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Summary: Supergenes, clusters of tightly linked genes, play a key role in the evolution 46 

of complex adaptive variation [1,2]. While supergenes have been identified in many 47 

species, we lack an understanding of their origin, evolution and persistence [3]. Here, we 48 

uncover 20-40 MY of evolutionary history of a supergene associated with polymorphic 49 

social organization in Formica ants [4]. We show that five Formica species exhibit 50 

homologous divergent haplotypes spanning 11 Mbp on chromosome 3. Despite the 51 

supergene’s size, only 142 single nucleotide polymorphisms (SNPs) consistently 52 

distinguish alternative supergene haplotypes across all five species. These conserved 53 

trans-species SNPs are localized in a small number of disjunct clusters distributed across 54 

the supergene. This unexpected pattern of divergence indicates that the Formica 55 

supergene does not follow standard models of sex chromosome evolution, in which 56 

distinct evolutionary strata reflect an expanding region of suppressed recombination (e.g. 57 

[5]). We propose an alternative “eroded strata model,” in which clusters of conserved 58 

trans-species SNPs represent functionally important areas maintained by selection in the 59 

face of rare recombination between ancestral haplotypes. The comparison of whole 60 

genome sequences across 10 additional Formica species reveal that the most conserved 61 

region of the supergene contains a transcription factor essential for motor neuron 62 

development in Drosophila [6]. The discovery that a very small portion of this large and 63 

ancient supergene harbors conserved trans-species SNPs linked to colony social 64 

organization suggests that the ancestral haplotypes have been eroded by recombination, 65 

with selection preserving differentiation at one or a few genes generating alternative 66 

social organization. 67 

68 

Results and Discussion: 69 

70 

Each year, new systems with tightly linked clusters of genes are discovered, 71 

pointing to the importance of supergenes in the evolution of certain classes of complex 72 

traits, including mimetic coloration in butterflies, self-incompatibility in plants, mating 73 

strategies in birds, mating types in fungus, and social organization in ants [1, 2, 7-10]. 74 

While the prevalence and impact of supergenes is increasingly clear, there are still large 75 
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gaps in our understanding of how they evolve, whether they tend to be transient or stable, 76 

and how much of the non-recombining region actually shapes the trait of interest.  77 

Using a comparative approach, we investigate the evolutionary history of an 78 

autosomal supergene associated with colony social organization in the Alpine silver ant 79 

Formica selysi [4]. First, we examine whether this supergene system is stable or 80 

ephemeral by investigating whether it is present and has a similar function in five socially 81 

polymorphic Formica species, representing an estimated 20-40 MY of independent 82 

evolutionary history (Figure S1). This divergence time exceeds the age of inversion-83 

based autosomal supergenes described so far [3]. Second, we use phylogenetic 84 

comparisons across the five species to infer how the supergene evolved. Specifically, we 85 

assess whether recombination was suppressed at different times across the length of the 86 

supergene and identify conserved trans-species single-nucleotide polymorphisms (SNPs) 87 

associated with social organization. 88 

In F. selysi, alternative haplotypes of the supergene are associated with alternative 89 

colony social organization, namely whether the colony is headed by one queen (= 90 

monogyne) or by multiple queens (=polygyne) [4]. Monogyne colonies exclusively 91 

harbor individuals carrying one haplotype, Sm, whereas polygyne colonies always harbor 92 

individuals bearing at least one copy of the alternative haplotype, Sp [4, 11]. Queen 93 

number is also associated with a suite of individual and colony-level traits, including 94 

body size, colony size and reproductive strategy [12]. 95 

Many other Formica species are socially polymorphic [13-18]. So far, no genetic 96 

polymorphism associated with colony social organization has been documented outside 97 

of F. selysi. This absence may reflect phenotypic plasticity in colony queen number. 98 

Alternatively, a genomic basis to social organization may have remained undetected in 99 

previous studies based on few genetic markers [15, 16, 18]. 100 

We tested whether social organization was controlled by a conserved ancestral 101 

supergene across socially polymorphic Formica species. We collected ddRADseq 102 

population genomic data on five focal polymorphic species (Table S1): F. truncorum 103 

(subgenus Formica sensu stricto, 20 individuals, 24,431 sites, mean depth 17.9), F. 104 

exsecta (Coptoformica, 41 individuals, 24,577 sites, mean depth 17.2), F. selysi 105 

(Serviformica, 83 individuals, 21,554 sites, mean depth 14.2), F. cinerea (Serviformica, 106 
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161 individuals, 44,427 sites, mean depth 27.7), and F. lemani (Serviformica, 65 107 

individuals, 64,260 sites, mean depth 15.3). In each species, we find elevated 108 

differentiation between individuals of monogyne and polygyne origin at chromosome 3 109 

compared with other chromosomes (Figure 1), suggesting that an ancestral supergene is 110 

present and associated with colony queen number in the five species. Through principal 111 

component analysis (PCA) of variation on this chromosome, we show that individuals of 112 

monogyne origin are usually homozygous for one supergene haplotype, while individuals 113 

of polygyne origin are usually either heterozygous or are homozygous for an alternative 114 

haplotype (Figure S2). This association is perfect in F. selysi, F. exsecta, and F. 115 

truncorum, while mismatches between social structure and supergene genotype are 116 

observed in 5 of 39 F. lemani and 35 of 96 F. cinerea individuals with known social 117 

structure. Nonetheless, association between the presence of an Sp haplotype and 118 

polygyne social structure was significant even in the latter two species (Fisher’s exact test 119 

p = 0.00002 in F. cinerea, p = 0.000002 in F. lemani). To further investigate the 120 

relationship between each haplotype across species, we selected homozygous workers or 121 

haploid males for subsequent whole genome sequencing. For F. lemani, we included 122 

three individuals, representing homozygotes for three alternative haplotypes (Figure S2). 123 

Sex chromosomes are the most widely known and best understood class of 124 

supergenes [2, 19], and may provide a model for the evolution of autosomal supergenes. 125 

In the old and highly conserved sex chromosomes of birds and mammals, the regions of 126 

suppressed recombination have expanded over time, as new adjacent regions were 127 

inverted or otherwise rearranged [20, 21]. Blocks of the Z/W and X/Y chromosomes 128 

wherein recombination ceased at the same time during their evolutionary history are 129 

known as evolutionary ‘strata.’ For instance, comparisons of genome sequences from 17 130 

bird species distributed across the phylogeny revealed that avian sex chromosomes have 131 

one small region where suppressed recombination predates the divergence of ratites from 132 

other birds. A large region of the Z and W chromosomes continues to recombine in 133 

ratites, while additional non-recombining strata accumulated over time in other avian 134 

lineages [5]. Whether this “expanding strata” model applies to autosomal supergenes 135 

remains an open question. 136 
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The supergene shared by multiple Formica species provides a great opportunity to 137 

reconstruct how alternative haplotypes evolved. We identify regions of the supergene that 138 

are consistently differentiated between social forms across the Formica species. By 139 

mapping conserved trans-species SNPs associated with social organization and 140 

reconstructing the phylogenetic topology across the Formica social supergene, we 141 

investigate whether recombination was suppressed at different times across the length of 142 

the supergene, forming evolutionary strata. 143 

If the Formica supergene evolves according to the expanding strata model, one 144 

region of the supergene is expected to exhibit an ‘old strata’ topology, wherein the 145 

haplotypes of all five species cluster by social form. Other regions might exhibit 146 

intermediate strata topologies, wherein alternative supergene haplotypes cluster among 147 

closely related species but not distantly related species. The recombining ends of the 148 

supergene are expected to follow a ‘young strata’ topology, wherein individuals cluster 149 

by species regardless of social form. Moreover, the expanding strata model predicts that 150 

the old and intermediate strata would span entire inversions, such that each inversion 151 

would be acquired sequentially during the evolutionary history of the supergene. In 152 

contrast, models of genome evolution within single inversions predict that only inversion 153 

breakpoints and loci under selection will remain differentiated in very old inversion 154 

polymorphisms [22, 23]. 155 

We sequenced the genomes of representatives of each social form from the five 156 

focal Formica species, aligned them to a new chromosome-level genome assembly for F. 157 

selysi, and plotted the number of trans-species fixed differences per 1 kbp window 158 

between the monogyne- and polygyne-associated haplotypes (Figure 2). Moreover, we 159 

identified transitions in phylogenetic topology across the supergene with a hidden 160 

Markov model implemented in Saguaro [24]. Contrary to the predictions of the 161 

expanding strata model, we found multiple very small regions containing 142 conserved 162 

trans-species SNPs that clustered by social form (Figure 2A). These regions matched 163 

sections of the supergene with ‘old strata’ topologies (Figure 2B). The cumulative length 164 

of these small disjunct conserved regions with ‘old strata’ topologies was 136 kbp, which 165 

amounts to only 1.2% of the non-recombining supergene or 0.96% of the entire 166 
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chromosome. No such conserved trans-species SNPs were found on any other 167 

chromosome, across a total of 11.4 million SNPs genome-wide. 168 

Small regions with trans-species fixed SNPs could be due to balancing selection 169 

or physical constraints (e.g. inversion breakpoints) that prevent recombination from 170 

homogenizing these genomic regions [22]. To distinguish between these hypotheses and 171 

further test the expanding strata model, we identified genomic rearrangements between 172 

the alternative supergene haplotypes. We constructed high density linkage maps using 173 

ddRAD genotypes from the female offspring of two Sp/Sp F. selysi queens (112 174 

offspring total, 1792 and 3688 markers, mean sequence depth 36.6). We also constructed 175 

a linkage map from the male offspring of one Sm/Sm F. exsecta queen (67 offspring, 176 

4603 markers, mean sequence depth 17.3) to determine whether the structure of the Sm 177 

haplotype is conserved across species. We mapped the positions of the old, intermediate, 178 

and young strata onto the F. selysi Sm genome. We then aligned the genome to the 179 

linkage maps. The Sm haplotype of F. exsecta was collinear with that of F. selysi (Figure 180 

3). The conserved gene order on the Sm haplotype suggests that this haplotype is 181 

ancestral. In contrast, the alignment of the Sp haplotype of F. selysi to the Sm genome 182 

revealed at least four inversions along the length of the supergene (Figure 3). Regions of 183 

the supergene exhibiting the ‘old strata’ topologies were not localized on a single 184 

inversion, but instead were distributed across the supergene (Figures 2, 3), suggesting 185 

that haplotypes spanning the entire non-recombining region began to diverge prior to the 186 

divergence of all the Formica species we examined. At least some trans-species fixed 187 

SNPs were not close to inversion breakpoints based on a qualitative assessment of the 188 

linkage maps, suggesting that balancing selection, and not exclusively structural 189 

constraint, plays a role in maintaining these SNPs. Occasional recombination is suggested 190 

by intermediate strata topologies that were patchily distributed across the length of the 191 

supergene (Figure 3). As expected, the recombining regions at the ends of the supergene 192 

followed the ‘young strata’ pattern (Figures 2, 3).  193 

Overall, the pattern of differentiation within the Formica supergene differs 194 

strikingly from the predictions of the expanding strata model (Figures 2-4). We propose 195 

that the Formica supergene results from a long history of rare recombination [25] and/or 196 

gene conversion [26, 27]) between alternative haplotypes in different lineages (Figure 4). 197 



 7 

We previously observed evidence of rare recombination between Sm and Sp haplotypes 198 

in F. selysi [4], and similar observations have been recorded in the fire ant supergene 199 

system [28] and in a newly described inversion polymorphism in the great tit [29]. Under 200 

this alternative “eroded strata model”, an initial event, such as an inversion, greatly 201 

reduced recombination across the length of the supergene in the common ancestor of the 202 

focal species (Figure 4). Next, occasional recombination homogenized the monogyne- 203 

and polygyne- associated haplotypes in portions of the chromosome, while selection on 204 

functionally important genes and regulatory regions, or structural constraints at inversion 205 

breakpoints, maintained small regions with the old strata topology. Over time, rare 206 

recombination events in regions not under selection eroded the ancestral strata, breaking 207 

up associations between alleles within each alternative haplotype and leaving only small 208 

disjunct areas with conserved trans-species polymorphisms (Figure 4).  This model is 209 

consistent with analytical results obtained in models of genome evolution on single 210 

inversions [22]; our results provide empirical support for this model and scale it to a large 211 

supergene harboring multiple inversions. 212 

Trans-species SNPs associated with a trait of interest can point to genomic 213 

regions responsible for the trait [30-32]. To characterize the most conserved trans-species 214 

SNPs and identify candidate genes determining alternative social organization, we 215 

sequenced the genomes of 10 additional European Formica species (Figure 2). Six of 216 

these additional species spanning three subgenera matched the Sm haplotype for 126 out 217 

of the 142 conserved SNPs associated with social organization in the initial comparative 218 

analysis of 5 focal species. One Formica sensu stricto matched the Sp haplotype across 219 

113 of 135 conserved SNPs. Finally, three species had excess heterozygosity across the 220 

whole supergene and were heterozygous at a subset of the conserved SNPs (Figure 2). 221 

Overall, only 20 SNPs were conserved across all 15 Formica species. All but one of these 222 

conserved SNPs were located in the last exon and 3’ untranslated region of the gene 223 

Knockout (Figure 2). The gene Knockout is a storkhead-box transcription factor essential 224 

for motor neuron development in Drosphila [6]. Additional SNPs conserved across all 225 

species except F. picea occurred in an intron of serine-threonine kinase STK32B, an exon 226 

of mitochondrial ribosomal protein MRPL34, and regions just downstream of the genes 227 

RPUSD4 and G9A. 228 



 8 

Whether other supergenes follow the eroded strata model is not yet clear, but 229 

several common characteristics suggest that some might do so. The Formica social 230 

supergene and the ruff autosomal supergene appear to differ from ancient sex 231 

chromosomes by the occurrence of rare events of recombination between alternative 232 

haplotypes [4, 33, 34]. The independent supergenes underlying coloration and mating 233 

strategies in ruffs and white-throated sparrows likely originated from inversions [33-35]. 234 

Both of these avian supergenes are much younger than the Formica supergene and are 235 

only found in a single species, which limits the possibility to test whether they follow an 236 

eroded strata model. Alternative haplotypes at the supergene underlying mimetic 237 

coloration in Heliconius numata apparently evolved sequentially, with one alternative 238 

haplotype containing a single inversion and a second alternative haplotype harboring the 239 

initial inversion and an adjacent second inversion [36]. The diversity of color patterns can 240 

be traced to a relatively small number of genetic ‘modules’ that underlie different color 241 

patches on butterfly wings [37]. As in the Formica supergene, the ‘modules’ often span 242 

very small portions of the genome and exhibit a different evolutionary history from one 243 

another and from whole genome patterns. Jay et al. [10] demonstrate that these 244 

alternative topologies result in some cases from introgression of modules between 245 

species. The contribution of introgression to evolutionary patterns in the Formica 246 

supergene remains to be investigated. 247 

Recent studies discovered that independent, convergent supergenes underlie 248 

polymorphisms in social organization in at least three ant lineages (Solenopsis invicta, 249 

[38]; Formica selysi, [4]; Leptothorax acervorum, [39]). We do not yet know the extent 250 

of similarities in the evolutionary history of these convergent ‘social’ supergenes [4, 38]. 251 

An analysis of divergence between S. invicta SB and Sb haplotypes revealed no evidence 252 

of evolutionary strata [40], despite the presence of at least two inversions [41]. However, 253 

an early analysis of the odorant binding protein gene Gp9, which was subsequently found 254 

to be contained within the Solenopsis supergene, identified conserved polymorphisms 255 

across several Solenopsis species [42], and this was confirmed in a recent comparative 256 

genomic analysis of S. invicta, S. richteri, and S. quinquecuspis [43]. The combination of 257 

a lack of strata, multiple inversions, and trans-species polymorphism suggests that an 258 



 9 

expanded multi-species analysis in Solenopsis would provide an interesting point of 259 

comparison with the Formica supergene.  260 

Our study of the Formica supergene suggests several directions for future 261 

research. So far, we have investigated the DNA sequence differences between alternative 262 

supergene haplotypes in multiple species; comparison of gene expression patterns 263 

between individuals with each genotype across different species, both in general and 264 

within the candidate genes identified herein, could provide insights into the functional 265 

differences of each haplotype.  Moreover, we have not analyzed copy-number variation 266 

in the Formica supergene haplotypes, but identifying haplotype-specific duplication or 267 

deletion of genes, or insertion of transposable elements, could point to variants that affect 268 

the different functions of the Sm and Sp haplotypes (e.g., [33, 43]). Both of these future 269 

directions would be enhanced by the development of high quality genome assemblies for 270 

additional Formica species, which would allow more precise identification of inversion 271 

breakpoints on the Sp haplotype (e.g., [43]) and enable researchers to test the robustness 272 

of our results when aligning to different genomes.  Given the variation in genetic control 273 

and haplotype diversity uncovered in F. lemani and F. cinerea, it would also be valuable 274 

to examine non-genetic influences on social structure in these species, and to more 275 

broadly investigate geographic variation in the strength of association between the 276 

supergene and social organization by sampling a larger number of species across their 277 

range. 278 

Overall, this comparative analysis revealed that at least five species of the genus 279 

Formica separated by up to 20-40 MY of independent evolution harbor an ancient 280 

supergene that contributes to polymorphism in social organization. This ancestral 281 

supergene followed an unusual evolutionary trajectory. We suggest that rare 282 

recombination between alternative haplotypes in different lineages reduced trans-species 283 

divergence, resulting in patterns of genetic differentiation that differ markedly from the 284 

expanding strata expected under standard models of sex chromosome evolution. The 285 

genomic signature of this novel “eroded strata model” is the presence of very small 286 

clusters of conserved trans-species SNPs that consistently differ between alternative 287 

haplotypes across multiple species. Across the Formica genus, these conserved trans-288 

species SNPs highlight regions of the supergene that likely have an important function 289 
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both in its inception and in the ongoing control of colony social organization. The great 290 

diversity in origin, structure, size, and evolution of autosomal and sex-linked supergenes 291 

is intriguing. Further comparisons will reveal which key biological differences send 292 

supergenes on divergent evolutionary trajectories. 293 
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Figure Legends 313 
 314 
Figure 1: An ancestral supergene is associated with colony social organization 315 
across five polymorphic Formica species. In each of the five species (A-E), elevated 316 
differentiation (FST) occurred between individuals of monogyne and polygyne origin 317 
across much of chromosome 3, in contrast to lower levels of differentiation in the rest of 318 
the genome based on population ddRAD data. The phylogenetic relationships between 319 
the species based on genome-wide SNP data, excluding chromosome 3, is indicated on 320 
the right (F).  Note that the maximum differentiation between monogynes and polygynes 321 
is influenced by the ploidy and the population genetic structure of the sequenced 322 
individuals (Table S1). See also Figures S1, S2 and Table S1. 323 
 324 
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Figure 2: Evolution of alternative haplotypes of the social supergene across species 325 
of the genus Formica. Fixed differences between Sm and Sp haplotypes across five focal 326 
species, based on whole-genome sequence data, are concentrated in small regions across 327 
chromosome 3 (A; number of conserved trans-species SNPs associated with social 328 
organization in 1 kbp windows; n=142). In several small regions distributed across the 329 
center of the chromosome, the sequences cluster by social form (red, “old strata” 330 
topology), while in large regions at the chromosome ends the sequences cluster by 331 
species (blue, “young strata” topology) (B; Hidden Markov Model of tree topology 332 
implemented in Saguaro). The 142 SNPs with fixed differences between Sm and Sp 333 
haplotypes across the five focal species were sequenced in single representatives of 10 334 
additional species (C), with alleles matching the Sm haplotype shown in green and alleles 335 
matching the Sp haplotype shown in orange. Only a single region of 1,021 bp (positions 336 
11,910,116 – 11,911,137) harbors SNPs that are consistently fixed between Sm and Sp 337 
haplotypes across all 15 species. See also Figure S1 and Table S1. 338 
 339 
Figure 3: Structural rearrangements between alternative haplotypes of the Formica 340 
supergene. The chromosome-level Formica selysi genome assembly for the Sm 341 
supergene haplotype (middle; PacBio long read sequencing combined with linkage map) 342 
is collinear with the Sm haplotype of F. exsecta (top; linkage map from a F. exsecta 343 
Sm/Sm family). In contrast, the Sp haplotype of F. selysi reveals several inversions and 344 
rearrangements compared to the Sm haplotype (bottom; merged linkage map from two F. 345 
selysi Sp/Sp families). Lines between bars connect the RADtags in the linkage maps to 346 
their position in the F. selysi genome assembly. Colored bars along the Sm haplotype of 347 
F. selysi indicate the strata topologies inferred by Saguaro from whole-genome sequence 348 
data across five Formica species. Blue bars represent regions of the supergene where 349 
sequences cluster by species (young strata, B). Red bars show sections of the supergene 350 
where sequences cluster by social form across all five species (old strata, C). Purple bars 351 
show sections where sequences cluster by social form in the three Serviformica species, 352 
and, separately, cluster by social form in F. truncorum and F. exsecta (D). Green bars 353 
represent sections where sequences cluster by social form in the three Serviformica 354 
species, but cluster by species for F. truncorum and F. exsecta (E). See also Figure S1. 355 
 356 
Figure 4: Comparison of the eroded strata model and the expanding strata model. In 357 
the eroded strata model (left panel), an initial inversion in one chromosome (basal blue 358 
rectangle) greatly reduces recombination between two alternative haplotypes (red bars). 359 
As new species form, this ancestral polymorphism is maintained, but occasional 360 
recombination or gene conversion events (colored lines) homogenize sections of the 361 
region in some lineages. The time series of plots at left represent the trans-species 362 
divergence pattern expected under the eroded strata model, with disjunct regions 363 
containing conserved trans-species polymorphisms. In contrast, in the expanding strata 364 
model (right panel), new non-recombining regions appear sequentially in diverging 365 
lineages, resulting in a pattern wherein young strata exhibit lower trans-species 366 
differentiation than old strata (time series of plots at right). The topologies in the central 367 
panel show the relationships between haplotypes and species for the young and old strata 368 
scenarios, with colors matching the strata colors shown in each tree. 369 

 370 
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STAR Methods: 371 
Detailed methods are provided in the online version of this paper and include the following:  372 
Key Resources Table 373 
Lead Contact and Materials Availability 374 
Experimental Model and Subject Details 375 
Method Details 376 
 Supergene presence in multiple species 377 
 Linkage maps 378 
 Genome assembly 379 
 Whole-genome resequencing 380 
 Phylogeny and dating 381 
Quantification and Statistical Analysis 382 
Data and software availability 383 
 384 

Key Resource Table 385 

Attached as separate document 386 

 387 

Lead Contact and Materials Availability 388 

Further information and requests for resources and reagents should be directed to and will 389 

be fulfilled by the Lead Contact, Alan Brelsford (alan.brelsford@ucr.edu). There are 390 

restrictions to the availability of tissue and DNA samples due to the lack of an external 391 

centralized repository for their distribution and our need to maintain the stock. We are 392 

glad to share oligonucleotides with reasonable compensation by requestor for processing 393 

and shipping. 394 

 395 

Experimental Model and Subject Details 396 

With the exception of the linkage map of the F. selysi Sp haplotype, all ants used in this 397 

study were collected in the wild (sample sizes and localities for each species in Table S1). 398 

For the F. selysi Sp haplotype linkage map, we obtained captive-reared offspring of two 399 

mature queens from polygynous field colonies in Finges, Switzerland. The supergene 400 

genotype of these two queens had been previously determined to be Sp/Sp [11]. Queens 401 

were kept in isolated plastic nest boxes (15 x 13 x 6 cm) containing a tube with water and 402 

ad libitum access to ant food consisting of agar, egg, and sugar, with at least 20 nestmate 403 

workers, and left to produce eggs. These queens produced 35 and 77 newly emerged 404 

worker offspring, respectively, and we collected these for linkage mapping. All ants used 405 

in this study were stored in 100% ethanol prior to DNA extraction. 406 
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 407 

Method details 408 

Supergene presence in multiple species 409 

We collected workers and males from colonies of four Formica species (F. 410 

cinerea, F. exsecta, F. lemani, F. truncorum; sample sizes and countries of origin in 411 

Supplementary Materials Table S1). DNA was isolated from the head and thorax of each 412 

ant using a DNeasy Blood and Tissue kit (Qiagen). We collected ddRAD sequence data 413 

on these individuals using the protocol of [59], using restriction enzymes EcoRI and 414 

MseI. Briefly, we digested genomic DNA with EcoRI and MseI, ligated barcoded 415 

adapters to the resulting fragments, removed short fragments with AMPure magnetic 416 

beads, amplified fragments using PCR primers incorporating an index sequence, pooled 417 

the resulting amplicons, selected fragments of 300-500 bp by agarose gel electrophoresis, 418 

and performed a final AMPure bead cleanup on the pooled, size-selected library. 419 

Libraries were sequenced at the Lausanne Genomic Technologies Facility on an Illumina 420 

HiSeq 2500 with 100bp single-end reads. For a subset of individuals, colony social 421 

structure had been previously determined through parentage analysis of microsatellite 422 

genotypes [13, 16, 18, 60, 61] or by direct observation of multiple queens during sample 423 

collection. For subsequent steps, we reanalyzed previously published data for male F. 424 

selysi [4] as well as new data from the four additional species.  425 

Reads were demultiplexed using the process_radtags module of Stacks 1.19 [44]. 426 

We mapped reads to the F. selysi genome using Bowtie 2.3.4.1 [45], called variants 427 

separately for each species with Samtools 0.1.19 [46], and filtered the resulting variants 428 

with VCFtools 0.1.13 [47], excluding indels and retaining SNP markers with missing 429 

data <20%, and minor allele frequency >5%. For each species, we extracted variants on 430 

linkage group 3, which contains the social supergene in F. selysi, and performed a 431 

principal component analysis using PLINK 1.90 [48]. Additionally, we estimated 432 

heterozygosity (FIS) per individual and Weir and Cockerham’s [62] FST between workers 433 

from monogynous and polygynous colonies across the entire genome in sliding 400 kbp 434 

windows with 300 kbp overlap between adjacent windows, using VCFtools 0.1.13 [47].  435 

Linkage maps 436 
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We collected ddRAD sequence data on offspring of two F. selysi homozygous 437 

Sp/Sp queens (77 and 35 newly emerged workers, respectively) and 67 males collected 438 

from a monogyne F. exsecta colony. Library preparation, sequencing, and SNP calling 439 

were carried out as described above in the Supergene presence in multiple species 440 

section. We filtered raw variant calls separately for each mapping family using VCFtools 441 

version 0.1.13 [47], retaining genotypes of SNP and indel variants with quality score >20, 442 

and variants with <20% missing data per family and per-family minor allele frequency 443 

>15%. We then inferred linkage maps for each family using MSTmap [49], using the 444 

Kosambi mapping function and p-value cutoffs of 5e-5 for the smaller F. selysi family 445 

and 5e-6 for the F. exsecta family and larger F. selysi family; full parameter sets are 446 

reported in Table S2. Linkage maps for two Sp/Sp families were merged using 447 

MergeMap [50], weighting each map by the number of individuals used to construct it. 448 

Genome assembly 449 

We collected 20 males from a single monogyne colony. High molecular weight 450 

DNA from head and thorax of the males was extracted following [63]. Briefly, cells were 451 

lysed with an SDS-based lysis buffer, proteins precipitated by addition of potassium 452 

acetate, DNA bound to SeraMag beads and washed with ethanol before elution. PacBio 453 

sequencing libraries were prepared with a SMRTbell Template Prep Kit sequenced on 26 454 

SMRT cells of PacBio RSII (Pacific Biosciences) using P6-C4 chemistry at the Lausanne 455 

Genomic Technologies Facility. 456 

Raw PacBio reads were error corrected, trimmed and de novo assembled with 457 

CANU v1.7 [51] using default parameters. The genome assembly was decontaminated 458 

with BlobTools v1.0 [52] under the taxrule ‘bestsumorder’. The hit file was obtained by 459 

blastn v2.7.1+ alignment to the NBCI nt database, searching for hits with an e-value 460 

below 1e-25 (Parameters: -max_target_seqs 10 -max_hsps 1 -evalue 1e-25). Coverage 461 

information was taken from the contig headers supplied by CANU. Only contigs with no 462 

hits or at least one arthropod hit were retained in the decontaminated assembly. 463 

Subreads were mapped against the decontaminated genome assemblies using 464 

pbalign v0.3.0 and Samtools v1.4 [46] in order to perform a polishing step. 465 

The polishing step was done using the GenomicConsensus v2.2.2 package with the 466 

Quiver method. Finally, additional filtering steps were applied: redundant polished 467 
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contigs were removed using Redundans v0.13c [53] and low-coverage (<15X) contigs 468 

were removed. Output statistics are provided in Table S3. 469 

Assembled contigs were joined into chromosome-level scaffolds using a 470 

consensus linkage map, constructed using MergeMap [50] on three F. selysi families (one 471 

SmSm, [4]; two SpSp, this study) and one F. exsecta family (SmSm, this study), 472 

weighting each map by the number of individuals used to construct it. The two SpSp 473 

families were excluded for Scaffold 3. We extracted 1 kbp of sequence surrounding each 474 

mapped marker from the highly fragmented Illumina genome assembly [4], and aligned 475 

these sequences to the PacBio contigs using Blastn. All contigs containing at least two 476 

markers with different positions on the linkage map were placed and oriented on the 477 

linkage map; scaffolds were constructed manually based on contig order and orientation 478 

on the linkage map.  479 

Whole-genome sequences 480 

Based on the PCA results, we selected haploid or homozygous exemplars of the 481 

Sm and Sp haplotypes in each species for whole-genome sequencing (Tables S1, S4). We 482 

sequenced one individual for each of the two Sp haplotypes found in F. lemani. 483 

Additionally, we sequenced the genomes of one individual from each of ten additional 484 

species and three outgroup species (Iberoformica subrufa, Polyergus vinosus, Polyergus 485 

mexicanus) to an average depth of 9.6x. Library preparation and sequencing were 486 

performed at the Lausanne Genomic Technologies Facility and the UC Berkeley Vincent 487 

Coates Genome Sequencing Laboratory (see Table S4 for sample ID, sequencing 488 

platform, and read depth). 489 

We mapped reads to the F. selysi genome using Bowtie2 2.3.4.1 [45], called 490 

variants with Samtools 0.1.19 [46], and filtered variants with VCFtools 0.1.13 [47], 491 

excluding indels and retaining SNP variants with sequence depth >2 in all 11 Formica 492 

individuals. We used VCFtools to identify SNPs with fixed differences between the Sm 493 

and Sp haplotypes in the five focal species by calculating Weir and Cockerham’s [62] FST 494 

between the six Sp and five Sm individuals, selecting the SNPs with FST equal to 1. To 495 

identify the overlapping or nearby genes for these SNPs, we extracted 10 kbp 496 

surrounding each SNP from the F. selysi reference genome using the getfasta command 497 

in Bedtools 2.27 [54], and queried these sequences against the Camponotus floridanus 498 
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reference genome and the NCBI nr database using blastn v2.7.1+. Finally, we extracted 499 

the genotypes of these fixed SNPs in the ten additional Formica species, to determine 500 

which regions of the supergene continue to exhibit an “old strata” pattern even with 501 

increased species sampling.  502 

We used a Hidden Markov Model implemented in Saguaro [24] to identify 503 

regions of linkage group 3 with phylogenetic tree topologies matching the “old strata” 504 

expectation, and regions with topologies matching the species tree, in the five focal 505 

species.  506 

Phylogeny and dating 507 

 To obtain aligned sequences in fasta format suitable for phylogenetic analyses, we 508 

ran the vcf2fq command in the vcfutils.pl module of Samtools 0.1.19 [46] on each bam 509 

file resulting from the previously described Bowtie2 alignment of whole-genome 510 

sequence data to the F. selysi reference genome. We extracted the chromosome 1 511 

consensus sequence from each individual and concatenated these into a single aligned 512 

fasta file. 513 

 The phylogeny of the 18 species (15 ingroup species of Formica and three 514 

outgroup species of Polyergus and Iberoformica) was reconstructed using the 515 

chromosome 1 sequence alignment. Phylogenetic reconstruction was performed using 516 

maximum likelihood (ML) criterion with IQ-TREE version 1.6.3 [55] and the model 517 

GTR+G+I. Ultrafast bootstrap analysis with 1000 replicates was conducted to assess 518 

node support in IQ-TREE version 1.6.3 [64].  519 

To generate a small dataset for BEAST analysis, we first split the scaffold one 520 

sequence alignment into 10 kbp non-overlapping windows. After removing the windows 521 

that only contain uncalled bases or one taxon, 1532 windows were retained for further 522 

analyses. The ML tree and 100 rapid bootstrap replicates were then inferred for each 523 

window in RAxML version 8.2.8 [56] using the model GTR+G. The BEAST analysis 524 

was conducted on a dataset that contains the top 50 windows with the highest average 525 

bootstrap support and all 18 taxa.  526 

Divergence times were estimated by Bayesian Markov Chain Monte Carlo 527 

(MCMC) analysis using the relaxed (uncorrelated lognormal) molecular clock model and 528 

GTR+G+I model in BEAST v2.4.5 [57] with the topology fixed to the ML tree from the 529 
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above IQ-TREE analysis. Using the known fossil records of Formica in Baltic ambers 530 

[65], we placed one calibration point at the MRCA of Iberoformica and Formica 531 

(lognormal distribution with offset = 42 Ma, median = 60 Ma, 95% quantile = 90 Ma; see 532 

[66]). The analysis was run for 60 000 000 generations (trees sampled at every 2000 533 

generations). Tracer v1.7.1 [59] was used to check when the MCMCs had reached a 534 

stationary distribution by visual inspection of plotted posterior estimates. Trees sampled 535 

during the first 12 000 000 generations (20%) were removed as burn-in and the remaining 536 

trees (24 001 in total) were summarized in TreeAnnotator v2.5.2 [57] using the 537 

‘Maximum clade credibility tree’ and ‘Mean heights’ options, and then displayed with 538 

age in millions of years using FigTree v1.4.3. The 95% highest probability density (95% 539 

HPD) values were summarized. 540 

Quantification and Statistical Analysis 541 

For the two species with observed mismatches between supergene genotype and social 542 

structure (F. lemani and F. cinerea), we tested the significance of association between the 543 

presence of an Sp haplotype (Sp/Sp homozygotes and Sm/Sp heterozygotes were both 544 

coded as “present”) and polygynous social origin using Fisher’s exact test implemented 545 

in R 3.3.1. 546 

Data and code availability 547 

The F. selysi genome assembly has been deposited to NCBI Genome (Bioproject 548 

PRJNA557079). PacBio sequence data has been deposited to NCBI SRA (Bioproject 549 

PRJNA559791). All new ddRAD and whole-genome sequence data has been deposited to 550 

NCBI SRA (Bioproject PRJNA557080). Previously published F. selysi sequence data for 551 

used in this study is available on NCBI SRA under Bioprojects PRJNA260443 (whole-552 

genome) and PRJNA260459 (ddRAD). Linkage maps and a table of oligonucleotides 553 

used in ddRAD library preparation have been deposited to the Dryad data repository 554 

(DOI 10.6086/D1KD40). 555 

 556 

 557 
References Cited 558 

1. Schwander, T., Libbrecht, R., and Keller, L. (2014). Supergenes and complex 559 
phenotypes. Curr. Biol. 24, R288-R294. 560 



 18 

2. Charlesworth, D. (2016). The status of supergenes in the 21st century: 561 
Recombination suppression in Batesian mimicry and sex chromosomes and other 562 
complex adaptations. Evol. Appl. 9, 74-90. 563 

3. Wellenreuther, M., and Bernatchez, L. (2018). Eco-evolutionary genomics of 564 
chromosomal inversions. Tr. Ecol. Evol. 33, 427-440. 565 

4. Purcell J., Brelsford A., Wurm Y., Perrin N., and Chapuisat M. (2014). 566 
Convergent genetic architecture underlies social organization in ants. Curr. Biol. 567 
24, 2728–2732.  568 

5. Zhou, Q., Zhang, J., Bachtrog, D., An, N., Huang, Q., Jarvis, E.D., Gilbert, 569 
M.T.P., and Zhang, G. (2014). Complex evolutionary trajectories of sex 570 
chromosomes across bird taxa. Science 346, 1246338. 571 

6. Hartmann, C., Landgraf, M., Bate, M., and Jäckle, H. (1997). Krüppel target 572 
gene knockout participates in the proper innervation of a specific set 573 
of Drosophila larval muscles. EMBO J. 16, 5299-5309.  574 

7. Yang, Q., Zhang, D., Li, Q., Cheng, Z., and Xue, Y. (2007). Heterochromatic and 575 
genetic features are consistent with recombination suppression of the self-576 
incompatibility locus in Antirrhinum. Plant J. 51, 140-151. 577 

8. Branco, S., Carpentier, F., Rodríguez de la Vega, R.C., Badouin, H., Snirc, A., Le 578 
Prieur, S., Coelho, M.A., de Vienne, D.M., Hartmann, F.E., Begerow, D., et al. 579 
(2018). Multiple convergent supergene evolution events in mating-type 580 
chromosomes. Nat. Commun. 9, 2000. 581 

9. Iijima, T., Kajitani, R., Komata, S., Lin, C-P., Sota, T., Itoh, T., and Fujiwara, H. 582 
(2018). Parallel evolution of Batesian mimicry supergene in 583 
two Papilio butterflies, P. polytes and P. memnon. Sci. Adv. 18, eaao5416. 584 

10. Jay, P., Whibley, A., Frézal, L., Rodriguez de Cara, M.A., Nowell, R.W., Mallett, 585 
J., Dasmahapatra, K.K., and Joron, M. (2018). Supergene evolution triggered by 586 
introgression of a chromosomal inversion. Curr. Biol. 28, 1839-1845. 587 

11. Avril, A., Purcell, J., Brelsford, A., and Chapuisat, M. (2019). Asymmetric 588 
assortative mating and queen polyandry are linked to a supergene controlling ant 589 
social organization. Mol. Ecol. 28, 1428-1438. 590 

12. Rosset, H., and Chapuisat, M. (2007). Alternative life-histories in a socially 591 
polymorphic ant. Evol. Ecol. 21, 577–588.  592 

13. Sundström, L. (1993). Genetic population structure and sociogenetic organisation 593 
in Formica truncorum (Hymenoptera; Formicidae). Behav. Ecol. Sociobiol. 33, 594 
345-354. 595 

14. Goropashnaya, A.V., Seppä, P., and Pamilo, P. (2001). Social and genetic 596 
characteristics of geographically isolated populations in the ant Formica cinerea. 597 
Mol. Ecol. 10, 2807–2818.  598 

15. DeHeer, C.J., and Herbers, J.M. (2004). Population genetics of the socially 599 
polymorphic ant Formica podzolica. Insect. Soc. 51, 309-316.  600 

16. Seppä, P., Gyllenstrand, N., Corander, J., and Pamilo, P. (2004). Coexistence of 601 
the social types: genetic population structure in the ant Formica exsecta. 602 
Evolution 58, 2462-2471. 603 

17. Gyllenstrand, N., Seppä, P., and Pamilo, P. (2005), Restricted gene flow between 604 
two social forms in the ant Formica truncorum. J. Evol. Biol. 18, 978–984.  605 



 19 

18. Bargum, K., Helanterä, H., and Sundström, L. (2007). Genetic population 606 
structure, queen supersedure and social polymorphism in a social Hymenoptera. J. 607 
Evol. Biol. 20, 1351–1360.  608 

19. Thompson, M. J., and Jiggins, C. D. (2014). Supergenes and their role in 609 
evolution. Heredity 113, 1-8. 610 

20. Lahn, B.T., and Page, D.C. (1999). Four evolutionary strata on the human X 611 
chromosome. Science 286, 964-967.  612 

21. Lawson-Handley, L-J., Ceplitis, H., and Ellegren, H. (2004). Evolutionary strata 613 
on the chicken Z chromosome: implications for sex chromosome evolution. 614 
Genetics 167, 367-376. 615 

22. Guerrero, R.F. Rousset, F., and Kirkpatrick, M. (2012). Coalescent patterns for 616 
chromosomal inversions in divergent populations. Philos. T. R. Soc. B 367, 617 
20110246.   618 

23. Kapun, M., and Flatt, T. (2019). The adaptive significance of chromosomal 619 
inversion polymorphisms in Drosophila melanogaster. Mol. Ecol. 28, 1263-1282.  620 

24. Zamani, N., Russell, P., Lantz, H., Hoeppner, M.P., Meadows, J.R.S., Vijay, N., 621 
Mauceli, E., di Palma, F., Lindblad-Toh, K., Jern, P., et al. (2013). Unsupervised 622 
genome-wide recognition of local relationship patterns. BMC Genomics 14, 347.  623 

25. Kirkpatrick, M. (2010). How and why chromosome inversions evolve. PLOS 624 
Biol. 8, e1000501.  625 

26. Korunes, K.L., and Noor, M.A.F. (2017). Gene conversion and linkage: effects on 626 
genome evolution and speciation. Mol. Ecol. 26, 351-364. 627 

27. Korunes, K.L., and Noor, M.A.F. (2019). Pervasive gene conversion in 628 
chromosomal inversion heterozygotes. Mol. Ecol. 28, 1302-1315.  629 

28. Ross, K.G., and Shoemaker, D. (2018). Unexpected patterns of segregation 630 
distortion at a selfish supergene in the fire ant Solenopsis invicta. BMC Genet. 19, 631 
101.  632 

29. da Silva, V.H., Laine, V.N., Bosse, M., Spurgin, L.G., Derks, M.F.L., van Oers, 633 
K., Dibbits, B., Slate, J., Crooijmans, R.P.M.A., Visser, M.E., et al. (2019). The 634 
genomic complexity of a large inversion in great tits. Genome Biol. Evol. 11, 635 
1870-1881.  636 

30. Brelsford, A., Dufresnes, C., and Perrin, N. (2016). Trans-species variation in 637 
Dmrt1 is associated with sex determination in four European tree-frog species. 638 
Evolution 70, 840-847. 639 

31. Kamiya, T., Kai, W., Tasumi, S., Oka, A., Matsunaga, T., Mizuno, N., Fujita, M., 640 
Suetake, H., Suzuki, S., Hosoya, S., et al. (2012). A trans-species missense SNP 641 
in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu 642 
rubripes (Fugu). PLOS Genet. 8, e1002798. 643 

32. Zhang, W., Westerman, E., Nitzany, E., Palmer, S., and Kronforst, M.R. (2017). 644 
Tracing the origin and evolution of supergene mimicry in butterflies. Nat. 645 
Commun. 8, 1269. 646 

33. Küpper, C., Stocks, M., Risse, J.E., dos Remedios, N., Farrell, L.L., McRae, S.B., 647 
Morgan, T.C., Karlionova, N., Pinchuk, P., Verkuil, Y.I., et al. (2016). A 648 
supergene determines highly divergent male reproductive morphs in the ruff. Nat. 649 
Genet. 48, 79-83.  650 



 20 

34. Lamichhaney, S. Fan, G., Widemo, F., Gunnarsson, U., Schwochow Thalmann, 651 
D., Hoeppner, M.P., Kerje, S., Gustafson, U., Shi, C., Zhang, H., et al. (2016). 652 
Structural genomic changes underlie alternative reproductive strategies in the ruff 653 
(Philomachus pugnax). Nat. Genet. 48, 84-88. 654 

35. Tuttle, E.M., Bergland, A.O., Korody, M.L., Brewer, M.S., Newhouse, D.J., 655 
Minx, P., Stager, M., Betuel, A., Cheviron, Z.A., Warren, W.C., et al. (2016). 656 
Divergence and functional degradation of a sex chromosome-like supergene. 657 
Curr. Biol. 26, 344-350. 658 

36. Joron, M., Frezal, L., Jones, R.T., Chamberlain, N.L., Lee, S.F., Haag, C.R., 659 
Whibley, A., Becuwe, M., Baxter, S.W., Ferguson, L., et al. (2011). 660 
Chromosomal rearrangements maintain a polymorphic supergene controlling 661 
butterfly mimicry. Nature 477, 203-206. 662 

37. Van Belleghem, S.M., Rastas, P., Papanicolaou, A., Martin, S.H., Arias, C.F., 663 
Supple, M.A., Hanly, J.J., Mallet, J., Lewis, J.J., Hines, H.M., et al. (2017). 664 
Complex modular architecture around a simple toolkit of wing pattern genes. Nat. 665 
Ecol. Evol. 1, 0052. 666 

38. Wang, J., Wurm, Y., Nipitwattanaphon, M., Riba-Grognuz, O., Huang, Y.C., 667 
Shoemaker, D., and Keller, L. (2013). A Y-like social chromosome causes 668 
alternative colony organization in fire ants. Nature 493, 664–668. 669 

39. Braim, B.S. (2015). Exploring the regulatory role of behaviour and genome 670 
architecture in the socially polymorphic ant, Leptothorax acervorum. Unpublished 671 
doctoral thesis, University of Leicester. http://hdl.handle.net/2381/36076 672 

40. Pracana, R., Priyam, A., Levantis, I., Nichols, R.A., and Wurm, Y. (2017). The 673 
fire ant social chromosome supergene variant Sb shows low diversity but high 674 
divergence from SB. Mol. Ecol. 26, 2864–2879.  675 

41. Huang, Y-C., Dang, V.D., Chang, N-C., and Wang, J. (2018). Multiple large 676 
inversions and breakpoint rewiring of gene expression in the evolution of the fire 677 
ant social supergene. P. R. Soc. B 285: 20180221. 678 

42. Krieger, M.J.B., and Ross, K. (2002). Identification of a major gene regulating 679 
complex social behavior. Science 295, 328-332. 680 

43. Stolle, E., Pracana, R., Howard, P., Paris, C.I., Brown, S.J., Castillo-Carrillo, C., 681 
Rossiter, S.J., and Wurm, Y. (2019). Degenerative expansion of a young 682 
supergene. Mol. Biol. Evol. 36, 553-561. 683 

44. Catchen, J., Hohenlohe, P.A., Bassham, S., Amores, A., and Cresko, W.A. (2013). 684 
Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124-3140. 685 

45. Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with 686 
Bowtie 2. Nat. Methods 9, 357. 687 

46. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., 688 
Abecasis, G., and Durbin, R. (2009). The sequence alignment/map format and 689 
SAMtools. Bioinformatics 25, 2078-2079. 690 

47. Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M.A., 691 
Handsaker, R.E., Lunter, G., Marth, G. T., Sherry, S. T., et al. (2011). The variant 692 
call format and VCFtools. Bioinformatics 27, 2156-2158. 693 

48. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D., 694 
Maller, J., Sklar, P., De Bakker, P.I., Daly, M.J., et al. (2007) PLINK: a tool set 695 



 21 

for whole-genome association and population-based linkage analyses. Am. J. 696 
Hum. Genet. 81, 559-575. 697 

49. Wu, Y., Bhat, P.R., Close, T.J., and Lonardi, S. (2008a). Efficient and accurate 698 
construction of genetic linkage maps from the minimum spanning tree of a graph. 699 
PLoS Genet. 4, e1000212. 700 

50. Wu, Y., Close, T.J., and Lonardi, S. (2008b). On the accurate construction of 701 
consensus genetic maps. Comput. Sys. Bioinform. 7, 285-296.  702 

51. Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H., and Phillippy, 703 
A.M. (2017). Canu: scalable and accurate long-read assembly via adaptive k-mer 704 
weighting and repeat separation. Genome Res. 27, 722–736. 705 

52. Laetsch, D.R., and Blaxter, M.L. (2017). BlobTools: Interrogation of genome 706 
assemblies. F1000Research 6, 1287.  707 

53. Pryszcz, L.P., and Gabaldón, T. (2016). Redundans: An assembly pipeline for 708 
highly heterozygous genomes. Nucleic Acids Res. 44, 1-10. 709 

54. Quinlan, A.R. (2014). BEDTools: the Swiss‐army tool for genome feature 710 
analysis. Curr. Protoc. Bioinformatics. 47, 11-12. 711 

55. Nguyen, L.T., Schmidt, H.A., von Haeseler, A., and Minh, B.Q. (2015). IQ-712 
TREE: a fast and effective stochastic algorithm for estimating maximum-713 
likelihood phylogenies. Mol. Biol. Evol. 32, 268-274. 714 

56. Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and 715 
post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. 716 

57. Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C-H., Xie, D., Suchard, 717 
M.A., Rambaut, A., and Drummond, A.J. (2014). BEAST 2: A Software Platform 718 
for Bayesian Evolutionary Analysis. PLoS Comput. Biol. 10, e1003537.  719 

58. Rambaut, A., Drummond, A.J., Xie, D., Baele, G., and Suchard, M.A. (2018). 720 
Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 721 
67, 901-904. 722 

59. Brelsford, A., Dufresnes, C., and Perrin, N. (2016). High-density sex-specific 723 
linkage maps of a European tree frog (Hyla arborea) identify the sex chromosome 724 
without information on offspring sex. Heredity 116, 177-181.  725 

60. Chapuisat, M., Bocherens, S., and Rosset, H. (2004). Variable queen number in 726 
ant colonies: no impact on queen turnover, inbreeding, and population genetic 727 
differentiation in the ant Formica selysi. Evolution 58, 1064-1072. 728 

61. Purcell, J., and Chapuisat, M. (2013). Bidirectional shifts in colony queen number 729 
in a socially polymorphic ant population. Evolution 67, 1169-1180. 730 

62. Weir, B.S., and Cockerham, C.C. (1984). Estimating F‐statistics for the analysis 731 
of population structure. Evolution 38, 1358-1370. 732 

63. Mayjonade, B., Gouzy, J., Donnadieu, C., Pouilly, N., Marande, W., Callot, C., 733 
Langlade, N., and Muños, S. (2016). Extraction of high-molecular-weight 734 
genomic DNA for long-read sequencing of single molecules. BioTechniques 61, 735 
203-205. 736 

64. Hoang, D.T., Chernomor, O., Von Haeseler, A., Minh, B.Q., and Vinh, L.S. 737 
(2018). UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. 738 
Evol. 35, 518-522. 739 

65. Dlussky, G.M. (1997).  Genera of ants (Hymenoptera: Formicidae) from Baltic 740 
amber. Paleontol. J. 31, 616-627.  741 



 22 

66. Blaimer, B.B., Brady, S.G., Schultz, T.R., Lloyd, M.W., Fisher, B.L., and Ward, 742 
P.S. (2015). Phylogenomic methods outperform traditional multi-locus 743 
approaches in resolving deep evolutionary history: a case study of formicine 744 
ants. BMC Evol. Biol. 15, 271. 745 



 

 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
   
Biological Samples   
Genomic DNA; Formica exsecta (n=108), F. cinerea 
(n=161), F. selysi (n=195), F. truncorum (n=20), F. 
lemani (n=65), F. tombeuri (n=1), F. fusca (n=1), F. 
fuscocinerea (n=1), F. lugubris (n=1), F. sanguinea 
(n=1), F. rufibarbis (n=1), F. picea (n=1), F. pressilabris 
(n=1), F. fennica (n=1), F. pratensis  (n=1), Polyergus 
mexicanus (n=1), P. vinosus (n=1). 

This paper SRA PRJNA557080 

Genomic DNA; Iberoformica subrufa (n=1) M. Borowiec, U. Idaho SRA 
SAMN13065562 

   
   
   
Chemicals, Peptides, and Recombinant Proteins 
EcoRI-HF New England Biolabs R3101 
SbfI-HF New England Biolabs R3642 
MseI New England Biolabs R0525 
T4 DNA Ligase New England Biolabs M0202 
Q5 Hot Start polymerase New England Biolabs M0493 
ATP 100 mM Thermo Fisher R0441 
dNTP mix Thermo Fisher R0192 
Sodium Chloride Biotechnology Grade VWR 97061 
1M TRIS, pH 8.0 biotechnology grade VWR E199 
0.5M EDTA, sterile solution biotechnology grade VWR BDH7830 
Sodium Dodecyl Sulfate (SDS), 20% Solution 
Biotechnology Grade 

VWR 97062 

Polyvinylpyrrolidone average mol wt 40,000 Sigma PVP40 
Sodium metabisulfite ReagentPlus®, ≥99% Sigma S9000 
Potassium acetate for molecular biology, ≥99.0% Sigma P1190 
Polyethylene Glycol 8000 (PEG) Fisher Scientific BP233 
Sera-Mag SpeedBead magnetic carboxylate modified 
particles, DSMG-CM, 1 um, 5% solids 

Fisher Scientific 09-981 

RNase A 100 mg/ml  Qiagen 19101 
Ethanol absolute AnalaR NORMAPUR® ACS, Reag. 
Ph. Eur. analytical reagent 

VWR 10107 

   
   
   
   
   
Critical Commercial Assays 
SMRTbell Template Prep Kit 1.0 PacBio 100-259-100 
DNeasy Blood and Tissue extraction kit Qiagen 69506 
Agencourt AMPure XP  Beckman Coulter A63882 
TruSeq Nano library preparation kit Illumina FC-121-4001 
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Deposited Data 
Formica selysi genome assembly This study PRJNA557079 
Linkage mapping RADseq data, F. selysi (n=112) and F. 
exsecta (n=67). 

This study PRJNA557080 
 

Population RADseq data, F. selysi [4] PRJNA260459 
Whole-genome sequence data, F. selysi Sm haplotype [4] SRX695613 
Whole-genome sequence data, Formica exsecta (n=2), 
F. cinerea (n=2), F. selysi (n=1), F. truncorum (n=2), F. 
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Figure S1. Time-calibrated Phylogeny of 15 Formica Species, Related to Figures 1, 
2, 3. The Formica species examined here span an estimated 30 million years of 
evolutionary history.  This phylogeny, implemented in BEAST (see STAR Methods), 
shows the 15 species investigated here as well as three outgroups.  The calibration point 
is shown as the red star, and 95% highest posterity density (HPD) intervals are indicated 
with blue bars.  Species examined in Figures 1, 2A and B, and S2 are shown in bold.  The 
remaining 10 species, examined in Figure 2C, are also shown.  Species that do not exhibit 
socially parasitic behaviors (sometimes called Serviformica) are shown in blue, 
temporary social parasites in orange (including both Formica sensu stricto and 
Coptoformica), and facultative slave-making species in red (Raptiformica). Outgroups 
are shown in black. 
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Figure S2. Principal Component Analyses of SNPs from Population ddRAD Data on 
Chromosome 3, Related to Figure 1. PCAs show two to six clusters in each species, 
with cluster membership strongly associated with colony social organization. Each panel 
represents an independent PCA in one species: F. exsecta (A), F. selysi (B), F. truncorum 
(C), F. lemani (D), and F. cinerea (E). Each dot corresponds to an individual worker or 
male; supergene heterozygotes tend to have excess heterozygosity resulting in a strongly 
negative FIS value. In F. lemani and F. cinerea, we found evidence for a third supergene 
haplotype.  Two of the three alternative supergene haplotypes in both species were much 
more common in individuals of polygyne origin compared to those of monogyne origin; 
we therefore infer that these systems contain two alternative Sp haplotypes and one Sm 
haplotype. In both systems, we also find mismatches between supergene genotype and 
colony social structure.   
 
  



Table S1. List of Species Used in Analyses, Country of Origin, and Samples Used for 
ddRAD Sequencing (RADseq) and Whole Genome Sequencing (WGS), Related to 
Figures 1 and 2 and STAR Methods 

Species Origin RADseq  
(population) 

RADseq  
(linkage map) 

WGS 

Formica selysi Switzerland 
83 males 

(monogyne and 
polygyne) 

112 workers 
(polygyne) 2 males (Sm, Sp) 

F. cinerea 
Finland, 

Italy, 
Switzerland 

161 workers 
(monogyne, 

polygyne, and 
unknown) 

NA 

1 male (from 
Switzerland: Sm) 1 
worker (from Italy: 

Sp/Sp) 

F. lemani 
Finland, 
Spain, 

Switzerland 

65 workers 
(monogyne,  

polygyne, and 
unknown) 

NA 

3 workers (from 
Switzerland: 

Sm/Sm, Sp1Sp1, 
Sp2Sp2) 

F. exsecta Finland 

12 males 
(monogyne) and 

29 workers 
(polygyne) 

67 males 
(monogyne) 

1 male (Sm), 1 
worker (Sp/Sp) 

F. truncorum Finland 

5 males and 5 
workers 

(monogyne) and 
10 males 

(polygyne) 

NA 2 males (Sm and Sp) 

F. tombeuri Spain NA NA 1 worker  
(inferred Sm/Sm) 

F. fusca Switzerland NA NA 1 worker  
(inferred Sm/Sm) 

F. fuscocinerea Switzerland NA NA 1 worker  
(inferred Sm/Sm) 

F. lugubris Switzerland NA NA 1 worker  
(inferred Sm/Sm) 

F. sanguinea Germany NA NA 1 worker  
(inferred Sm/Sm) 

F. rufibarbis Portugal NA NA 1 worker  
(inferred Sm/Sm) 

F. picea Finland NA NA 1 worker (polygyne, 
inferred Sm/Sp) 

F. pressilabris Finland NA NA 1 worker (polygyne, 
inferred Sm/Sp) 

F. fennica Finland NA NA 1 worker (polygyne, 
inferred Sm/Sp) 

F. pratensis Finland NA NA 1 male (polygyne, 
Sp) 



* Number of loci and number of linkage groups shown here are the true input and output 
numbers; in order to account for the unknown allele phase in each queen, we duplicate each locus 
in the input file, recoding each allele as ‘A’ or ‘B’.  This results in duplicated linkage groups, 
which are then manually compared and removed. 
Table S2. Parameters and Results for Linkage Map Construction, Related to STAR 
Methods 
 
Output Statistic Value 
Pacbio sequence depth 100x 
Assembly Length 290 Mbp 
Contig N50 5.7 Mbp 
Scaffold N50 7.9 Mbp 
Number of Scaffolds Assigned to Chromosomes 27 
Length of Scaffolds Assigned to Chromosomes 227 Mbp 
Number of Scaffolds Not Assigned to Chromosomes 471 
Length of Scaffolds Not Assigned to Chromosomes 63 Mbp 

 
Table S3. Genome Assembly Results, Related to STAR Methods. 
 
 

MSTMap Parameter F. selysi Sp/Sp 
queen, colony 191 

F. selysi Sp/Sp 
queen, colony 192 

F. exsecta sM 
brothers, colony 
FE63 

Distance_function Kosambi Kosambi Kosambi 
Cut_off_p_value 0.00005 0.000005 0.000005 
No_map_dist 30 30 30 
No_map_size 1 1 1 
Missing_threshold 0.1 0.1 0.1 
Estimation_before_clustering No No No 
Detect_bad_data Yes Yes Yes 
Objective_function ML ML ML 
Number_of_loci 1792* 3688* 4603* 
Number_of_individuals 35 77 63 
Output    
Total number of linkage 
groups (incl. unplaced loci) 

29* 48* 31* 

Number of unplaced loci 3 in 2 LGs 15 in 9 LGs 5 in 5 LGs 



Table S4. Details of Individual Samples Used for Whole-Genome Sequencing, 
Related to STAR Methods 

Species Sample ID Origin Sex Supergene 
genotype Sequencer read 

length depth 

F. selysi F92M2 Switzerland M Sm HiSeq 2000, 
Lausanne 100bp PE 15.5 

F. selysi 079M2 Switzerland M Sp HiSeq 2500, 
Lausanne 100bp PE 19.6 

F. cinerea FcBra10 Switzerland M Sm HiSeq 2500, 
Lausanne 100bp PE 12.5 

F. cinerea FcQuin3 Italy F Sp/Sp HiSeq 2500, 
Lausanne 100bp PE 11.8 

F. exsecta FE-MM5 Finland M Sm HiSeq 2500, 
Lausanne 100bp PE 10.9 

F. exsecta FE-PW10 Finland F Sp/Sp HiSeq 2500, 
Lausanne 100bp PE 8.8 

F. lemani FL-BG13A Switzerland F Sm/Sm HiSeq 2500, 
Lausanne 100bp PE 9.2 

F. lemani FL-BG25W1 Switzerland F Sp/Sp HiSeq 2500, 
Lausanne 100bp PE 10.5 

F. lemani FL-BG9W1 Switzerland F Sp/Sp HiSeq 2500, 
Lausanne 100bp PE 9.9 

F. truncorum FT-MM1 Finland M Sm HiSeq 2500, 
Lausanne 100bp PE 9.6 

F. truncorum FT-PM6 Finland M Sp HiSeq 2500, 
Lausanne 100bp PE 10.4 

F. picea Fpic1-2 Finland F Sm/Sp HiSeq 2500, 
Lausanne 100bp PE 13.0 

F. rufibarbis PortoA Portugal F Sm/Sm HiSeq 2500, 
Lausanne 100bp PE 10.2 

F. tombeuri ainc1w9 Spain F Sm/Sm HiSeq 4000, 
Berkeley 150bp PE 9.3 

F. fusca bg22w1 Switzerland F Sm/Sm HiSeq 4000, 
Berkeley 150bp PE 7.5 

F. fuscocinerea furka4w1 Switzerland F Sm/Sm HiSeq 4000, 
Berkeley 150bp PE 9.6 

F. lugubris lugc1w1 Switzerland F Sm/Sm HiSeq 4000, 
Berkeley 150bp PE 6.9 

F. sanguinea fsanw1 Germany F Sm/Sm HiSeq 4000, 
Berkeley 150bp PE 6.8 

F. fennica ob6pol4w1 Finland F Sm/Sp HiSeq 4000, 
Berkeley 150bp PE 6.7 

F. pressilabris br6pol4w1 Finland F Sm/Sp HiSeq 4000, 
Berkeley 150bp PE 7.9 

F. pratensis fp43m1 Finland M Sp HiSeq 4000, 
Berkeley 150bp PE 9.1 

Iberoformica 
subrufa D1135 Spain F n/a HiSeq 4000, 

Berkeley 150bp PE 4.9 

Polyergus 
vinosus scrc2w15 USA F n/a HiSeq 4000, 

Berkeley 150bp PE 3.8 

Polyergus 
mexicanus slac1m1 USA M n/a HiSeq 4000, 

Berkeley 150bp PE 6.1 




