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S U M M A R Y
A strategy is presented to incorporate prior information from conceptual geological models
in probabilistic inversion of geophysical data. The conceptual geological models are repre-
sented by multiple-point statistics training images (TIs) featuring the expected lithological
units and structural patterns. Information from an ensemble of TI realizations is used in two
different ways. First, dominant modes are identified by analysis of the frequency content in the
realizations, which drastically reduces the model parameter space in the frequency-amplitude
domain. Second, the distributions of global, summary metrics (e.g. model roughness) are
used to formulate a prior probability density function. The inverse problem is formulated in a
Bayesian framework and the posterior pdf is sampled using Markov chain Monte Carlo simu-
lation. The usefulness and applicability of this method is demonstrated on two case studies in
which synthetic crosshole ground-penetrating radar traveltime data are inverted to recover 2-D
porosity fields. The use of prior information from TIs significantly enhances the reliability
of the posterior models by removing inversion artefacts and improving individual parame-
ter estimates. The proposed methodology reduces the ambiguity inherent in the inversion of
high-dimensional parameter spaces, accommodates a wide range of summary statistics and
geophysical forward problems.
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1 I N T RO D U C T I O N

Geophysical inversion seeks to infer representative estimates of
spatially distributed subsurface properties, given direct or indirect
measurements that are sensitive to those properties. For a specified
model parametrization, each set of parameter values is referred to
as a model. In probabilistic inversions, the probability of a certain
model given the data is expressed as the product of a prior distri-
bution and a likelihood function using Bayes’ Theorem. The prior
distribution is a probability density function (pdf) that summarizes
all information available about the parameters of interest before
any data is collected, whereas the likelihood function quantifies the
probability that the actual data with its measurement errors has been
generated by a proposed model. The product of the prior distribu-
tion and likelihood function leads to a posterior distribution, which
summarizes the statistical distribution of the model parameters. Un-
fortunately, in most practical applications we cannot derive this pos-
terior distribution by analytical means. We therefore resort to Monte
Carlo simulation to generate samples from the posterior distribution.
The most popular of such sampling methods is the Random Walk
Metropolis (RWM) algorithm (e.g. Chen et al. 2000), a Markov
chain Monte Carlo (MCMC) simulation method that has found

widespread application and use in many different fields of study.
Such MCMC methods have several advantages over deterministic,
gradient-driven optimization methods in that they (1) do not require
linearization of the inverse problem and thus can handle highly non-
linear problems and (2) provide an ensemble of models drawn from
the posterior distribution that can be used to characterize parameter
uncertainty. Recent applications of MCMC in geophysics include
inversions of electromagnetic (Buland & Kolbjørnsen 2012; Rosas-
Carbajal et al. 2014), seismic (Bodin & Sambridge 2009; Hong &
Sen 2009) and ground-penetrating radar (GPR) data (Scholer et al.
2012), as well as multiphysics inversions (Bosch et al. 2006; Irving
& Singha 2010). Sambridge & Mosegaard (2002) present a com-
prehensive but somewhat dated review on Monte Carlo methods in
geophysical inverse modelling.

A general problem of parameter estimation in geophysics is that
there exists an infinite number of models that can explain the data
within their error bounds (Backus & Gilbert 1970), but most of
them are unrealistic or even unphysical. To overcome this ambigu-
ity and reduce the number of possible models, it is common prac-
tice to impose data independent constraints on the model structure.
Constraints can be imposed by choosing model parametrizations
where the model space is bounded to exclude undesired models
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(e.g. Lochbühler et al. 2014a), or by favouring models based on
their agreement with a reference model (i.e. damping, Marquardt
1963), the model roughness (Constable et al. 1987; Rosas-Carbajal
et al. 2014), the fit to a multi-Gaussian geostatistical model (Mau-
rer et al. 1998; Johnson et al. 2007) or the structural similarity
to another model in joint inversions (e.g. Gallardo & Meju 2004;
Linde et al. 2006). These constraints are accounted for by including
penalty terms in the objective function (deterministic inversion) or
by using an explicit prior pdf (probabilistic inversion). Alternatively,
geostatistical inversion approaches (e.g. Irving & Singha 2010; Ma-
riethoz et al. 2010a; Hansen et al. 2012c) adopt a constrained prior
in the form of a variogram and estimate the parameter values by
sequential resimulation of parts of the model domain so that the
underlying geostatistics are honoured.

The geostatistical inversion approach has been extended recently
to consider priors that account for higher order spatial statistics,
so-called multiple-point statistics (MPS). The concept of MPS is
becoming increasingly popular in the geostatistics and geophysics
communities, since it allows for models that are constrained by de-
tailed conceptual information about the expected geology at the site
of interest (Caers & Zhang 2004; González et al. 2007; Huysmans
& Dassargues 2009; Lochbühler et al. 2014b). The basis for MPS
is a training image (TI), which is a graphical representation of a
conceptual geological model that features the lithologies and struc-
tural patterns that could be expected at a given site (e.g. Strebelle
2002). The MPS formulation of the spatial variability of parameter
values allows for description of features that covariance-based, two-
point statistics are unable to describe accurately such as curvilinear
and discrete continuous structural elements. A TI thus offers strong
prior information. It can be used in geostatistical inversions where
MPS simulations are conditioned to geophysical data by sequential
updating of groups or blocks of cells (Mariethoz et al. 2010a; Cor-
dua et al. 2012; Hansen et al. 2012a,b,c). The information content
of the TI drastically reduces the degrees of freedom compared with
the number of cells in the model domain, and the resulting posterior
models are visually very similar to the TI (e.g. Cordua et al. 2012).
In these approaches, the sampling efficiency strongly depends on
the number of updated cells and it can be difficult to fit large data
sets with realistic observational errors (e.g. Irving & Singha 2010;
Cordua et al. 2012).

We here present an inversion strategy where TI realizations, that
is, images comprising the MPS represented by the TI, are used to
define case-specific model parametrizations and prior density func-
tions. Models are parametrized by coefficients of their truncated
discrete cosine transform (DCT), with coefficients based on analy-
sis of the TI realizations in the DCT domain (Jafarpour et al. 2009).
The DCT coefficients that are necessary to describe structures that
frequently occur in the TI will thus be part of the model parametriza-
tion and such structures can be reproduced in the posterior models.
Apart from the model parametrization, we also extract from the TI
realizations the distributions of global measures of model morphol-
ogy, what we refer to as summary statistics. These distributions are
translated into prior distributions to evaluate the prior probability
of all proposed models.

Our inversion strategy is conceptually different from the MPS
inversion approach described above, as all model parameters are
sampled independently. There is also a clear distinction with re-
spect to regularized inversions (e.g. Constable et al. 1987; Maurer
et al. 1998; Rosas-Carbajal et al. 2014), in that information on the
model structure is not imposed by enforcing intercellular correlation
of a certain form, but instead by defining a prior on global, location-
independent summary metrics. If, for example, the extracted sum-

mary metric is the global roughness, the prior probability of a pro-
posal model depends on the global roughness distribution of the TI
realizations. This distribution is unlikely to be centred around zero
as imposed in classical smoothness-constrained inversions.

In the remainder of this paper, we present the individual build-
ing blocks of our inversion strategy (Section 2) and illustrate our
preliminary findings for two different case studies with different
geological settings (Section 3) using traveltime observations from
synthetic crosshole GPR experiments. Section 4 discusses the ad-
vantages and limitations of the proposed methodology. Finally, in
Section 5 we provide our conclusions.

2 M E T H O D O L O G Y

2.1 Sparse model parametrization

In applied geophysics, the model space is typically parametrized
by pixels (or voxels) in 2-D (3-D) Cartesian grids. For large model
domains or fine grid discretizations, this quickly results in several
thousands to millions of model parameters. Since the efficiency
of MCMC algorithms decreases sharply with increasing number
of independently sampled parameters, inversion with a high reso-
lution Cartesian parametrization is a daunting and CPU-intensive
task, particularly in the absence of a prescribed spatial correla-
tion structure. Fortunately, the use of sparse representations in the
frequency–amplitude domain can help to significantly reduce the
dimensionality of the model space while maintaining a large degree
of fine-scale information. Alternative parametrizations of the model
space include the discrete cosine (Jafarpour et al. 2009, 2010; Linde
& Vrugt 2013; Lochbühler et al. 2014a) and the wavelet transform
Davis & Li 2011; Jafarpour 2011). Here we use the DCT (Ahmed
et al. 1974), more precisely, DCT-II in 2-D, which for a uniformly
discretized model A ∈ �Nx ×Nz is given by

B (kx , kz) = αkx αkz

Nx −1∑
x=0

Nz−1∑
z=0

A (x, z) cos
π (2x + 1) kx

2Nx

× cos
π (2z + 1) kz

2Nz
, (1)

where

αkx =
⎧⎨
⎩

1√
Nx

, kx = 0√
2

Nx
, 1 ≤ kx ≤ Nx − 1,

and

αkz =
⎧⎨
⎩

1√
Nz

, kz = 0√
2

Nz
, 1 ≤ kz ≤ Nz − 1.

The matrix B contains the DCT coefficients. In the absence of
prior information about the information content of each individual
DCT coefficient, model compression can be adopted by truncating
the high-frequency terms, and thus focusing on the low-frequency
coefficients only (Jafarpour et al. 2009; Linde & Vrugt 2013). In
this study, we use prior information from TIs to determine case-
specific sparse model parametrizations, which we hereafter conve-
niently refer to as TI-based parametrizations. Following Jafarpour
et al. (2009), the dominant transform coefficients (i.e. those coeffi-
cients that contribute the most to represent the expected subsurface
structures) are determined by the following steps.
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1. Create a large set of realizations of a known TI using a MPS
simulator (so-called TI realizations).

2. Calculate the 2-D DCT of all TI realizations.
3. Compute the arithmetic mean of the absolute value of each

transform coefficient.
4. Select the n coefficients for which the mean value is largest,

where n is a default value set by the user.
5. Store the coordinates in the DCT space of the n dominant

coefficients.

Jafarpour et al. (2009) used the reciprocals of the n dominant DCT
coefficients to build a weighting matrix W that was used as a reg-
ularization term in a deterministic inversion. In the present study,
the dominant transform coefficients are the model parameters that
we seek to estimate, while all other coefficients are set to zero. The
DCT was preferred above the wavelet transform, as for the inves-
tigated cases the DCT had superior compression power to achieve
comparable model quality.

The choice of the number of considered DCT coefficients, n, is a
trade-off between the desired resolution and the available computa-
tional budget. The quality of the compression can be quantified by
the peak signal-to-noise ratio (PSNR)

PSNR = 10 log10

(
max (A)2

1
Nx Nz

∑Nx
x=1

∑Nz
z=1 [A (x, z) − A′ (x, z)]2

)
,

(2)

where A and A′ are the uncompressed and compressed images,
respectively. The PSNR is a common measure in image processing
(e.g. Huynh-Thu & Ghanbari 2008). For the two cases presented
herein, we use n = 100 and 150, respectively, resulting in PSNR
values between 28 and 39 dB. This is well above common PSNR
thresholds in image processing (e.g. Welstead 1999).

2.2 Markov chain Monte Carlo sampling
with DREAM(ZS)

We seek to infer the posterior distribution of a set of model param-
eters m from observed data d. In a probabilistic sense, the relation
between the model and the data can be expressed by Bayes’ Law

p (m |d ) = p (m) p (d |m )

p (d)
= p (m) L (m |d )

p (d)
, (3)

where p(m|d), the posterior pdf of the model given the data, is our
main subject of interest. The other entities in eq. (3) are p(m), the
prior distribution of the model parameters, L (m |d ) ≡ p (d|m), the
likelihood of the parameters given the data and p(d), the evidence.
The latter term is generally difficult to estimate in practice, but
if the model parametrization is fixed, all relevant statistical infor-
mation (mean, standard deviation, etc.) can be extracted from the
unnormalized distribution

p (m |d ) ∝ p (m) L (m |d ) . (4)

In this study, the data d constitute the radar traveltimes from
crosshole GPR experiments. The model vector m includes the
dominant DCT coefficients for a given log-porosity field ϕ,
m = τDCT ◦ log(ϕ) and a set of petrophysical parameters that are
necessary to solve the forward problem.

The prior p(m) describes the distribution of the model parameters
before any data d have been collected and assimilated (e.g. Chen
et al. 2000). The formulation of the prior distribution based on
summary statistics inferred from TI realizations is a central theme
of this study and will be described in detail later (Section 2.3).

The likelihood function L(m|d) measures the distance between
the measured data, d, and the corresponding values predicted by the
proposed model, dpred. If we assume the error residuals to be uncor-
related and Gaussian distributed, the likelihood function, L(m|d), is
given by

L (m |d ) =
N∏

i=1

1√
2πσ 2

i

exp

⎡
⎢⎣−1

2

(
dpred

i (m) − di

)2

σ 2
i

⎤
⎥⎦ , (5)

where N denotes the number of data points and σ i represents the
measurement error standard deviation of the ith data point.

We apply a hierarchical Bayes scheme (e.g. Malinverno & Briggs
2004) and estimate a global relative error level σrel = σi/di , jointly
with the parameters m. By doing so, we also account for epistemic
(model structural) and model parametrization errors, as long as
these are independent and well described by the Gaussian likeli-
hood function in eq. (5) (e.g. Schoups et al. 2010; Rosas-Carbajal
et al. 2014). Relative errors are used herein, but the perhaps more
common assumption of absolute errors would also be straightfor-
ward to implement and lead to similar results. The posterior pdf is
sampled with the DREAM(ZS) algorithm (ter Braak & Vrugt 2008;
Vrugt et al. 2009; Laloy & Vrugt 2012). We here give a brief de-
scription of the sampling scheme and refer to Laloy & Vrugt (2012)
for a detailed description of the algorithm. In short, DREAM(ZS) is
an adaptive MCMC algorithm that runs K (K > 2) different chains
in parallel and creates jumps in each chain using a fixed multiple
of the difference of two states sampled from an archive of past
model states. This archive is growing progressively as the sampling
evolves and diminishing adaptation ensures convergence to the ap-
propriate target distribution. We refer to ter Braak & Vrugt (2008)
for an in-depth discussion concerning ergodicity and convergence
properties of this algorithm. If the position of the ith chain is given
by mi, then new proposal models, mi

prop are calculated using

mi
prop = mi + �i . (6)

The DREAM(ZS) algorithm implements subspace sampling in
which only a subset of all dimensions is periodically updated. The
dimensions to be updated (indexed j) are determined for each step
based on a series of crossover values (details given by Vrugt et al.
2009). The number of updated dimensions, d ′, lies within 1 and
the total number of dimensions, d. The respective dimensions are
updated by a proposal jump

�i
j = (1d ′ + ed ′ ) γd ′

[
zr1

j − zr2
j

] + εd ′ , (7)

where 1d ′ denotes a unit vector of length d′, zr1 and zr2 are sampled
from the external archive of model states, Z, and r1 and r2 are
randomly chosen members of Z. The variables ed ′ and εd ′ add
stochastic fluctuations to ensure ergodicity and are drawn from
Ud ′ (−b, b) and Nd ′ (0, b∗), respectively, where b and b∗ are small
compared to the width of the target distribution. The jump rate, γd ′ =
2.4/

√
2d ′, depends on the number of updated dimensions d ′ (Vrugt

et al. 2009) and controls the dissimilarity between subsequent states.
Each fifth proposal, the jump rate is temporarily set to 1 to facilitate
direct jumps between disconnected posterior modes.

The acceptance probability of the proposed model is determined
using the Metropolis ratio (e.g. Mosegaard & Tarantola 1995)

α = min

{
1,

p
(
mi

prop |d )
p

(
mi |d )

}
. (8)

If the posterior probability of the proposed model, p(mi
prop |d ),

is larger than that of the current position of the chain, p(mi |d ), the
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probability to move to this new state is one. Otherwise the accep-
tance probability is given by the ratio of p(mi

prop |d ) and p(mi |d ).
For the sake of numerical stability, the likelihood function and the
prior probability are evaluated in log-space [denoted l(m|d) and
ω(m), respectively], and the acceptance probability to move from
one state to the next becomes

α=min
{
1, exp

(
l
(
mi

prop |d )+ω
(
mi

prop

)−l
(
mi

prop |d )−ω
(
mi

))}
.

(9)

2.3 Summary statistics from TI realizations

TIs are 2- or 3-D images, digitally created or drawn by hand, that
represent conceptual geological information of the area of interest
such as characteristic structural elements and lithofacies (Strebelle
2002; Hu & Chugunova 2008). Such images are typically used
when the subsurface is described by repeating structures, for exam-
ple, meandering and intersecting channels in the case of fluvial or
turbiditic reservoirs. In geostatistical modelling, the purpose of a
TI is to represent the spatial dependencies between a set of points
larger than 2, that is, the MPS.

Our method relies on a TI that captures the expected spatial pat-
terns and lithofacies information at the study site, which we refer
to as geological prior information. Each lithological unit of the
TI is assigned a different porosity value using information from
outcrop data or borehole cuttings. Then, an ensemble of different
geostatistical realizations of the TI is generated using the simulation
algorithm DeeSse, an improved and commercialized version of the
original algorithm proposed by Mariethoz et al. (2010b). DeeSse
simulations are based on direct sampling of patterns from the TI
to sequentially simulate all pixel values in the realization. Patterns
are defined by a set of neighbouring pixels that have already been
assigned values in previous simulation steps. The pixel combination
defined by the pixel values and lags of the neighbouring pixels to
the target pixel, that is, the pixel to be simulated, builds a pattern.
The TI is scanned for such a pattern and once found, the pixel values
of the TI are copied to the realization. This pixel-wise copy-paste
scheme preserves the MPS of the TI. The size of the neighbourhood

(number of adjoining pixels used) determines the order of spatial
statistics of the TI that is honoured in each realization. Indeed, if
only one neighbour is used, this procedure is equivalent to regular
variogram sampling. Simulation quality and computational cost of
the DeeSee algorithm depend on a set of controlling algorithmic
parameters, which we chose following the recommendations made
by Meerschman et al. (2013). Of course, the ensemble of TI real-
izations should be large enough to ensure stable and thus reliable
summary statistics.

To compress the model space, each TI realization is transformed
into the discrete cosine domain and the dominant transform coef-
ficients are determined (see Section 2.1). The DCT of the TI real-
izations are then truncated by setting all coefficients to zero except
the dominant ones (note that these dominant coefficients are repre-
sentative of all TI realizations). The inverse DCT of these truncated
spectra yields an ensemble of porosity realizations. These poros-
ity realizations, rather than their original counterparts, are used to
extract summary metrics. In this way, we ensure that the summary
statistics describe features that can be represented by the sparse
model parametrizations. The various steps of this procedure are
shown in Fig. 1.

To illustrate our methodology, we use three different summary
metrics of model morphology: (i) overall model roughness, (ii) pa-
rameter variability and (iii) porosity percentiles. These three met-
rics summarize important information about the expected spatial
distribution of porosity. Furthermore, they are easy to calculate and
invoke only minimal computational cost.

The roughness of the model, Sr, is calculated from the model
representation on a Cartesian grid, A, using first-order differences
in the x- and z-direction

Sr =
Nx∑

x=2

Nz∑
z=2

(|A (x, z)− A (x − 1, z)|+|A (x, z)− A (x, z − 1)|) .

(10)

Such a roughness term is, in a least-squares sense, part of the
objective function in smoothness-constrained deterministic inver-
sions, where the goal is to find least-structured models that ex-
plain the data (e.g. Constable et al. 1987). In these approaches any

Figure 1. Schematic workflow of the presented inversion strategy. Realizations of a training image (TI) generated by multiple-point statistics (MPS) simulations
are subject to discrete cosine transformation (DCT). Dominant DCT coefficients are derived and the corresponding basis functions are used to parametrize the
porosity fields. From compressed TI realizations, summary statistics distributions are extracted and translated into a prior probability density function. The
model space is sampled with the DREAM(ZS) algorithm to obtain posterior model realizations.
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measure of structure larger than zero is penalized, thereby resulting
in models that are often overly smooth. Here, we use the TI real-
izations to extract a distribution describing the expected roughness.
A global measure of roughness similar to Sr is often imposed as a
constraint in image processing, where it is commonly referred to as
total variation (TV, e.g. Rudin et al. 1992).

Another summary metric used herein is the total sum of the
absolute values of DCT coefficients used to parametrize the model

Sv =
Nx∑

kx =1

Nz∑
kz=1

|Btrunc (kx , kz)| , (11)

where Btrunc is the sparse model representation in the DCT domain.
This metric measures the expected variability, or energy, within
the model image as Sv is large for models with many interfaces
and strongly varying porosities at different spatial scales. The TI
realizations thus allow us to extract explicit information about the
expected variability.

To make sure that our posterior models exhibit the ‘right’ poros-
ity distribution, we consider as third, and last summary metric
namely the 10, 50 and 90 per cent percentiles of the porosities
from our TI realizations. We summarize these values in the vector
Sp = (S10, S50, S90).

2.4 Prior distribution based on summary statistics

Our model vector contains the n dominant DCT coefficients that
define the porosity field, a set of petrophysical parameters that re-
late the porosity to GPR wave speed values, and the relative error
level σ rel. All model parameters are initially sampled from uniform
distributions. The ranges of the retained DCT coefficients are set
equal to their maximum and minimum values found in the ensemble
of TI realizations. Further, the upper and lower bounds of the petro-
physical parameters are based on literature values (Keller 1988).
We assume that the relative error level follows a Jeffreys prior (i.e.
its logarithm is uniformly distributed) with a range of half and two
times its true value (Tarantola 2005).

The premise of this paper is that summary metrics from TI re-
alizations can help to constrain model morphology. The idea is to
translate the distribution of these summary metrics observed in the
TI realizations into a prior distribution. This can thus be seen as an
indirect prior on the model parameters, as the summary metrics of
a model depend on the porosity values which in turn depend on the
sampled DCT coefficients and petrophysical parameters.

To handle prior distributions of arbitrary shape, we cre-
ate histograms of the summary metrics of the TI realizations.
The frequencies on the y-axis are scaled so that the histogram in-
tegrates to unity, and represents a proper probability distribution.
The prior probability of a proposal model, p(mprop), is in the case
of independent summary statistics given by

p
(
mprop

) =
dS∏
j=1

p j,k, (12)

where dS signifies the dimensionality of S and pj,k is the probability
of the kth bin for the jth summary metric. The assumption of inde-
pendence among the summary metrics is acceptable for the studies
considered herein (e.g. correlation coefficients smaller than 0.1 for
the first case study) but might not be reasonable for other problems
and a multivariate prior distribution should be used.

This distribution constitutes a bounded indirect prior, as the bins
are restricted to a certain range and the probability assigned to

Figure 2. Formulation of the summary metrics prior and the indicator func-
tion. The distribution of roughness values observed in a set of 1000 TI
realizations is shown in grey and the estimated prior following this distribu-
tion is shown by the black solid line. The blue bars depict the distribution
of roughness values in an initial set of random models. To ensure that the
posterior models have roughness values within the summary metric prior
range, an indicator function (dashed black line) is applied. The indicator
function is 1 where the summary metrics prior is non-zero and it decreases
to 0 towards the possible extreme values that might be sampled. Only re-
alizations for which the indicator function is 1 are considered as possible
realizations of the posterior.

each bin refers to the summary metric, not to the sampled individ-
ual model parameters. This, however, does not guarantee that the
summary metrics of the proposed models will fall into the appro-
priate range covered by this prior. For example, consider Fig. 2 that
presents a histogram of the sampled model roughness values for
one of the case studies discussed later. The grey bars depict the
roughness distribution in an ensemble of 1000 TI realizations. Each
bin is assigned a probability pk (black solid line). The roughness
values of the models from the initial archive Z used in DREAM(ZS)

are shown in blue. None of these models are deemed acceptable, as
their roughness values fall outside the prescribed prior distribution
for this summary metric. This happens as DREAM(ZS) in the initi-
ation stage draws independent realizations of all model parameters
(i.e. DCT coefficients and petrophysical parameters) without any
consideration of the summary statistics.

To ensure that all models honour the observed summary met-
rics we draw inspiration from Sadegh & Vrugt (2014) and use
an indicator function on the prior distribution. This function I(m)
returns 1 if the summary metrics within a proposed model realiza-
tion is within the range of the observed summary metrics derived
from the TI realizations. Outside this range, I(m) decreases linearly
to 0 at the extreme ends. The acceptance rule to move from one
model state to the next is then modified such that mi

prop is always
accepted if I (mi

prop) > I (mi ), otherwise the proposal is rejected
unless I (mi

prop) = 1 In this latter case, the acceptance ratio is calcu-
lated following eq. (9). The range over which the indicator function
is defined is determined by the minimum and maximum values of
the summary metrics observed in the combined set of TI realiza-
tions and initial archive of models, Z. If several summary metrics
are considered, the indicator values are multiplied, meaning that all
summary metric values must lie in the prior range for the proposal
to be evaluated as a possible posterior sample.

As pointed out by Sadegh & Vrugt (2014), this modified accep-
tance rule introduces two different search stages of DREAM(ZS).
Initially, the algorithm acts as an optimizer and only accepts pro-
posals if the summary metrics of the proposals are in better agree-
ment with their observed values (smaller Euclidean distance). The
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resulting transitions of the Markov chain are irreversible, and hence
the sampled states in stage 1 cannot be used to infer statistical
properties of the model parameters. Once the simulated summary
metrics are within their desired prior range [I (mi

prop) = 1], stage 2
is initiated and eq. (9) is used to determine whether to accept each
proposal or not. This then constitutes a regular MCMC step, and
should, after sufficient burn-in, provide a sample of the posterior
target distribution. In stage 2, it regularly happens that the proposal
jump (eq. 7) leads to models with summary statistics that are out-
side of the desired prior range. When this happens, new proposals
are generated with eq. (7) until I (mi

prop) = 1. The acceptance prob-
ability of eq. (9) then determines whether this proposal is accepted,
otherwise the chain remains at its current state. Empirical results
presented herein illustrate that this two-stage acceptance rule works
well in practice.

The summary statistics have been constructed from a popula-
tion of TI realizations and can be represented with our model
parametrization. This guarantees the presence of a region within
the model space which satisfies the observed summary metrics.
However, this does not discount the possibility of multiple discon-
nected behavioural regions that each honour the observed summary
metrics. Such disconnected posterior distributions are very difficult
to sample adequately. Fortunately, by using K = 5 different chains
in DREAM(ZS) the model space is exhaustively explored, and by
setting the jump rate periodically to unity in eq. (7), the chains can
jump directly from one mode to the next. This enables inference of
complex and multimodal posterior distributions (Vrugt et al. 2009;
Laloy & Vrugt 2012).

2.5 Forward modelling

The proposed inversion method is applied to first-arrival traveltime
data from synthetic crosshole GPR experiments. A radar wave is
transmitted in one borehole and recorded in an adjacent one. By
measuring the first-arrival time of the signal for various transmitter-
receiver configurations, we can derive information about the spatial
distribution of the radar slowness u (i.e. the reciprocal of the wave
speed) between the boreholes, which for a water-saturated porous
medium can be related to the 2-D porosity distribution ϕ (x, z)
through the following petrophysical relation (Davis & Annan 1989;
Pride 1994)

u (x, z) = 1

c

√
ϕ (x, z)m (εw − εs) + εs, (13)

where c (m s−1) signifies the speed of light in a vacuum, m (–)
denotes the cementation factor and εw (–) and εs (–) are the relative
electrical permittivitivities of water and grains, respectively. In our
analysis, we assume that c = 3 × 108 m s−1 and εw = 81, and
consider m ∈ [1.3, 1.8] and εs ∈ [2, 6] to be free parameters in the
inversion. The ranges of m and εs are taken quite wide and are based
on literature values (Keller 1988). We refer to Peterson (2001) for a
detailed discussion about suitable field procedures when acquiring
crosshole GPR data and an assessment of the sources of errors that
affect the picked traveltimes.

The forward problem thus involves the calculation of the GPR
traveltimes between the two boreholes, which is a function of the
unknown porosity field and petrophysical relationship. We obtain
the spatial distribution of the first-arrival traveltimes for each source
position by solving the eikonal equation using a finite-difference
scheme (Podvin & Lecomte 1991).

3 R E S U LT S

To benchmark our inversion method, we use two synthetic case stud-
ies. The first study involves a subsurface of channel structures within
a homogeneous matrix. This results in a binary TI. The second study
involves a more complex geological setting featuring five lithologi-
cal units forming typical sedimentary structures of a fluvial deposit.
Both cases are described in detail by Lochbühler et al. (2014b). The
TIs for both studies and a few of their corresponding TI realizations
are shown in Fig. 3. A total of 1000 realizations were generated from
each of the TIs and compressed to n = 100 and 150 DCT coeffi-
cients, respectively (see Section 2.1). For both case studies we used
standard settings of the algorithmic variables of DREAM(ZS) (Laloy
& Vrugt 2012). Convergence was assessed using the R̂-statistic of
Gelman & Rubin (1992). This statistic compares for each parameter
of interest the between- and within-variance of the chains. Because
of the asymptotic independence, the between-member variance and
R̂ can be estimated consistently from a single DREAM(ZS) trial. In
practice, values of R̂ smaller than 1.2 indicate convergence to a
limiting distribution. In all our calculations reported herein we use
the last 50 per cent of the samples in each chain to calculate the R̂
diagnostic. Simulation results show that about 40 000 and 70 000
iterations were required to reach convergence for case study 1 and
2, respectively.

3.1 Channels case

Our first study, hereafter referred to as the channels case, considers
channels of porosity ϕ = 25 per cent that pervade a matrix with
ϕ = 32 per cent. The relative electrical permittivity of the grains is
εs = 3 and the cementation factor, m, is 1.5. The forward problem is
solved on a grid with square blocks of 0.1 × 0.1 m. GPR transmitter
and receiver antennas are placed at a distance of 0.3 m along the
left and right boundary of the domain (cf. white dots in Fig. 4a),
resulting in a total of 879 traveltimes. The simulated traveltimes
are corrupted with a heteroscedastic Gaussian measurement error
with standard deviation set to 2 per cent of the ‘observed’ values.
A relative error is used here to partly account for the typically
larger observational and modelling errors associated with high-
angle ray paths that are often associated with longer traveltimes, but
similar results are expected if using absolute errors. The reference
porosity field and its compressed image are shown in Figs 4(a) and
(b), respectively. As we use a sparse model parametrization, the
compressed image is, in a visual sense, the ‘best’ model we can
theoretically recover.

We first draw random simulations of our summary-statistics based
prior using the TI-based parametrization by running the MCMC
algorithm with a likelihood of unity. Eight sample realizations
(Fig. 5a) suggest that the summary-statistics based prior favours
correct proportions between high- and low-porosity regions, but
that the low-porosity regions (channel material) are generally dis-
connected. The ensemble mean (Fig. 4c) has no resemblance with
the reference model (Figs 4a and b), but the patterns are not truly
random. This is a consequence of our model parametrization strat-
egy. It is clear that any channel-like structures that appear in the
posterior model realizations are the consequence of conditioning to
the geophysical data. To illustrate the effect of the chosen model
parametrization, the data were first inverted without a summary
metrics-based prior distribution or a TI-based model parametriza-
tion. Instead, all but the 100 low-frequency coefficients arranged in a
10 × 10 rectangle were set to zero (Linde & Vrugt 2013; Lochbühler
et al. 2014a). Even though the data are almost fitted up to their
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Figure 3. Training images for the channels case (a), the fluvial deposits case (c) and multiple-point statistics realizations thereof (b and d). Note that the full
ensemble of TI realizations contains 1000 realizations for both cases.

measurement error, the inverse models bear very little resemblance
with the reference porosity field (Figs 4d and 5b). With a TI-
based model parametrization (Section 2.1), the inversion results
are markedly improved (Figs 4e and 5c) in that the main structural
features of the reference porosity field are captured. However, in-
version artefacts are abundant and m and εs are poorly estimated
(Figs 5c and 6b). The use of a summary statistics-based prior distri-
bution further improves the posterior models. Many of the inversion
artefacts persist and the petrophysical parameters are much closer
to their true values (Figs 6c–f), particularly if the prior distribution
is based on the observed sum of DCT coefficients (Fig. 5e).

To quantify the quality of the posterior models, we calculated
the root mean square error (RMSE) between the reference porosity
field Aref (cf., Fig. 4a) and the posterior porosity models, A,

RMSE =
∥∥∥∥ 1√

Nx Nz

(Aref − A)

∥∥∥∥
2

. (14)

As shown in Table 1, the posterior models provide better porosity
estimates if a TI-based parametrization is applied and the results
are further improved if summary statistics are used. The closest
resemblance to the reference model is achieved by joint use of the
variability and the percentile metrics (mean RMSE = 2.27 per cent).

The aberrant values of the petrophysical parameters demonstrate
that it is not particularly easy to find ‘physically realistic’ models in
high-dimensional inversion. There are many models for which the
data are adequately explained even if the petrophysical parameters
are poorly estimated. This finding is perhaps not surprising, as the
DCT parametrization is flexible enough to correct for this. The 2
per cent measurement error is contained in the posterior distribution
for all the different error level estimates (Fig. 6, rightmost column),
except for the inversion with no TI-based parametrization (Fig. 6a).

To further demonstrate the benefits of the TI-based model
parametrization and the summary metrics prior, we calculated the
log posterior probability log[p(m|d)], with m and εs varying be-

tween their prior bounds and the DCT coefficients kept fixed at
their maximum a posteriori density (MAP) values (Fig. 7). The
TI-based parametrization does not have a strong effect on the pos-
terior density of the petrophysical parameters (compare Figs 7a and
b), but the results are quite different when the summary statistics-
based prior is used (Figs 7c–f). The MAP values (black crosses) are
now in closer agreement with the m and εs values used to generate
the synthetic GPR data (compare black and red crosses in Fig. 7).
The results not only favour the use of summary metrics, but also
demonstrate the ability of the DREAM(ZS) algorithm, with mod-
ified acceptance rule, to locate and sample the underlying target
distribution. Indeed, the MAP values of the petrophysical param-
eters (blue asterisks) coincide with the location of the posterior
maximum (black crosses).

To provide more insights into the sampled posterior models, con-
sider Fig. 8 that plots prior and posterior distributions of the five
different summary metrics used herein. The summary metrics of
the posterior models lie exactly within their respective prior distri-
bution (as expected), yet, they congregate in regions with relatively
low prior probability (see Figs 8a and d). Nevertheless, the indi-
cator function equals 1 (not shown), and the models are deemed
behavioural. Note however, that none of the posterior models en-
velop the summary metrics of the reference model, except for the
90 per cent percentile of the simulated porosity values (Fig. 8e).
This highlights the dominance of the likelihood term (many data)
over the prior term (few summary statistics) in calculation of the
posterior density.

3.2 Fluvial deposits case

The second study, hereafter referred to as fluvial deposits case, is
significantly more complex (Figs 9a and b). Five lithofacies with
porosities ranging between 13 and 32 per cent create a sedimentary
environment of fluvial deposits (Bayer et al. 2011; Comunian et al.
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Figure 4. Channels case: (a) reference porosity field with GPR transmitter (left-hand side) and receiver (right-hand side) antenna locations indicated by
white dots, (b) compressed image of the reference porosity field obtained by retaining the n = 100 highest amplitude DCT coefficients of the reference field.
(c) Ensemble mean of the summary metrics prior (variability and porosity percentiles) using the TI-based parametrization obtained by running an MCMC
simulation with the likelihood set to unity. (d) and (e) Mean of the inferred porosity posterior without consideration of a summary metrics prior without (d) and
with (e) TI-based parametrization. (f)–(i) Posterior mean of models obtained with TI-based parametrization and considering a summary metrics prior using (f)
roughness metric, (g) variability metric, (h) porosity percentile metrics and (i) both variability and percentile metrics.
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Figure 5. (a) Random samples from the ensemble of summary metrics prior (variability and porosity metrics) models using the TI-based parametrization for
the channels case. Corresponding random samples from the ensemble of posterior models for the channels case: (b) no TI-based parametrization, no summary
metric prior, (c) TI-based parametrization, no summary metric prior, (d)–(g) TI-based parametrization, summary metric prior using (d) roughness metric, (e)
variability metric, (f) porosity percentile metrics, (g) both variability and percentile metrics.
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Figure 6. Posterior distributions of the petrophysical parameters εs and m,
and of the relative data error level for the channels case: (a) no TI-based
parametrization, no summary metric prior, (b) TI-based parametrization, no
summary metric prior, (c)–(f) TI-based parametrization, summary metric
prior using (c) roughness metric, (d) variability metric, (e) percentile metrics,
(f) both variability and percentile metrics. Red crosses depict the reference
values.

2011; Lochbühler et al. 2014b). We discretize the forward problems
using blocks of 0.05 m × 0.05 m and 0.25 m sensor spacing for the
GPR experiments. This results in a total of 703 simulated travel-
times. The values of the petrophysical parameters εs and m and the
relative magnitude of the data measurement error are equivalent to
those used in the channels case.

For this case we obtained the best results by combining the rough-
ness and percentile metrics and we therefore restrict our analysis to

those results. We first draw random simulations of our summary-
statistics based prior using the TI-based parametrization by running
the MCMC algorithm with a likelihood of unity. Eight sample real-
izations (Fig. 10a) indicate that the summary-statistics based prior
favours horizontal structures and a certain degree of variability.
The ensemble mean (Fig. 9c) shows little structure and provides
no information about the actual location of high and low porosity
regions. This information can only be obtained by considering the
actual data. Inversion based on a model parametrization with a set of
low-frequency DCT coefficients (here, a 15 × 10 rectangle is used)
without a summary statistics-based prior does not produce adequate
results (Figs 9d, 10b and 11a). The use of a TI-based parametriza-
tion leads to a much better recovery of the main structures of the
reference field, and the added use of summary metrics further im-
proves the inversion results by suppressing inversion artefacts and
improving the petrophysical parameter estimates (Figs 9e,f, 10c,d,
and 11b,c, Table 1). The relative error level is well retrieved in all
cases that consider information from the TI realizations (Figs 11b
and c) and the geophysical data. The benefit of using information
from TI realizations is also illustrated in Fig. 12. The MAP values
are in much better agreement with their reference (true) values,
particularly if summary metrics are used (Figs 12b and c).

To provide further insights into the inversion results, consider
Fig. 13 that presents plots of the prior (black line) and posterior
(blue histogram) distribution of each summary metric. The reference
values of the summary metrics are separately indicated at the bottom
of each plot with a red cross. The posterior estimates of the summary
metrics are in close agreement with the corresponding values of
the reference model. The percentiles of the porosity distribution are
particularly well described and their marginal posterior distributions
encompass the reference values.

4 D I S C U S S I O N

We demonstrate that a TI can be used to define case-specific model
parametrizations and to impose prior constraints on model mor-
phology. This prior distribution is derived from an ensemble of TI
realizations, and summarizes the frequency distribution of differ-
ent summary statistics describing model morphology and lithol-
ogy. The use of such prior restricts the feasible solution space,
and significantly enhances the reliability of the posterior models.
Applications are shown for crosshole radar tomography, but this
general-purpose method can be applied to any type of data, as
long as the observations are informative and sufficiently sensitive
to the model parameters. In the two case studies considered herein,
the summary metrics are extracted from 2-D MPS TIs, but the

Table 1. Mean and standard deviation of the average root mean square error between posterior porosity models and
the reference model for different degrees of prior information.

Considered prior information Mean RMSE (per cent) Std of RMSE (per cent)

Channels case
No TI-based parametrization, no summary metric 9.37 0.84
TI-based parametrization, no summary metric 3.30 0.14
TI-based parametrization, roughness metric 2.57 0.10
TI-based parametrization, variability metric 2.36 0.10
TI-based parametrization, percentile metric 2.45 0.11
TI-based parametrization, variability and percentile metrics 2.27 0.10

Fluvial deposits case
No TI-based parametrization, no summary metric 12.30 1.20
TI-based parametrization, no summary metric 5.44 0.63
TI-based parametrization, roughness and percentile metrics 4.20 0.31
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Figure 7. Maps of the posterior log-probability for all possible combinations of the petrophysical parameters m and εs for the channels case. The DCT
coefficients are fixed at their maximum a posteriori density (MAP) values. Indicated are the parameter values of the reference (red crosses), the values for
which the log-probability is maximized (black crosses) and the estimate found by DREAM(ZS) (blue asterisks). Enumerations correspond to those of Fig. 6.

Figure 8. Summary metric prior distributions (black lines, see Fig. 2 for explanation) and the posterior distributions of the summary metrics (blue bars) for
the channels case: (a) roughness metric, (b) variability metric, (c)–(e) 10, 50 and 90 per cent percentile metrics. Red crosses display the summary metrics of
the reference porosity field.

Figure 9. Fluvial deposits case: (a) reference porosity field with GPR antenna locations indicated by white dots, (b) compressed image of the reference porosity
field obtained by retaining the n = 150 highest amplitude DCT coefficients of the reference field. (c) Ensemble mean of the summary statistics prior (roughness
and porosity percentiles) using the TI-based parametrization obtained by running an MCMC simulation with the likelihood always equal to 1. (d) and (e) Mean
of the inferred porosity posterior without consideration of a summary metric prior without (d) and with (e) TI-based parametrization. (f) Posterior mean of
models with TI-based parametrization considering a summary metric prior based on roughness and porosity percentiles.
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Figure 10. (a) Random samples from the ensemble of summary statistics prior (roughness and porosity percentiles) using the TI-based parametrization for the
fluvial deposits case. Corresponding random samples from the ensemble of posterior models: (b) no TI-based parametrization, no summary metric prior, (c)
TI-based parametrization, no summary metric prior, (d) TI-based parametrization, summary metric prior using roughness and porosity percentile metrics.

Figure 11. Posterior distributions of the petrophysical parameters εs and m, and of the relative data error level for the fluvial deposits case: (a) no TI-based
parametrization, no summary metric prior, (b) TI-based parametrization, no summary metric prior and (c) TI-based parametrization, summary metric prior
using roughness and percentile metrics. Red crosses depict the reference values.

method is readily applicable to 3-D TIs. Furthermore, the TIs do
not have to incorporate higher-order statistics. If the spatial distri-
butions of the subsurface parameters are well-described by a mul-
tivariate Gaussian or other two-point statistical dependencies, and
if these dependencies can be expressed as summary metrics, then it
is straightforward to incorporate them in our methodology. The use

of an indicator function enforces the posterior summary metrics to
lie within the range derived from the TI realizations. This consti-
tutes an optimization step before the posterior is reached (Sadegh
& Vrugt 2014), and hence violates detailed balance. As soon as
the indicator function is unity, and the simulated summary met-
rics lie within their respective prior distribution, the chain becomes
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Figure 12. Maps of the posterior log-probability for all possible combinations of the petrophysical parameters m and εs for the fluvial deposits case. The DCT
coefficients are fixed at their maximum a posteriori density (MAP) values. Indicated are the parameter values of the reference (red crosses), the values for
which the log-probability is maximized (black crosses) and the estimate found by DREAM(ZS) (blue asterisks). Enumerations correspond to those of Fig. 11.

Figure 13. Prior probability density functions derived from the distribution of summary metrics in the ensemble of TI realizations (black lines, see Fig. 2 for
explanation) and the posterior distributions of the summary metrics (blue bars) for the fluvial deposits case: (a) roughness metric, (b)–(d) 10, 50 and 90 per
cent percentile metrics. Red crosses depict the summary metrics of the reference porosity field.

Markovian as the indicator function is no longer informative, and
the posterior distribution solely depends on the likelihood and prior
probability.

The presented inversion framework can accommodate a wide
range of summary statistics. The inversions presented herein are
constrained by summary metrics describing the expected roughness,
parameter variability, and percentile porosity distribution. The sum-
mary metrics used in each of the case studies significantly improved
the inversion results, not only in terms of visual agreement with the
reference model but also with respect to the posterior parameter
estimates. Of course, the usefulness of each summary metric is case
study dependent. The decision which summary metrics to use de-
pends on the outcome of the analysis of the TI realizations. If, for
instance, the prior distribution of a certain summary metric is flat
then its use in the inversion would seem rather unproductive. On
the contrary, metrics that are well defined, are expected to help con-
strain the posterior models. For illustrative purposes, we have used
rather simple and common metrics. If deemed appropriate, many
other summary metrics can be defined and used, for example those
that measure internal coherency (McClymont et al. 2008), preferred
lithological orientation (e.g. Chugunova & Hu 2008), connectivity
(e.g. Renard et al. 2011), sparseness (e.g. Jafarpour et al. 2009), etc.
More advanced summary metrics could be related to MPS specific
information. Recently, Lange et al. (2012) constrained simulated
annealing optimization with the pattern frequency from an MPS TI.
Honarkhah & Caers (2010) used distance functions between pairs of
patterns to quantify the characteristic statistics of a TI. Such metrics
are easily incorporated in our inversion framework. We leave this
for subsequent studies.

The use of the DCT for model parametrization has the impor-
tant advantage that the truncation level can be explicitly defined
based on (i) the desired degree of small-scale structures that are
to be resolved and (ii) the sampling efficiency. The DREAM(ZS)

algorithm is capable of handling a large number of parameters, but
sampling efficiency will decrease with increasing dimensionality of
the search space. The truncation levels of n = 100 and 150 used in
our case studies are sufficient to adequately represent the subsurface
structures. The truncation drastically reduces the dimensionality of
the model space compared to a Cartesian representation, which re-
quires the estimation of 5000 and 11 200 cells in the channels and
the fluvial deposits case, respectively. Despite their sparseness, the
use of a TI-based parametrization ensures that dominant structures
are preserved in the posterior models. Our present formulation is
based on a user-defined value n and it would be worthwhile to ex-
plore alternative formulations. Compressed sensing (e.g. Candès
et al. 2006), in which the sparsity of the parameter coefficients
are maximized, or transdimensional (reversible-jump) MCMC (e.g.
Malinverno 2002; Bodin & Sambridge 2009), in which the num-
ber of model parameters are treated as an unknown throughout
the inversion process, could be suitable starting points for devel-
oping a strategy to automatically estimate an appropriate value
(or distribution) of n.

The main drawback of a DCT parametrization is that truncation
impairs ability to accurately reproduce the sharp interfaces from
the TI. Gradually updating a model according to an underlying
geostatistical model (e.g. Mariethoz et al. 2010a; Hansen et al.
2012c) can help to preserve sharp interfaces, but such an approach
requires geostatistical resimulation between model states and has to
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deal with strongly correlated posterior model realizations (Cordua
et al. 2012; Ruggeri et al. 2013).

This study reveals some of the well-known problems of prob-
abilistic inversion in high dimensional parameter spaces. Poorly
estimated model parameters are easily compensated for by other
parameters that are well defined. This we observe in the interplay
between DCT coefficients and the petrophysical parameters. An
important problem is that the parameter values used to generate
the data are not necessarily the most likely ones (Figs 7 and 12).
In other words, conditioning only on geophysical data (e.g. travel-
times) can produce misleading results. We show that incorporation
of auxiliary information through the use of summary metrics from
TI realizations significantly improves the posterior models and pa-
rameter values. The method can thus be seen as a strategy to handle
high dimensionality in probabilistic inversion.

5 C O N C LU S I O N S

TIs are conceptual geological models of a certain site of interest.
We use information from realizations of a TI to reduce the am-
biguity inherent in probabilistic inversion of geophysical data by
determining TI-based sparse model representations and by impos-
ing morphological constraints on the posterior models. As a novelty,
the model constraints are based on summarizing statistical metrics
extracted from realizations of a TI. These are honoured by formulat-
ing prior probability functions based on the distribution of summary
metrics observed in the TI realizations. The summary metrics con-
sidered are global measures of model roughness, variability within
the model and percentile distribution of porosity. Two different case
studies were used to demonstrate the usefulness and applicability of
the proposed inversion strategy. The use of summary statistics sup-
presses inversion artefacts, and provides parameter estimates that
exhibit smaller posterior uncertainty and are in better agreement
with their observed values. The methodology is computationally ef-
ficient, and designed to accommodate a wide range of geophysical
forward problems and summary statistics. The summary metrics
used in this study are rather simple, but significantly improved the
reliability of the posterior parameter estimates and models. Appli-
cation of more advanced summary metrics should hold even greater
promise.
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