GPR model has three main hyper-parameters that control for smoothing across 
time, age, and geography, which were adjusted for GBD 2019. The time adjustment parameter lambda 
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(𝜆𝜆) aims to borrow strength from neighbouring time points (ie, the exposure in this year is highly 
correlated with exposure in the previous year but less so further back in time). Lambda was lowered 
from 2 to 0.05, reducing the weight of more distant years. The age adjustment parameter omega (ω) 
borrows strength from data in neighbouring age groups and was set to 0.5 (unchanged). The space 
adjustment parameter zeta (𝜉𝜉) aims to borrow strength across the hierarchy of geographical locations.12 
Zeta was lowered from 0.95 to 0.01, reducing the weight of more distant geographical data. For the 
remaining parameters in the Gaussian process regression, we lowered the amplitude from 2 to 1 
(reducing fluctuation from the mean function) and reduced the scale value from 15 to 10 (reducing the 
time distance over which points are correlated). These model specification changes generally led to less 
smoothing of the data compared to GBD 2017 models. 
 
Data-cleaning steps were similar as for GBD 2017. For each cancer, MI ratios from locations in HAQ 
quintiles 1-4 were dropped if they were below the median of MI ratios from locations in HAQ quintile 5. 
We also dropped MI ratios from locations in HAQ quintiles 1-4 if the MI ratios were above the third 
quartile + 1.5 * IQR (inter-quartile range). We dropped all MIR that were based on less than 15 (this was 
25 in 2017) cases to avoid noise due to small numbers, except for mesothelioma and acute myeloid 
leukaemia, where we dropped MIR that were based on less than ten cases because of lower data 
availability for these two cancers. We also aggregated incidence and mortality to the youngest five-year 
age bin where SEER reported at least 50 cases from 1990 to 2015, to avoid unstable MIR predictions in 
young age groups on too few datapoints. The MIR in the minimum age-bin was used to backfill the MIR 
down to the lowest age group estimated for that cancer. 
 
Since MI ratios can be above 1, especially in older age groups and cancers with low cure rates, we used 
the 95th percentile (by age group) of the cleaned dataset (detailed above) to cap the MIR input data. This 
“upper cap” was used to allow MIR over 1 but to constrain the MIR to a maximum level. To run the logit 
model, the input data were divided by the upper caps to get data from 0 to 1. Model predictions from 
ST-GPR were then rescaled back by multiplying them by the upper caps.  
To constrain the MIRs at the lower end, we used the fifth percentile of the cancer and age-specific 
cleaned MIR input data to replace all model predictions with this lower cap. 
 
Final MI ratios were matched with the cancer registry incidence dataset in the ninth step (#9 in the 
flowchart) to generate mortality estimates (Incidence * Mortality/Incidence = Mortality) (#10 in the 
flowchart). These mortality estimates are then smoothed by a Bayesian noise-reduction algorithm (to 
deal with problems with zero counts, as also applied to the VR and VA data) and uploaded into the COD 
database (#11 in the flowchart). Cancer-specific mortality modelling then followed the general CODEm 
process. 
 
Liver cancer aetiology split models 
The proportion data found through the systematic literature review were used as input for five separate 
DisMod-MR 2.1 models to determine the proportion of liver cancers due to the five subgroups for all 
locations, both sexes, all years, and all age groups (step #16 in the flowchart). For GBD 2019 we used 
MR-BRT to split sex-combined input data into sex-specific proportion data. For liver cancer due to 
hepatitis C and hepatitis B, a prior value of 0 was set between age 0 and 0.01. For liver cancer due to 
alcohol, a prior value of 0 was set for ages 0 to 5 years. For liver cancer due to hepatitis C, hepatitis C 
(IgG) seroprevalence was used as a covariate, forcing a positive relationship between the hepatitis C 
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seroprevalence covariate and the outcome of liver cancer due to hepatitis C proportion. For liver cancer 
due to hepatitis B, seroprevalence of HBsAg was used as a covariate as well as the population coverage 
of three-dose Hepatitis B vaccination, forcing a negative relationship between vaccination and the 
outcome of liver cancer due to hepatitis B proportion. For liver cancer due to alcohol, alcohol (litres per 
capita) was used as a covariate as well as a covariate for proportion of alcohol abstainers, forcing a 
negative relationship between the proportion of alcohol abstainers and the outcome of liver cancer due 
to alcohol proportion. For liver cancer due to NASH, NASH/NAFLD prevalence was used as a covariate as 
well as a covariate for obesity prevalence and mean body-mass index (BMI), forcing a positive 
relationship between these covariates and the outcome of liver cancer due to NASH proportion. All 
covariates used were modelled independently. To ensure consistency between cirrhosis and liver cancer 
estimates and to take advantage of the data for the respective other related cause (eg, liver cancer due 
to hepatitis C and the related cause cirrhosis due to hepatitis C), we generated covariates from the liver 
cancer proportion models that were subsequently used in separate cirrhosis aetiology proportion 
models. We then created covariates from the cirrhosis aetiology proportion models and used those in 
final liver cancer aetiology models.  

Since the proportion models are run independently of each other, the final proportion models were 
scaled to sum to 100% within each age, sex, year, and location, by dividing each proportion by the sum 
of the five (step # 17). For the liver cancer subtype mortality estimates, we multiplied the parent cause 
“liver cancer” by the corresponding scaled proportions (step # 18). Single cause estimates were adjusted 
to fit into the separately modelled all-cause mortality envelope in the GBD-wide CoDCorrect process. 

 
Results 
Interpretation of results 
Cancer mortality estimates for GBD 2019 can differ from the GBD 2017 results for multiple reasons. 
Updated cancer mortality data were added from vital registration system data, verbal autopsy studies, 
and cancer registry incidence data. Previously some deaths mapped to liver cancer contained deaths 
from liver metastases rather than primary liver cancer; for GBD 2019, these deaths were instead 
mapped as garbage codes and redistributed. The mortality-to-incidence ratio estimation was updated 
with lower case inclusion criteria and different model hyperparameters compared to GBD 2017, leading 
to more training data and less smoothing across time and geography. Covariates used in CODEm models 
were updated for GBD 2019. This included removing or replacing covariates that had been updated by 
other GBD teams (most of the dietary covariates), assigning a direction of association prior to all 
covariates (previously covariates such as income and Socio-demographic Index had been allowed to 
have agnostic direction priors), and changing the minimum age ranges for which the models estimated 
mortality. Compared to GBD 2017, large differences in the incidence and prevalence estimates for the 
benign and in-situ neoplasms is due to changes in how the clinical informatics data are processed for 
these causes. These data are now adjusted for HAQ Index and corrected for outpatient encounters, 
which should capture significantly more of these cases than before (since that relied on hospital 
admissions).  
The other group producing country-level cancer mortality estimates is the International Agency for 
Research on Cancer (IARC) with their GLOBOCAN database. Significantly different methods between the 
GBD study and GLOBOCAN can lead to differences in results. Whereas estimates in GLOBOCAN are 
based on the assumption that there are “In theory, […] as many methods as countries,”13 the cancer 
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estimation process for the GBD study follows a coherent, well-documented method for all cancers, 
which allows cross-validation of models as well as determination of uncertainty. Another major 
difference is the ability in the GBD study to adjust single cause estimates to the all-cause mortality, 
which is being determined independently. This also allows us to adjust individual causes of death to the 
all-cause mortality envelope, which permits us to correct for the underdiagnosis of cancer in countries 
with inadequate diagnostic resources. Redistribution of a fraction of undefined causes of death to 
certain cancers is another methodological advantage the GBD study has over GLOBOCAN, and estimates 
for cancer mortality can therefore differ substantially in countries with a large proportion of undefined 
causes of deaths in their vital registration data or a large proportion of undefined cancer cases in their 
cancer registry data. 
 
Limitations 

There are certain limitations to consider when interpreting the GBD mortality cancer estimates. First, 
even though every effort is made to include the most recently available data for each country, data-
seeking resources are not limitless and new data cannot always be accessed as soon as they are made 
available. It is therefore possible that the GBD study does not include all available data sources for 
cancer incidence or cancer mortality. Second, different redistribution methods can potentially change 
the cancer estimates substantially if the data sources used for the estimated location contain a large 
number of undefined causes; however, neglecting to account for these undefined deaths would likely 
introduce an even greater bias in the disease estimates. Third, using mortality-to-incidence ratios to 
transform cancer registry incidence data to mortality estimates requires accurate MIR. For GBD 2019 we 
have made further changes to the MIR estimation, but the method remains sensitive to underdiagnosis 
of cancer cases or under-ascertainment of cancer deaths. However, given that the majority of data used 
for the cancer mortality estimation come from vital registration data and not cancer registry data, this is 
not a major limitation. 

Non-melanoma skin cancer (squamous-cell carcinoma) 
Data 
Data-seeking processes 
Since squamous-cell carcinomas are only very infrequently recorded by cancer registries, only vital 
registration system data were used as input for the squamous-cell carcinoma mortality modelling.  

Inclusion and exclusion criteria 
Inclusion and exclusion criteria followed the same methods as described for the vital registration data 
sources (Appendix Section 2). 

Bias of categories of input data 
The potential biases of the input data are the same as for other cancers (see above). 

Methods 
Overall methodological process 
Vital registration system data were used as input to model deaths due to squamous-cell skin cancer. 

Steps of analysis and data transformation processes 
Since mortality estimates for non-melanoma skin cancer are only produced for squamous-cell carcinoma 
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under the assumption that basal-cell carcinoma causes almost no deaths, all mortalities reported as 
“C44” or “173” were mapped to the “squamous-cell carcinoma” GBD cause
Model selection 
The modelling strategy for non-melanoma skin cancer (squamous-cell carcinoma) followed the general 
CODEm process. 

Model performance and sensitivity 
The modelling performance and sensitivity for non-melanoma skin cancer (squamous-cell carcinoma) 
mirrored that of the general CODEm process. 
Uncertainty intervals 
Uncertainty was determined using standard CODEm methodology. 

Results 
Interpretation of results 
Non-melanoma skin cancer mortality estimates are not available from other sources. GLOBOCAN, for 
example, does not report deaths due to non-melanoma skin cancer. Even though the data availability for 
non-melanoma skin cancer is poor, the fact that it is the most common incident cancer, with rates 
expected to rise, makes it a necessity to include the disease in the GBD framework.  

Limitations 
Cancer registry data for non-melanoma skin cancer incidence have to be interpreted with caution due to 
a substantial amount of underreporting or rules that only the first non-melanoma skin cancer has to be 
registered. Many cancer registries therefore do not include non-melanoma skin cancers at all. However, 
the information if registries capture NMSC or not is not consistently available. Therefore, no cancer 
registry data were used to estimate deaths due to squamous-cell carcinoma of the skin. For vital 
registration data, we make the assumption that there are no deaths due to basal-cell non-melanoma 
skin cancer, and therefore all deaths attributed to basal-cell carcinoma were included instead as 
squamous-cell carcinoma. 
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Covariates by cancer: 

Lip and oral cavity cancer                                                 Nasopharynx cancer                                                         Oesophageal cancer 

  

Level Covariate Direction 

1 

 

 

Litres of alcohol consumed per capita + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (20 years) + 

Tobacco (cigarettes per capita) + 

Log-transformed SEV scalar: Mouth 
Cancer 

+ 

2 

Age- and sex-specific SEV for high red 
meat 

+ 

Age- and sex-specific SEV for low 
vegetables 

+ 

Age- and sex-specific SEV for low fruit + 

Healthcare Access and Quality Index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) + 

 Socio-demographic Index + 

Level Covariate Direction 

 Litres of alcohol consumed per capita + 

1 Cumulative cigarettes (10 years) + 

 Cumulative cigarettes (20 years) + 

 Tobacco (cigarettes per capita) + 

 
Log-transformed SEV scalar: 
Nasopharynx Cancer 

+ 

 
Age- and sex-specific SEV for low 
vegetables 

+ 

2 
Population density (over 1000 
ppl/sqkm, proportion) 

+ 

 Healthcare Access and Quality Index  − 

3 

Education (years per capita) − 

Age- and sex-specific SEV for low fruit + 

LDI (I$ per capita) - 

 Socio-demographic Index + 

Level Covariate Direction 

1 

 

 

Litres of alcohol consumed per capita + 

Log-transformed age-standardised SEV 
scalar: Oesophageal Cancer 

+ 

Mean BMI + 

Smoking prevalence + 

2 

Indoor air pollution (all cooking fuels) + 

 Tobacco (cigarettes per captia) + 

Age- and sex-specific SEV for low vegetables + 

 Age- and sex-specific SEV for low fruit + 

Healthcare Access and Quality Index  − 

3 

Education (years per capita) − 

Sanitation (proportion with access) − 

Improved water source (proportion with 
access) − 

LDI (I$ per capita) + 

 Socio-demographic Index + 
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Other pharynx cancer                                                   Stomach cancer                                                                 Testicular cancer 

 

  

Level Covariate Direction 

1 

 

 

Litres of alcohol consumed per 
capita 

+ 

Smoking prevalence + 

Log-transformed SEV scalar: Other 
Pharynx Cancer 

+ 

2 

Cumulative cigarettes (5 years) + 

Age- and sex-specific SEV for low 
fruit 

+ 

Age- and sex-specific SEV for low 
vegetables 

+ 

Population density (over 1000 
ppl/sqkm, proportion) 

+ 

Population density (under 150 
ppl/sqkm, proportion) 

+ 

Healthcare Access and Quality Index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) + 

 Socio-demographic Index + 

Level Covariate Direction 

1 

 

 

Diet high in sodium + 

Tobacco (cigarettes per capita) + 

Log-transformed SEV scalar: Stomach 
Cancer 

+ 

Log-transformed SEV scalar: Stomach 
Cancer 

+ 

2 

Cumulative cigarettes (20 years) + 

Age- and sex-specific SEV for unsafe 
water 

+ 

Age- and sex-specific SEV for unsafe 
sanitation 

+ 

Mean BMI + 

Sanitation (proportion with access) − 

Improved water source (proportion 
with access) 

− 

Healthcare Access and Quality Index  − 

3 

Education (years per capita) − 

Age- and sex-specific SEV for low fruits + 

Age- and sex-specific SEV for low 
vegetables 

+ 

LDI (I$ per capita) + 

 Socio-demographic Index − 

Level Covariate Direction 

2 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (15 years) + 

Cumulative cigarettes (20 years) + 

Tobacco (cigarettes per capita) + 

Smoking prevalence + 

Age- and sex-specific SEV for low fruits + 

Age- and sex-specific SEV for low 
vegetables + 

Healthcare Access and Quality Index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) + 

 Socio-demographic Index + 
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Liver Cancer                                                                       Liver cancer (continued)                                     Gallbladder and biliary tract cancer 

  

Level Covariate Direction 

1 

 

 

Litres of alcohol consumed per 
capita + 

HIV age-standardised prevalence + 

Hepatitis B seroprevalence (HBsAg) 
age-standardised + 

Hepatitis C seroprevalence (anti-
HCV) age-standardised + 

Log-transformed SEV scalar: Liver 
Cancer + 

2 

Hepatitis B 3-dose coverage 
(proportion) − 

Hepatitis B vaccine coverage 
(proportion), aged through time − 

Intravenous drug use (age-
standardised proportion) + 

Cumulative cigarettes (20 years) + 

Mean BMI + 

Tobacco (cigarettes per capita) + 

Healthcare Access and Quality Index − 

Diabetes fasting plasma glucose 
(mmol/L), age-standardised 25+ + 

Level Covariate Direction 

3 

Education (years per capita) − 

Age- and sex-specific SEV for 
high red meat + 

LDI (I$ per capita) − 

 Socio-demographic Index − 

Level Covariate Direction 

1 

 

 

Log-transformed SEV scalar: 
Gallbladder Cancer 

+ 

Mean BMI + 

2 

Litres of alcohol consumed per 
capita 

+ 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Smoking prevalence + 

Tobacco (cigarettes per capita) + 

Age- and sex-specific SEV for low 
fruit 

+ 

Age- and sex-specific SEV for low 
vegetables 

+ 

Diabetes age-atandardised 
prevalence (proportion) 

+ 

Healthcare Access and Quality 
Index  

− 

3 
Education (years per capita) − 

LDI (I$ per capita) + 

 Socio-demographic Index - 
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Pancreatic cancer                                                                Larynx cancer                                                                    Tracheal, bronchus, and lung cancer 

 

  

Level Covariate Direction 

1 

 

 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (20 years) + 

Tobacco (cigarettes per capita) + 

Log-transformed SEV scalar: Pancreas 
Cancer + 

Mean BMI + 

2 

Age- and sex-specific SEV for high red 
meat + 

Litres of alcohol consumed per capita + 

Age- and sex-specific SEV for low 
vegetables + 

Energy unadjusted (kcal) + 

Diabetes fasting plasma glucose 
(mmol/L), age-standardised 25+ + 

Diabetes age-standardised prevalence 
(proportion) + 

Healthcare Access and Quality Index  − 

3 

Education (years per capita) − 

Age- and sex-specific SEV for low fruit + 

LDI (I$ per capita) + 

 Socio-demographic Index + 

Level Covariate Direction 

1 

Litres of alcohol consumed per capita + 

Log-transformed SEV scalar: Larynx 
Cancer + 

2 

Smoking prevalence + 

Asbestos consumption (metric tons per 
year per capita) + 

Age- and sex-specific SEV for low 
vegetables + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (20 years) + 

Population density (over 1000 
ppl/sqkm, proportion) + 

Healthcare Access and Quality Index  − 

3 
Age- and sex-specific SEV for low fruit + 

LDI (I$ per capita) + 

 Socio-demographic Index + 

Level Covariate Direction 

1 

Asbestos consumption (metric tons per 
year per capita) + 

Smoking prevalence + 

Secondhand smoke + 

Log-transformed SEV scalar: Lung 
Cancer + 

Log-transformed age-standardised SEV 
scalar: Lung Cancer + 

2 

Indoor air pollution (all cooking fuels) + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (20 years) + 

Outdoor air pollution (PM2.5) + 

Residential radon + 

Diabetes fasting plasma glucose 
(mmol/L), age-standardised 25+ + 

Healthcare Access and Quality Index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) + 

 Socio-demographic Index + 
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Malignant skin melanoma                                               Non-melanoma skin cancer                                             Breast cancer     

 

          

  

Level Covariate Direction 

1 
Litres of alcohol consumed per 
capita 

+ 

2 

Latitude under 15 (proportion) − 

Latitude 15 to 30 (proportion) − 

Latitude 30 to 45 (proportion) − 

Latitude over 45 (proportion) − 

Healthcare Access and Quality 
Index  

− 

3 
Education (years per capita) − 

LDI (I$ per capita) − 

 Socio-demographic Index + 

Level Covariate Direction 

1 

 

 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (15 years) + 

Smoking prevalence + 

2 
Average latitude − 

Healthcare Access and Quality Index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) − 

 Socio-demographic Index + 

Level Covariate Direction 

1 

 

 

Litres of alcohol consumed per capita + 

Mean BMI + 

Log-transformed SEV scalar: Breast 
Cancer + 

2 

Age-specific fertility rate − 

Total fertility rate − 

Age- and sex-specific SEV for low fruit + 

Age- and sex-specific SEV for low 
vegetables + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (20 years) + 

Smoking prevalence + 

Diabetes fasting plasma glucose 
(mmol/L), age-standardised 25+ + 

Healthcare Access and Quality Index  − 

3 
LDI (I$ per capita) − 

Socio-demographic Index + 
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Cervical cancer                                                                       Uterine cancer                                                                  Prostate cancer 

 

  

Level Covariate Direction 

1 

 

 

Cumulative cigarettes (5 years) + 

HIV age-standardised prevalence 
+ 

2 

Age-specific fertility rate + 

Total fertility rate + 

Smoking prevalence + 

Age- and sex-specific SEV for low fruit + 

Age- and sex-specific SEV for low 
vegetables + 

Healthcare Access and Quality Index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) − 

 Socio-demographic Index − 

Level Covariate Direction 

1 

Log-transformed SEV scalar: Uterus 
Cancer + 

Mean BMI + 

2 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Smoking prevalence + 

Tobacco (cigarettes per capita) + 

Diabetes age-standardized prevalence 
(proportion) + 

Total fertility rate − 

Age- and sex-specific SEV for low fruit + 

Age- and sex-specific SEV for low 
vegetables + 

Healthcare Access and Quality Index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) + 

 Socio-demographic Index + 

Level Covariate Direction 

1 Log-transformed SEV scalar: Prostate 
Cancer + 

2 
Smoking prevalence + 

Healthcare Access and Quality Index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) − 

 Socio-demographic Index + 
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Kidney cancer                                                                       Bladder cancer                                                                 Brain and nervous system cancer 

  

Level Covariate Direction 

1 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (15 years) + 

Mean BMI + 

Log-transformed SEV scalar: Kidney 
Cancer + 

2 

Litres of alcohol consumed per capita + 

Diabetes age-standardised prevalence 
(proportion) + 

Systolic blood pressure (mmHg) + 

Smoking prevalence + 

Healthcare Access and Quality Index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) + 

 Socio-demographic Index + 

Level Covariate Direction 

1 

 

 

Schistosomiasis prevalence 
(proportion) + 

Cumulative cigarettes (10 years) + 

Smoking prevalence + 

Log-transformed SEV scalar: Bladder 
Cancer + 

2 

Litres of alcohol consumed per capita + 

Diabetes fasting plasma glucose 
(mmol/L), age-standardised 25+ + 

Age- and sex-specific SEV for low 
vegetables + 

Healthcare Access and Quality Index  − 

3 
Age- and sex-specific SEV for low fruits + 

LDI (I$ per capita) + 

 Socio-demographic Index + 

Level Covariate Direction 

1 

 

 

Litres of alcohol consumed per capita + 

Cumulative cigarettes (10 years) + 

Smoking prevalence + 

2 

Cholesterol (total, mean per capita) + 

Systolic blood pressure (mmHg) + 

Age- and sex-specific SEV for high red 
meat + 

Age- and sex-specific SEV for low 
vegetables + 

Age- and sex-specific SEV for low fruit + 

Healthcare Access and Quality Index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) + 

 Socio-demographic Index + 
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Thyroid cancer                                                                         Mesothelioma                                                                  Hodgkin lymphoma 

 

 

  

Level Covariate Direction 

1 

Litres of alcohol consumed per capita + 

Log-transformed SEV scalar: Thyroid 
Cancer + 

2 

Age- and sex-specific SEV for low 
vegetables + 

Age- and sex-specific SEV for high red 
meat + 

Tobacco (cigarettes per capita) + 

Mean BMI + 

Healthcare Access and Quality Index  − 

3 

Education (years per capita) − 

Sanitation (proportion with access) − 

Improved water source (proportion 
with access) − 

Age- and sex-specific SEV for low fruits + 

LDI (I$ per capita) + 

 Socio-demographic Index + 

Level Covariate Direction 

1 

 

 

Asbestos consumption (metric tons per 
year per capita) + 

Cumulative cigarettes (5 years) + 

Log-transformed SEV scalar: 
Mesothelioma + 

Log-transformed age-standardized SEV 
scalar: Mesothelioma + 

Smoking prevalence + 

2 

Gold production (binary) + 

Indoor air pollution (all cooking fuels) + 

Population density (over 1000 
ppl/sqkm, proportion) + 

Healthcare Access and Quality Index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) − 

 Socio-demographic Index + 

Level Covariate Direction 

2 Healthcare Access and Quality Index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) − 

 Socio-demographic Index − 
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Non-Hodgkin lymphoma                                                  Multiple myeloma                                                            Leukaemia  

  

Level Covariate Direction 

2 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (15 years) + 

Cumulative cigarettes (20 years) + 

Litres of alcohol consumed per capita + 

Smoking prevalence + 

Mean BMI + 

Healthcare Access and Quality Index  − 

3 
Total fertility rate − 

LDI (I$ per capita) + 

 Socio-demographic Index + 

Level Covariate Direction 

1 

 

 

Litres of alcohol consumed per capita + 

Smoking prevalence + 

Tobacco (cigarettes per capita) + 

2 

Age- and sex-specific SEV for low 
vegetables + 

Age- and sex-specific SEV for low fruits + 

Age- and sex-specific SEV for high red 
meat + 

Mean BMI + 

Sanitation (proportion with access) − 

Improved water source (proportion 
with access) − 

Healthcare Access and Quality Index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) + 

 Socio-demographic Index + 

Level Covariate Direction 

1 

Log-transformed age-standardised SEV 
scalar: Leukaemia + 

Log-transformed SEV scalar: Leukaemia + 

2 

Litres of alcohol consumed per capita + 

Mean BMI + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (20 years) + 

Tobacco (cigarettes per capita) + 

Healthcare Access and Quality Index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) + 

 Socio-demographic Index − 
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 Myelodysplastic, myeloproliferative, other haemopoietic neoplasms    Other malignant cancers                                                   Other neoplasms                                                               

        

                                     

 

 

 

 

 

 

 

 

 

 

Level Covariate Direction 

1 

Log-transformed age-standardised SEV 
scalar: Leukaemia + 

Log-transformed SEV scalar: Leukaemia + 

2 

Litres of alcohol consumed per capita + 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (15 years) + 

Cumulative cigarettes (20 years) + 

Smoking prevalence + 

Tobacco (cigarettes per capita) + 

Healthcare Access and Quality Index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) + 

 Socio-demographic Index + 

Level Covariate Direction 

2 Healthcare Access and Quality Index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) + 

 Socio-demographic Index − 

Level Covariate Direction 

1 
Smoking prevalence + 

Tobacco (cigarettes per capita) + 

2 

Age- and sex-specific SEV for low 
vegetables + 

Age- and sex-specific SEV for low fruits + 

Age- and sex-specific SEV for low nuts 
and seeds + 

PUFA adjusted (percent) − 

Healthcare Access and Quality Index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) + 

 Socio-demographic Index + 
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Colon and rectum cancer    Ovarian cancer 

 

  

Level Covariate Direction 

1 

 

 

Mean BMI + 

Tobacco (cigarettes per capita) + 

Total physical activity (MET-min/week), 
age-specific 

− 

Log-transformed SEV scalar: Colorectal 
Cancer 

+ 

Age- and sex-specific SEV for high red 
meat 

+ 

2 

Litres of alcohol consumed per capita + 

PUFA adjusted (percent) − 

Age- and sex-specific SEV for low 
vegetables 

+ 

Age- and sex-specific SEV for low fibre + 

Age- and sex-specific SEV for low 
calcium 

+ 

Cumulative cigarettes (5 years) + 

Diabetes fasting plasma glucose 
(mmol/L), age-standardised 25+ 

+ 

3 

Education (years per capita) − 

Age- and sex-specific SEV for low milk + 

Age- and sex-specific SEV for low fruit + 

Age- and sex-specific SEV for low nuts 
and seeds 

+ 

Healthcare Access and Quality Index − 

LDI (I$ per capita) + 

 Socio-demographic Index + 

Level Covariate Direction 

1 

 

 

Litres of alcohol consumed per capita + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (20 years) + 

Contraception (modern) prevalence 
(proportion) − 

Log-transformed SEV scalar: Ovary 
Cancer + 

2 

Asbestos consumption (metric tons per 
year per capita) + 

Smoking prevalence + 

Total fertility rate − 

Energy unadjusted (kcal) + 

Mean BMI + 

Diabetes age-standardized prevalence 
(proportion) + 

Healthcare Access and Quality Index  `− 

3 Education (years per capita) − 

 Age- and sex-specific SEV for low fruits + 

 Age- and sex-specific SEV for low 
vegetables + 

 LDI (I$ per capita) − 

 Socio-demographic Index + 
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Input data 
Vital registration and surveillance data were used to model rheumatic heart disease. We outliered ICD8 
and ICD9 BTL datapoints which were inconsistent with the rest of the data and created implausible time 
trends. We also outliered datapoints which were too high after the redistribution process in a number of 
age groups. In addition, we outliered verbal autopsy datapoints in Nepal and Pakistan which created an 
implausibly low cause fraction.  

 
Modelling strategy  
We used a standard CODEm approach to model deaths from rheumatic heart disease. There have been 
no substantive changes from the approach used in GBD 2017, including any covariate changes. 

 
Table 1: Selected covariates for CODEm models, rheumatic heart disease 

Level Covariate Transformation Direction 
1 Rheumatic heat disease summary exposure value scalar None 1 
1 Improved water (proportion) None -1 
1 Malnutrition None 1 
1 Sanitation (proportion with access) None -1 
2 Healthcare access and quality index None -1 
3 Lag distributed income per capita (I$) Log -1 
3 Socio-demographic Index None -1 
3 Education (years per capita) None -1 
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Input data 
Vital registration and verbal autopsy data were used to model ischaemic heart disease. We outliered 
verbal autopsy data in countries and subnational locations where high-quality vital registration data 
were also available. We also outliered non-representative subnational verbal autopsy data points, ICD8 
and ICD9BTL data points which were inconsistent with the rest of the data and created implausible time 
trends, and data in a number of Indian states identified by experts as poor-quality. 

 
Modelling strategy  
We used a standard CODEm approach to model deaths from ischemic heart disease. For GBD 2019, 
adjusted dietary covariates for consumption of fruits, omega-3 fatty acids, vegetables, nuts and seeds, 
and polyunsaturated fatty acids were replaced with the summary exposure value scalars for diet low in 
each of these factors. The direction for each dietary covariate was changed from -1 to 1 to as our a priori 
assumption is that low levels of intake of these dietary factors are associated with increasing mortality 
risk from ischaemic heart disease. We changed the direction of the alcohol variable from 0 to 1 to reflect 
our a priori hypothesis about the expected direction of the association between this risk factor and 
mortality risk of ischaemic heart disease. In addition, we changed the level of the covariate for trans 
fatty acid from 1 to 3. Besides these covariate changes, there are no other substantive changes from the 
approach used in GBD 2017. 
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Table: Selected covariates for CODEm models, ischaemic heart disease 
Covariate Transformation Level Direction 
Summary exposure value, IHD None 1 1 
Cholesterol (total, mean per capita) None 1 1 
Smoking prevalence None 1 1 
Systolic blood pressure (mmHg) None 1 1 
Mean BMI None 2 1 
Elevation over 1500m (proportion) None 2 -1 
Fasting plasma glucose None 2 1 
Outdoor pollution (PM2.5) None 2 1 
Indoor air pollution None 2 1 
Healthcare access and quality index None 2 -1 
Lag distributed income per capita (I$) Log 3 -1 
Summary exposure value, omega-3  None  3 1 
Summary exposure value, fruits  None 3 1 
Summary exposure value, vegetables  None 3 1 
Summary exposure value, nuts and seeds  None 3 1 
Pulses/legumes (kcal/capita, unadjusted) None 3 -1 
Summary exposure value, PUFA (percent, adjusted) None 3 1 
Alcohol (litres per capita) None 3 1 
Trans fatty acid None 3 1 
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Input data 
Verbal autopsy and vital registration data were used to model cerebrovascular disease (stroke). We 
reassigned deaths from verbal autopsy reports for cerebrovascular disease to the parent cardiovascular 
disease for both sexes for those under 20 years of age. We outliered non-representative subnational 
verbal autopsy datapoints. We also outliered ICD8, ICD9BTL, and tabulated ICD10 datapoints which were 
inconsistent with the rest of the data and created implausible time trends. Datapoints from sources 
which were implausibly low in all age groups and data points that were causing the regional estimates to 
be improbably high were outliered. 

 
Modelling strategy  
We used a standard CODEm approach to model deaths from stroke. The covariates included in the 
ensemble modelling process are listed in the table below. For GBD 2019, adjusted dietary covariates for 
consumption of fruits, omega-3 fatty acids, vegetables, nuts and seeds, and polyunsaturated fatty acids 
(PUFA) were replaced with the summary exposure value scalars for diet low in each of these factors. The 
direction for each dietary covariate was changed from -1 to 1 to as our a priori assumption is that low 
levels of intake of these dietary factors are associated with increasing mortality risk from stroke. We 
dropped the dietary covariate for whole grains (kcal/capita, adjusted) and the socio-demographic index 
covariate as exploratory analyses indicated that these variables were not predictive of stroke mortality. 
In addition, we changed the direction of the alcohol consumption covariate from 0 to 1 to reflect the 
expected direction of the association for this risk factor with stroke mortality. Apart from these 
covariate changes, there are no substantive changes from the approach used in GBD 2017. 

  

118



Table: Selected covariates for CODEm models, stroke 
Covariate Transformation Level Direction 
Summary exposure variable, stroke None 1 1 
Cholesterol (total, mean per capita) None 1 1 
Smoking prevalence None 1 1 
Systolic blood pressure (mmHg) None 1 1 
Mean BMI None 2 1 
Elevation over 1,500m (proportion) None 2 -1 
Fasting plasma glucose None 2 1 
Outdoor pollution (PM2.5) None 2 1 
Indoor air pollution None 2 1 
Healthcare Access and Quality Index None 2 -1 
Lag distributed income per capita (I$) Log 3 -1 
Summary exposure value, omega-3  None  3 1 
Summary exposure value, fruits  None 3 1 
Summary exposure value, vegetables  None 3 1 
Summary exposure value, nuts and seeds  None 3 1 
Pulses/legumes (kcal/capita, unadjusted) None 3 -1 
Summary exposure value, PUFA adjusted (percent) None 3 1 
Alcohol (litres per capita) None 3 1 
Trans fatty acid None 3 1 
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Input data 
Vital registration data were used to model cause-specific mortalty for hypertensive heart disease. We 
outliered ICD9BTL data points, which were inconsistent with the rest of the data and created implausible 
time trends. In addition, we outliered vital registration data from Grenada in 2017 for being implausibly 
low across all age groups. 

  

Modelling strategy  
We used a standard CODEm approach to model deaths from hypertensive heart disease. For GBD 2019, 
adjusted dietary covariates for consumption of fruits, omega-3 fatty acids, vegetables, nuts and seeds, 
and polyunsaturated fatty acids were replaced with the summary exposure value scalars for diet low in 
each of these factors. The direction for each dietary covariate was changed from -1 to 1 to as our a priori 
assumption is that low levels of intake of these dietary factors are associated with increasing mortality 
risk from hypertensive heart disease. We also changed the direction of the covariates for alcohol and 
socio-demographic index from 0 to 1 to reflect the expected direction of these covariates with mortality 
risk. Apart from these covariate updates, there are no other substantive changes from the approach 
used in GBD 2017. 
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Table: Selected covariates for CODEm models, hypertensive heart disease 
Covariate Transformation Level Direction 
Systolic blood pressure (mmHg) None 1 1 
Cholesterol (total, mean per capita) None 2 1 
Smoking prevalence None 2 1 
Mean BMI None 2 1 
Healthcare access and quality index None 2 -1 
Lag distributed income per capita (I$) Log 3 -1 
Socio-demographic Index None 3 1 
Alcohol (litres per capita) None 3 1 
Summary exposure value, omega-3  None 3 1 
Summary exposure value, fruits  None 3 1 
Summary exposure value, nuts and seeds  None 3 1 
Summary exposure value, PUFA  None 3 1 
Summary exposure value, vegetables  None 3 1 
Pulses/legumes (kcal/capita, unadjusted) None 3 -1 
Trans fatty acid (percent) None 3 1 
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Input data 
Sources used to estimate chronic respiratory disease mortality included vital registration, verbal 
autopsy, and surveillance data from China. Our outlier criteria excluded data points that (1) were 
implausibly high or low, (2) substantially conflicted with established age or temporal patterns, or (3) 
significantly conflicted with other data sources conducted from the same locations or locations with 
similar characteristics (ie, Socio-demographic Index). 

Modelling strategy  
The standard CODEm modelling approach was applied to estimate deaths due to chronic respiratory 
diseases.  Separate models were conducted for male and female mortality, and the age range for both 
models was 1 to 95+ years.  
 
Key Changes from GBD 2017 

- We added estimates for the following new locations: Monaco, San Marino, Cook Islands, Nauru, 
Niue, Palau, Tokelau, Tuvalu, Monaco, San Marino, St Kitts and Nevis 

- We added subnational location data for the following: Italy, Poland, Pakistan, the Philippines, 
and Nigeria 

- We excluded all MCCD (the very incomplete hospital death data largely from urban areas) and 
all SCD (earlier verbal autopsy data using lesser quality instruments and analysis) from India, 
based on discussions with GBD India collaborators. Thus, the estimates are driven by the more 
recent higher quality SRS verbal autopsy data and covariates. 

- Healthcare quality and access index covariate changed to a level 2 covariate from level 1. 
- Smoking prevalence and indoor air pollution both moved to a level 1 covariate from level 2.  
- We removed the covariate SEV for chronic respiratory disease.  
- The SDI covariate was allowed to take a positive or negative direction in GBD 2017, but was 

specified to only be selected if a negative association was detected in GBD 2019.   
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The following covariates were used for GBD 2019: 

Level Covariate Direction 

1 indoor air pollution (all cooking fuels) + 

cumulative cigarettes (10 years) + 

cumulative cigarettes (5 years) + 

smoking prevalence  + 

2 healthcare quality and access index - 

outdoor air pollution (PM2.5) + 

population above 1500m elevation (proportion) + 

3 LDI (I$ per capita) - 

education (years per capita) - 

socio-demographic index - 

population between 500 and 1,500m elevation (proportion) + 

population density over 1,000 people/kilometer2 (proportion) + 

 
Chronic respiratory diseases served as a “parent” to the following causes:  

- chronic obstructive pulmonary disease 
- pneumoconiosis (silicosis, asbestosis, coal worker’s pneumoconiosis, other pneumoconiosis) 
- asthma 
- interstitial lung disease and pulmonary sarcoidosis 
- other chronic respiratory diseases 
The unadjusted death estimates for all these “child” causes are summed and fit to the distribution of 
deaths estimated for the “parent” during the CODCorrect adjustment process.  This results in deaths 
recorded using non-specific coding systems, such as verbal autopsy, being included in the parent 
model and redistributed to the child models proportionately.  This approach assumes that deaths 
reported in non-specific data-sources have the same underlying distribution of specific causes as 
deaths reported in more specific data-sources. 
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Covariate Influences: 

The following plots show the influence of each covariate on the four CODEm models (male global, male 
data rich, female global, and female data rich). A positive standardized beta (to the right) means that the 
covariate was associated with increased death. A negative standardized beta (to the left) means the 
covariate was associated with decreased death. 

Male Global  

 
 
 

Male Data Rich 
 

 

Female Global 
 

 

Female Data Rich 
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Peptic Ulcer Disease 

Input data 
Data used to estimate unadjusted mortality of peptic ulcer disease consisted of vital registration data 
and vital registration sample data from those sources in the cause of death (COD) database that use 
ICD9 or ICD10 codes and report un-tabulated (individual) deaths. We marked data as outliers and 
excluded them in instances where garbage code redistribution and noise reduction, in combination with 
small sample sizes, resulted in unreasonable cause fractions or unreasonable time, age, or spatial 
trends; data from Tibet, Fiji, Kiribati, Palestine, Stockholm, and Mozambique were excluded for these 
reasons.  In situations where unreasonable temporal and spatial trends were observed at transitions 
between data sources, higher-quality data-sources were retained and lower-quality sources were 
excluded; this affected Kazakhstan, at the transition between ICD9-BTL and ICD10 coding, and 
subnational locations in India, where vital registration data biased toward in-hospital deaths (MCCD) 
were available for urban locations only. 

Modelling strategy  
We modelled deaths due to peptic ulcer disease with a standard CODEm model. The model followed 
standard parameters, with the exception that the start age of the model was 1 year instead of 0 and the 
linear floor rate was lowered to 0.0001 in order to better capture low data.   

Covariates entered into CODEm were the same in GBD 2019 as GBD 2017, with the following exceptions: 
covariates related to water and sanitation were promoted from level 2 to level 1, the alcohol covariate 
was demoted from level 1 to level 2, maternal education was replaced by a general education covariate, 
and the adjusted vegetable covariate was replaced by an unadjusted vegetable covariate and forced to 
take a negative direction (or not be selected).  A complete list is provided in the table below. 

Covariate Level Direction 
Sanitation, proportion with access 1 -1 
Scaled exposure variable for unsafe water source 1 1 
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Smoking prevalence 1 1 
Cumulative cigarettes (10 years) 1 1 
Cumulative cigarettes (5 years) 1 1 
Litres of alcohol consumed per capita 2 1 
Vegetables (grams, unadjusted) 2 -1 
Healthcare access and quality index 2 -1 
Lag distributed income (per capita) 3 -1 
Education (years per capita) 3 -1 
Socio-demographic Index 3 -1 

 

In CoDCorrect estimates for peptic ulcer disease and gastritis and duodenitis were first adjusted to sum 
to all upper digestive disease deaths, and then to sum to all-cause mortality with all other causes. 
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Input data 
Data used to estimate mortality of appendicitis consisted of vital registration and verbal autopsy data 
from the cause of death (COD) database. Outliers were identified if data violated well-established time 
or age trends. We also excluded data in instances where garbage code redistribution and noise 
reduction, in combination with small sample sizes, resulted in unreasonable cause fractions.  
 
Modelling strategy  
The estimation strategy used for fatal appendicitis is largely similar to methods used in GBD 2017. A 
standard CODEm model with location-level covariates was used to model deaths due to appendicitis 
with age restrictions for death estimations of 1 year for lower bound and 95+ for upper bound (see 
appendix section on CODEm method for details). Separate models were conducted for male and female 
mortality. We hybridised separate global and data-rich models to acquire unadjusted results, which we 
finalised and adjusted using CodCorrect to reach final YLLs due to appendicitis.  
 
Key changes from GBD 2017 

- We added estimates for the following new locations: Monaco, San Marino, Cook Islands, and 
Saint Kitts and Nevis. 

- We added subnational location data for the following: Italy, Poland, Pakistan, the Philippines, 
and Nigeria. 

- We excluded the maternal care and immunisation (MCI) covariate because it is redundant with 
the Healthcare Access and Quality Index covariate that was pre-existing in the model. The MCI 
covariate is often used as a proxy for health system access measured through clinic accessibility, 
attendance, and immunisation status.  

- We replaced adjusted dietary covariates with age-sex specific scaled exposure variable 
covariates with a direction of 1. 

- We changed the direction of Socio-demographic Index covariate from 0 to -1. 
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The following table has the full list of covariates used for appendicitis. 
 
Table 1. Covariates used in appendicitis mortality modelling 

Level Covariate Direction 

2 

Age-sex-specific scaled exposure variable for 
low fruit consumption + 

Age-sex-specific scaled exposure variable for 
low vegetable consumption + 

Healthcare Access and Quality Index - 

3 
Socio-demographic Index - 
Education (years per capita)  - 
Log LDI ($I per capita) - 

 

128



Inguinal, femoral, and abdominal hernia 
 
Flowchart 

YLLs

Garbage code 
redistribution

CODEm models 
Unadjusted deaths 
by location/year/

age/sex
CodCorrect

Location-level 
covariates

Noise reductionICD mapping Age-sex splitting

Adjusted 
deaths by 

location/year/
age/sex

Reference life table

Cause of death 
database

Vital registration 
data

Verbal autopsy data

Standardize 
input data

Input data

Process

Results

Database

Disability weights
Nonfatal

Burden estimation

Cause of death

  Covariates

 

Input data 
Data used to estimate mortality of inguinal, femoral, and abdominal hernia consisted of vital registration 
and verbal autopsy data from the cause of death (COD) database. Outliers were identified by systematic 
examination of datapoints for all location-years. Data that violated well-established time or age trends 
were marked as outliers and excluded. Data were also marked as outliers in instances where garbage 
code redistribution and noise reduction, in combination with small sample sizes, resulted in 
unreasonable cause fractions. Methods for assigning outlier status were consistent across both vital 
registration and verbal autopsy data. 
 
Modelling strategy  
The estimation strategy used for fatal inguinal, femoral, and abdominal hernia is largely similar to 
methods used in GBD 2017. A standard CODEm model with location-level covariates was used to model 
deaths due to inguinal, femoral, and abdominal hernia (see appendix section 3.1 for details). Separate 
models were conducted for male and female mortality. We hybridised separate global and data-rich 
models to acquire unadjusted results, which we finalised and adjusted using CodCorrect to reach final 
YLLs due to inguinal, femoral, and abdominal hernia.  
 
Key changes from GBD 2017 

- We added estimates for the following new locations: Monaco, San Marino, and Saint Kitts and 
Nevis. 

- We added subnational location data for the following: Italy, Poland, Pakistan, and the 
Philippines. 

- We excluded ICD9_BTL data sources from both male and female models because they were 
producing implausibly high estimates compared to ICD9_detail and ICD10_detail data sources. 

- We changed the lower bound of age-restrictions for death estimations from 1 year to 0 days. 
The upper bound remained the same at 95+ years. 
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- We changed the direction of the Socio-demographic Index covariate from 0 to -1.  
 
The following table has the full list of covariates used for fatal inguinal, femoral, and abdominal hernia. 
 
Table 1. Covariates used in inguinal, femoral, and abdominal hernia mortality modelling 

Level Covariate Direction 

1 

BMI (mean) - 
Cumulative cigarettes (10 years) + 
Cumulative cigarettes (5 years) + 
Smoking prevalence + 

2 Healthcare Access and Quality Index - 

3 
Socio-demographic Index - 
Education (years per capita)  - 
Log LDI ($I per capita) - 
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Input data 
Data used to estimate mortality of gallbladder and biliary diseases consisted of vital registration data 
from the cause of death (COD) database. Outliers were identified by systematic examination of 
datapoints for all location-years. Specifically, we marked data as outliers in instances where garbage 
code redistribution and noise reduction, in combination with small sample sizes, resulted in 
unreasonable cause fractions. We also marked as outliers those data that violated well-established time 
or age trends.  
 
Modelling strategy  
The estimation strategy used for fatal gallbladder and biliary diseases is largely similar to methods used 
in GBD 2017. A standard CODEm model with location-level covariates was used to model deaths due to 
gallbladder and biliary diseases with age-restrictions for death estimations of 1 year for lower bound 
and 95+ years for upper bound (see appendix section on CODEm method for details). Separate models 
were conducted for male and female mortality. We then hybridised separate global and data-rich 
models to acquire unadjusted results, which we finalised and adjusted using CodCorrect to reach final 
YLLs due to gallbladder and biliary diseases.  
 
Key changes from GBD 2017 

- We added estimates for the following new locations: Monaco, San Marino, Palau, and Saint Kitts 
and Nevis. 

- We added subnational location data for the following: Italy and Poland. 
- We changed the direction of Socio-demographic Index and lag-distributed income covariates 

from 0 to -1 in GBD 2019. 
- We replaced adjusted dietary covariates with age-sex-specific scaled exposure variable 

covariates with a direction of 1. 
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The following table has the full list of covariates used for fatal gallbladder and biliary diseases.  
 
 
Table 1. Covariates used in gallbladder and biliary diseases mortality modelling 

Level Covariate Direction 

1 
Age-sex-specific scaled exposure variable for 
low polyunsaturated fatty acids + 

BMI (mean) + 

2 

Alcohol (litres per capita) + 
Healthcare Access and Quality Index - 
Age-sex-specific scaled exposure variable for 
high red meat consumption + 

Population over 65 (proportion) + 
3 Socio-demographic Index - 
 Education (years per capita)  - 
 Log LDI ($I per capita) - 
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Input Data and Methodological Summary for Idiopathic Epilepsy 

Input data 
Data used to estimate epilepsy mortality included vital registration (VR), verbal autopsy, and China 
mortality surveillance data from the cause of death (COD) database. Our outlier criteria were to exclude 
data points that were (1) implausibly high or low relative to global or regional patterns, (2) substantially 
conflicted with established age or temporal patterns, or (3) substantially conflicted with other data 
sources based from the same locations or locations with similar characteristics (i.e., socio-demographic 
index). 
 

Modeling strategy  
The standard CODEm modelling approach (detailed in a appendix section 3.1) was used to estimate 
deaths due to idiopathic epilepsy. Separate models were conducted for male and female mortality, and 
the age range for both models was 28 days – 95+ years. Changes to these models relative to GBD 2017, 
and the complete list of covariates used in GBD 2019 are displayed below.  Unadjusted death estimates 
were adjusted using CoDCorrect to produce final estimates of YLLs.  

Key Changes from GBD 2017 

- Introduction of subnational location data for Italy, Poland, Pakistan, the Philippines, and Nigeria.  
- Introduction of the following new locations: Monaco, San Marino, Cook Islands, Nauru, Niue, 

Palau, Tokelau, Tuvalu, Monaco, San Marino, St Kitts, and Nevis.  
- Changes in covariate choices. A covariate for pig meat consumption (kcal per capita) used in 

GBD 2017 was not modeled for use in CODEm in GBD 2019.  All other covariates remained from 
GBD2017 (see Table 1).  
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Table 1. Covariates used in Idiopathic Epilepsy mortality modelling 

Level Covariate Direction 
1 Pigs (per capita) + 

SEV scalar: epilepsy + 
Mean systolic blood pressure (mmHg) + 

2 Health access and quality index - 
Mean body mass index + 
Mean serum total cholesterol (mmol/L) + 

3 Cumulative cigarettes (10 years) + 
Cumulative cigarettes (5 years) + 
Education (years per capita) - 
Log LDI (per capita) - 
Socio-demographic Index - 

 

The following plots show the influence of each covariate on the four CODEm models (male global, male 
data rich, female global, and female data rich). A positive standardized beta (to the right) means that the 
covariate was associated with increased death. A negative standardized beta (to the left) means the 
covariate was associated with decreased death. 

Male, global 

 

Male, data rich
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Female, global 

 

Female, data rich
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Diabetes Mellitus 
 

Diabetes mellitus mortality was estimated for overall diabetes mellitus, diabetes mellitus type 1, and 
diabetes mellitus type 2 in GBD 2019.  
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Input Data and Methodological Summary for diabetes mellitus 
Input data 
Overall diabetes mellitus mortality was estimated using deaths directly attributed to diabetes mellitus. 
We used verbal autopsy and vital registration data as inputs into the model.  

Verbal autopsy data: We outliered data points from sources where there were zero deaths estimated in 
an age group as this was not realistic for deaths due to diabetes and we determined that these data 
sources were unreliable. 

Vital registration data: We outliered all data from the India Medical Certification of Cause of Death 
report since the source of the data was unreliable according to expert opinion. We also outliered 
ICD9BTL data points that were inconsistent with the rest of the data series and created unlikely time 
trends. 
 

Modelling strategy  
The Cause of Death Ensemble model (CODEm) was used for deaths due to diabetes mellitus estimation.  
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In the overall diabetes mellitus model, we used two models to estimate overall diabetes deaths with 
different age restrictions. This is because deaths in younger age groups are almost exclusively due to 
type 1 diabetes, while deaths in older ages are primarily due to type 2 diabetes. This allowed us to select 
predictive covariates that are specific to the pathophysiology of diabetes type 1 and type 2. We set the 
younger age model from 0-14 years and the older age model from 15-95+ years. We determined the age 
threshold based on evidence of the onset age of diabetes type 2 occurring at younger ages.  

Covariate selection 
The following table lists the covariates included in the model. This requires that the covariate selected 
for the model must have the directional relationship with diabetes mellitus deaths. In GBD 2019, we 
made 2 updates. First, we changed 4 covariates to reflect the most current covariate available, 
proportion underweight to age-standardised underweight (weight-for-age) summary exposure variable, 
proportion stunting to age-standardised stunting (height-for-age) summary exposure variable, energy-
adjusted grams of fruits to age- and sex-specific summary exposure variable for low fruit, and energy-
adjusted grams of vegetables to age- and sex-specific summary exposure variable for low vegetables. 
Second, we selected a direction on covariates that we did not set a direction in previous GBD. We 
determined the direction based on the strength of the evidence. 
  

Model Level Covariate Direction 
0-14 years 1 Healthcare access and quality index - 

3 Education years per capita - 
2 Age-standardised fertility rate + 
2 Latitude + 
2 Age-standardised underweight (weight-for-

age) summary exposure variable 
- 

2 Percentage of births occurring in women 
>35 years old 

+ 

2 Percentage of births occurring in women 
>40 years old 

+ 

3 Socio-demographic Index - 
2 Age-standardised stunting (height-for-age) 

summary exposure variable 
- 

2 Mean birth weight - 
15 + model 1 Age-standardised mean fasting plasma 

glucose (mmol/L) 
+ 

1 Age-standardised prevalence of diabetes + 
3 Education years per capita - 
3 Lag-distributed income per capita + 
1 Mean BMI + 
2 Mean cholesterol + 
2 Mean systolic blood pressure + 
1 Prevalence of obesity + 
2 Age- and sex-specific summary exposure 

variable for low fruit 
- 

2 Energy-adjusted grams of sugar + 
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Model Level Covariate Direction 
2 Age- and sex-specific summary exposure 

variable for low vegetables 
- 

3 Healthcare access and quality index - 
2 Age- and sex-specific summary exposure 

variable for alcohol use 
+ 

 
Covariate Influences: 

The following plots show the influence of each covariate on the four CODEm models (male global, male 
data rich, female global, and female data rich). A positive standardized beta (to the right) means that the 
covariate was associated with increased death. A negative standardized beta (to the left) means the 
covariate was associated with decreased death.  

 Data rich Global 
Female  
0-14 
model 

  

138



 Data rich Global 
Male  
0-14 
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Female 
15+ 
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Chronic Kidney Disease  
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Cause of death

  Covariates

Input data  

Vital registration and verbal autopsy data were used to model mortality due to chronic kidney disease. 
Data were standardised and mapped according to the GBD causes of death ICD mapping method. These 
data were then age-sex split, and appropriate redistribution of garbage code data was performed. Data 
points that violated well-established age or time trends or that resulted in extremely high or low cause 
fractions were marked as outliers and excluded.  

Modelling strategy  
The estimation strategy used for fatal chronic kidney disease is largely similar to methods used in GBD 
2017. A standard CODEm model with location-level covariates was used to model deaths due to chronic 
kidney disease.  

Key Changes from GBD 2017 

- We removed the following covariates: whole grains per capita, animal fat per capita, and log 
lagged 10-year income per capita. We added lagged 10-year income per capita.  

- Specified that CODem could only select covariates if the relationship detected between the 
covariate and mortality was in the direction known or suspected based on prior studies.  This 
resulted the following changes: 1) SDI specified as having a negative association - previously not 
specified; 2) Red meat consumption specified with a positive association - previously not specified 

The full list of covariates used in the GBD 2019 model are displayed below.   

Level Covariate Direction 

1 

Diabetes fasting plasma glucose (mmol/L) + 
Diabetes age-standardised prevalence (proportion) + 
Mean systolic blood pressure (mmHg) + 
Mean BMI + 
Healthcare access and quality index  − 

2 
Mean cholesterol + 
Total Calories available per capita per day + 
Red meat unadjusted (kcal per capita)  + 

3 
Socio-demographic Index  − 
Education (years per capita) − 
LDI (I$ per capita) −  
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Covariate Influences: 

The following plots show the influence of each covariate on the four CODEm models (male global, male 
data rich, female global, and female data rich). A positive standardized beta (to the right) means that the 
covariate was associated with increased death. A negative standardized beta (to the left) means the 
covariate was associated with decreased death. 

 

Male Global 

 

Male Data Rich 

 
Female Global 

 

Female Data Rich 
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Congenital birth defects: neural tube defects, congenital heart 
anomalies, orofacial clefts, Down syndrome, Turner syndrome, 
Klinefelter syndrome, other chromosomal disorders, congenital 
musculoskeletal anomalies, urogenital congenital anomalies, digestive 
congenital anomalies, and other congenital birth defects. 
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Input data 
For GBD 2019, input data for estimating mortality due to congenital anomalies was centrally extracted, 
processed, and stored in cause of death (CoD) database. Vital registration (VR) was the dominant data 
type, followed by verbal autopsy (VA) and surveillance. Those CoD data sources that specified the 
subcause of birth defect were included in estimation of both the parent congenital anomalies model as 
well as in subtype-specific models.  

For GBD 2019, data exclusions were limited. The majority of VA data were outliered in those over 5 
years old as the age patterns were unreliable and led to poor model performance in the under-5 age 
groups. We also excluded some data sources from the parent model where only a subset of subcauses 
were specified (e.g., congenital heart disease, neural tube defects, and other congenital anomalies) and 
the sum of the subcauses clearly represented systematic underreporting of one of the subcauses. 
Systematic underreporting was suspected when sex- and age-specific rates were more than an order of 
magnitude lower than neighbouring or comparable locations. Data sources for those locations were still 
included by default for subcause specific models because underreporting of the total was not assumed 
to necessarily be associated with underreporting of all of the component conditions.  

Modelling strategy  
All types of congenital anomalies were estimated using cause of death ensemble modelling (CODEm) for 
GBD 2019, as was done for previous iterations of the GBD study. Specific causes included neural tube 
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defects, congenital heart anomalies, orofacial clefts, Down syndrome, other chromosomal anomalies, 
congenital musculoskeletal anomalies, urogenital congenital anomalies, digestive congenital anomalies, 
and other congenital birth defects. We assumed no mortality from either Klinefelter syndrome or Turner 
syndrome, for which we model nonfatal outcomes only. For GBD 2019, we modelled congenital 
anomalies as a cause of death for ages 0–69 years only, assuming that all mortality from congenital 
conditions occurs before age 70 years of age.  

For GBD 2016, we added three new causes to the congenital anomalies: congenital musculoskeletal and 
limb anomalies; urogenital congenital anomalies; and digestive congenital anomalies. We made no 
additions to the causes of congenital anomalies for GBD 2017 or 2019. 

Table 1: Covariates tested for CODEm model of overall congenital birth defects 

Covariate Transformation Level Direction 
Maternal alcohol consumption during pregnancy (proportion) None 1 + 

In-facility delivery (proportion) None 1 - 
Live births 35+ (proportion) None 1 + 
Folic acid unadjusted (ug) None 1 - 

Folic acid fortification index None 1 - 
Birth prevalence of congenital heart disease None 1 + 
Birth prevalence of chromosomal anomalies None 1 + 

Legality of abortion None 2 - 
Antenatal care (1 visit) coverage (proportion) None 2 - 

Age-standardised summary exposure value (SEV) of smoking None 2 + 
Antenatal care (4 visits) coverage (proportion) None 2 - 

Healthcare Access and Quality Index None 2 - 
Maternal education (years per capita) None 3 - 

Alcohol (litres per capita) None 3 + 
Age-standardised SEV of low fruits None 3 + 

Outdoor air pollution (PM2.5) None 3 + 
Age-standardised SEV of household air pollution None 3 + 

Socio-demographic Index None 3 - 
Age-standardised SEV of low vegetables None 3 + 

Table 2: Covariates tested for CODEm model of neural tube defects 

Covariate Transformation Level Direction 
In-facility delivery (proportion) None 1 - 

Folic acid unadjusted (ug) None 1 - 
Folic acid fortification index None 1 - 

Healthcare Access and Quality Index None 2 - 
Antenatal care (1 visit) coverage (proportion) None 2 - 
Antenatal care (4 visits) coverage (proportion) None 2 - 

Age-standardised SEV of smoking None 2 + 
Age-standardised SEV of low fruits None 3 + 

Age-standardised SEV of low vegetables None 3 + 
Maternal education (years per capita) None 3 - 

Socio-demographic Index None 3 - 
Legality of abortion None 2 - 

Maternal alcohol consumption during pregnancy (proportion) None 3 + 
Age-standardised SEV of household air pollution None 3 + 
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Age-standardised SEV of fasting plasma glucose None 3 + 
Litres of alcohol consumed per capita None 3 + 

Table 3: Covariates selected for CODEm model of congenital heart anomalies 

Covariate Transformation Level Direction 
Maternal alcohol consumption during pregnancy (proportion) None 1 + 

Birth prevalence of congenital heart disease None 1 + 
Socio-demographic Index Log 2 - 

Age-standardised SEV of smoking None 2 + 
Age-standardised SEV of diabetes None 2 + 

Healthcare Access and Quality Index None 2 - 
Legality of abortion None 2 - 

Antenatal care (1 visit) coverage (proportion) None 2 - 
In-facility delivery (proportion) None 2 - 

Maternal education (years per capita) None 3 - 
Alcohol (litres per capita) None 3 + 

Antenatal care (4 visits) coverage (proportion) None 3 - 
Skilled birth attendance (proportion) None 3 - 

Live births 35+ (proportion) None 3 + 

Table 4: Covariates selected for CODEm model of cleft lip and cleft palate 

Covariate Transformation Level Direction 
Socio-demographic Index None 1 - 

Folic acid fortification index None 1 - 
Age-standardised SEV of diabetes None 2 + 

Maternal alcohol consumption during pregnancy (proportion) None 2 + 
Healthcare Access and Quality Index None 2 - 

Legality of abortion None 2 - 
Skilled birth attendance (proportion) None 2 - 

Age-standardised SEV of smoking None 2 + 
Age-standardised SEV of household air pollution None 3 + 

Age-standardised SEV of low vegetables None 3 + 
Alcohol (litres per capita) None 3 + 

Antenatal care (4 visits) coverage (proportion) None 3 - 
Maternal education (years per capita) None 3 - 

Age-standardised SEV of low fruits None 3 + 
Antenatal care (1 visit) coverage (proportion) None 3 - 

Table 5: Covariates selected for CODEm model of Down syndrome 

Covariate Transformation Level Direction 
Live births 35+ (proportion) None 1 + 

Legality of abortion None 1 - 
Live births 40+ (proportion) None 1 + 

Birth prevalence of chromosomal anomalies None 1 + 
Socio-demographic Index None 2 - 

In-facility delivery (proportion) None 2 - 
Healthcare Access and Quality Index None 2 - 

Maternal alcohol consumption during pregnancy (proportion) None 3 + 
Antenatal care (1 visit) coverage (proportion) None 3 - 

Maternal education (years per capita) None 3 - 
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Age-standardised SEV of household air pollution None 3 + 
Antenatal care (4 visits) coverage (proportion) None 3 - 

Age-standardised SEV of low vegetables None 3 - 
Age-standardised SEV of smoking None 3 + 

Litres of alcohol consumed per capita None 3 + 

Table 6: Covariates selected for CODEm model of other chromosomal abnormalities 

Covariate Transformation Level Direction 
Live births 35+ (proportion) None 1 + 
Live births 40+ (proportion) None 1 + 

Legality of abortion None 1 - 
Lag distributed income (LDI) (I$ per capita) Log 2 - 

Healthcare Access and Quality Index None 2 - 
Antenatal care (4 visits) coverage (proportion) None 2 - 
Antenatal care (1 visit) coverage (proportion) None 2 - 

In-facility delivery (proportion) None 2 - 
Maternal alcohol consumption during pregnancy (proportion) None 2 + 

Socio-demographic Index None 3 - 
Alcohol (litres per capita) None 3 + 

Age-standardised SEV of smoking None 3 + 
Age-standardised SEV of household air pollution None 3 + 

Maternal education (years per capita) None 3 - 
Skilled birth attendance (proportion) None 3 - 

Table 7: Covariates selected for CODEm model of congenital musculoskeletal and limb anomalies 

Covariate Transformation Level Direction 
Maternal alcohol consumption during pregnancy (proportion) None 1 + 

Legality of abortion None 1 - 
In-facility delivery (proportion) None 2 - 

Ag-standardised SEV of diabetes None 2 + 
Socio-demographic Index None 2 - 

Healthcare Access and Quality Index None 2 - 
Age-standardised SEV of household air pollution None 2 + 

Age-standardised SEV of smoking None 2 + 
Antenatal care (4 visits) coverage (proportion) None 3 - 

Alcohol (litres per capita) None 3 + 
Age-standardised SEV of low fruits None 3 + 

Age-standardised SEV of low vegetables None 3 + 
Maternal education (years per capita) None 3 - 

Antenatal care (1 visit) coverage (proportion) None 3 - 
LDI per capita Log 3 - 

Table 8: Covariates selected for CODEm model of urogenital congenital anomalies 

Covariate Transformation Level Direction 
Age-standardised SEV of smoking None 1 + 

Maternal alcohol consumption during pregnancy (proportion) None 1 + 
Healthcare Access and Quality Index None 2 - 

Diabetes age-standardised prevalence (proportion) None 2 + 
Socio-demographic Index None 2 - 
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Age-standardised SEV of outdoor air pollution None 2 + 
In-facility delivery (proportion) None 2 - 

Age-standardised SEV of household air pollution None 2 + 
Antenatal care (1 visit) coverage (proportion) None 3 - 

Alcohol (litres per capita) None 3 + 
Maternal education (years per capita) None 3 - 

LDI (I$ per capita) Log 3 - 
Antenatal care (4 visits) coverage (proportion) None 3 - 

Table 9: Covariates selected for CODEm model of digestive congenital anomalies  

Covariate Transformation Level Direction 
Maternal alcohol consumption during pregnancy (proportion) None 1 + 

Age-standardised SEV of smoking None 1 + 
Age-standardised SEV of household air pollution None 2 + 

Diabetes age-standardised prevalence (proportion) None 2 + 
Age-standardised SEV of diabetes None 2 + 

Socio-demographic Index None 2 - 
Age-standardised SEV of obesity None 2 + 
In-facility delivery (proportion) None 2 - 

Healthcare Access and Quality Index None 2 - 
Alcohol (litres per capita) None 3 + 

Maternal education (years per capita) None 3 - 
Age-standardised SEV of low vegetables None 3 + 

Antenatal care (1 visit) coverage (proportion) None 3 - 
Antenatal care (4 visits) coverage (proportion) None 3 - 

Age-standardised SEV of low fruits None 3 + 
LDI (I$ per capita) Log 3 - 

MCI None 3 - 

Table 10: Covariates selected for CODEm model of other congenital birth defects 

Covariate Transformation Level Direction 
Maternal alcohol consumption during pregnancy (proportion) None 1 + 

Live births 35+ (proportion) None 1 + 
Maternal education (years per capita) None 2 - 

Legality of abortion None 2 - 
In-facility delivery (proportion) None 2 - 

Age-standardised SEV of household air pollution None 2 + 
Healthcare Access and Quality Index None 2 - 

Antenatal care (1 visit) coverage (proportion) None 3 - 
Age-standardised SEV of diabetes None 3 + 

LDI (I$ per capita) Log 3 - 
Socio-demographic Index None 3 - 

Antenatal care (4 visits) coverage (proportion) None 3 - 
Alcohol (litres per capita) None 3 + 
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Input data 
In GBD 2017, we estimated injury mortality from vital registration, verbal autopsy, mortality 
surveillance, censuses, surveys, and police record data. Police and crime reports were data sources 
uniquely used for the estimation of deaths from road traffic injury and interpersonal violence. The police 
data were collected from published studies, national agencies, and institutional surveys such as the 
United Nations Crime Trends Survey and the WHO Global Status Report on Road Safety Survey. For 
countries with vital registration data we did not use police records, except if the recorded number of 
road injury and interpersonal violence deaths from police records exceeded that in the vital registration.  

Infrequently, data points were marked as outliers. Outlier criteria excluded data points that (1) were 
implausibly high or low relative to global or regional patterns, (2) substantially conflicted with 
established age or temporal patterns, or (3) significantly conflicted with other data sources conducted 
from the same locations or locations with similar characteristics (ie, Socio-demographic Index).  

Modelling strategy 
Overview 
In GBD 2019, the standard CODEm modelling approach was applied to estimate deaths due to all causes 
of injury, excluding “Exposure to forces of nature,” and “Conflict and terrorism”. These causes were 
modelled solely outside of the CODEm process as fatal discontinuities estimation; this process is detailed 
further in the section on fatal discontinuities estimation in the appendix. 

Fatal discontinuity was estimated for ten injury causes also modeled in CODEm. These causes included 
“Other transport injuries”, “Fire, heat, and hot substances”, “Poisoning by other means”, “Other 
exposure to mechanical forces”, “Non-venomous animal contact”, “Environmental heat and cold 
exposure”, “Physical violence by firearm”, “Physical violence by sharp object”, “Physical violence by 
other means”, “Executions and police conflict”. Final fatal discontinuity estimations for these causes 
were merged with CODEm results post-CoDCorrect to produce final cause of death results. 
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Refer to the table at the end of this section for a complete list of the cause-of-injury categories, 
modelling strategies, and covariate changes from GBD 2017. 

GBD injury codes and categories 
The International Classification of Diseases (ICD) was used to classify injuries. In GBD, injury incidence 
and death are defined as ICD-9 codes E000-E999 and ICD-10 chapters V to Y. There is one exception: 
deaths and cases of alcohol poisoning and drug overdoses are classified under drug and alcohol use 
disorders. In GBD 2019, injury causes were organized into 30 mutually exclusive and collectively 
exhaustive external cause-of-injury categories.  

Preparation of data  
The preparation of cause of death data includes age splitting, age-sex splitting, smoothing, and outlier 
detection. These steps are described in detail by Naghavi et al and Lozano et al.1,2,3 The concept of 
“garbage codes” and redistribution of these codes was proposed in GBD 1990.4 Garbage codes are 
causes of death that should not be identified as specific underlying causes of death but have been 
entered as the underlying cause of death on death certificates. A classic example of these types of codes 
in injuries chapters are “Exposure to unspecified factor” (X59 in ICD-10 and E887 in ICD-9) and all 
undetermined intent codes (Y10-Y34 in ICD-10 and E980-E988 in ICD-9). Other examples of garbage 
codes in injuries are the coding of an injury death to intermediate codes like septicemia or peritonitis or 
as an ill-defined and unknown cause of mortality (R99). Approximately 2% of total deaths in countries 
with vital registration data are assigned to these three injury garbage code categories. 

Splitting into sublevel causes 
In countries with non-detail ICD code data, cause-of-injury categories were proportionally split into 
sublevel cause-of-injury categories. The sublevel cause-of-injury causes were created in the CoDCorrect 
process. One of the countries with non-detail ICD code data is South Africa, and in GBD 2013 the 
proportions of sublevel cause-of-injury were based on vital registration data. For GBD iterations of 2015, 
2016, 2017, and 2019, the proportions were based on post-mortem investigation of injury deaths as 
described in the paper by Matzopoulos et al. 2015.5 

Limitations and model assumptions 
We added police data for road injuries and interpersonal violence to help predict level and age patterns 
in countries with sparse or absent cause of death data even though we know from countries with near-
complete vital registration data that police records tend to underestimate the true level of deaths. 
However, we applied police data estimates in instances where reported deaths were higher than vital 
registration numbers. 

During GBD 2019, the input data for the US was reviewed for completeness, and we determined that 
the US National Vital Statistics System (NVSS) systematically underreports deaths due to police violence 
by about 50% every year. In order to quantify this bias, we ran a network meta-regression on NVSS data 
with direct comparisons by state and year to Mapping Police Violence (MPV), an alternate open-source 
database that we believe more accurately captures deaths due to police violence, and indirect 
comparisons to an additional source, Fatal Encounters (FE). The regression included a fixed effect on 
state to capture different underreporting rates across states, but assumed that underreporting rates are 
constant across age, sex, and year. Additionally, since MPV does not attempt to capture police killed by 
civilians and neither MPV nor FE attempt to capture executions, death counts from the FBI's Law 

149



Enforcement Officers Killed and Assaulted database and the Death Penalty Information Center (DPIC) 
were added to these data sources in order to conform them to the GBD definition of executions and 
police conflict. We then used the underreporting rates estimated by the network meta-regression to 
scale the CODCorrect estimates for executions and police conflict in the United States upwards to a 
more accurate level. To maintain consistency with the all-cause mortality envelope, the deaths added to 
executions and police conflict were also removed proportionally from interpersonal violence and its 
relevant sub-causes. Record linkage between NVSS and open-source databases has shown that 
interpersonal violence is the most common underlying cause of death listed on death certificates for 
mis-assigned police violence deaths.6 

Covariates 
The following covariates were included.  

Transport Injuries 
Level Covariate Direction 
1 BAC law  professional drivers (quartile) 1 
1 BAC law general population (quartile) 1 
1 BAC law youth drivers (quartile) 1 
1 Liters of alcohol consumed per capita 1 
1 Speed limit law rural (quartile) 1 
1 Speed limit law urban (quartile) 1 
1 Vehicles - 2 wheels fraction (proportion) 1 
1 Vehicles - 2+4 wheels (per capita) 1 
2 Education (years per capita) -1 
2 Healthcare access and quality index -1 
2 LDI (I$ per capita) -1 
2 Population 15 to 30 (proportion) 1 
2 Population Density (300-500 ppl/sqkm, 

proportion) 
1 

2 Population Density (500-1000 ppl/sqkm, 
proportion) 

1 

2 Population-weighted mean temperature 1 
2 Socio-demographic Index -1 
3 Rainfall Quintile 5 (proportion) 1 
Road injuries 
Level Covariate Direction 
1a BAC law  professional drivers (quartile) 1 
1a BAC law general population (quartile) 1 
1a BAC law youth drivers (quartile) 1 
1 Liters of alcohol consumed per capita 1 
1 Log-transformed SEV scalar: Road Inj 1 
1a Speed limit law rural (quartile) 1 
1a Speed limit law urban (quartile) 1 
1 Vehicles - 2 wheels (per capita) 1 
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1 Vehicles - 2 wheels fraction (proportion) 1 
1 Vehicles - 2+4 wheels (per capita) 1 
1 Vehicles - 4 wheels (per capita) 1 
2b Education (years per capita) -1 
2 Healthcare access and quality index -1 
2b LDI (I$ per capita) -1 
2 Population 15 to 30 (proportion) 1 
2 Population Density (300-500 ppl/sqkm, 

proportion) 
1 

2 Population Density (500-1000 ppl/sqkm, 
proportion) 

1 

2 Population-weighted mean temperature 1 
2b Socio-demographic Index -1 
3 Rainfall Quintile 5 (proportion) 1 
Pedestrian road injuries 
Level Covariate Direction 
1 BAC law  professional drivers (quartile) 1 
1 BAC law general population (quartile) 1 
1 BAC law youth drivers (quartile) 1 
1 Liters of alcohol consumed per capita 1 
1 Log-transformed SEV scalar: Pedest 1 
1 Speed limit law rural (quartile) 1 
1 Speed limit law urban (quartile) 1 
1 Vehicles - 2 wheels fraction (proportion) 1 
1 Vehicles - 2+4 wheels (per capita) 1 
2 Education (years per capita) -1 
2 Healthcare access and quality index -1 
2 LDI (I$ per capita) -1 
2 Population 15 to 30 (proportion) 1 
2 Population Density (300-500 ppl/sqkm, 

proportion) 
1 

2 Population Density (500-1000 ppl/sqkm, 
proportion) 

1 

2c Population-weighted mean temperature 1 
2 Socio-demographic Index -1 
3 Rainfall Quintile 5 (proportion) 1 
Pedestrian road injuries 
Level Covariate Direction 
1 BAC law  professional drivers (quartile) 1 
1 BAC law general population (quartile) 1 
1 BAC law youth drivers (quartile) 1 
1 Liters of alcohol consumed per capita 1 
1 Log-transformed SEV scalar: Cyclist 1 
1 Speed limit law rural (quartile) 1 
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1 Speed limit law urban (quartile) 1 
1 Vehicles - 2 wheels fraction (proportion) 1 
1 Vehicles - 2+4 wheels (per capita) 1 
2 Education (years per capita) -1 
2 Healthcare access and quality index -1 
2 LDI (I$ per capita) -1 
2 Population 15 to 30 (proportion) 1 
2 Population Density (300-500 ppl/sqkm, 

proportion) 
1 

2 Population Density (500-1000 ppl/sqkm, 
proportion) 

1 

2 Population-weighted mean temperature 1 
2 Socio-demographic Index -1 
3 Rainfall Quintile 5 (proportion) 1 
Motorcyclist road injuries 
Level Covariate Direction 
1 BAC law  professional drivers (quartile) 1 
1 BAC law general population (quartile) 1 
1 BAC law youth drivers (quartile) 1 
1 Liters of alcohol consumed per capita 1 
1 Log-transformed SEV scalar: Mot Cyc 1 
1 Speed limit law rural (quartile) 1 
1 Speed limit law urban (quartile) 1 
1d Vehicles - 2 wheels fraction (proportion) 1 
2 Education (years per capita) -1 
2 Healthcare access and quality index -1 
2 LDI (I$ per capita) -1 
2 Population 15 to 30 (proportion) 1 
2 Population Density (300-500 ppl/sqkm, 

proportion) 
1 

2 Population Density (500-1000 ppl/sqkm, 
proportion) 

1 

2 Population-weighted mean temperature 1 
2 Socio-demographic Index -1 
3 Rainfall Quintile 5 (proportion) 1 
Motor vehicle road injuries 
Level Covariate Direction 
1 BAC law  professional drivers (quartile) 1 
1 BAC law general population (quartile) 1 
1 BAC law youth drivers (quartile) 1 
1 Liters of alcohol consumed per capita 1 
1 Log-transformed SEV scalar: Mot Veh 1 
1 Speed limit law rural (quartile) 1 
1 Speed limit law urban (quartile) 1 
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1 Vehicles - 4 wheels (per capita) 1 
2 Education (years per capita) -1 
2 Healthcare access and quality index -1 
2 LDI (I$ per capita) -1 
2 Population 15 to 30 (proportion) 1 
2 Population Density (300-500 ppl/sqkm, 

proportion) 
1 

2 Population Density (500-1000 ppl/sqkm, 
proportion) 

1 

2 Population-weighted mean temperature 1 
2 Socio-demographic Index -1 
3 Rainfall Quintile 5 (proportion) 1 
Other road injuries 
Level Covariate Direction 
1 BAC law  professional drivers (quartile) 1 
1 BAC law general population (quartile) 1 
1 BAC law youth drivers (quartile) 1 
1 Liters of alcohol consumed per capita 1 
1 Log-transformed SEV scalar: Oth Road 1 
1 Speed limit law rural (quartile) 1 
1 Speed limit law urban (quartile) 1 
1 Vehicles - 2 wheels fraction (proportion) 1 
1 Vehicles - 2+4 wheels (per capita) 1 
2 Education (years per capita) -1 
2 Healthcare access and quality index -1 
2 LDI (I$ per capita) -1 
2 Population 15 to 30 (proportion) 1 
2 Population-weighted mean temperature 1 
3 Rainfall Quintile 5 (proportion) 1 
3e Socio-demographic Index -1 
Other transport injuries 
Level Covariate Direction 
1 BAC law  professional drivers (quartile) 1 
1 BAC law general population (quartile) 1 
1 BAC law youth drivers (quartile) 1 
1 Liters of alcohol consumed per capita 1 
1 Log-transformed SEV scalar: Oth Trans 1 
1 Speed limit law rural (quartile) 1 
1 Speed limit law urban (quartile) 1 
1f Vehicles - 2 wheels fraction (proportion) 1 
1 Vehicles - 2+4 wheels (per capita) 1 
2 Education (years per capita) -1 
2 Healthcare access and quality index -1 
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2 LDI (I$ per capita) -1 
2 Population 15 to 30 (proportion) 1 
2 Population Density (300-500 ppl/sqkm, 

proportion) 
1 

2 Population Density (500-1000 ppl/sqkm, 
proportion) 

1 

2 Population-weighted mean temperature 1 
2 Socio-demographic Index -1 
3 Rainfall Quintile 5 (proportion) 1 
Falls 
Level Covariate Direction 
1 Education (years per capita) -1 
1 Liters of alcohol consumed per capita 1 
1 Log-transformed SEV scalar: Falls 1 
2 Healthcare access and quality index -1 
2 Population-weighted mean temperature -1 
3 Elevation Over 1500m (proportion) 1 
3 LDI (I$ per capita) -1 
3 Socio-demographic Index -1 
Drowning 
Level Covariate Direction 
1 Coastal Population within 10km (proportion) 1 
1 Landlocked Nation (binary) -1 
1 Log-transformed SEV scalar: Drown 1 
1 Population-weighted mean temperature 1 
1 Rainfall Quintile 1 (proportion) -1 
1 Rainfall Quintile 5 (proportion) 1 
2 Elevation Under 100m (proportion) 1 
3 Education (years per capita) -1 
3 LDI (I$ per capita) -1 
3 Socio-demographic Index -1 
Fire, heat, and hot substances 
Level Covariate Direction 
1 Log-transformed SEV scalar: Fire 1 
1 Population-weighted mean temperature 1 
2 Healthcare access and quality index -1 
2 Indoor Air Pollution (All Cooking Fuels) 1 
2 Population Density (over 1000 ppl/sqkm, 

proportion) 
1 

2 Tobacco (cigarettes per capita) 1 
3 Education (years per capita) -1 
3 LDI (I$ per capita) -1 
3 Socio-demographic Index -1 
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Poisonings 
Level Covariate Direction 
1 Log-transformed SEV scalar: Poison 1 
1 Opium Cultivation (binary) 1 
1 Population-weighted mean temperature 1 
2 Healthcare access and quality index -1 
2 Population Density (over 1000 ppl/sqkm, 

proportion) 
-1 

2 Population Density (under 150 ppl/sqkm, 
proportion) 

1 

3 Education (years per capita) -1 
3 LDI (I$ per capita) -1 
3 Socio-demographic Index -1 
Poisoning by carbon monoxide 
Level Covariate Direction 
1 Log-transformed SEV scalar: Inj Pois CO 1 
2 Population-weighted mean temperature -1 
3 Education (years per capita) -1 
3 Healthcare access and quality index -1 
3 LDI (I$ per capita) -1 
3 Socio-demographic Index -1 
Poisoning by other means 
Level Covariate Direction 
1 Log-transformed SEV scalar: Inj Pois Oth 1 
1 Population-weighted mean temperature 1 
3 Education (years per capita) -1 
3 Healthcare access and quality index -1 
3 LDI (I$ per capita) -1 
3 Socio-demographic Index -1 
Exposure to mechanical forces 
Level Covariate Direction 
1 Population-weighted mean temperature 1 
2 Healthcare access and quality index -1 
2 Population Density (over 1000 ppl/sqkm, 

proportion) 
-1 

2 Population Density (under 150 ppl/sqkm, 
proportion) 

1 

3 Education (years per capita) -1 
3 LDI (I$ per capita) -1 
3 Socio-demographic Index -1 
Unintentional firearm injuries 
Level Covariate Direction 
1 Log-transformed SEV scalar: Mech Gun 1 
1 Population-weighted mean temperature 1 
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2 Healthcare access and quality index -1 
3 Education (years per capita) -1 
3 LDI (I$ per capita) -1 
3 Population Density (over 1000 ppl/sqkm, 

proportion) 
-1 

3 Population Density (under 150 ppl/sqkm, 
proportion) 

1 

3 Socio-demographic Index -1 
Other exposure to mechanical forces 
Level Covariate Direction 
1 Log-transformed SEV scalar: Oth Mech 1 
1 Population-weighted mean temperature 1 
2 Healthcare access and quality index -1 
2 Population Density (over 1000 ppl/sqkm, 

proportion) 
-1 

2 Population Density (under 150 ppl/sqkm, 
proportion) 

1 

3 Education (years per capita) -1 
3 LDI (I$ per capita) -1 
3 Socio-demographic Index -1 
Adverse effects of medical treatment 
Level Covariate Direction 
1 Education (years per capita) -1 
1g Liters of alcohol consumed per capita 1 
1 Population-weighted mean temperature 1 
2 Healthcare access and quality index -1 
3 LDI (I$ per capita) 1 
3 Socio-demographic Index -1 
Environmental heat and cold exposure 
Level Covariate Direction 
2 Healthcare access and quality index -1 
3 90th percentile climatic temperature in the given 

country-year. 
1 

3 Education (years per capita) -1 
3 Elevation 500 to 1500m (proportion) 1 
3 Elevation Over 1500m (proportion) 1 
3 LDI (I$ per capita) -1 
3 Population Density (150-300 ppl/sqkm, 

proportion) 
-1 

3 Population-weighted mean temperature 1 
3 Rainfall (Quintiles 4-5) 1 
3 Sanitation (proportion with access) -1 
3 Socio-demographic Index -1 
Animal contact 
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Level Covariate Direction 
1 Liters of alcohol consumed per capita 1 
1 Log-transformed SEV scalar: Animal 1 
1 Population-weighted mean temperature 1 
2 Healthcare access and quality index -1 
2 Population 15 to 30 (proportion) 1 
3 Education (years per capita) -1 
3 Elevation Over 1500m (proportion) -1 
3 Elevation Under 100m (proportion) 1 
3 LDI (I$ per capita) -1 
3 Population Density (over 1000 ppl/sqkm, 

proportion) 
-1 

3 Population Density (under 150 ppl/sqkm, 
proportion) 

1 

3 Socio-demographic Index -1 
Venomous animal contact 
Level Covariate Direction 
1  Liters of alcohol consumed per capita  1  
1  Log-transformed SEV scalar: Venom  1  
1  Absolute value of average latitude  -1  
1  Liters of alcohol consumed per capita  1  
1  Mean number of venomous snake species  1  
1  Proportion of population vulnerable to snake 

species  
1  

1  Population-weighted mean temperature  1  
1  Rainfall population-weighted (mm/yr)  1  
1  Proportion of population involved in agricultural 

activities  
1  

1  Sahel Region of Africa (binary)  1  
1  Urbanicity  -1  
2  Healthcare access and quality index  -1  
3  Education (years per capita)  -1  
3  Elevation Over 1500m (proportion)  -1  
3  Elevation Under 100m (proportion)  -1  
3  LDI (I$ per capita)  -1  
3  Population Density (over 1000 ppl/sqkm, 

proportion)  
-1  

3  Population Density (under 150 ppl/sqkm, 
proportion)  

1  

3  Socio-demographic Index  -1  
Non-venomous animal contact 
Level Covariate Direction 
1k Elevation Over 1500m (proportion) -1 
1k Elevation Under 100m (proportion) 1 
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1 Liters of alcohol consumed per capita 1 
1 Log-transformed SEV scalar: Non Ven 1 
1 Population-weighted mean temperature 1 
2l Healthcare access and quality index -1 
3 Education (years per capita) -1 
3m Elevation Over 1500m (proportion) -1 
3m Elevation Under 100m (proportion) 1 
3 LDI (I$ per capita) -1 
3m Population Density (over 1000 ppl/sqkm, 

proportion) 
-1 

3m Population Density (under 150 ppl/sqkm, 
proportion) 

1 

3 Socio-demographic Index -1 
Foreign body 
Level Covariate Direction 
1 Education (years per capita) 1 
1 Indoor Air Pollution (All Cooking Fuels) 1 
1 LDI (I$ per capita) 1 
1 Liters of alcohol consumed per capita 1 
1 Population Over 65 (proportion) 1 
1 Population-weighted mean temperature 1 
2 Healthcare access and quality index -1 
3 Socio-demographic Index -1 
Pulmonary aspiration and foreign body in airway 
Level Covariate Direction 
1n Education (years per capita) -1 
1 Liters of alcohol consumed per capita 1 
1 Log-transformed SEV scalar: F Body Asp 1 
1 Population-weighted mean temperature 1 
2o Alcohol binge drinker proportion, age-

standardized 
1 

2 Healthcare access and quality index -1 
2 Mean BMI 1 
3 LDI (I$ per capita) -1 
3 Socio-demographic Index -1 
Foreign body in other body part 
Level Covariate Direction 
1 Liters of alcohol consumed per capita 1 
1 Log-transformed SEV scalar: Oth F Body 1 
1 Population-weighted mean temperature 1 
2 Healthcare access and quality index -1 
3 Education (years per capita) -1 
3 LDI (I$ per capita) -1 
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3 Socio-demographic Index -1 
Other unintentional injuries 
Level Covariate Direction 
1 Liters of alcohol consumed per capita 1 
1 Log-transformed SEV scalar: Oth Unint 1 
1 Population-weighted mean temperature 1 
1 Vehicles - 2 wheels (per capita) 1 
1 Vehicles - 4 wheels (per capita) 1 
2 Healthcare access and quality index -1 
3 Education (years per capita) -1 
3 LDI (I$ per capita) -1 
3 Population Density (over 1000 ppl/sqkm, 

proportion) 
-1 

3 Population Density (under 150 ppl/sqkm, 
proportion) 

1 

3 Socio-demographic Index -1 
Self-harm   
Level Covariate Direction 
1 12-month non-partner sexual violence 1 
1 Liters of alcohol consumed per capita 1 
1h Log-transformed SEV scalar: Self Harm 1 
1 Major depressive disorder 1 
1i Muslim Religion (proportion of population) 1 
1 Population-weighted mean temperature 1 
2 Healthcare access and quality index -1 
2 Population Density (150-300 ppl/sqkm, 

proportion) 
1 

2 Population Density (300-500 ppl/sqkm, 
proportion) 

-1 

2 Population Density (500-1000 ppl/sqkm, 
proportion) 

-1 

2 Population Density (over 1000 ppl/sqkm, 
proportion) 

-1 

2 Population Density (under 150 ppl/sqkm, 
proportion) 

1 

3 Education (years per capita) -1 
3 LDI (I$ per capita) -1 
3 Socio-demographic Index -1 
Self-harm by 
firearm 

  

Level Covariate Direction 
1 12-month non-partner sexual violence 1 
1 Liters of alcohol consumed per capita 1 
1 Log-transformed SEV scalar: Self Harm 1 
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1 Major depressive disorder 1 
1 Population-weighted mean temperature 1 
2 Healthcare access and quality index -1 
2 Population Density (150-300 ppl/sqkm, 

proportion) 
1 

2 Population Density (300-500 ppl/sqkm, 
proportion) 

-1 

2 Population Density (500-1000 ppl/sqkm, 
proportion) 

-1 

2 Population Density (over 1000 ppl/sqkm, 
proportion) 

-1 

2 Population Density (under 150 ppl/sqkm, 
proportion) 

1 

3 Education (years per capita) -1 
3 LDI (I$ per capita) -1 
3 Socio-demographic Index -1 
Self-harm by other specified means 
Level Covariate Direction 
1 12-month non-partner sexual violence 1 
1 Liters of alcohol consumed per capita 1 
1 Log-transformed SEV scalar: Self Harm 1 
1 Major depressive disorder 1 
1 Population-weighted mean temperature 1 
2 Healthcare access and quality index -1 
2 Population Density (150-300 ppl/sqkm, 

proportion) 
1 

2 Population Density (300-500 ppl/sqkm, 
proportion) 

-1 

2 Population Density (500-1000 ppl/sqkm, 
proportion) 

-1 

2 Population Density (over 1000 ppl/sqkm, 
proportion) 

-1 

2 Population Density (under 150 ppl/sqkm, 
proportion) 

1 

3 Education (years per capita) -1 
3 LDI (I$ per capita) -1 
3 Socio-demographic Index -1 
Interpersonal violence 
Level Covariate Direction 
1 Education Relative Inequality (Gini) 1 
1 Liters of alcohol consumed per capita 1 
1 Log-transformed SEV scalar: Violence 1 
1 Population 15 to 30 males (proportion) 1 
1 Population-weighted mean temperature 1 
2 Healthcare access and quality index -1 
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2 Opium Cultivation (binary) 1 
2 Population Density (over 1000 ppl/sqkm, 

proportion) 
1 

3 Education (years per capita) -1 
3 LDI (I$ per capita) -1 
3 Socio-demographic Index -1 
Assault by firearm 
Level Covariate Direction 
1 Education Relative Inequality (Gini) 1 
1 Liters of alcohol consumed per capita 1 
1 Log-transformed SEV scalar: Viol Gun 1 
1 Population 15 to 30 males (proportion) 1 
1 Population-weighted mean temperature 1 
2 Healthcare access and quality index -1 
2 Opium Cultivation (binary) 1 
2 Population Density (over 1000 ppl/sqkm, 

proportion) 
1 

3 Education (years per capita) -1 
3 LDI (I$ per capita) -1 
3 Socio-demographic Index -1 
Assault by sharp object 
Level Covariate Direction 
1 Education Relative Inequality (Gini) 1 
1 Liters of alcohol consumed per capita 1 
1 Log-transformed SEV scalar: Viol Knife 1 
1 Population 15 to 30 males (proportion) 1 
1j Population-weighted mean temperature 1 
2 Healthcare access and quality index -1 
2 Opium Cultivation (binary) 1 
2 Population Density (over 1000 ppl/sqkm, 

proportion) 
1 

3 Education (years per capita) -1 
3 LDI (I$ per capita) -1 
3 Socio-demographic Index -1 
Assault by other means 
Level Covariate Direction 
1 Education Relative Inequality (Gini) 1 
1 Liters of alcohol consumed per capita 1 
1 Log-transformed SEV scalar: Oth Viol 1 
1 Population 15 to 30 males (proportion) 1 
1 Population-weighted mean temperature 1 
2 Healthcare access and quality index -1 
2 Opium Cultivation (binary) 1 
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2 Population Density (over 1000 ppl/sqkm, 
proportion) 

1 

3 Education (years per capita) -1 
3 LDI (I$ per capita) -1 
3 Socio-demographic Index -1 

 

a: Used at level 1 in female models, level 2 in males 
b: Used at level 3 in global models, level 2 in data-rich models 
c: Used at level 1 in male data-rich model. Level 2 in other three models. 
d: Only used in Female global model 
e: Used at level 2 in male global model, level 3 for the other three models  
f: Not used in female global model 
g: Only used in female global model 
h: Only used in female models 
i: Used at level 2 in male global mode, used at level 1 in male data-rich model. Not used in female model. 
j: Used at level 2 in female, global model and level 1 for all others  
k: Only used in male global model 
l: Used at level 3 in male global model 
m: Used at level 2 in male global model  
n: Used at level 3 in the female global model 
o: Only used in the female global model 
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Table  – Injury Cause List   

ID Cause Modelling Strategy Covariate changes 
from GBD 2017 

1 Transport injuries CODEm Additions: Population-
weighted mean 
temperature; Quartile 
on the strictness of 
blood-alcohol content 
laws of professional, 
general, and youth 
drivers; Quartile on the 
strictness of speed limit 
laws in rural and urban 
places; Proportion of 
population aged 15 to 
30 

1.1 Road injuries CODEm Additions: Population-
weighted mean 
temperature; Quartile 
on the strictness of 
blood-alcohol content 
laws of professional, 
general, and youth 
drivers; Quartile on the 
strictness of speed limit 
laws in rural and urban 
places; Proportion of 
population aged 15 to 
30 

1.1.1 Pedestrian road injuries CODEm Additions: Population-
weighted mean 
temperature; Quartile 
on the strictness of 
blood-alcohol content 
laws of professional, 
general, and youth 
drivers; Quartile on the 
strictness of speed limit 
laws in rural and urban 
places; Proportion of 
population aged 15 to 
30 

1.1.2 Cyclist road injuries CODEm Additions: Population-
weighted mean 
temperature; Quartile 
on the strictness of 
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Table  – Injury Cause List   

ID Cause Modelling Strategy Covariate changes 
from GBD 2017 

blood-alcohol content 
laws of professional, 
general, and youth 
drivers; Quartile on the 
strictness of speed limit 
laws in rural and urban 
places; Proportion of 
population aged 15 to 
30 

1.1.3 Motorcyclist road injuries CODEm Additions: Population-
weighted mean 
temperature; Quartile 
on the strictness of 
blood-alcohol content 
laws of professional, 
general, and youth 
drivers; Quartile on the 
strictness of speed limit 
laws in rural and urban 
places; Proportion of 
population aged 15 to 
30 

1.1.4 Motor vehicle road injuries CODEm Additions: Population-
weighted mean 
temperature; Quartile 
on the strictness of 
blood-alcohol content 
laws of professional, 
general, and youth 
drivers; Quartile on the 
strictness of speed limit 
laws in rural and urban 
places; Proportion of 
population aged 15 to 
30 

1.1.5 Other road injuries CODEm Additions: Population-
weighted mean 
temperature; Quartile 
on the strictness of 
blood-alcohol content 
laws of professional, 
general, and youth 
drivers; Quartile on the 
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Table  – Injury Cause List   

ID Cause Modelling Strategy Covariate changes 
from GBD 2017 

strictness of speed limit 
laws in rural and urban 
places; Proportion of 
population aged 15 to 
30 

1.2 Other transport injuries CODEm and fatal discontinuity estimation Additions: Population-
weighted mean 
temperature; Quartile 
on the strictness of 
blood-alcohol content 
laws of professional, 
general, and youth 
drivers; Quartile on the 
strictness of speed limit 
laws in rural and urban 
places; Proportion of 
population aged 15 to 
30 

Dropped: Education 
(years per capita) 

2 Unintentional injuries Not modeled at parent cause level  

2.1 Falls CODEm Added: Population-
weighted mean 
temperature; 
education in years per 
capita 

2.2 Drowning CODEm Added: Population-
weighted mean 
temperature 

2.3 Fire, heat, and hot substances CODEm and fatal discontinuity estimation Added: Population-
weighted mean 
temperature 

2.4 Poisonings CODEm  Added: Population-
weighted mean 
temperature 

2.4.1 Poisoning by carbon monoxide CODEm Added: Population-
weighted mean 
temperature; summary 
exposure value of risk 
factors for poisoning by 
carbon monoxide, log-
transformed 

2.4.2 Poisoning by other means CODEm and fatal discontinuity estimation Added: Population-
weighted mean 
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Table  – Injury Cause List   

ID Cause Modelling Strategy Covariate changes 
from GBD 2017 

temperature; Summary 
exposure value of risk 
factors for poisoning by 
other means, log-
transformed 

2.5 Exposure to mechanical forces CODEm Added: Population-
weighted mean 
temperature 

2.5.1 Unintentional firearm injuries CODEm Added: Population-
weighted mean 
temperature 

2.5.2 Other exposure to mechanical forces CODEm and fatal discontinuity estimation Added: Population-
weighted mean 
temperature 

2.6 Adverse effects of medical treatment CODEm Added: Alcohol liters 
per capita; population-
weighted mean 
temperature; 
education (years per 
capita) 

2.7 Animal contact CODEm Added: Population-
weighted mean 
temperature 

2.7.1 Venomous animal contact CODEm Added: Population-
weighted mean 
temperature 

2.7.2 Non-venomous animal contact CODEm and fatal discontinuity estimation Added: Population-
weighted mean 
temperature 

2.8 Foreign body CODEm Added: Population-
weighted mean 
temperature 
Dropped: Population of 
people living at greater 
than 1500 meters 
(proportion); 
Population density over 
1,000 per square 
kilometer (proportion); 
Population density 
under 150 per square 
kilometer (proportion); 
Population of people 
living under 100 meters 
elevation (proportion) 

2.8.1 Pulmonary aspiration and foreign 
body in airway 

CODEm Added: Population-
weighted mean 
temperature; 
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Table  – Injury Cause List   

ID Cause Modelling Strategy Covariate changes 
from GBD 2017 

education (years per 
capita) 

2.8.2 Foreign body in other body part CODEm Added: Population-
weighted mean 
temperature 
Dropped: Population of 
people living at greater 
than 1500 meters 
(proportion); 
Population density over 
1,000 per square 
kilometer (proportion); 
Population density 
under 150 per square 
kilometer (proportion); 
Population of people 
living under 100 meters 
elevation (proportion) 

2.9 Environmental exposure to heat and 
cold 

CODEm and fatal discontinuity estimation  

2.10 Exposure to forces of nature Fatal discontinuity estimation  

2.11 Other unintentional injuries CODEm and fatal discontinuity estimation Added: Population-
weighted mean 
temperature 

Dropped: Population 
living at over 1,500 
meters elevation 
(proportion); 
Population living under 
100 meters elevation 
(proportion) 

3 Self-harm and interpersonal violence Not modeled at parent cause level  

3.1 Self-harm CODEm Population-weighted 
mean temperature; 12-
month non-partner 
sexual violence 

3.1.1 Self-harm by firearm CODEm Population-weighted 
mean temperature; 12-
month non-partner 
sexual violence 

3.1.2 Self-harm by other specified means CODEm Population-weighted 
mean temperature; 12-
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Table  – Injury Cause List   

ID Cause Modelling Strategy Covariate changes 
from GBD 2017 

month non-partner 
sexual violence 

3.2 Interpersonal violence CODEm  Population-weighted 
mean temperature; 
Education relative 
inequality (Gini); 
Proportion of 
population males 15 to 
30 years old 

3.2.1 Physical violence by firearm CODEm and fatal discontinuity estimation Population-weighted 
mean temperature; 
Education relative 
inequality (Gini); 
Proportion of 
population males 15 to 
30 years old 

3.2.2 Physical violence by sharp object CODEm and fatal discontinuity estimation Population-weighted 
mean temperature; 
Education relative 
inequality (Gini); 
Proportion of 
population males 15 to 
30 years old 

3.2.3 Physical violence by other means CODEm and fatal discontinuity estimation Population-weighted 
mean temperature; 
Education relative 
inequality (Gini); 
Proportion of 
population males 15 to 
30 years old 

3.3 Conflict and terrorism Fatal discontinuity estimation  

3.4 Executions and police conflict CODEm and fatal discontinuity estimation Population-weighted 
mean temperature; 
Proportion of 
population males 15 to 
30 years old 
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