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EXECUTIVE SUMMARY 

Over the past decades the electricity supply has been reliable in Switzerland, the country 

having one of the lowest levels of interruptions in Europe. Supply in Switzerland is generated 

mainly by hydropower and nuclear power, which cover respectively on average 60% and 35% 

of total demand. The country is a net-exporter in most years and has a positive exchange 

balance. However, it is uncertain how the electricity supply will evolve in the long-term given 

the potential changes in the generation-mix in Switzerland, resulting from the nuclear phase-

out and the increasing share of non-hydro renewable energies (mostly PV). Simultaneously, 

its neighbouring markets, with which Switzerland is increasingly interconnected, are facing 

similar changes that will affect the country. These issues threaten the security of supply not 

only in Switzerland, but also in other countries facing similar challenges. The objective of this 

research is to elaborate on the concept of security of supply in the electricity sector (SoES), 

and to analyse in particular the case of Switzerland. 

We start by developing a system dynamics model to analyse the impact of these changes on 

three main components of SoES: generation adequacy, affordability and import dependency. 

Our results show that with the current regulatory framework, the only investments committed 

to are those assumed for PV and wind energy until 2035. The country becomes a net importer, 

its dependency being exacerbated in winter. This highlights a generation adequacy problem. 

To analyse this we develop a new metric: the annual energy margin. This metric accounts for 

the energy storability and operational flexibility of hydro-storage power plants. These results 

are nonetheless highly dependent on the hypotheses and parameters assumed in the model, in 

particular the availability of imports. 

In the last decade there have been large investments in pumped-storage power plants (PSP) 

projects. Their aim was to benefit from energy arbitrage as well as to help integrating variable 
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renewable energies. However, price dynamics in recent years, together with the expected 

changes in the Swiss electricity market threaten their profitability. We develop an algorithm 

aimed at simulating the PSP operational decisions and integrate it into our model. Although 

the changes in the generation-mix lead to higher within-day price differences, PSP lack 

arbitrage opportunities in the long-term, given the drop of available cheap excess energy to 

pump. Therefore, profitable large scale arbitrage requires measures that increase the available 

supply and thus to create excess energy, e.g., encouraging demand efficiency programs and 

supporting base-load technologies like nuclear power and PV.  

Current electricity systems are very complex; the elements in our model are not the only ones 

affecting the SoES. Based on a literature review, we develop a framework comprising twelve 

dimensions, which cover all aspects of long-term SoES. We provide at least one metric for 

each dimension. Metrics range from objective, easily measurable indicators (e.g., the 

electricity intensity to measure demand efficiency) to proxies (e.g., the delay caused by 

NIMBY to projects to measure socio-cultural factors). 

Our overall conclusion is that the security of supply is threatened in Switzerland. In particular, 

the nuclear phase-out, whatever its timing, will have major effects on prices and on the 

country’s self-sufficiency. In the medium-term the country could benefit from low prices 

across European markets. However, the decision-makers should provide a stable regulatory 

framework that ensures the profitability of hydro-storage in the medium-term, encourages 

long-term efficiency measures and sends adequate investment signals. Our framework can be 

used to monitor the electricity market over time in order to provide insights about the 

expected evolution of all the aspects of SoES and provide guidance for action.  
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SOMMAIRE EXECUTIF 

Au cours des dernières décennies l’approvisionnement d’électricité en Suisse a été fiable; le a 

pays l'un des niveaux d’interruption les plus bas d'Europe. L’électricité en Suisse est produite 

principalement par des centrales hydrauliques et nucléaires, lesquelles couvrent 

respectivement en moyenne 60% et 35% de la demande totale. Le pays est un exportateur net 

la plupart des années et il a un bilan positif de l’échange. Cependant, étant donné les 

changements potentiels du mix de production en Suisse, lesquels résultent de la sortie 

progressive du nucléaire et la production croissante des énergies renouvelables hors 

hydroélectricité (plutôt photovoltaïque [PV]), il y a une grande incertitude concernant 

l’approvisionnement de l’électricité sur le long terme. En même temps, les marchés voisins, 

avec lesquels la Suisse est de plus en plus interconnectée, font face à des changements 

similaires qui affectent aussi la Suisse. Ces enjeux menacent la sécurité d’approvisionnement 

en Suisse ainsi que dans d'autres pays qui font face à des défis similaires. L’objectif de cette 

recherche est de préciser le concept de sécurité de l’approvisionnement dans le secteur de 

l’électricité (SoES) et d’analyser en particulier le cas de la Suisse. 

Dans une première étape nous développons un modèle de dynamique des systèmes pour 

analyser l’impact de ces enjeux sur trois composantes principales de la SoES : l’adéquation de 

la capacité, un prix abordable et la dépendance envers les importations. Nos résultats 

montrent que, avec le cadre légal actuel, les seuls investissements en capacité sont planifiés de 

façon exogène pour le PV et le solaire sur la période 2014-2035. Le pays devient un 

importateur net; sa dépendance est particulièrement élevée en hiver. Ceci met en lumière un 

problème d’adéquation de la capacité. Nous développons une nouvelle mesure pour analyser 

cela : la marge d’énergie annuelle. Cette mesure tient compte de la possibilité de stocker 

l’électricité à travers le pompage turbinage et de la flexibilité opérationnelle offerte par des 
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centrales à barrages. Ces résultats sont néanmoins très dépendants des hypothèses et 

paramètres utilisés dans le modèle, en particulière la disponibilité des importations.  

Dans la dernière décennie, il y a eu de gros investissements dans des centrales à pompage-

turbinage (PSP). Leur objectif était de profiter des opportunités d’arbitrage ainsi que de 

faciliter l’intégration des énergies renouvelables intermittentes (NDRES). Cependant, la 

dynamique des prix ces dernières années, conjointement avec les changements attendus dans 

le marché suisse menacent leur rentabilité. Nous développons un algorithme qui a pour but de 

simuler les décisions opérationnelles des PSP, que nous intégrons dans notre modèle. Même 

si les changements dans le mix de production engendrent des différences entre les prix aux 

heures de pointe et les prix hors heure de pointe plus élevées, les PSP manquent 

d’opportunités d’arbitrage dans le long terme à cause de manque de l’énergie bon marché 

pour le pompage. En conséquence, pour que l’arbitrage à grande échelle soit rentable, il faut 

des politiques axées sur l’augmentation de la production disponible et donc sur la création 

d'excédents d'énergie, p. ex., encourager les programmes d’efficacité énergétique et aider les 

centrales de base telle que le nucléaire et le PV. 

Les systèmes électriques actuels sont très complexes ; les éléments de notre modèle ne sont 

pas les seuls à affecter la SoES. Fondés sur une revue bibliographique, nous développons un 

cadre conceptuel comprenant douze dimensions, lesquelles couvrent tous les aspects de la 

SoES dans le long terme. Nous fournissons au moins une mesure pour chaque dimension. 

Parmi les mesures proposées, certaines sont des indicateurs objectifs et mesurables (p. ex., 

l’intensité de l’électricité pour mesurer l’efficacité énergétique); d'autres sont plutôt des 

approximations (p. ex., le retard causé par l'opposition par des résidents à un projet local 

d’intérêt général [phénomène « not in my backyard », NIMBY en anglais], pour mesurer les 

facteurs socioculturels).  
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Notre conclusion générale est que la SoES est menacée en Suisse. En particulier, la sortie 

progressive du nucléaire, à quel moment que ce soit, aura des effets majeurs sur les prix et sur 

l’autosuffisance du pays. À moyen terme le pays pourrait bénéficier des prix bas qui prévalent 

dans l’ensemble des marchés européens. Cependant, les décideurs doivent fournir un cadre 

légal stable qui garantisse la rentabilité des centrales à barrages à moyen terme, qui encourage 

les politiques d’efficacité énergétique dans le long terme et qui envoie des signaux 

d’investissement adéquats. Le cadre conceptuel que nous proposons peut être utilisé pour 

suivre l'évolution du marché électrique au fil du temps dans le but de fournir des 

renseignements sur l’évolution attendue de tous les aspects de la SoES aux différents partis 

impliqués dans les prises de décision.  
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Introduction 

1 

1. INTRODUCTION

The electricity supply has been reliable so far in Switzerland, the country having one of the 

lowest levels of interruptions in Europe. Indeed, reliability has improved in most European 

countries recently (their System Average Interruption Duration Index - SAIDI in 2013 being 

mostly lower than the previous 5-year average (CEER, 2015)). However, it is uncertain how 

the electricity supply will evolve in the long-term given the potential changes in the 

generation-mix in Switzerland, e.g., the nuclear phase-out. Simultaneously, electricity 

markets around the world should comply with stronger environmental commitments as well 

as ensuring economic feasibility for both the demand- and the supply-sides, which are 

sometimes conflictive objectives. These changes, together with the increasing complexity of 

managing electricity systems threat the Swiss electricity market. This thesis thus aims to 

analyse the long-term dynamics of the Swiss electricity market and intends to provide a 

general framework to analyse quantitatively the security of electricity supply (SoES) of any 

system. 

The current situation of the Swiss electricity market shows stability and prosperity. Nuclear 

power covers on average 35% and hydropower about 60% of total demand. There is capacity 

surplus that allows the country to be a net-exporter in most years. The country has also long-

term import contracts with France, which allow imports at very cheap prices. Currently, 

hydropower is used mainly at peak times to export at higher prices to Italy. However, this 

picture might change in the medium-term: there is a heated debate about the future of nuclear 

power and all the plants are likely to be decommissioned over the next 30 years. Although 

hydropower could be considered to fill the gap left by nuclear power, the expansion potential 

for this technology is limited, not only because the best spots are already used (rivers, dams, 

etc.), but also because of people’s strong opposition to their environmental impact. 

Additionally, the long-term import contracts with France are progressively expiring: they will 
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no longer be available after 2040. Given the evolution of the Italian market, it is uncertain if 

exports to Italy will continue to be as profitable. Also, the recent price dynamics make new 

investments unprofitable. Under current conditions, even the nuclear phase-out is unlikely to 

trigger new investments. However, the installed capacity of non-dispatchable renewable 

energies (NDRES) is likely to increase significantly, in particular photovoltaic, due to the 

government financial support. However, this implies an additional fee that must be included 

by customers via the electricity bills.  

With the purpose of analysing how these changes could affect the SoES in Switzerland, we 

built a system dynamics model. We focus on understanding how the expiration of contracts, 

the nuclear phase-out and the encouragement of renewable energies will affect future prices 

and the supply of electricity in Switzerland. These changes, combined with recent price 

dynamics across Europe, pose a significant threat to peak generators, e.g., hydro-storage 

plants. Given the recent large investments done in Switzerland in large hydropower, we also 

intend to analyse the arbitrage opportunities for pumped-storage plants (PSP) in the long-

term. Our results show that the security of supply in the Swiss electricity market is 

compromised in the long-term. In the model we focus on three elements (import dependency, 

generation adequacy and economic sustainability), but there are additional elements affecting 

the SoES that one should consider. Especially right now, when, among other issues, 

environmental commitments are gaining in importance, the demand-side is playing a more 

active role and markets are becoming increasingly interconnected, a holistic view of SoES is 

necessary. 

Therefore, a question arises: what other elements do we need to consider when analysing 

security of supply in electricity markets? We could not find any comprehensive framework 

addressing this question specifically for the electricity sector. Based on the literature 

concerning security of supply of different energy sources and end-uses, we develop a 
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framework that allows us to assess the security of supply of an electricity system. We identify 

12 dimensions that cover all the aspects of SoES in the long-term. They are: generation 

adequacy, resilience, reliability, supply flexibility, network infrastructure, imports 

dependency, demand management, environmental and economic sustainability, regulatory 

efficiency, access, socio-cultural factors and terrorism. In our framework we propose a metric 

for each of these. This provides a quantitative tool for decisions makers to follow the 

evolution of these different aspects over time, identify potential problems and decide if and 

when to intervene. 

This thesis is organised as follows: in Section 2 we describe the Swiss electricity market and 

explain the main transformations it is currently facing, as well as the challenges it might face 

in the medium- to long-term. We also summarise the papers “From the nuclear phase-out to 

renewable energies” (Paper_SwissMarket), aiming at analysing the impact of potential 

changes in the generation-mix on the electricity supply in Switzerland, and the paper 

“Arbitrage Opportunities for Pumped Storage Power Plants in Switzerland” (Paper_PSP), 

aiming at evaluating the future of energy arbitrage in Switzerland given the expected 

transformation of the Swiss electricity market. In Section 3 we discuss the previous work on 

energy security assessment and, based on that, propose a set of dimensions and measures 

aimed at evaluating security of supply specifically in the electricity sector. Next we 

summarise the framework aimed at evaluating SoES developed in the paper “Security of 

supply in the electricity sector” (Paper_SoES). Finally, in Section 4, we provide a general 

conclusion of this research project. Appendix A presents the detailed description of the model 

used in the papers Paper_SwissMarket and Paper_PSP, including the data, the hypothesis and 

the equations. Appendix B contains the three papers.  
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2. THE SWISS ELECTRICITY MARKET 

The Swiss market relies mainly on hydropower and nuclear power. Its favourable topography 

allowed the country to develop hydropower on a large-scale. This technology was 

complemented in the 70s and the 80s by the procurement of nuclear power plants. The large 

installed capacity and Switzerland’s central location in Europe have allowed the country to 

play an important role in the continental electricity exchange. This position was enhanced in 

2009, when the country started participating in the common market. However, the current 

liberalisation process and strong generation-mix changes in the medium term pose challenges 

to the system. The current state of the market and the main challenges Switzerland will face in 

the future are presented in Sections 2.1 to 2.6. An analysis of the impact of the nuclear phase-

out and the increasing share of NDRES on the market dynamics in the long-term is presented 

in Section 2.7. Finally, motivated by the recent price dynamics in Europe (see Section 2.8) 

and the difficulties encountered by large hydro-storage in Switzerland (see Section 2.6.2), an 

analysis of the future of pumped storage power plants energy arbitrage is presented 2.9. 

2.1. Supply 

Generation in Switzerland is mainly based on hydro-power and nuclear energy. In 2015 

nuclear energy accounted for 33% of electricity generation and hydro-power accounted for 

60% (see Figure 1). Conventional thermal plants and renewable energy facilities have 

generated the remaining 7% of total production. The share of non-hydro renewable 

alternatives in 2015 was 4.2%, of which 1.6% was produced by PV. Specifically, hydro-

storage plants supplied 55% of total hydropower generation in 2015 (SFOE, 2016a). On 

average, hydropower and nuclear plants have supplied 56% and 38% in the last 10 years. The 

hydro-power share in 2015 exceeded the 10 years average because of the larger water inflows 

and because of the unplanned supply interruptions of the nuclear plants Beznau I and II, and 
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Leibstadt in the second semester of 2015 (the aggregate load factor of all nuclear plants 

decreased from 91% in 2014 to 76%). Overall, electricity accounted for one quarter of Swiss 

final energy consumption in 2015 (SFOE, 2016b). 

 

Figure 1. Generation and consumption in Switzerland between 1960 and 2015. Data from SFOE (2016a). 

Hydro-storage plants play a major role in the system, not only because of their high share in 

the generation-mix, but also because they allow storing large water volumes in summer that 

are used to cover higher demand needs in winter. For instance, in 2015, while only 28% of 

stream flows occurred during winter, 43% of hydropower generation occurred during these 

months (50% if only generation from hydro-storage plants is considered). Water reservoirs 

are normally at their highest level at the end of September (around 85%). This energy is used 

in winter when demand is higher (in the last 10 years at least 54% of consumption occurred 

between October and March). Water reservoirs thus normally reach their lowest level at the 

end of March (slightly above 10%). Afterwards, spring water flows due to higher rainfall and 

melting snow fill reservoirs again.  
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As shown in Figure 1, consumption in Switzerland has remained fairly stable over the last 10 

years. This has allowed the country to have a production surplus despite generation capacity 

remaining stable since 2000 (see Figure 2). The last major investment to be commissioned 

was the hydro-storage plant Riddis (1,285 MW) in 1999. Most recent investments are in PV, 

whose capacity at the end of 2014 reached 1,064 MW. Besides the expected investments in 

renewable energies (mainly in PV), there currently are 1,985 MW of hydropower under 

construction, the bulk of which corresponds to two major projects: Limmern (1,000 MW) and 

Nant de Drance (900 MW), which are expected to start operations respectively in 2016 and 

2018.  

 

Figure 2. Evolution of installed capacity in Switzerland between 1997 and 2014. Data from SFOE (2016c) 

and SFOE (2016d). 

2.2. Demand 

Consumption in Switzerland (after deducting the 4.4 TWh of transmission and distribution 

losses) was 58.2 TWh in 2015, 1.4% more than in 2014. Demand in winter accounted for 54% 

of the total. This is explained in part by the fact that heating represents about 10% of demand. 

Consumption per sector was as follows: industry, 31%; households, 32%; services, 27%; and 
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transport, 8% (SFOE, 2016a). The average tariff for users in 2015 was 169.5 CHF/MWh 

(SFOE, 2016a). The tariff consists of the following components: power procurement (36%), 

distribution system (47%), transmission system (7%), charge to support renewables (7%) and 

taxes (3%) (Swissgrid, 2016a). 

2.3. The grid 

The Swiss electricity grid is split into seven different grid levels. Swissgrid is responsible for 

operating grid level 1 – the transmission grid (6,700 km). The railway company 

(SBB/CFF/FFS) is currently the only end-consumer to be directly connected to the 

transmission grid (Swissgrid, 2011). All other end-consumers get their electricity via the 

distribution grids. The entire Swiss electricity grid measures over 250,000 km (Swissgrid, 

2016a). 

Nearly two-thirds of today’s transmission grid was built in the 1950s and 60s. Also, demand 

has grown and generation is increasingly decentralised following the rise in renewable 

energy. Consequently, the grid needs to be expanded and modernised. The project “Strategic 

Grid 2025” plans to expand the transmission grid by 390 km and to optimise another 280 km, 

which will alleviate certain bottlenecks. This will require an investment of 2,500 million CHF 

(Swissgrid, 2015a). One major barrier to this development is the approval process. Currently, 

the period between the start of a project and its commissioning averages 15 years. However, 

the processes can take up to 30 years (e.g., the 35 km line Chamoson – Chippis to connect the 

new Nant de Drance PSP). Objections and federal court rulings in a late phase frequently 

cause a project to be delayed by years, e.g., six years for the construction of the 17 km line to 

connect the new Linth-Limmern PSP (Swissgrid, 2016a). 

 

 



The Swiss Electricity Market 

9 

 

2.4. Electricity exchange 

In 2015, Switzerland’s exports were 1 TWh higher than imports. However, this balance was 

significantly lower than that of 2014, when the country’s exports were 5.5 TWh higher than 

imports. The country is usually a net exporter; since 1960 the country has been a net importer 

in only 4 years, all after 2005. The country is typically a net importer during the winter 

months (October to March); without the large water reservoirs (and still the same inflows), 

this dependency would be even larger.  

 

Figure 3. Monthly electricity exchange balance between 2013 and 2015. Data from SFOE (2016a). 

The country trades large amounts of electricity, working as a hub for Europe. The volumes 

imported and exported in 2015 (42 and 43 TWh, respectively) are equivalent to about 70% of 

local consumption. In this electricity exchange, the long-term contracts with French nuclear 

plants play a major role. At the end of 2015 there were debit rights on 2,455 MW, the use of 

which resulted in about 46% of imports during that year (SFOE, 2016a). The country thus 
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uses its large dam and pumped-hydro facilities to import cheap off-peak electricity from 

France and export during peak hours to Italy (Académies Suisses des Sciences, 2012). 

Recently, imports from Germany have increased significantly due to the production surpluses 

resulting from large PV and wind energy installed capacity in that country. Imports from 

Germany and France account for almost 100% of the total, while exports to Italy account for 

almost 60% of exports (see Figure 4).  

 

Figure 4. Exports (positive values) and imports (negative values) per country in the 2002-2015 period. 

Note: Statistics of imports and exports changed in 2013. Since that year, exchange only accounts for net 

transactions. Data from SFOE (2016a). 

Imports are typically cheaper that exports (see lines in Figure 5). Cheap imports come from 

long-term contracts with France and renewables in Germany, while most exports are go to 

Italy, where prices have been historically higher than in central Europe. This has allowed 

Switzerland to have a financial exchange surplus, even in years in which the country has been 
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a net importer, e.g., 737 CHF Million in 2005. However, this surplus has been decreasing in 

recent years, from 1,071 million CHF in 2006 to 234 million CHF in 2015. While in 2015 the 

average price of exports was 47.2 CHF/MWh, that of imports was 42.6 CHF/MWh (SFOE, 

2016a). There is a decreasing trend in both prices since 2008, the drop of average export 

prices being notably more pronounced. Note that the average export price in 2015 is 37% 

lower than the 2006-2015 average (74.6 CHF/MWh) (SFOE, 2016a). 

 

Figure 5. Net exports volumes and weighted average prices of imports and exports. Data from SFOE 

(2016a). 

Currently, Swissgrid conducts the trade of cross-border transmission rights by means of 

explicit auctions, while energy is traded in the energy exchange. EPEX SPOT SE operates the 

power spot markets for France, Germany, Austria and Switzerland (day-Ahead and intraday). 

Together these countries account for more than one third of the European electricity 

consumption. Switzerland participates in the day-ahead market since 2006 and in the intraday 

market since 2013. In November 2013 Swissgrid and the EPEX SPOT European electricity 
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introduction of actual market coupling will only take place when Switzerland and the 

European Commission reach a political agreement (Swissgrid, 2016b). 

2.5. Recent evolution of the market 

The country is currently experiencing a transformation affecting the market regulation and the 

investments in new generation capacity. 

2.5.1. Market liberalisation 

Switzerland is still going through a liberalisation period. This liberalisation follows the 

directives issued by the EU which establishes the non-discriminatory access of all companies 

to the grid. The Electricity Supply Act (LApEl) of 2007 (last update in June 2015) (The Swiss 

Federal Council, 2015) aims to improve security of electricity supply in Switzerland by 

increasing competition and transparency in the electricity market and establishes the basis for 

the liberalisation of the market. It stipulates that the high-voltage grid should be operated by a 

neutral body. As a consequence, the national grid company, Swissgrid, was created. Also, the 

previously monopolised local markets were unbundled in 2009. In the first phase, large 

companies with an annual consumption of more than 100 MWh have been able to choose 

their supplier. While the electricity market was scheduled to be fully liberalized in 2014, this 

keeps being postponed. When this happens, households and other small-scale consumers will 

be able to freely choose their electricity supplier. The new deadline for complete liberalisation 

is 2019, but it is still uncertain if and when this will occur because the current low electricity 

prices affect the profitability of certain companies. Full liberalisation would increase the risks 

for retail companies, whose hedging opportunities through long-term contracts would be 

limited without a captive customers base (Leuthard, 2016).  
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2.5.2. Encouragement of renewable energies 

The Energy Act (LEne) of 1998 (last update in May 2014) (The Swiss Federal Council, 2014) 

addresses who is responsible for the different aspects of energy supply: adequacy, diversity, 

security, and economic and environmental sustainability. According to the Act, “a secure 

energy supply implies an adequate and diversified offer of energy as well as a technically 

secure and effective distribution system” (al 1, art 5). In order to increase diversification in 

electricity generation, the LApEl subsidises green electricity. It also provides funding for 

energy efficiency measures. Funding is available for electricity generated by renewable 

sources like water, sun, wind, biogas, biomass and geothermal energy.  

The electricity generation from renewable sources is being promoted by the compensatory 

feed-in tariff at cost (RPC by the acronym in french), a feed-in tariff, since 2009. The RPC is 

available for the following technologies: hydropower (capacity up to 10 MW), photovoltaic, 

wind energy, geothermal energy, biomass and biological waste. The remuneration tariffs for 

green power are specified in the Energy Order (OEne) of 1998 (last update in August 2016) 

(The Swiss Federal Council, 2016) on the basis of reference power plants for each technology 

and output category. Depending on the technology, remuneration lasts for 20 to 25 years. In 

view of the anticipated technological progress and the increasing degree of market maturity of 

new technologies, the remuneration rates are subject to a gradual downward curve in the case 

of PV.  

The RPC is funded by a surcharge paid by all electricity consumers, which has increased from 

4.5 CHF/MWh during the 2009-2013 period to 13 CHF/MWh in 2016 (The Federal Council, 

2016). Wholesale prices affect the fund supporting the RPC, as this fund covers the difference 

between the producers’ costs and the market price. As there is a certain budget resulting from 

the surcharge paid by users, low market prices reduce the funds available to support new 
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projects with feed-in tariffs (RPC, 2012). Due to budget constraints, the Federal Council 

already announced a new rise of the surcharge to support the RPC: this will be 15 CHF/MWh 

in 2017 and might increase to 23 CHF/MWh once the long-term energy policy (Strategy 

2050) is approved (not before 2018) (The Federal Council, 2016). The surcharge to finance 

the RPC and the new water conservation measures is set by the Federal Council via the LEne. 

Since 2012, a new surcharge of 1 CHF/MWh is being levied to finance water conservation 

measures (revision of the Swiss Federal Water Conservation Act of December 2009). The 

LEne also establishes the partial exoneration of RPC surcharge for large consumers. 

Due to the lower expansion potential of wind energy in the country and the higher opposition 

from local communities to this technology (explained in detail in Section 2.6.3), the 

encouragement policy has been more successful for PV than for wind energy: while wind 

energy capacity has only increased from 42 MW to 60 MW between 2010 and 2014, PV 

capacity has increased from 111 MW to 1,061 MW in the same period. This implies a 

respective annual average increase of 9% and 76% (SFOE, 2016a).  

2.6. The challenges facing the Swiss electricity market 

The generation-mix will change not only in the short-term due to the large investments in 

NDRES, but also in the medium-term if the nuclear phase-out occurs. The potential adequacy 

problems resulting from these changes require investments in new generation capacity. 

However, these investments are seriously limited by the low hydropower expansion potential 

and the NINMY phenomenon affecting different technologies. 

2.6.1. The nuclear phase-out 

There are currently five nuclear plants installed in Switzerland, which accounted for a total 

capacity of 3,333 MW at the end of 2015. All of them were installed between 1969 and 1984. 

Since their first days, the utilisation of nuclear power has been controversial, and six popular 
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initiatives have been called against this technology (see Table 1). Only the one voted in 1990, 

establishing a moratorium on new nuclear plants construction, was approved. Results, 

nonetheless, have been always tight, despite the Government recommended rejection. 

Table 1. List of popular initiatives against nuclear power in Switzerland (Federal Administration, 2016). 

Initiative Called Voted Result 

Programmed phase-out of nuclear power at the latest 7 year 

after approval 

2013 * -- 

Programmed phase-out of nuclear power (a maximum 

lifespan of 45 years: Mühleberg, and Beznau I and II, 2017; 

Gösgen, 2024; Leibstadt, 2029) 

2011 2016** Rejected 

Programmed phase-out of nuclear power (Beznau I and II, 

and Mühleberg, at the latest 10 years after approval; the 

remaining plants at the latest 30 years) 

1998 2003 Rejected 

Extension of the moratorium on the construction and 

allowances of nuclear plants (10 years extension)  

1998 2003 Rejected 

10 year moratorium on new nuclear plants construction  1986 1990 Approved 

Interruption of the nuclear power programme 1980 * -- 

*Initiative failing to collect the minimum number of signatures  

**Vote on 27 November 2016 (ATS, 2016). 

After the Fukushima accident (Japan) in March 2011, the Federal Council expressed the 

intention to decommission Switzerland's nuclear power plants at the end of their 50 year 

lifespan, and not build new ones. This initial plan thus indicated that the five nuclear plants 

would be decommissioned as follows: Beznau I: 2019; Beznau II and Mühleberg: 2022; 

Gösgen: 2029; Leibstadt 2034 (The Swiss Federal Council, 2011). Note that the call for a 

moratorium accepted in 1990 and the 2011 decision of the Federal Government establishing 

the progressive nuclear phase-out followed the two major nuclear accidents in history: 

Chernobyl in 1986 and Fukushima in 2011.  
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Decommissioning nuclear plants is a major problem for the Swiss market given the high share 

of this technology in the electricity mix. According to The Swiss Federal Council (2011), the 

capacity could be inadequate to meet national demand from 2019 onwards and it is not clear 

how this gap will be filled. Furthermore, since any significant investment in Switzerland must 

follow a long democratic process to gain people’s approval, investments in capacity take a 

long time to materialize (Ochoa, 2007). 

Following the rejection of the most recent referendum to accelerate the nuclear phase-out, it 

remains uncertain when the nuclear phase-out will occur. At the end of 2015, the Government 

decided to only decommission Mühleberg, whose operator is not able to fulfil the financial 

requirements for its safe operation and future waste disposal. The plant will stop operating on 

20 December 2019 (Wuthrich, 2016a, p. 20). The Government also decided that Beznau I and 

II will be allowed to operate at most 60 years, while Gösgen and Leibstadt can ask for 

successive 10 years extension after a 60 year lifespan, as long as the security measures are 

fulfilled (ATS/LT, 2015).  

2.6.2. Problems for hydro-power 

As mentioned before, Switzerland has a long tradition of building hydropower plants due to 

its favourable topography. There are currently 15,282 MW installed of generation capacity 

(including those plants undergoing a conversion or refurbishment process), of which 10,581 

MW are hydro-storage plants and the remaining 4,701 MW run-of-river. Additionally, 

installed pumping capacity is 1,817 MW. There are currently 35 projects under construction 

that will increase generation by 1,985 MW by 2020, of which 1,900 correspond to two major 

hydro-storage projects: Nant de Drance (900 MW of both generation and pumping capacity) 

and Limmern (1,000 MW of both generation and pumping capacity). The remaining capacity 
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under construction consists of run-of-river projects. Reservoir capacity of all hydro-storage 

plants is 8,815 GWh, which is equivalent to about 15% of annual demand. 

These projects aim to contribute to making Switzerland the battery of Europe and to facilitate 

the integration of renewable energies, not only in Switzerland but also in other European 

countries. These projects will more than double the pumping capacity by 2018. This was 

expected to support the aforementioned objectives and allow these plants to improve their 

arbitrage opportunities. However, the current situation is very different to that when 

investment decisions were taken. Prices have decreased across Europe, and Switzerland is no 

exception. This situation has worried not only the investors of these projects but all the hydro-

storage plants stakeholders. 

In 2014, when the debate about the Strategy 2050 started, the first warning signs concerning 

the future of hydropower became visible (Wuthrich, 2016b). The hydropower plants’ value 

has decreased by half due to the price drop caused by, among others, the higher share of 

renewables in Germany (which are subsidised and have increased the cheap electricity 

imports) and the lower fossil-fuel prices. A new debate has thus arisen. Should the 

government subsidise large hydropower? A first measure taken by the Government consists of 

a contribution of up to 40% of capital costs for new projects, which would be funded by users 

through a 1 CHF/MWh surcharge in the transmission fees (Wuthrich, 2016b). 

Prices across Europe have kept decreasing and plants are becoming increasingly unprofitable. 

Their main problem is covering fixed costs –debt and interests- (Le Temps, 2014a). The 

average cost of production in Switzerland is about 65 CHF/MWh, of which a third 

corresponds to fixed costs and taxes (Boder, 2016a). The Council of States thus decided to 

include in the Strategy 2050 a mechanism to support existing large hydro plants who face 

financial difficulties. This support would consist of a market premium of 10 CHF/MWh  and 
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a reduction of royalties that plants pay to regions (Wuthrich, 2016b). The market premium 

would be charged to customers through the RPC, which is currently 15 CHF/MWh and will 

increase to 23 CHF/MWh once the Strategy 2050 is implemented (presumably in 2018). An 

amount of 2 CHF/MWh would be allocated to cover large hydro market premiums. It has 

been proposed to charge the difference in royalties directly to consumers; this implies a cost 

for hydro-sorage of approximately 15 CHF/MWh generated (Le Temps, 2016). The cases of 

plants with financial problems would be studied independently and support would be 

allocated for a maximum period of 5 years (Le Temps, 2014a).  

As the law only establishes the maximum amount that cantons can charge hydropower 

through royalties, some cantons have recently decreased the fixed royalties that large hydro-

storage plants have to pay, e.g., Bern, from 110 to 100 CHF/kW (Le Temps, 2016). However, 

other cantons such as Valais and Grisons, the main producing regions, have refused to do so. 

Changing the structure of these royalties implies modifying the law, which can only be done 

after 2019. In the absence of measures to help hydropower, the consequences of such a 

difficult situation are already visible. Recently Alpiq
1
, one of the largest companies in 

Switzerland, announced it would have to sell half of its investments in large hydropower 

(Boder, 2016b). The implications of the current situation of hydropower go beyond their 

economic viability. According to the National Council, their lack of profitability threatens the 

nuclear phase-out and the renewable energies promotion programme (Le Temps, 2014b). 

2.6.3. NIMBY 

The system’s capacity expansion is limited not only by economic and technical feasibility 

problems but also by social opposition to certain types of energy. Besides the well-known 

case of nuclear energy, hydro-power and wind energy might not develop their entire potential 

                                                           
1
 Alpiq owns 18 large hydropower plants with a total capacity of 2,700 MW and an annual production of 5 TWh 

(Boder, 2016a), i.e., about 20% of national hydropower capacity, which allows covering almost 10% of national 

consumption.  
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if social pressure keeps narrowing the number of sites available for developing projects using 

these technologies. Among the reasons expressed by people, protecting the environment is 

mentioned the most.  

According to SFOE (2012), a study concerning the development of hydro-power potential in 

Switzerland, the additional potential is less than the 4 TWh/year by 2050 mentioned in several 

documents of the SFOE. Based on SFOE (2012), 90% of water flows in Switzerland are 

already exploited. However, the ecological obstacles are strongly related to value judgements. 

When it comes to large hydro-power plants, people tend to attribute a high weight to issues 

linked to environmental protection. Also, some projects located in protected areas are rejected 

immediately, while small hydro-power plants are usually rejected regardless of their 

qualification of “national interest” because of their low contribution to the total production. In 

addition, the low popularity of hydropower has led to a weak political support.  

Wind energy is currently hotly debated in Switzerland. Opponents criticise the construction of 

wind farms, arguing the impact of wind turbines on the landscape. Although the debate seems 

to be more emotional than rational, some of the projects have been stopped (Guillaume, 

2011). For instance, in 2014 no new wind turbines were installed (Le Temps, 2014c). The 

hostility that often emerges towards wind energy in Switzerland appears to be due to NIMBY-

type phenomena rather than to a general hostility towards this type of energy, contrary to the 

case of nuclear energy. 

NIMBY is also one of the reasons for the slow approval process of grid projects, mentioned in 

Section 2.3. For instance, the upgrade of the line Chamoson – Chippis, needed to connect the 

hydro-storage plant Nant de Drance when it starts operations in 2018, has been the subject of 

an appeal, which carried a suspensive effect (Swissgrid, 2016c). Due to the existing 
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congestion, about one-third of the hydropower that could be produced in Valais cannot be 

transferred without upgrading this line (Swissgrid, 2016d). 

2.7. The future of the Swiss electricity market 

As described before, the Swiss electricity market is facing strong transformations, notably the 

nuclear phase-out and the encouragement of renewable energies. Simultaneously, its 

neighbouring markets, with which Switzerland is increasingly interconnected, are facing 

similar changes that will affect the country. The changing generation mix and the evolution of 

European markets are thus expected to affect the dynamics of the Swiss electricity market and 

might threaten the security of electricity supply. The paper “From the nuclear phase-out to 

renewable energies” (Paper_SwissMarket - Osorio and van Ackere (2016), see Appendix 

B.1), co-authored with Prof. Ann van Ackere, analyses the impact of the nuclear phase-out 

and the encouragement of renewable energies (mainly PV and wind) on three main 

components of SoES: generation adequacy, affordability and import dependency. In this 

paper we also evaluate investment decisions under different scenarios of imports availability 

and CO2 costs. For this purpose we build a system dynamics (SD) model, which was 

calibrated for the Swiss electricity market. The remaining of section 2.7 is a condensed 

version of the Paper_SwissMarket.  

2.7.1. Methodology 

Because of electricity systems’ complexity, behavioural approaches like system dynamics are 

more suitable than optimisation approaches to address these problems. Modelling causality 

and delays is important to account for policy effects on electricity systems and helps 

investigating whether intended policies trigger instabilities that may affect system 

performance (Arango, 2007). A survey of SD models of energy systems can be found in 

Teufel et al. (2013). 
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Model description 

We develop a system dynamics model and calibrate it for the Swiss electricity market. 

Investments are made in each technology according to their expected profitability. Capacity 

construction is thus encouraged by high profits, which increases the future supply. A higher 

expected supply increases the expected reserve margin. As electricity prices reflect the 

scarcity of supply, a higher reserve margin leads to lower prices and, in turn, to lower 

expected profits. As NDRES’ marginal costs are very close to zero, a larger share of these 

technologies leads to lower prices and a lower residual demand. This implies lower revenues 

for the other technologies, discouraging new investments, except for NDRES, which are 

typically subsidised by feed-in tariffs (FiTs). As FiTs are expected to cover all the plant’s 

costs and are allocated regardless of the market price, prices do not affect the expected profits 

of NDRES, so investments in NDRES are not subject to market dynamics. There is thus a 

distortion in the investment dynamics. The detailed model documentation is presented in 

Appendix A. 

Data and hypotheses  

Since NDRES are supported in Switzerland by FiTs and this is expected to continue in the 

medium term, we assume that investments in these technologies are exogenous until 2035. 

The capacity installed corresponds to the investments needed to achieve the renewables target 

by that year. Unlike investments in other technologies, which are assumed to be endogenous, 

we assume exogenous investments in NDRES because they are subsidised by FiT. This 

implies that investments are done as long as the budget is adequate to cover the FiTs during 

the length of the support (up to 25 years for PV). This budget is funded by a fee paid by 

consumers set by law. Therefore, the availability of support for NDRES, and thus, 

investments in NDRES are a political decision. This makes it difficult modelling investments 
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in NDRES endogenously. This and the existence of an official target for renewables 

generation are the ground for our hypothesis to model investments in technologies supported 

by FiTs exogenously.  

We are aware that this is a strong assumption, in particular in view of the results (explained in 

detail later), according to which investments in NDRES are not profitable and thus, there is no 

replacement of obsolete capacity. Consequently, NDRES capacity decreases after 2035. 

Likewise, capacity mechanisms are not considered as they are not currently implemented (the 

swiss market operates as an energy-only market) and there currently is not even a debate 

about implementing them. These hypotheses are clearly theoretical and aim to show the 

consequences of doing nothing. These hypotheses reflect the current policies and the lack of 

proactivity that decision-makers have shown so far, e.g., there is no solution yet to help the 

hydropower plants who are facing losses. Investments in other technologies are assumed to be 

endogenous, i.e., investments take place only if they are profitable.  

Our parameters estimates are based on a variety of sources. Those regarding costs, i.e., 

operational, fuel, investments and fixed costs, and CO2 prices are taken from Poyry (2012), 

which focuses on Switzerland. This report also provides forecast for the entire simulation 

horizon. CO2 prices are assumed to increase over time (from 21 to 60 €/tCO2) due to stringent 

regulation on greenhouse emissions. Gas prices, on the contrary are assumed to remain 

constant during the entire simulation at 30 CHF/MWh. Although Poyry (2012) also assumes 

rising prices due to growing imbalances between supply and demand, prices have shown a 

decreasing trend after 2010. Given the high uncertainty of fossil-fuel markets, we decided to 

assume a constant gas price (30 CHF/MWh). Likewise, variable costs for all technologies 

except HS remain constant during the entire simulation, i.e., the marginal costs depend on 

exogenous parameters. In the case of HS, the price at which it bids (the reservation price) is a 

function of substitutes’ prices and the expected reservoir level, following the approach of van 
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Ackere and Ochoa (2010) and Ochoa and van Ackere (2015). The HS bid price is capped at 

the scarcity price, which is set at 500 CHF/MWh.  

Finally, another important hypothesis concerns the neighbouring countries’ prices. We 

assume hourly prices for each season for each country. These are calculated using 2012-2013 

data. These prices remain constant during the entire simulation. This assumption is due to the 

lack of data concerning future prices. For instance, Knopf et al. (2014) compare long-term 

forecast of average prices in Germany from different studies; there is no common pattern and 

forecasted prices in 2015 vary between 42 and 70 €/MWh, and those of 2050 between 50 and 

90 €/MWh. This highlights the high uncertainty concerning future electricity prices. 

Electricity markets depend on multiple variables, e.g., generation-mix, fossil fuel prices and 

penetration of renewables. As they constantly evolve, it is difficult to estimate reliable price 

forecast. It can be argued that assuming constant prices for neighbouring countries might not 

be realistic. However, the lack of available information does not allow us to estimate the long-

term variation of these parameters.  

Finally, while NDRES capital costs are assumed to decrease in the long-term, those of other 

technologies are kept constant. Still, the assumed decrease in NDRES is lower than the one 

that has occurred in the recent years. For instance, PV capital costs were expected to decrease 

from 2,490 in 2012 to 1,440 $/kW in 2035 in IEA (2014a); in the most recent report from IEA 

(IEA, 2016), costs are expected to decrease from 1,320 in 2015 to 780 $/kW in 2040. This 

highlights the uncertainty concerning NDRES costs and fast technology evolution.  

It is important to keep in mind that the objective of the  Paper_SwissMarket is not to forecast 

future prices; we aim to provide insights and understanding of how the Swiss market might 

evolve under different scenarios and hypotheses, with a particular attention to the current 

problems, i.e., renewables expansion and nuclear phase-out. More complex -and arbitrary- 
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assumptions concerning parameters would add noise to the model results and complexify the 

analysis, making it more difficult to identify the key insights. However, we are aware that the 

model results are highly dependent on the evolution of these parameters. Therefore, we have 

performed a detailed sensitivity analysis, a summary of which is presented in Section 2.7.2. A 

more detailed description of the data is presented in Appendix A.2. 

Simulation setup 

We run the simulation from 2014 to 2050. For each quarter (season) we simulate a 

representative day. For each representative day, hourly demand shapes for each season are 

estimated using historical data from 2009-2013. This allows us to capture the hourly and 

seasonal patterns of supply and demand. Seven technologies are considered: hydro-storage, 

run-of-river, nuclear power, PV, wind, CCGT and conventional thermal. Our model 

implements the government objectives of NDRES generation: 4.4 TWh by 2020 and 14.5 

TWh by 2035 (The Swiss Federal Council, 2013). We thus assume a planned expansion over 

the simulation horizon of PV and wind energy, proportional to their expansion potential. We 

assume that FiTs last 20 years, as is currently the case. Investments after 2035 are determined 

by their profitability and are limited by their remaining potential. In our base case scenario 

(BAU) we assume what by summer 2015 seemed to be the most likely scenario: Muhleberg 

being decommissioned in 2019 and the others plants being decommissioned after 60 years of 

operation. We also assume that hydro projects currently under construction will come online 

at their scheduled start of operation.  

Cross-border transmission capacity remains fixed at 7,500 MW for imports. We consider two 

types of imports: long-term imports based on existing contracts and balancing imports. Long-

term imports availability is assumed to decrease progressively according to AES (2012). 

Balancing imports are traded in the spot market and their availability equals the difference 
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between the imports transmission capacity and the available long-term import contracts. 

Hence, the expiration of long term import contracts increases the transmission capacity 

availability for short-term imports. We run our simulation in Vensim® DSS 6.1. 

2.7.2. Simulation results and discussion 

We focus our analysis on the impact of the nuclear phase-out and the increasing penetration 

of NDRES on SoES. The three core elements of SoES we focus on are capacity adequacy, 

imports dependency and affordability. Our results show that the only investments committed 

to are the exogenous investments, i.e., those assumed for PV and wind energy until 2035, and 

the hydropower projects currently under construction. There are no further investments in 

these technologies after 2035, when FiTs for new projects are no longer available. In the 

absence of new investments, capacity of both PV and wind energy decreases from 2035 

onwards as a consequence of obsolescence. The changing capacity-mix affects the generation-

mix: nuclear production is replaced mainly by PV and imports. The country becomes a net 

importer, this dependency being exacerbated in winter, when net imports reach on average 

51% of national consumption in the 2041-2050 period. Although high import dependency 

might highlight the strength of regional institutions and imports availability provide backup, 

dependency is risky. Imports might be cut by neighbours for political reasons or due to 

extreme weather conditions. Despite the larger share of PV, prices increase. This is due to the 

changing generation-mix: nuclear energy is replaced by less expensive technologies such as 

PV and wind, but also by more expensive sources such as balancing imports. This, together 

with the subsidies needed to support NDRES, lead to a rise in tariffs.  

Increasing net imports and prices respectively increase dependency and decrease affordability. 

This evolution points to a problem of capacity adequacy. The de-rated capacity margin, which 

allows measuring the system’s capacity to meet annual peak demand, is one of the most used  
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measures for capacity adequacy (CAISO, 2014; OFGEM, 2013; Royal Academy of 

Engineering, 2013). However, this measure could be misleading in some cases. For instance, 

countries with a significant share of hydro-storage generation might overestimate their 

capacity adequacy. As an alternative metric, we propose the annual energy margin, which we 

define as the ratio between excess energy (see detail explanation in p.14 of 

Paper_SwissMarket) and annual domestic demand. The energy margin captures the seasonal 

patterns of intermittent sources and the actual availability of hydro-storage generation, 

incorporating the idea that this technology could serve as a battery. Unlike the de-rated 

margin, the energy margin captures the medium-term capacity adequacy improvements 

resulting from the addition of PV, but it shows a much less reassuring long-term picture for 

three demand scenarios. In BAU, the annual energy margin even turns negative after 2038. 

This means that even with optimal reservoir management, the total amount of electricity 

available is insufficient to cover annual demand. This does not necessarily imply blackouts, 

but the country must rely on imports to satisfy local demand.  

This metric can be used by policy makers in the same way as that the de-rated margin. This 

helps monitoring the current capacity adequacy and allows estimating the future capacity 

needs. This margin indeed provides information about the capacity requirement for achieving 

a certain level of self-sufficiency. Moreover, this could help estimate the impact of a certain 

level of storage capacity on capacity adequacy and support the decision of whether to expand 

generation or storage capacity. The time horizon for using this metric depends on the 

objective of the analysis. For monitoring purposes, data should cover the maximum length 

possible, since this historic data could help identifying the presence of cycles (more than 20 

years of annual information, given the long lead times in this sector). For a prospective 

analysis, the time horizon should exceed the maximum lead time for planning and 

construction. 
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We are aware that our results are highly dependent on our hypotheses and parameter values. 

Besides other validity tests, e.g., extreme values and equations consistence, we perform a 

sensitivity analysis of the following parameters: import demand, exports availability and 

prices in neighbouring countries; CO2 prices, gas prices, investment capital costs and demand. 

This analysis shows that CCGT only becomes profitable under certain combinations of Italian 

prices and CO2 prices, which can be also achieved if gas prices decrease significantly, so that 

the marginal cost of CCGT decreases. Investments in CCGT are also done if the availability 

of imports from France and Germany decreases by more than 30% as blackouts could occur 

otherwise. Other technologies are not profitable under any of the variations considered.  

Prices are sensitive to price variations in Germany, the main exporter to Switzerland, and 

exports are sensitive to price decreases in Italy, the main export destination of Switzerland. 

Average prices decrease up to 8% when a decreasing demand  is considered (according to 

SFOE (2013) scenarios, it might decrease by 24% by 2050 compared with BAU). We also 

evaluated the impact of a potential cross-border transmission expansion (higher import 

availability). If this capacity increases by 33% in 2020 (according to ENTSO-E (2014) 

estimations), prices in Switzerland decrease by 11%. This is caused by a change in supply 

patters: higher imports availability leads to higher off-peak imports, which allows HS to save 

water for peak hours, displacing more expensive sources.  

2.8. Price dynamics across European electricity markets 

As mentioned in Section 2.6.2, prices across European markets have decreased significantly 

since 2008. The large investments in NDRES, triggered by the EU environmental 

commitments (goal 20-20: 20% renewables by 2020), have played a paramount role as they 

are highly subsidised (typically by feed-in tariffs), which allow them to bid in the day-ahead 

market at a price close to zero (their marginal costs). The impact of an increasing share of 
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renewables on electricity prices has been discussed in the literature in recent years. For 

instance, Würzburg et al. (2013) provides a survey of the estimated impact of NDRES on 

prices in different countries. 

To analyse the recent price dynamics across European markets, we focus on three countries: 

Germany, France Italy. We chose Germany, the country with the highest amount of NDRES 

capacity installed in Europe. These technologies have had a negative impact on prices in 

recent years, as has been widely studied. Since prices are influenced by other variables such 

as imports, demand, weather patterns, fuel costs, etc., we chose another country with a large 

development of NDRES, but with different characteristics: Italy. Although Italy is directly 

interconnected with France, through which German price dynamics can spread, the volumes 

traded between both countries are significantly lower than those between France and 

Germany (ENTSO-E, 2016). Italy imports mainly from Switzerland, which also has large-

scale exchange with France and Germany. However, Switzerland performs an arbitrage role 

between on the one hand France and Germany, and on the other hand Italy. Hence, price 

dynamics in France or Germany are less likely to affect price dynamics in Italy, i.e., internal 

factors like the generation-mix has a higher impact on prices. The German and Italian 

generation-mixes and interconnection levels are very different and, while their NDRES’ 

shares are significant, they were installed at different times. Finally, France is considered as a 

control case to analyse to what extent the NDRES price-lowering effect spreads to a 

neighbouring country with lower NDRES share.  

Germany has been the most successful case and constitutes the reference point concerning 

NDRES encouragement for other countries. This policy has gained even more importance 

since 2011, when the country re-accelerated the nuclear phase-out after the Fukushima 

accident (Steinbacher and Pahle, 2015). The implementation of strong incentives for non-

hydro renewables, e.g., feed-in tariffs of up to 500 €/MWh for PV in 2004 (BMWi, 2014), has 
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resulted into a large and quick deployment of PV (from 2 GW to 39 GW between 2005 and 

2015) and wind capacity (from 18 GW to 45 GW between 2005 and 2015), with annual 

average increases of respectively 34% and 9% (BMWi, 2016). The installed wind energy 

capacity exceeds that of any other generation source in Germany. In 2015 solar and wind 

accounted for 21% of consumption in Germany and the total share of renewable energy 

reached 30% (BMWi, 2016).  

Among other reasons, the large development of NDRES has led to a significant drop in 

prices: from 50.9 CHF/MWh in 2006 to 31.7 in CHF/MWh in 2015 (BMWi, 2016). Germany 

has even been increasingly experiencing negative prices (from 12 hours in 2010 to 126 hours 

in 2015 (EPEX SPOT, 2016)). The large drop in prices, together with a shift in the relative 

prices of gas and coal, and combined with plummeting emissions cost, have significantly 

affected gas plant profitability. Even recently built plants have been closed down (Bloomberg, 

2013), or kept open as reserve power to stabilise the grid (Reuters, 2013).  

Because of the increasing integration of European markets, the NDRES price-lowering effect 

has spread to other countries, regardless of their generation-mix. An example is France, a 

country coupled with Germany. While France is also encouraging NDRES, its market share 

for these technologies is still very low compared to Germany. NDRES production increased 

from 10.2 TWh in 2010 to 28.5 TWh in 2015 (8% of total consumption and 7% of total 

production). Nuclear power, with almost half of the installed capacity, remains dominant, 

allowing the country to be a net exporter (they accounted 64 TWh, i.e., 12% of total 

production in 2015). Nuclear power accounted 76% of total production and 88% of national 

consumption in 2015. In the same year, the remaining production was generated by 

hydropower (11%) and conventional thermal plants (coal, oil and gas, 7%) (ENTSO-E, 2016). 

Average prices have decreased from 47.5 €/MWh in 2010 to 38.5 €/MWh in 2015, with a 

minimum of 34.6 €/MWh in 2014 (EPEX SPOT, 2016). 
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Italy is also strongly encouraging renewable energies through feed-in tariffs. This has resulted 

in increased NDRES production: from 10.9 TWh (3.3% of total consumption in 2010) to 38.6 

TWh (12.3% of total consumption in 2015). This, and a demand struggling to recover (having 

fallen from 330 TWh in 2010 to 309 TWh in 2014, and recovering to 314 TWh in 2015 

(ENTSO-E, 2016)) have led to a significant drop of CCGT production (from 142 TWh in 

2010 to 91 TWh in 2015). Still, this technology is the largest producer in the country. The 

changes in the generation-mix, the still low demand and the lower gas prices have decreased 

electricity prices in the recent years. In 2015 the price was 52 €/MWh, 0.4% higher than that 

of 2014, but 18% lower than in 2010 (GME, 2016).  

As shown in Figure 6, prices in Germany, France and Italy increased sharply in 2008, which 

might be explained by the commodities boom in that year. Afterwards, the price shows a 

decreasing trend in the three countries. In the case of Germany, this is coherent with results 

presented in Paraschiv et al. (2014), who estimate time-varying effect of different generation 

technologies on wholesale prices, the one of solar gaining in importance over the recent years. 

French and German prices have exhibited a high degree of correlation; the price patterns have 

only started to diverge in 2011. Overall, the volatility resulting from the increasing wind 

power share has led to a noticeable decoupling between Germany and its neighbouring 

markets since 2011 (de Menezes and Houllier, 2015). However, the correlation between both 

countries’ prices is still very strong (de Menezes et al., 2016). Historically, Italian prices 

exceeded those of France and Germany, but they have dropped significantly in the last five 

years and are starting to converge to those of Germany and France. Italy thus exhibits price 

drops similar to those of Germany and France, despite its very different generation-mix. 

These elements, together with the coupling with France and Austria launched in February 

2015, create the conditions for further convergence and an improvement of Italian 

competitiveness compared to other European countries. 
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Figure 6. Comparison of German, French and Italian monthly prices, 2006-2015. Data from EPEX SPOT 

(2016). 

In addition to the change in median prices, the three countries have also witnessed a change in 

their day-ahead price pattern, in particular lower variation within day-ahead prices. Figure 7 

shows the evolution of the monthly median of the daily IQR
2
 from 2006 to 2015 for the three 

countries. The following analysis is background work for a paper (work in progress) co-

authored with Prof. Ann van Ackere, Prof. Erik Larsen and Prof. Valerie Chavez, focused on 

the changing patterns of prices in those countries. The curves of daily IQR monthly medians 

for Germany and France seem much more stable from 2009 onwards than before. This more 

stable pattern appears in Italy around 2011. 

                                                           
2
 The interquartile range (IQR) is used to estimate the variability within day-ahead hourly prices. This is the 

difference between the daily upper (Q3) and lower (Q1) quartiles, and take the median for each month. 
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Figure 7. Median daily IQR per month in Germany, France and Italy. Data from EPEX SPOT (2016). 

To confirm and understand the monthly and annual time-effects over years and months, we 

perform different ANOVAs on the monthly median of the daily IQR. All ANOVAs are 

summarised in Table 2. The median has been chosen as it is generally considered to be more 

representative of the central tendency than the mean. Although we do not perform an explicit 

analysis of the NDRES impact on IQR, the impact of the variable YEAR is partially 

explained by NDRES, as their share has been increasing constantly over the last 10 years. The 

variable MONTH accounts partially for the seasonal impact of NDRES on IQR.  

Table 2. Anova for IQR. 

Period Variable Df Sum Sq Mean Sq F value Pr(>F) 

 All the countries 

2006-

2015 

Country 2       5,089       2,545  56.6 < 2e-16 *** 

Year 9     21,809       2,423  53.9 < 2e-16 *** 

Month 11       2,274          207  4.6 1.60E-06 *** 

Residuals 337     15,154            45  
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Period Variable Df Sum Sq Mean Sq F value Pr(>F) 

 

2006-

2015 

Country 2       5,089       2,545  82.5 < 2e-16 *** 

YearFactor 9     21,809       2,423  78.6 < 2e-16 *** 

MonthFactor 11       2,274          207  6.7 4.11E-10 *** 

Country:YearFactor 18       5,313          295  9.6 < 2e-16 *** 

Residuals 319       9,841            31  

   Germany 

2006-

2015 

YearFactor 9       3,955          439  20.1 < 2e-16 *** 

MonthFactor 11       1,431          130  6.0 2.20E-07 *** 

Residuals 99       2,159            22  

   

2009-

2013 

Year 4            57            14  1.9 0.131 

 Month 11          492            45  5.9 8.70E-06 *** 

Residuals 44          333              8  

   

2014-

2015 

Year 1              0              0  0.0 0.86588 

 Month 11          205            19  7.9 0.00093 *** 

Residuals 11            26              2  

   France 

2006-

2015 

YearFactor 9       4,079          453  15.2 2.79E-15 *** 

MonthFactor 11          727            66  2.2 0.0189 * 

Residuals 99       2,946            30  

   

2010-

2013 

Year 3            37            12  3.1 0.0391 * 

Month 11            59              5  1.4 0.2347 

 Residuals 33          130              4  

   

2014-

2015 

Year 1              1              1  0.5 0.5124 

 Month 11            75              7  3.5 0.0238 * 

Residuals 11            21              2  

   Italy 

2006- YearFactor 9     19,088       2,121  52.6 <2e-16 *** 
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Period Variable Df Sum Sq Mean Sq F value Pr(>F) 

 2015 MonthFactor 11          861            78  1.9 0.0427 * 

Residuals 99       3,990            40  

   

2012-

2013 

Year 1            20            20  1.7 0.219 

 Month 11          263            24  2.0 0.134 

 Residuals 11          132            12  

   

2014-

2015 

Year 1            65            65  11.1 0.00665 ** 

Month 11          243            22  3.8 0.01829 * 

Residuals 11            64              6  

   

2006-

2011 

YearFactor 5 10670 2134 46.04 < 2e-16 *** 

MonthFactor 11 1601 145.5 3.14 0.00238 ** 

Residuals 55 2549 46.3 

   

2006-

2009 

YearFactor 4 975.7 243.9 13.552 2.80E-07 *** 

MonthFactor 11 96.7 8.8 0.489 0.9 

 Residuals 44 792 18 

   

2011-

2015 

YearFactor 4 472.1 118.02 10.521 4.55E-06 *** 

MonthFactor 11 315.7 28.7 2.558 0.0134 * 

Residuals 44 493.6 11.22 

    Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

The ANOVA analyses confirm that variables COUNTRY, YEAR and MONTH have an 

effect on IQR. However, there are interactions between YEAR and COUNTRY, which 

indicates that the IQR changes over time and is country specific. We thus perform the analysis 

for each country. In the case of Germany, the IQR has decreased significantly over the 2006 - 

2009 period, and remained stable afterwards: "YEAR" is significant over the full period (p-

value < 2e-16), but not in 2009-2013 (p-value > 0.13). As can be seen from the variable 

"MONTH" in the 2006-2015 and 2009-2013 panels (p-values < 8.7e-6), the seasonal 

variations in IQR remain highly significant throughout the whole period. A further analysis 
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(not shown) indicates that “YEAR” becomes significant when considering the period 2009-

2015, which indicates that the IQR continues to decrease after 2014. Between 2014 and 2015, 

the IQR remained stable since “YEAR” is not significant (p-value > 0.86).  

Qualitative results for French IQR are very similar to those of Germany. IQR also decreases, 

but, unlike Germany, “YEAR” is still significant in the period 2009-2013 (results not shown). 

However, IQR stabilises during the period 2010-2013 (p-value <0.04). The later drop of IQR 

in France might be due to still low NDRES capacity in Germany at that time, which together 

with the congestion between the two countries limited the spread of the NDRES price-

lowering effect. Afterwards, like in Germany, IQR stabilises during the period 2014-2015 (p-

value > 0.51).   

Turning to the Italian data, the results of the ANOVA for the IQR again show a significant 

decrease in differences within day-ahead prices (p-value < 2e-16 for “YEAR” over 2006-

2011). In this case, IQR stabilises in 2012 (p-value > 0.21 over the period 2012-2013), later 

than in Germany and France, due to the more recent large deployment of NDRES facilities in 

the Italian market. However, unlike the German and French case, “YEAR” is still significant 

over the period 2014-2015 (p-value < 0.006), indicating IQR has continued to decrease over 

this period. This highlights the larger margin of Italian prices to decrease and converge to 

those of Germany and France, as NDRES capacity continues to grow and market prices are 

less affected by other factors such as gas prices. The seasonal pattern is much less pronounced 

in the Italian case, but gaining in importance over time: the p-value of “MONTH” is > 0.04 

when considering the full period and < 0.014 when considering the 2011-2015 period. This is 

due to the more stable output of PV in Italy across seasons because of its geographical 

location.  
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Results of the ANOVA analysis show that within-day price differences have decreased 

significantly over time and are season-dependant in Germany, France and Italy. In particular, 

the cases of Germany and Italy highlight the NDRES price-lowering effect on within-day 

price differences despite their different generation-mix and level of interconnection. The case 

of France highlights the impact of interconnection as this country has low NDRES 

penetration, but is interconnected with Germany, a country that have a high NDRES share. 

Overall, these changes in price patterns in Germany, France and Italy highlight the impact of 

NDRES larger penetration on prices.  

As shown, NDRES’ downward pressure on within-day price differences spread from one 

country to another. These dynamics might affect the Swiss electricity market. Evidence shows 

that peak plants, e.g., gas plants in Germany and hydropower plants in Switzerland, are 

already suffering severe profit drops. Belgium and the UK have also expressed major 

concerns about the decommissioning of thermal power plants (La Libre, 2014; OFGEM, 

2014). Furthermore, lower within-day prices differences might affect profitability of Swiss 

pumped-storage power plants (PSP), which play a merchant role in energy arbitrage. 

Although Switzerland is also encouraging NDRES and interconnection with these countries is 

increasingly important, it is uncertain what the situation will be in the long-term, given the 

particularities of the Swiss electricity market and the expected changes in its generation-mix.  

In the next section we analyse the impact of the changing generation-mix in Switzerland on 

arbitrage opportunities of the Swiss PSP. We focus on these plants because major investments 

have been made in this technology aiming at turning Switzerland into the battery of Europe. 

However, recent decisions about the nuclear phase-out and the encouragement of NDRES 

might threaten PSP profitability in the long-term.  
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2.9. The future of PSP  

Over the past decade Switzerland has invested significantly in pumped storage plants (PSP), 

but the situation is very different from that when the investment decisions were taken. 

Historically, the significant difference between the low night prices and the noon or evening 

peak prices created arbitrage opportunities for PSP. These plants aim to exploit arbitrage 

opportunities by pumping water from a lower reservoir to an upper reservoir to store 

electricity in the form of hydraulic potential energy when prices are low and generating when 

prices are high. This arbitrage becomes increasingly less attractive as variability within day-

ahead hourly prices decreases. The situation is further complicated by the current bi-modal 

distribution of the timing of peak prices, particularly in summer: on certain days the price 

peaks at night, i.e. when electricity traditionally has been the cheapest. Pumped-storage power 

plants need accurate short term (24 hours) price-forecasts to be able to bid in the day-ahead 

market. The increasing uncertainty about when it will be profitable to pump and to produce 

could seriously affect their profitability. There is high uncertainty about the price dynamics in 

Switzerland given the expected changes in the generation-mix in the long-term. In the paper 

“Arbitrage Opportunities for Pumped Storage Power Plants in Switzerland” (Paper_PSP, 

see Appendix B.2), co-authored with Prof. Ann van Ackere, we study the future of PSP 

arbitrage opportunities in Switzerland in the long-term and identify under what conditions 

these could be enhanced. 

2.9.1. Methodology 

The model used here is an extension of the one used in Paper_SwissMarket and described in 

section 2.7.1. We carried out three main changes for the Paper_PSP: (i) we improved the 

reservoir modelling in order to better capture the seasonal storage and conventional hydro-

storage strategy (see Appendix A.3.4 for the detailed formulation), (ii) we include Italy as a 
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potential importer since the current situation (imports from Italy are negligible) might change 

in the long-term depending on the investments in Switzerland, and (iii) we endogenise PSP 

decisions regarding volumes and timing of pumping and generation (see Appendix A.3.5 for 

the detailed formulation and its integration in the Swiss market model). The latter is essential 

to capture how the changes in the energy-mix of the Swiss electricity market affect the 

operation of PSP. For this purpose we develop an algorithm in which we assume a daily cycle 

for PSP and we consider only PSP’s participation as a merchant unit in the wholesale market. 

We assume PSP have perfect information about other technologies’ bid prices and bid-offers. 

PSP thus assess a “pre-dispatch”, which allows them to calculate the volumes of allocated and 

unallocated supply of each technology. With this information, PSP can assess the optimal 

daily operation, i.e., the volume of energy to pump that equals the potential sales, while 

ensuring that the bid price covers the purchase price plus the efficiency losses. Recall that the 

simulation runs from 2014 to 2050 with a quarterly time step. All the assumptions concerning 

investment decisions, market clearing and nuclear-phase out are the same of those mentioned 

in section 2.7.1. 

In the model, for each representative day we consider there is perfect foresight of demand and 

supply, i.e., we do not deal with load balance through the intra-day market, nor with ancillary 

services. To consider the intra-day market, a different approach is needed. In particular, the 

model should be extended to explicitly include stochastic demand and supply variables, e.g., 

forecasted PV output and real output. Therefore, in our model PSP only plays an arbitrage 

role. This is a limitation of our work, which prevents us from estimating the profitability of 

PSP. However, our results provide insights about the future profitability as the scale of any 

balancing operation is expected to be small. As shown in the Paper_SwissMarket, 

investments in NDRES will concentrate mainly in PV. Although PV output is subject to 

variations, these are significantly lower than those of wind energy. Because of limited 
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potential and the NIMBY phenomenon, wind energy is expected to have a lower development 

than PV in Switzerland. The potential to provide ancillary services to foreign markets is 

limited. Germany is the only neighbouring country with a significant share of wind energy, 

but most of its facilities are in the north and there is significant congestion between north and 

south. This prevents a potentially active participation of Swiss PSP in the German market. 

The increase of the value of the intra-day market and ancillary services in Switzerland is 

expected to be limited and is unlikely to compensate for the lack of arbitrage opportunities. 

2.9.2. Simulation results and discussion  

Changes in the availability of energy sources resulting mainly from nuclear plant 

decommissioning, expiration of long-term contracts and PV deployment affect the difference 

between peak and off-peak prices and the amount of cheap energy available for pumping, 

which in the end affect pumping patterns. While initially the increase of photovoltaic capacity 

and the larger PSP capacity encourages pumping, the nuclear phase-out and the expiration of 

long-term import contracts significantly decrease the available cheap energy. These changes 

also lead to higher purchase and sales prices for PSP, which mostly result into higher 

differences between peak and off-peak prices in the long-term. However, PSP are unable to 

exploit these because of the low availability of cheap energy to pump.  

To show this we calculate the average price at which PSP buys energy and that at which they 

sell it. Using the resulting hourly prices, i.e., the set of 24 prices for each season (time step), 

we identify that the former is always below the 20
th

 percentile and the latter is above the 80
th

 

percentile. We thus use the 10
th

 percentile of hourly prices (P10) as a reference for the price of 

“cheap energy” and the 90
th

 percentile of hourly prices (P90) as reference for the revenues of 

PSP. This is an ex-post calculation, i.e., this does not affect the model results. We use the 

difference between P90 and P10 to show the potential profits from arbitrage. We also identify 
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the generating volumes whose marginal costs are below P10.  This allows us to show how 

unallocated cheap supply decreases over time. Therefore, although the potential profits 

increase or remain stable in the in all seasons, the drop of cheap available supply leads to 

lower pumping in the long-term. 

This situation severely limits arbitrage opportunities in the long-term. Although pumping 

increases in the medium-term (2025-2035), profitability of PSP is threatened even in this 

period because pumping does not increase in the same proportion as pumping capacity. The 

changing generation-mix in Switzerland thus threatens these arbitrage opportunities in the 

long-term. 

The impact of different scenarios on PSP operation is evaluated. When pumping is 

encouraged either through direct subsidies (market premiums) or via the encouragement of 

NDRES (in order to increase cheap energy availability), PSP achieve better results in terms of 

average pumping and profits. However, the decreasing trend of pumping in the long-term 

remains. If alternative nuclear phase-out schedules are implemented, i.e., permission to 

certain plants to operate until at least 2050, pumping is higher than in BAU
3
 as more excess 

supply is available. This leads not only to more income, but also to higher operational 

margins. However, the situation in the 2040-2050 period remains critical as even the 

availability of close to the current nuclear capacity cannot prevent the drop in pumping.    

A question thus arises: is there a plausible evolution in which PSP arbitrage could be 

profitable? We evaluate three scenarios: (i) higher prices and lower exports availability in 

Germany in the evening, (ii) encouragement of NDRES after 2035 and no nuclear phase-out 

and (iii) same conditions as in scenario (ii), while also assuming lower local consumption. In 

                                                           
3
 Recall that in our base case scenario (BAU, identical to BAU of the Paper_SwissMarket), we assume that 

Muhleberg is decommissioned in 2019 and the others plants are decommissioned after 60 years of operation. We 

also assume that hydro projects currently under construction will come online at their scheduled start of 

operation and that NDRES are subsidised so as to achieve the 2020 and 2035 renewable targets. 
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scenario (i) pumping is significantly higher than in BAU in the medium-term, but shows a 

decreasing trend in the long-term, remaining similar to BAU. In the last two scenarios 

pumping increases in the long-term, this rise being more significant when consumption is 

lower. Large scale arbitrage thus requires the availability of cheap excess energy. This can be 

achieved either by demand management or by supporting base load technologies. 

2.10. Insights and limitations 

The simulation results presented in both the Paper_SwissMarket and Paper_PSP show that 

the future of the Swiss electricity market is compromised. Can we say that supply is 

threatened? Yes, at least in the long-term. However, evidence shown so far does not allow 

stating that the elements in our model are the only ones affecting the security of electricity 

supply. Particularly right now, when climate change commitments, active demand 

participation and interconnection issues are playing such a major role in energy policy, we 

cannot have such a narrow view. In the next chapter we thus address the broader concept of 

security of electricity supply. What else do we need to consider when analysing it? Based on a 

literature review, we develop a framework that allows us to assess the security of any 

electricity market. In this framework we identify the dimensions that cover all the aspects of 

SoES in the long-term. We propose a metric for each of them, so as to provide a quantitative 

tool for decisions makers to follow the evolution of these different dimensions over time, 

identify potential problems and decide if and when to intervene. 
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3. SECURITY OF ELECTRICITY SUPPLY 

The concept of security of energy supply has been widely analysed in the literature as 

equivalent to energy security, which aims to cover the different types of energy sources, e.g., 

oil and gas. Energy security received major attention in the 1970s when the oil crisis 

occurred. This led to energy security to be seen as part of a country’s foreign policy. The 

interaction among nations gained in importance (Yergin, 2006) and in the oil market, 

dependency on imports became a symptom of insecurity. While fossil fuels have received 

major attention, security of supply in the electricity sector has been only considered as a part 

of overall energy security, without elaborating on its particular aspects. The structure of this 

chapter is as follows: first the definition of energy security is presented, followed by a 

discussion on the energy security dimensions and their metrics based on the literature 

reviewed. Finally, a summary of the Paper_SoES (see Appendix B.3), which provides a 

framework to evaluate security of supply in the electricity sector, is presented.  

3.1. Definition of energy security 

Different bodies and authors define energy security (or security of supply) differently. 

According to International Energy Agency (IEA, 2014b), energy security refers to the 

uninterrupted availability of energy sources at an affordable price. In addition to low 

affordability, non-competitive or overly volatile prices are also considered elements of energy 

insecurity (Jansen and Seebregts, 2010). The Asia Pacific Energy Research Centre (APERC, 

2007) defines energy security as the “ability of an economy to guarantee the availability of 

energy supply in a sustainable and timely manner with the energy price being at a level that 

will not adversely affect the economic performance of the economy” (p. 6). Sovacool et al. 

(2011), define energy security as “how to equitably provide available, affordable, reliable, 

efficient, environmentally benign, proactively governed and socially acceptable energy 
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services to end-users” (p. 5846). These definitions highlight the difficulty of defining energy 

security. This concept does not relate to a single property but rather to multiple dimensions 

(Chester, 2010).  

3.2. Energy security assessment  

There are many studies aimed at evaluating either energy security or security of supply of a 

certain resource. They not only focus on different energy resources, but they approach the 

problem differently. While some analyse energy systems’ risk, others analyse the properties 

needed to ensure the energy supply. Another difference is the time-frame of the studies. This 

is highlighted by Gracceva and Zeniewski (2014), who structure their framework according to 

the time-frame of various energy-related threats, e.g., variability of energy demand (short-

term) and resource depletion (long-term).  

APERC (2007) provides a significant contribution to the frameworks. Their analysis is based 

on the four A’s: availability, affordability, accessibility and acceptability. However, given the 

vast range of aspects covered by these properties, their measurement is complex. As a result, 

the quantitative assessment made in this work is not explicitly linked to these properties. 

Addressing this problem, Ren and Sovacool (2014) propose different metrics to cover the 

aspects covered by these properties, e.g., price stability and market liquidity as part of 

‘Affordability’. As an alternative to the 4 A’s approach, most authors focus directly on the 

different aspects (dimensions) of energy security. Using a dimensions approach allows a more 

precise description of the energy-related aspects, which makes possible their quantitative 

assessment. The properties and the dimensions approaches remain, nonetheless, 

complementary as the 4 A’s allow identifying the potential conflicts among different 

dimensions (Kruyt et al., 2009). 
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Table 3 presents the main characteristics of a selection of papers assessing security of supply 

in energy systems. This is not an exhaustive list. An initial search was performed using the 

keywords “energy security”, “security of energy supply” and “security of electricity supply”, 

and this selection was broadened by including references in these papers. Among these 

papers, we selected those that elaborate (implicitly or explicitly) on the security of supply 

dimensions rather than just provide a definition or a discussion about the concept in itself. We 

also aimed to include a wide range of approaches: in terms of methodology by including those 

explicitly providing a quantitative framework as well as those just discussing the aspects of 

energy security without even providing a qualitative assessment; in terms of energy sources 

by including all the primary energy sources and potential energy uses, as well as those 

aggregating all energy sources; in terms of location by including papers focusing on the world 

as well as on a single country; in terms of time-frame, by including short- as well as long-term 

analyses; and in terms of quantitative assessment by including studies with more than 300 

indicators as well as those intending to aggregate different metrics into a single one. This list 

is thus a representative selection of the work addressing energy security.  

Table 3 specifies the type of energy resource studied and the region considered. It also shows 

if indicators are proposed and if an aggregated indicator is calculated, and whether the authors 

compare different regions using these indicators. The studies by APERC (2007) and 

Scheepers et al. (2007) are presented in two lines because they use two very different 

approaches. The dimensions found in the literature review are presented as follows. In Section 

3.2.1 we classify these according to the main stakeholders/segments concerned, and discuss 

how different authors define these dimensions and the metrics they propose. In section 3.2.2 

we conclude on the main challenges to measuring these dimensions. 
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 Table 3. Characteristics of reviewed studies on energy security.  

Publication Energy source Region Indicators 
Cross-country 

comparison 

APERC (2007) – 5 

indicators 

Primary energy sources Asia Pacific countries Yes Yes 

APERC (2007) – oil case Oil Asia Pacific countries Yes 

(aggregated) 

Yes 

IEA (2007) Coal, gas and oil Czech Republic, France, Italy, the 

Netherlands, and UK 

Yes 

(aggregated) 

Yes 

Scheepers et al. (2007) – 

S/D index 

Primary energy sources and end uses of 

them 

EU25 and Netherlands, Poland, 

Spain and UK 

Yes 

(aggregated) 

Yes 

Scheepers et al. (2007) – 

CC index 

Primary energy sources and end uses of 

them 

ND Yes No 

Gupta (2008) Oil 26 net oil-importing countries Yes 

(aggregated) 

Yes 

Kruyt et al. (2009) Primary energy sources World Yes No 

Chester (2010) Energy as a whole ND No  No 

Jansen and Seebregts 

(2010) 

Primary energy sources and end uses of 

them 

EU 27 countries Yes Yes 

Lefèvre (2010) Coal, gas and oil France and UK Yes Yes 

Lévêque et al. (2010)  Natural gas, hydrogen and nuclear Europe No  No 
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Publication Energy source Region Indicators 
Cross-country 

comparison 

Löschel et al. (2010)  Primary energy sources  USA, Germany, Netherlands and 

Spain 

Yes 

(aggregated) 

Yes 

Vivoda (2010)  Primary energy sources and electricity Asia Pacific countries Yes Yes 

Cohen et al. (2011)  Oil and gas 26 developed countries Yes Yes 

IEA (2011) Primary energy sources OECD countries Yes Yes 

Sovacool et al. (2011) Primary energy sources and electricity Asia Pacific countries Yes 

(aggregated) 

Yes 

Sovacool and Mukherjee 

(2011) 

Primary energy sources and electricity ND Yes No 

von Hippel et al. (2011a) Primary energy sources  Japan Yes No 

von Hippel et al. (2011b) Primary energy sources  Northeast Asia Yes No 

Cherp et al. (2012) Primary energy sources  World Yes No 

Zhang et al. (2013) Oil China Yes No 

Gouveia et al. (2014) Electricity Portugal Yes No 

Gracceva and Zeniewski 

(2014) 

Primary energy sources  ND No No 

(IEA, 2014c) Oil and gas OECD countries Yes Yes 
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Publication Energy source Region Indicators 
Cross-country 

comparison 

Portugal-Pereira and 

Esteban (2014)  

Electricity Japan Yes No 

Ren and Sovacool (2014) Primary energy sources  China Yes No 

Yao and Chang (2014) Primary energy sources  China Yes 

(aggreagated) 

No 

Jonsson et al. (2015) Oil, gas and electricity EU No No 
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3.2.1. Dimensions 

While some authors elaborate on security of supply in terms of dimensions, other do it in terms of 

properties or risks. Regardless of the approach used, when they intend to assess SoS 

quantitatively, they focus on energy security dimensions. We define a dimension as an aspect 

related to the vulnerabilities of an energy system, understanding that the main objectives of SoS 

are to avoid disruptions (physical aspect) and to ensure affordable prices (economic aspect).  

The papers of Table 3 use 18 dimensions to address security of supply. For each paper of Table 3, 

Table 4 indicates which dimensions are included. In this section we intend to give insights about 

how the dimensions have been defined and measured in the selected literature, regardless of the 

type of resources. Therefore, metrics mentioned are not applied specifically to the electricity 

sector but to different primary energy sources and end-uses of energy. We also group these 

dimensions to show which stakeholders either are influenced or have a higher direct influence on 

issues concerning each of them. This helps mapping to whom a policy should be addressed when 

intending to improve any dimension. The dimensions and their respective groups are: availability, 

capacity adequacy, resilience, reliability, vulnerability of imports, imports dependency 

(Production/Transport/Retail), price stability, affordability, environmental sustainability, social 

factors, demand management, access (Customers), terrorism, governance/institutions/policy, 

economic issues, research and development (R+D), quality of information, and equity 

(Government/Regulator/Decision makers).  
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Table 4. Dimensions considered in studies on energy security. 
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APERC (2007) – 5 

indicators 

X X X   X X X X X   X     X X       

APERC (2007) – oil case X X X   X     X X     X             

IEA (2007) X X X   X     X                     

Scheepers et al. (2007) – 

S/D index 

X X X X   X           X             

Scheepers et al. (2007) – 

CC index 

X X X X X       X     X             

Gupta (2008) X   X   X     X                     

Kruyt et al. (2009) X   X   X X   X X   X X             

Chester (2010) X X           X X                   

Jansen and Seebregts 

(2010) 

X X X X X X X X X   X X             

Lefèvre (2010) X   X   X     X                     

Lévêque et al. (2010)  X X X   X X   X X   X X             

Löschel et al. (2010)  X       X     X                     

Vivoda (2010)  X X X X X X   X X X X X X X   X X   

Cohen et al. (2011)          X X                         

IEA (2011)     X X X X           X             

Sovacool et al. (2011) X   X X   X X X X   X X X           
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Sovacool and Mukherjee 

(2011) 

X X X X X X X X X X X X X   X X X   

von Hippel et al. (2011a) X   X X   X   X X X       X   X     

von Hippel et al. (2011b) X   X X   X   X X X       X   X     

Cherp et al. (2012) X X X X X X X X X   X X X X X       

Zhang et al. (2013)         X X X                       

Gouveia et al. (2014) X X X X   X   X X   X X             

Gracceva and Zeniewski 

(2014) 

X X X X         X       X           

(IEA, 2014c) X X X X   X         X               

Portugal-Pereira and 

Esteban (2014)  

    X X   X     X     X             

Ren and Sovacool (2014) X X X X X X X X X X X X X X X X X X 

Yao and Chang (2014) X X       X X X X     X       X     

Jonsson et al. (2015) X   X X X X X X X           X       

 

3.2.1.1.Production/Transport/Retail  

The following dimensions affect mainly the companies in charge of generating, transporting 

(transmission and distribution) and commercialising electricity. These cover mainly the technical 
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and operational aspects of electricity supply, i.e., those ensuring the physical availability of 

electricity supply. 

Availability  

This dimension refers mainly to the existence of resources, which is particularly important in 

fossil fuel markets. Several metrics are proposed, but some of them offer ambiguous 

interpretations. For instance, Sovacool et al. (2011) use supply per capita as a metric.  While a 

drop of this metric is interpreted as negative for energy security in the Sovacool et al. (2011)’s 

framework, this could capture energy efficiency improvements that increase security of supply. 

The ratio between reserves and consumption (Gupta, 2008; Jansen et al., 2004; Yao and Chang, 

2014) seems more appropriate for this dimension as it links the geological existence of resources 

with their consumption. Other metrics, such as share of pipeline imports in demand (IEA, 2007; 

Lefèvre, 2010) and the share of renewable energy in demand (Ren and Sovacool, 2014) do not 

capture the available energy.  

Capacity adequacy  

This dimension relates to the availability of capacity to exploit the existing resources. Metrics 

involving the installed production capacity are the most used, although frameworks such as those 

proposed in (IEA, 2014c) and Scheepers et al. (2007) include the different supply chain 

segments, differentiating production, storage and transportation. However, the term “adequacy” 

directly links supply and demand. Metrics should thus capture the proportion between 

consumption and production capacity. This is why those frameworks, in which capacity adequacy 

is measured only by investments in the energy sector or by capacity, do not account for the ability 

of installed capacity to cover demand needs under current conditions. Alternative metrics such as 
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access and demand growth are tightly related to capacity adequacy but do not address the 

“adequacy” issue. They are rather complementary metrics. Low access in the electricity sector 

might warn about future capacity adequacy problems if more customers are connected without 

investing in new generation and transmission capacity. The demand growth rate can help explain 

the evolution of the capacity adequacy margins or warn about the trend in demand.  

Resilience  

Resilience is defined as the ability of a system to withstand disruptions (Cherp et al., 2012). As 

the diversification of resources reduces the sensitivity to disturbances in the supply (Grubb et al., 

2006; Jonsson et al., 2015; Kruyt et al., 2009), there is a high consensus among authors regarding 

diversification as the metric for this dimension. Indexes such as the Shannon-Weiner index
4
 are 

used to measure the diversification of resources, suppliers, fuels, technologies or import routes. 

Although the use of this index is more common than that of the Herfindhal–Hirschman index 

(HHI), qualitative results of both indices are identical. While the former assesses diversity, the 

latter assesses concentration. One exception is Ren and Sovacool (2014), who propose imports 

dependency as a metric. 

Higher resilience can also be achieved with flexibility of fuel usage (APERC, 2007; IEA, 2014c; 

Jonsson et al., 2015; Scheepers et al., 2007), but measuring this aspect or including it into a 

diversification index is complex. We could not find any quantitative measure addressing fuel 

flexibility. Finally, very specific metrics can be used depending on the resource. For instance, in 

the coal sector, resilience is measured by the share of mining underground (IEA, 2011).  

 

                                                           
4
 ∑ 𝑝𝑖𝑙𝑛(𝑝𝑖)𝑖 , where pi is the share of the resource.  
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Reliability  

This dimension is intended to capture the frequency or risk of a physical disruption. While in the 

oil market, physical unavailability of supply is limited to extreme cases, this is a major concern in 

electricity markets, and to a lesser extent in gas markets (IEA, 2014c). Consequently, measuring 

reliability typically refers to electricity systems rather than other energy sources. Still, several 

attempts have been made in order to capture the reliability of energy systems. For instance, 

Jonsson et al. (2015) propose the occurrence of accidents in the energy sector. Although 

accidents inevitably have financial consequences for stakeholders, they do not always lead to 

supply cuts. The reliance on proven technologies or overall technological maturity is also claimed 

to be a metric for reliability (Ren and Sovacool, 2014; von Hippel et al., 2011b, 2011a), but its 

qualitative nature renders it very subjective and difficult to apply. Likewise, Vivoda (2010) 

propose technological risks as a metric, but they do not clearly explain this concept. Another 

metric is infrastructure ageing (Cherp et al., 2012; IEA, 2011); however it does not directly 

account for supply disruptions.  

In the electricity sector there are well-established metrics for reliability: they measure directly the 

time and frequency of electricity disruptions, e.g., the SAIDI index (Gouveia et al., 2014; IEA, 

2011). Alternative metrics such as the system stress, defined as the period when demand exceeds 

85% of total capacity and used as metric for this dimension (Portugal-Pereira and Esteban, 2014), 

could be more suitable when assessing capacity adequacy.  

Import dependency 

Dependency plays an important role in the literature concerning energy security. In some papers 

focusing on security of oil supply this dimension, together with the geopolitical risks of trade, are 
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considered the only aspects affecting security of supply, e.g., Gupta (2008). When other energy 

sources are included in the analysis, import dependency is still a relevant issue, but less central. 

Import dependency is not a problem per se as countries’ vulnerability depends on the diversity, 

the market liquidity and governance mechanisms. However, import dependency may cause 

insecurity when markets fail as this creates exposure to trade and production decisions of 

international actors (Jonsson et al., 2015).  

While import dependency is problematic, authors such as Costantini et al. (2007) argue that this 

is part of a broader picture and can be compensated by an exchange surplus in other products. 

Particularly, interdependence between industrialised countries and energy exporters has 

deepened, financial markets and energy markets are closely linked, and technology has created 

interdependencies between electricity and oil refining, as well as natural gas processing (Chester, 

2010). Interconnectedness of energy markets favours SoS. The larger the geographic area of 

energy markets, the more they are able to absorb disruptions because more resources are 

available to damp price spikes. In addition to this insurance or resilience effect that improves 

short-term security of supply, wider markets also provide more diversity of primary fuel types 

and geographic sources, and therefore ensure better long-term SoS (Leveque 2010). In that sense, 

interconnectedness has been included as one dimension of SoS assessments. However, there is 

little agreement about how to measure it. While the use of congestion as a metric (Gouveia et al., 

2014; Scheepers et al., 2007) can lead to a misleading interpretation as it does not capture the size 

of the interconnection, other metrics such as energy exports (Sovacool et al., 2011) or import 

capacity (Sovacool and Mukherjee, 2011) do not really express to what degree interconnections 

between countries are detrimental to SoS.  
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Imports vulnerability  

Overall, there is a general acknowledgement that import dependency is a risk factor for energy 

systems. However, it can be argued that the severity of such a risk is case specific and its 

assessment is extremely complex. In order to evaluate to what extent import dependency is 

dangerous, vulnerability of imports has been expressed in terms of diversification of either fuels 

or exporting countries (Cohen et al., 2011; Gupta, 2008; Jansen and Seebregts, 2010; Lefèvre, 

2010; Scheepers et al., 2007). Additionally, some authors incorporate the geopolitical risk as a 

factor that increases imports vulnerability. Various country-level indices are used to weight 

imports vulnerability, e.g., socio-political stability in UNDP's human development indicator 

(Jansen et al., 2004), and the OECD political stability rating (IEA, 2007, 2014c). Still, these 

indices do not accurately capture the willingness to trade of these countries (Kruyt et al., 2009).  

3.2.1.2. Customers 

The following dimensions affect mainly the customers. They cover the economic and social 

aspects of the relationship between customers and electricity markets. 

Price stability 

Price stability is important as uncertainty affects investment decisions (Jonsson et al., 2015). 

These authors use the price volatility of different fuels as a metric.  

Affordability 

Measuring affordability is less straightforward and approaches are multiple. Some authors 

directly address the issue of high costs in energy markets by considering fuel prices as a metric 

(Kruyt et al., 2009; Löschel et al., 2010; Sovacool et al., 2011). Others propose proxis such as 
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market concentration (IEA, 2007; Lefèvre, 2010) and consumption per capita (Yao and Chang, 

2014). Other metrics depend on very detailed information that is not always available, e.g., 

energy systems’ internal costs (von Hippel et al., 2011a). However, these metrics do not capture 

the expensiveness of resources. A suitable metric should thus relate costs and income, e.g., by 

calculating the ratio between fuel costs and GDP (Vivoda, 2010) or fuel expenses as a share of 

household revenues (Sovacool and Mukherjee, 2011).  

Environmental sustainability 

The environmental dimension has received major attention. Environmental acceptability is used 

as a synonym for environmental sustainability in some studies (Chester, 2010). Environmental 

commitments are acknowledged to have a significant impact on security of supply because of the 

enormous transformations and investments required to reduce the environmental effects of energy 

systems. For instance, despite considering environmental regulation and constraints as boundaries 

to energy security in the short-term, Scheepers et al. (2007) are aware of the need to minimise the 

environmental impact of energy use. Security of electricity supply is central for energy policy at 

both national and EU levels (Directive 2005/89/EC) and increasing the environmental 

sustainability of EU energy systems dominates current energy policy (Chalvatzis and Hooper, 

2009). 

However, discussion persists on whether environmental sustainability should be considered as 

one of the dimensions. Chalvatzis and Hooper (2009) focus on policies related to two separate 

objectives: climate change mitigation and improving electricity supply security. Likewise, by 

focusing on the impacts of the low-carbon transition on security of supply, Gracceva and 

Zeniewski (2014) implicitly split environmental sustainability and energy security. One might 
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think that environmental sustainability only affects energy security through an economic impact 

and even that a dichotomy exists, i.e., environmental protection prevents increasing security of 

supply. However, environmental consequences of energy production and consumption affect 

energy systems, e.g., climate change has an effect on water patterns and availability (Cherp et al., 

2012). 

Given all the potential environment impacts, issues related to this dimension are multiple. 

Consequently, diverse metrics have been proposed. Examples include fossil-fuel production, 

nuclear waste, water pollution, water availability, land use, deforestation, emissions, terrestrial 

acidification, and reliance on fossil fuels. Others, like Vivoda (2010) and von Hippel et al. 

(2011b) propose the exposure to environmental-related risks as a metric, but are not clear about 

how to measure it, and in some cases a qualitative assessment is made. The wide range of 

environmental impacts highlights the complexity of measuring the exposure to such risks 

(climate change, sea level rise, extreme weather, etc). Most metrics thus relate either to the causes 

(e.g., greenhouse emissions) or to the consequences (e.g., water availability) of climate change.  

Socio-cultural factors 

Like environmental sustainability, there are multiple aspects related to socio-cultural factors that 

might affect or be affected by energy systems. However, socio-cultural factors are more 

subjective and difficult to measure. For instance, von Hippel et al. (2011b) propose the exposure 

to social or cultural energy-related risks (e.g., NIMBYism and energy sector labour unrest), but 

their calculation remains unclear. Alternatively, Yao and Chang (2014) propose a qualitative 

measure of the social satisfaction with energy systems, but this remains vague. This illustrates 

that there is little consensus about how to measure this dimension.  
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Demand management 

Demand management is playing an increasingly important role in energy security as high demand 

growth rates might reduce energy security (Vivoda, 2010), while demand reduction could relieve 

stress on the system. Demand management measures have different time horizons. In the short-

term, the implementation of demand response, e.g., rationing procedures and interruptible 

contracts, is considered as a measure for mitigating sudden supply shortages (Scheepers et al., 

2007). In the long-term, energy demand reduction is often the result of efficiency measures 

encouraged by policy incentives. The most commonly used metric is energy intensity (ratio 

between energy consumption and GDP). Given the strong correlation between countries’ energy 

consumption and GDP, this metric helps identifying if the demand reduction results from a weak 

economic performance. Although the term ‘efficiency’ is usually related to efficiency in 

consumption, Sovacool et al. (2011) and Portugal-Pereira and Esteban (2014) also measure the 

efficiency of the electricity sector using grid losses as a metric. 

Access  

This dimension is used to put into perspective the results of other measures rather than as an 

independent dimension, i.e., a high level of SoS is only relevant if the access rate is high. For 

instance, Sovacool and Mukherjee (2011) define affordability as “equitably enabling access to 

energy services at the lowest cost with stable prices” (p. 5346). However, access is not measured 

directly given the difficulty to define who has access to energy sources. Conversely, given the 

rigidity of the electricity network, access is easily measurable in the electricity sector using the 

connection rate to the grid (Sovacool et al., 2011; Vivoda, 2010). As a low access rate might 
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imply a potential problem of capacity adequacy if electrification is intended to be expanded, 

access rate is used as a capacity adequacy metric in Cherp et al. (2012).  

3.2.1.3. Government/Regulator/Decision makers 

The following dimensions affect mainly the Government and its institutions in their aim to ensure 

energy supply in a country and the potential impacts on the country’s economy. These cover 

regulatory, social and economic aspects. 

Governance, institutions and policy performance 

The broadness of this dimension makes its measurement highly complex. For instance, while 

APERC (2007) highlight the importance of having an efficient regulatory framework, but do not 

measure such a efficiency, other authors propose qualitative metrics to assess the ability of 

national institutions to properly govern and regulate the energy sector (Ren and Sovacool, 2014; 

Sovacool et al., 2011; Sovacool and Mukherjee, 2011; Vivoda, 2010). The only quantitative 

measures found in the literature are those concerning competition and market power (Cherp et al., 

2012; Gouveia et al., 2014; Kruyt et al., 2009), and the reliance of energy systems on market 

mechanisms (Sovacool et al., 2011; Sovacool and Mukherjee, 2011; Vivoda, 2010).  

Terrorism  

A very specific dimension included in some of the studies is terrorism, given the impact that 

attacks, e.g., on oil transportation fleets (APERC, 2007), could have on energy security. 

However, such events do not always lead to supply disruptions. As a result, measuring this 

dimension is not straightforward. Some alternatives are found in literature. For instance,  Vivoda 

(2010) proposes the general energy-related military/security risks as a metric, but its calculation 
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remains unclear. Other authors, like Ren and Sovacool (2014), state that military power should be 

measured by a qualitative assessment, but do not explain how to do so.  

Other dimensions  

There are further aspects that play a role in energy security assessments. These additional 

dimensions are mentioned in Table 4. One is economic issues, which consider some elements like 

the occurrence of the resource curse, which can lead to the Dutch disease (Jonsson et al., 2015; 

Sovacool and Mukherjee, 2011; Vivoda, 2010). These hamper the development of strong 

institutions and could eventually affect the governance and the energy market performance. The 

studies considering these issues are aware that despite the strong relationship with energy 

systems development, their occurrence does not always endanger energy security. Consequently, 

no metric is proposed to assess these issues. Likewise, the impact on energy security of other 

economic issues such as workforce constraints (APERC, 2007), appears to be weak.  

R+D can be measured by, e.g., state-owned patents (Yao and Chang, 2014). Quality of 

information can be measured by a qualitative metric for information transparency proposed in 

Sovacool and Mukherjee (2011). Finally, for measuring equity, Ren and Sovacool (2014) 

propose the share of households depending on traditional solid fuels such as wood. However, 

these last three dimensions seem to have a weak link with energy security.  

3.2.2. The challenge of measuring dimensions 

As discussed in the previous section, for some dimensions the proposed metric is straightforward, 

e.g., the ratio between imports and demand for imports dependency. For other dimensions, the 

proposed metrics differ even across papers focusing on the same energy sources, e.g., availability 

can be measured in terms of supply per capita (Sovacool et al., 2011) or as oil and gas reserves 
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(Vivoda, 2010). A question thus arises: which metrics are meaningful for each dimension? The 

lack of agreement among authors shows the difficulty of formulating metrics that address 

unambiguously the state of each dimension.  

The discussion of the different metrics of Table 4 highlights several difficulties. First, a given 

metric can be used for different dimensions by different authors with different interpretations. For 

instance, while decentralisation of electricity generation sources favours affordability for 

Sovacool and Mukherjee (2011), it poses control risks that affect reliability for Gracceva and 

Zeniewski (2014). Secondly, some measures are hard to compute because of the complexity of 

calculations and unavailability of information (e.g., exposure to environmental risks (Vivoda, 

2010)), due to an incomplete description (e.g., technological maturity for measuring reliability 

(Ren and Sovacool, 2014)) or because of their qualitative nature (e.g., international relations 

when measuring the vulnerability of imports (Ren and Sovacool, 2014)). This is usually the case 

of metrics proposed for socio-cultural factors due to the elusive nature of this dimension, e.g., 

one might argue whether some proxis can be used to address aspects such as the occurrence of 

the NIMBY phenomenon.  

Besides determining the best measure for each dimension, some authors attempt to build an 

aggregated measure of security of supply (Gupta, 2008; IEA, 2007; Scheepers et al., 2007; 

Sovacool et al., 2011; Yao and Chang, 2014). This implies scaling or weighting each metric, 

which inevitably induces subjectivity into the aggregate indicator. One of the most widely used 

indicators is the S/D Index (Scheepers et al., 2007), in which metrics from the entire energy 

supply chain are aggregated using weighting factors and scoring rules. Scheepers et al. (2007) are 

aware of the subjective nature of the weights and scoring rules, and make them explicit. 

However, very different scenarios can yield very similar values of the index due to the high level 
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of aggregation (Kruyt et al., 2009). They criticise the indicators proposed in IEA (2007) for the 

same reason. Whatever the approach, a cross-country comparison should be done in absolute 

terms since comparisons based on relative improvements, as done in Sovacool et al. (2011), can 

lead to misleading interpretations. Still, Kruyt et al. (2009) acknowledge that while aggregate 

indicators should not be used to rank best practices in energy policy, as they ignore the 

particularities of each energy system, they are useful for comparison over time.  

Considering the energy security dimensions and their respective metrics presented in the last two 

sections, a framework aimed at evaluating security of electricity supply is formulated. This 

framework is presented in the paper “A Framework to Evaluate Security of Supply in the 

Electricity Sector” (Paper_SoES, see Appendix B.3), co-authored with professors Erik Larsen 

and Ann van Ackere, and summarised in the next section.     

3.3. Security of supply in the electricity sector 

EURELECTRIC defines security of electricity supply (SoES) as “the ability of the electrical 

power system to provide electricity to end-users with a specified level of continuity and quality in 

a sustainable manner, relating to the existing standards and contractual agreements at the points 

of delivery” (Eurelectric, 2004, p. 9). More precisely, according to this body, SoES is related in 

the short-term to the operational reliability of the system, while in the long-term it depends on the 

simultaneous adequacy of access to fuels, generation, networks and markets. 

The share of electricity in world energy consumption grew from 9.4% in 1973 to 18% in 2013 

(IEA, 2015), showing that electricity supply is critical to energy security. Liberalisation of the 

electricity sector in numerous countries brought attention to the study of the security of the 

electricity supply. This became a policy issue after major power failures (e.g., California in 2000 



Security of Supply in the Electricity Sector: The Case of Switzerland 

64 
 

and 2001, Norway in 2002, France and Germany in 2003, South Africa in 2008 and 2009, or 

most recently, Japan in 2011 (Linares and Rey, 2013)), fuelling existing debates about the 

adequacy of investment in production and networks. These events highlight that in liberalised 

markets, investments are made based on profitability rather than on security concerns (Lieb-

Dóczy et al., 2003). 

In electricity markets, the concept of security of supply has been associated almost exclusively 

with capacity adequacy. Most work focuses on the improvement of SoES by providing signals 

for new investments, e.g., by implementing capacity mechanisms (Batlle and Rodilla, 2010; 

Schwenen, 2014). However, the emergence of NDRES (PV and wind power) integrated into 

markets on a large scale, triggered by environmental commitments, raises concerns about grid 

stability, and more recently about the economic sustainability of electricity systems. The 

increasingly active role of the demand-side and the population’s impact on the execution of new 

projects pose additional challenges to the electricity sector. Decision-makers thus face the 

complex task of guaranteeing the continuity of supply, while ensuring its long-term availability 

and affordability. All these issues highlight the multidimensional nature of SoES, as is the case of 

other energy systems. 

The oil, gas, coal and electricity markets exhibit significant differences in terms of, among others, 

rigidity of transport infrastructure, difficulty of storage, and the regional nature of markets 

(Chester, 2010). They thus require different approaches. In the Paper_SoES we aim to provide a 

framework for evaluating security of supply specifically for the electricity sector.  
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3.3.1. Framework characteristics  

The main characteristics of our framework are: (i) it is focused on the electricity sector; (ii) it 

provides a metric for each dimension, without intending to aggregate them into a single measure; 

(iii) it allows decision makers to follow the evolution of dimensions over time; (iv) it focuses on a 

single jurisdiction, i.e., the region in which a regulator has authority; and (v) it is not intended to 

compare jurisdictions. Based on the literature summarised in Table 4, and other studies focusing 

specifically on electricity systems, we identify the relevant dimensions that allow us to assess 

security of supply in an electricity system. We summarise the twelve dimensions included in our 

framework, and their metrics, in Table 5. 

3.3.2. Dimensions  

Given the particularities of electricity systems, some of the dimensions mentioned in Table 4 are 

not considered, while additional ones need to be included. Generation adequacy, resilience, 

reliability, access and geopolitics (including imports dependency and imports vulnerability), and 

their specific metrics for electricity systems are considered in our framework. For generation 

adequacy we propose an additional metric to the de-rated margin, which is widely used in 

electricity systems planning (e.g., in UK (OFGEM, 2014) and in California (CAISO, 2014)). We 

propose the ‘energy margin’ (Osorio and van Ackere, 2016). This is more appropriate than the 

de-rated margin for systems with a high hydro-storage penetration because it captures the 

operational flexibility resulting from storage.  

The rigidity of electricity transportation renders network capacity adequacy as important as 

generation adequacy. The metric should reflect the impact of grid utilisation, i.e., congestion 

costs. Its calculation depends on the congestion management mechanism (Alomoush, 2005). 



Security of Supply in the Electricity Sector: The Case of Switzerland 

66 
 

Furthermore, unlike generation facilities, ageing seems to be more relevant for network reliability 

(Nepal and Jamasb, 2013; Xie and Li, 2009). The average age of the grid is used as a metric for 

grid ageing. The dimension ‘Network condition’ thus considers two aspects: adequacy and grid 

ageing. 

The dimension ‘Governance, institutions and policy performance’ is included under the name of 

‘Regulatory efficiency’. Given its breadth and the particularities of the electricity sector, we focus 

on two aspects: need for subsidies and market performance. For the former, following Sovacool 

et al. (2011), we use the cost of subsidies for conventional generators as metric. For the latter we 

focus on market power as a symptom of weak market performance, using market concentration as 

a proxy.  

Likewise, the impact of socio-cultural factors and terrorism is relevant in the electricity sector; 

therefore, we include them in our framework. However, the metrics for these dimensions found in 

literature are not appropriate to capture SoES issues. Given the elusive nature of these two 

dimensions, we use respectively the ratio of effective planning and construction time over 

minimum required time, and the ‘business cost of terrorism’ (index from the World Economic 

Forum Report) as proxys to measure them.  

Other dimensions from Table 4 are merged into a single dimension. Sustainability thus comprises 

the economic and environmental aspects. The former additionally captures the economic 

sustainability from the demand- and the supply-side. Economic sustainability from the demand-

side (affordability) is indeed one of the core aspects in energy security definitions and one of the 

dimensions included in most studies presented in the previous section. Following Sovacool and 
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Mukherjee (2011), we propose the share of electricity expenses in household’s expenses as a 

metric.  

As electricity systems should not only be affordable for consumers, but also profitable for 

generators, we include the economic sustainability from the supply-side. We focus on generators 

because the transmission and retail segments usually have regulated tariffs that ensure their 

economic viability. This is not the case of generators, which are increasingly facing very difficult 

conditions in electricity markets due to the larger penetration of subsidised NDRES (Newbery, 

2016). Consequently, not only are prices decreasing, but so is the residual load, and in turn the 

load factor of peak generators. The resulting lack of profitability is endangering their operational 

feasibility, e.g., plants are being mothballed across Europe (Bloomberg, 2013; La Libre, 2014; 

Reuters, 2012). Although the reasons vary, peak plants are facing similar problems in other 

regions, e.g., Colombia (El Tiempo, 2015). The number of full operating hours of peak 

generators is thus used as a metric.  

Environmental sustainability is the third aspect of this dimension. Given the complexity of 

measuring to what extent electricity-related environmental impacts affect the electricity sector, 

the CO2 emissions are taken as a proxy. Including other types of emissions is also possible 

depending on the jurisdiction’s characteristics.  

Finally, a forth aspect is included: reliance on fossil fuels. Although dependency on fossil-fuels is 

included by Vivoda (2010) in the measurement of the environmental impact, the explicit 

inclusion in our framework is not redundant. This is indeed tightly related to the economic and 

the environmental aspects: fossil-fuels are expected to become more expensive not only because 
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of the environmental commitments, but also because of their depletion. The finite nature of fossil 

fuels thus will require the eventual replacement of the fossil-based generation.  

The comprehensiveness of the framework is strongly enhanced by the inclusion of important 

demand aspects, as recommended by Scheepers et al. (2007). Given the increasingly active role 

of demand in electricity markets, which is expected to gain even more relevance with the entry of 

smart grids, and the weight of demand reduction in current energy policies, we include the 

dimension ‘demand management’ in our framework. As the time-frame of actions aimed at 

reducing demand growth varies significantly, we focus on three measures. Demand conservation 

mainly refers to interruptible contracts (short-term action), and we include its measurement in the 

de-rated margin (the generation adequacy metric). Demand flexibility is measured by the share of 

peak demand that can be shifted. Demand efficiency, which aims to capture the effects of policies 

to reduce demand in the long-term, is measured by electricity intensity. This metric has been used 

by Gouveia et al. (2014) and is an adaptation of energy intensity, a commonly used metric to 

measure energy efficiency. 

All the dimensions discussed so far have been at least partially developed in the literature. Given 

the particularities of electricity systems, we include a new dimension: supply flexibility. Unlike 

other energy markets, electricity demand should match supply at all time. Given the rigidity of 

the grid, local load unbalances can create a cascade effect, spreading a bownout. As the larger 

penetration of NDRES is rendering load-balancing more complex, flexible generators are needed 

to cope with the inherent variability of NDRES and the increasing load-following ramp 

requirements of photovoltaic. We thus use the ratio between the capacity of flexible technologies, 

e.g. CCGT and hydro-storage, and the maximum load supplied by NDRES over the last year.  
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Table 5. Summary of dimensions and metrics of the framework proposed in Paper_SoES. This table is 

presented in the working paper “Interdependencies in security of electricity supply”, currently in progress. 

Dimensions Metric 

1. Generation adequacy De-rated capacity margin and energy margin  

2. Resilience Herfindahl - Hirschman Index (HHI) of concentration of 

generation technologies 

3. Reliability System Average Interruption Duration Index (SAIDI:  

ratio between annual customer-minutes without service 

and number of customers in the system) 

4. Supply flexibility Ratio between the capacity of flexible load (hydro and 

CCGT) and maximum load supplied by NDRES over 

the last year. 

5. Condition of the grid 

- Capacity adequacy Dispersion of zonal prices (market splitting) 

Congestion charge per MWh (redispatching) 

- Ageing Average age of the grid 

6. Demand management 

- Conservation Amount of interruptible contracts (to be subtracted from 

demand when computing de-rated margin) 

- Efficiency Electricity intensity of GDP 

- Demand flexibility Flexible demand relative to total demand 

7. Regulatory efficiency 

- Market performance HHI of generating companies 

- Incentives for conventional 

generators 

Subsidy to conventional generators per MWh 

8. Sustainability 

- Demand side – 

Affordability 

Electricity costs as share of median wage 

 

- Supply side - Profitability Load factor of conventional and peak generators  
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Dimensions Metric 

- Environmental Carbon emissions per MWh  

- Fossil fuel dependency Ratio between fossil-based generation and renewables 

expansion potential 

9. Geopolitics 

- Import dependency Fraction of domestic consumption covered by electricity 

imports and electricity generated by imported fuels 

- Vulnerability HHI of geographical concentration of imports  

HHI of concentration of imports by type (electricity and 

fuel) 

10. Socio-cultural factors Ratio of effective planning and construction time over 

minimum required time. 

11. Terrorism Business cost of terrorism from the World Economic 

Forum Report 

12. Access Rate of access to the grid 

 

This framework excludes some of the dimensions discusses in Table 4. Availability, referring 

mainly to the existence of fossil fuel reserves, is not considered because these resources are also 

used in sectors others than electricity and because the potential dangers of local resource 

unavailability are already partially addressed in ‘import dependency’ and fossil-fuel dependency. 

Other metrics such as R+D, economic issues and quality of information are not included as we 

could not find any evidence of a strong link with electricity supply insecurity. Additionally, in the 

specific case of economic issues, one of the main motivations of authors to include these is to 

capture the potential economic problems of energy systems. Our framework considers that in the 

dimension “economic sustainability – profitability”.  

This framework helps monitoring the achievement of certain policy goals, e.g., reducing 

emissions by X% over the next 10 years. Sometimes there might be a misalignment between 
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policies and capacity-mix, e.g., stringent CO2 limitations in a country with a large share of coal-

based generation. Since changing the capacity mix takes a long time due to construction and 

planning delays, changes in the regulation and/or policy (e.g., forcing coal-plants to close down) 

could harm security of electricity supply. This is why implementing significant policy changes 

requires a transitory period to allow for adjustment of the capacity-mix. For instance, there is an 

emerging debate in Germany about coal phase-out, but this cannot realistically be implemented 

before 2045 (Agora Energiewende, 2016). The potential of our framework to assess the 

consequences of a misalignment between capacity-mix and policy goals is nonetheless rather 

limited because metrics depend mostly on historical data, e.g., the SAIDI index for measuring 

reliability. When using the framework for prospective analysis, complementary analyses are thus 

needed, e.g., a model of the grid for assessing redispatch costs. It is worth noting again that our 

framework is a tool aimed at helping stakeholders, who have a sound understanding of the 

jurisdiction’s electricity sector, to evaluate the SoES.  

We are aware that, although the framework allows following the evolution of the different 

dimensions over time, its ability to provide insights about the potential impact of an intervention 

is limited because the dimensions are interrelated. An intervention might thus lead to unexpected 

and undesirable consequences, e.g., responding to environmental challenges typically leads to 

higher generation costs. A new question thus arises: how are the dimensions interrelated and 

what is the degree of interdependence among them. While several authors have pointed out the 

existence of interdependencies among dimensions, they do not represent these explicitly, nor do 

they assess their importance. In the paper “Interdependencies in security of electricity supply” 

(work in progress), co-authored with professors Erik R. Larsen and Ann van Ackere, we intend 
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not only to identify the interdependencies and assess the strength and importance of each, but 

also to provide a general framework to interpret such interdependencies. 

3.4. Interdependencies in SoES 

Understanding these interdependencies is important because a system's view of the problem is 

necessary to understand the system’s behaviour and prevent potential (undesirable) side-effects of 

any action and because, due to limited resources, authorities must often rely on incremental 

measures to improve SoES. 

3.4.1. Quantifying interdependencies 

To analyse these interdependencies, we use Cross Impact Analysis (CIA), a method developed to 

understand the structure underlying a set of variables. The method explicitly establishes the 

relationships among relevant factors and has been applied to analyse socio-economic problems, 

such as the evaluation of global-warming mitigation options (Hayashi et al., 2006). CIA consists 

of three steps. The first step is to establish, for each factor, how strong an effect it has, if any, on 

each of the other factors. This is done by using a simple square matrix with one line and one 

column for each factor. The strength of the impact is expressed using a simple numerical scale, 

usually ranging from 0 (no impact) to a maximum of 2 or 3 (maximum impact). Starting from 

this matrix, we present two complementary ways of visualising the interactions between the 

dimensions. The first approach focuses on the role of each dimension in the system by 

categorizing them as a driver, connector, outcome or independent variable. The second one aims 

to provide a global view of the main influences, including the identification of possible 

feedbacks. Here the focus is generally restricted to the stronger links. 

Table 6 shows the cross-impact matrix of the full set of 18 dimensions and sub-dimensions 
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presented in Table 5, using a scale from 0 to 2. These are the result of several iterations between 

the co-authors of this working paper, Prof. van Ackere and Prof. Larsen, and me. Each of us has 

developed the matrix independently and then we have discussed the one-to-one relationships and 

the most appropriate impact value.  

The values given in the matrix are an illustrative example of an electricity system; they are 

country- and system-specific. The sums of the rows and columns indicate respectively to what 

extend a dimension influences (row totals) and is influenced by (column totals) the other 

dimensions. Each dimension is thus characterised by two values, which are used to create a 

scatter plot (Figure 8). Next, we calculate the average of the row and column totals to subdivide 

the plot into four quadrants, which corresponds to the dimensions categorised as independent, 

driver, connector or outcome. 

We acknowledge that using ordinal scales is not only subjective, but also constraints the data 

treatment, i.e., ordinal are not meant to be summed. Summing them, as we do, implies two major 

assumptions: i) the distance between the scales is the same, i.e., the distance between maximum 

impact and medium impact equals the distance between medium impact and no impact; and ii) 

the impact of scoring the minimum or maximum values, is the same for each dimensions,. i.e., 

the impact of generation adequacy on reliability (maximum) equals the impact of socio-cultural 

factors on generation adequacy (maximum). The first assumption is appropriate given the 

description of the categories (no, medium and maximum impact). We thus expect that the 

distance between consecutive categories is inferred in the same way by all readers. The second 

assumption is less straightforward. Given the very different nature, impact horizon and units of 

metrics, the hypothesis that the maximum impacts among dimensions are comparable is arguable. 

An alternative to deal with this problem would be to use weights or different scales for each 

dimension. However, this is a complex task given the differences among dimensions and the 
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difficulty in measuring the impact in a single ‘unit’, i.e., measuring the impact in terms of to what 

extent security of supply is affected. Even if this were possible, it would add more subjectivity to 

the analysis. We are thus aware of this limitation in our work, and this should be addressed in 

future research. However, given that we do not attempt to categorize the dimensions, nor to 

estimate impact probabilities, we think that this approach is acceptable for providing insights into 

the role of each dimension, i.e., to what extent each dimension is influenced by and influences the 

others. The overall aim is to provide a comprehensive view of how the dimensions of SoES are 

interrelated, rather than to quantify the impact of each one on the system. 
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Table 6. Illustrative full-scale cross-impact matrix. 
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Generation adequacy   2 2 0 0 0 0 0 1 2 2 0 0 2 0 0 0 0 11 

Resilience 0   2 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 4 

Reliability 0 0   0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 3 

Supply flexibility  0 1 2   0 0 0 0 0 1 0 0 0 0 0 0 0 0 4 

Grid capacity adequacy 0 2 2 0   1 0 0 1 0 2 1 0 1 1 0 0 0 11 

Grid ageing 0 1 1 0 1   0 0 0 0 1 0 0 0 0 0 0 0 4 

Demand efficiency and conservation 2 1 0 0 2 0   0 0 1 1 2 1 1 0 0 0 0 11 

Demand flexibility 1 1 1 0 2 0 0   1 1 1 2 0 0 0 0 0 0 10 

Regulatory performance 1 1 1 1 1 0 0 0   2 2 1 1 1 0 0 0 0 12 

Economic sustainability - supplier profitability 2 1 0 0 0 0 0 0 2   1 0 0 0 0 0 0 0 6 

Economic sustainability - affordability 0 0 0 0 0 0 1 1 0 0   0 0 0 0 1 0 0 3 

Environmental sustainability 0 0 0 1 0 0 0 0 1 1 1   1 1 0 2 0 0 8 

Fossil fuel dependency 0 2 1 1 0 0 0 0 0 0 0 2   1 1 0 0 0 8 

Geopolitics - Import dependency 1 1 1 0 0 0 0 0 1 2 0 0 0   2 0 0 0 8 

Geopolitics - Vulnerability 0 0 1 0 0 0 0 0 0 0 1 0 0 0   0 0 0 2 

Socio-cultural factors 2 1 0 0 2 0 1 2 1 0 1 2 2 1 0   0 1 16 

Terrorism 1 0 2 0 2 0 0 0 0 1 1 1 0 0 0 1   0 9 

Access 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0   4 

  12 14 16 3 11 1 2 3 11 11 14 11 5 9 4 6 0 1   
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3.4.2. What do the interdependencies tell us? 

The scatter plot, which visualises the aggregate role of each dimension, is shown in Figure 8. 

The upper left quadrant contains the drivers, which are dimensions that significantly influence 

other dimensions but are themselves fairly independent of the other dimensions, e.g., demand 

efficiency and conservation, demand flexibility and fossil-fuel dependency. Actions targeting 

these dimensions are potentially the more effective ones a regulator can take, as the 

consequences will gradually ripple through the system. 

The upper right quadrant contains the connectors, which are the dimensions that are both 

influenced by, and have an influence on, other dimensions, e.g., grid capacity adequacy and 

generation adequacy. The regulator can influence these via incentives to expand or dismantle 

assets (regulatory performance), or by encouraging demand efficiency and conservation 

measures, in order to improve affordability and reliability (outcomes).  

The dimensions in the lower right quadrant are influenced by other dimensions, but have 

limited knock-on effects. They are the outcome of choices made for the other dimensions, i.e., 

a type of dependent variables. Consider for instance reliability, which is determined among 

others by the choices made w.r.t. generation and grid capacity adequacy, and supply 

flexibility, but has very limited influence on any other dimension. Finally, in the lower left 

quadrant we find the independent dimensions, which have few connections to the other 

dimensions in the electricity system. These dimensions (e.g., grid ageing) are neither directly 

influenced by other dimensions, nor do they exert a strong impact on them.  
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Figure 8. Scatter plot. 

The influence diagram capturing the strongest links of Table 6 (values of 2) is shown in 

Figure 9. The middle panel includes the more technical aspects, i.e., those related to the 

electricity supply and transportation. For instance, Grid capacity adequacy is a key connector. 

Demand drives the need for grid capacity, while socio-cultural factors can be a major barrier 

to increasing this capacity, e.g., the lengthy delays in building the new north-south 

transmission lines in Germany (Steinbach, 2013). As in any market, electricity wholesale 

prices typically reflect scarcity of resources (Stoft, 2002). Low generation adequacy drives 

prices up, which threatens affordability, particularly for unregulated consumers and industrial 

consumers, and improves supplier profitability. This encourages generators to invest, 

increasing generation adequacy. The inherent delays in this process are the cause of the over- 

and under-investment cycles that characterise many electricity markets (Arango and Larsen, 

2011; Bunn and Larsen, 1992). Insufficient generation adequacy will worsen import 

dependency within the limits of the available cross-border transmission capacity. The role of 
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neighbouring countries will become more central in increasingly interconnected electricity 

markets. High import dependency increases jurisdictions’ geopolitic vulnerability, as they do 

not have control over the jurisdictions from which they import, and negatively affects the 

profitability of the national suppliers.  

 

Figure 9. Influence diagram  

The right panel focuses on the customer-side and the environment. Demand flexibility and 

demand efficiency and conservation influence environmental sustainability through their 

impact on peak demand and total demand. Socio-cultural factors and environmental 

sustainability interact, as people’s attitude can affect the environmental targets setting and 

achievement, while a highly polluted environment increases people's awareness of the 

importance of environmental sustainability.  

The left panel focuses on the government and external aspects. External factors such as 

terrorism influence technical aspects tightly related to the physical availability of electricity, 
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i.e., grid capacity adequacy and reliability. Dimensions on which the government exercises 

an important control are fossil fuel dependency and regulatory performance. The former not 

only threatens the environmental sustainability, but also renders the jurisdiction’s generation 

vulnerable to international market shocks (resilience). The latter impacts the economics of the 

system. When low supplier profitability endangers generation adequacy, the regulator may 

choose to intervene to encourage investments (regulatory performance). Such intervention 

can take the form of direct subsidies, as is often the case for renewables (Frondel et al., 2010), 

or of various forms of capacity mechanisms (Finon and Pignon, 2008).  

3.4.3. Implications 

The scatter-plot and the influences diagram allow having an overview of the system and help 

identifying towards which dimensions an intervention effect can spread with its potential 

consequences. More specifically, the analysis shows that socio-cultural factors, being the 

strongest driver, play a major role in electricity systems since they influence consumption 

habits, preferences for certain technologies and the NIMBY phenomenon. The latter is 

important for Switzerland since there is strong opposition towards wind energy and new 

power lines, despite a supporting governmental policy. In the current decarbonisation process 

of markets, decision-makers need to communicate clearly the need of low-carbon generation 

and insure that the population adheres to this objective. As the transition towards renewable 

might not be as fast as desired, alternatives actions are required. Significant progress could be 

achieved by decreasing consumption through demand efficiency and conservation measures 

and by load-shifting, leading to fewer emissions and reducing the need for generation and 

transmission capacity. Overall, this overview of the dimensions’ interdependencies provides a 

solid foundation for policymakers and regulators on which to base their decisions, the final 

step of the analysis. 
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4. CONCLUSION 

In this research we elaborate on the concept of security of supply in electricity markets and, in 

particular, on the long-term dynamics of SoES in Switzerland. In the first part of this research 

we propose a model for the Swiss electricity market, whose results show that in the absence 

of financial support, investments in generation capacity are not profitable. This and the 

nuclear phase-out lead to a significant drop in generation adequacy as well as an increase of 

prices, tariffs and import dependency in the long-term. Given the importance of hydropower 

and the recent huge investments in this technology, we focus on the long-term profitability of 

PSP as merchant players in the energy arbitrage business. Contrary to what is currently 

happening across European markets, within-day price differences increase in the long-term 

due to the changes in the Swiss generation-mix. However, PSP are not able to profit from 

those higher differences because of the lower availability of energy to pump. These results, 

however, only cover a certain number of the important elements of SoES, e.g., imports 

dependency and generation adequacy. Acknowledging the multidimensional nature of SoES, 

we elaborate on the dimensions necessary to evaluate this in the electricity sector. Based on 

certain dimensions used to evaluate the broad concept of energy security and on the current 

challenges of electricity systems, we propose a quantitative framework, i.e., a set of 

dimensions with its respective metrics.  

Our model allows understanding the Swiss electricity market in this period of major change 

and its results provide insight into the long-term consequences of the nuclear phase-out and 

the increasingly important role of NDRES on SoES. In particular, the nuclear phase-out 

appears to be the most critical decision for the Swiss electricity market, given the 

deterioration of generation adequacy and the resulting increased imports dependency. 

Following the rejection of the referendum to accelerate the nuclear phase-out, the future of 

this technology remains uncertain, and given the particularities of the Swiss political system, 
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a decision cannot be expected in the near future. The timing and transparency of this decision 

is critical for the implementation of alternatives to fill the nuclear power gap. Accoding to our 

results, the gap left by each plant decommissioning is mainly filled by imports. Current prices 

across European markets and medium-term expectations are nonetheless favourable for the 

Swiss market. This should also constitute an opportunity for the Swiss electricity market to 

improve its integration with neighbouring electricity markets, which could enhance the 

complementarity among countries. Interconnectedness is to be improved in terms of more 

transparent and integrated markets as well as higher cross-border capacity since, according to 

our model results, higher interconnection capacity would lead to lower prices, with 

dependency remaining unchanged. While the backup provided by imports would be important 

if the nuclear phase-out occurs, this should be considered as a transition period. It is essential 

for the government to provide a stable regulatory framework for generation investments, 

whatever the outcome of the referendum. The decisions focused on one specific technology 

are critical not only for this technology but also for others, since market expectations for all 

the firms in the market can change significantly due to, e.g., the support to a particular 

technology.  

The government, being aware of the need to promote alternative technologies if the nuclear 

phase-out occurs, should focus particularly on how to improve the economic conditions of 

hydro-storage. Because of its energy storage ability, this technology helps limiting imports 

dependency, even if cross-border capacity increases. However, the current price dynamics and 

the future decrease in arbitrage opportunities threaten its profitability in the long-term. 

Although it is uncertain how the lack of profitability would affect hydro-storage plant 

operation, there is a risk of shortage that should not be underestimated. Further research 

should focus on mechanisms aimed at supporting this technology. Given the limited impact of 

premiums on energy arbitrage, mechanisms should reward the operational flexibility provided 
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by this technology in terms of balance in the short-term and flexible allocation in the day-

ahead market. This also highlights the need for further research on climate change impact on 

water stream flows in Switzerland.  

These concluding remarks are based on a critical scenario for Switzerland: completion of the 

nuclear phase-out. However, the scenario with nuclear power is not very promising under 

expected demand growth conditions. Demand thus plays an important role when ensuring 

electricity supply in the long-term. However, the model limitations do not allow capturing 

more than the aggregate demand behaviour. Furthermore, customers play an essential role in 

current electricity systems, not only because of their behaviour as consumers but because of 

their preferences for certain technologies. These elements could have a significant impact on 

the SoES in Switzerland. Likewise, other elements of paramount importance, e.g., the very 

short-term balance and congestion of the power lines, are not captured by our model nor by 

comparable long-term policy models found in the literature. These aspects affect not only the 

Swiss electricity market, but the entire electricity sector.  

To fill that gap, the dimensions included in our framework cover all the aspects needed to 

evaluate security of supply in the electricity sector. This framework highlights the 

multidimensional nature of SoES, which makes it impossible to come up with a single 

indicator to assess the global situation of SoES. Differentiating these dimensions is important 

when formulating policies. However, they cannot be analysed in isolation as they are strongly 

interrelated. This highlights the care needed when implementing policies so as to avoid 

unintended effects.  

The metrics does not only allow evaluating quantitatively each dimension; they also provide 

insights about the impact of one dimension on the others as well as about the different time-

frames of benchmarks that decision-makers should use when implementing this framework. 
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For instance, while low supply flexibility metric could have an impact in the short-term, a low 

energy margin (generation adequacy metric) is likely to have an impact in the longer-term. 

Likewise, the metrics provide insight on when the policies will have an effect.  

The contribution of this framework to the energy security field is important because, among 

the energy sectors, electricity is the one currently facing the stronger challenges. This 

framework thus provides a tool expected to facilitate the evaluation of electricity sectors by 

including dimensions that respond to current evolution, e.g., the more active role of demand, 

and current threats, e.g., social opposition to certain technologies. The value of such a 

framework relies on its flexibility and its comprehensiveness. This framework can be adapted 

to any electricity system as this includes all the aspects affecting the electricity sector. Its 

usefulness and adaptativeness is also enhanced by the quantification of all metrics. This 

allows a more transparent and objective evaluation of those dimensions that are normally 

evaluated by qualitative assessments.  

To conclude, this research highlights the complexity of electricity systems and the need to 

resort to a different kind of approaches when aiming to understand electricity market 

dynamics under the current changes, and evaluating SoES in a comprehensive way. At the 

same time, there is a complementarity between a general framework and a long-term 

simulation model. They consider different time-frames and quantitative tools that allow not 

only to provide a clear picture of the current situation, but also to understand the potential 

effects of different policies. At the same time, simulation models could help understanding 

the current situation, e.g., to identify if a policy has not had the desirable effect or if it has not 

yet had the time to deploy its full effect. Alternatively, simulation models could be used to 

feed the framework with data that could be used to perform prospective SoES evaluations. 

This complementarity is enhanced if there is a continuous and simultaneous utilisation of both 

approaches. However, the resulting analysis is only useful if governments provide transparent 
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information and a clear and stable regulatory framework that enable making valid assessments 

about the current state of a certain electricity system and its expected evaluation. 
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APPENDIX A: MODEL DOCUMENTATION 

In this Appendix the model used in Paper_SwissMarket and the Paper_PSP is explained in 

detail. In Appendix A.1 the model is described briefly, in Appendix A.2 we present the model 

assumptions and parameters, and finally in Appendix A.3 all the model equations are 

presented. 

A.1. Model description 

Figure A.1 presents the description of simulation of the investments. We distinguish NDRES 

from other technologies; the investment dynamics are different since the former are typically 

subsidised. When deciding to expand their generation capacity, investors compute the market 

clearing price with the expected capacity (installed plus under construction) in order to 

calculate their profitability. The higher the NDRES expected supply, the lower the residual 

load, making the other technologies’ expected supply lower. The lower the expected residual 

load, the lower the prices. The other technologies’ expected supply is also affected by the 

price and availability of imports. If prices are lower than other technologies’ marginal costs, 

imports will increase to the detriment of other technologies’ expected supply. If the expected 

supply decreases, the expected LCOE increases, which leads to a lower expected profitability. 

Low profitability discourages new investments. However, if a technology is subsidised by 

FiTs, which is currently the case of NDRES in Switzerland, investments only depend on the 

availability of FiTs. If they are not subsidised or they are encouraged by market-based 

mechanisms, e.g., market premiums, they become vulnerable to market prices. In this case 

(dotted arrows), high prices increase profitability, which triggers new investments. The logic 

for computing the market clearing explained above is the same for the “current” market 

clearance, but only the installed capacity is considered.  
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Figure A.1. Stock and flow diagram of investments simulation. 

A.2. Data and assumptions 

The parameters for each technology are presented in Table A.1. For calculating the specific 

potential for hydro-storage (HS) and run-of-river (RR), we divide the estimated potential of 4 

TWh (SFOE, 2012) proportional to the installed capacity (72% of HS). Since the expansion 

potential estimated by AES (2012) is expressed in terms of annual production under current 

conditions, we compute the current expansion potential in MW using the number of hours of 

production at full load. The marginal costs used for clearing the market are calculated by 

aggregating the fuel costs, the emission costs and other marginal costs. The cost of emissions 

is calculated using a CO2 price forecast (see Figure A.2). The marginal costs, the fixed costs 

and the capital costs are used to calculate the LCOE when computing the expected 

profitability of generation capacity expansions.  
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Table A.1. Assumed parameters per technology. 

 HS RR NUC GAS PV WI TH 

Initial conditions 

Capacity (MW) 9,920
a
 3,853

 a
 3,278

b
 89

c
 755

d
 60

d
 760

c
 

Technology characteristics 

Construction time (years)
e
 4 3 10 2.5 1.5 1.5 3 

Lifespan (years)
f
 80 80 50 30 20 20 20 

Max Size of investment per period (MW)  400 100 200 600 200 100 200 

Expansion potential 

Potential (TWh) 3 
g
 1

 g
 -- 19 

h
 18 

h
 4 

h
 5 

h
 

Hours of production at full load
 h
 2,200 4,400 8,000 6,000 950 1,800 3,750 

Potential (MW) 1,310 254 -- 3,167 18,947 2,222 1,333 

Costs 

Capital costs 2015 (CHF/kW) 
i
 4,750 5,300 4,620 1,015 3,300 2,100 2,500 

Capital costs 2020 (CHF/kW) 
i
 4,750 5,300 4,620 1,015 2,600 2,000 2,500 

Capital costs 2025 (CHF/kW) 
i
 4,750 5,300 4,620 1,015 2,300 1,900 2,500 

Capital costs 2035 (CHF/kW) 
i
 4,750 5,300 4,620 1,015 2,000 1,860 2,500 

Capital costs 2050 (CHF/kW) 
i
 4,750 5,300 4,620 1,015 1,500 1,770 2,500 
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  HS RR NUC GAS PV WI TH 

Required return 
i
 8% 8% 10% 10% 12% 11% 9% 

Annual fixed costs (CHF/kW/yr) 
i
 24 53 89 42 23 38 25 

Fuel cost (CHF/MWh) 
i
 -- -- -- 30 -- -- 60 

Other variable costs (CHF/MWh) 
i
 11 11 9* 3 0 0 25 

Heat revenue (CHF/MWh) 
i
 -- -- -- -- -- -- 90 

Emissions (kgCO2/MWh)
 h
 15 15 20 400 80 24 330 

a
 SFOE (2014a)

 

b
 SFOE (2014b)

 

c
 SFOE (2015)

 

d
 SFOE (2014c)

 

e
 IEA (2012)

 

f
 Kannan and Turton (2012)

 

g
 SFOE (2012)

 

h
 AES (2012)

 

i
 Poyry (2012)

 

*
The nuclear power variable cost includes the fuel cost 
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Figure A.2. Forecast of CO2 price (data from Poyry (2012)). 

Additional assumptions, parameters and initial conditions are presented in Table A.2. 

Table A.2. Additional parameters. 

Market clearing 

Scarcity price (CHF/MW) 500 

VOLL (CHF/MW) 3,000 

LTI price (CHF/MW) 35 

Monetary exchange 

CHF/Euro  1.32 

CHF/USD  1.10 

PSP 

Pumping capacity (MW) 
a
  1,560 

Generation capacity PSP (MW) 
a
 1,977 

Efficiency pumping 
b
 80% 

Others 

Initial fill ratio 
c
 63% 
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Losses 
c
 8% 

Share of households 
b
 30% 

a
 SFOE (2014a)

 

b
 SFOE (2014b) 

c
 SFOE (2016c) 

 

A.2.1.  Demand 

Our objective is to estimate a demand pattern for each representative day. Using final 

consumption (without losses, self-generation nor pumping) from 2013 (data from Swissgrid 

(2015b)), we compute, for each season, the average consumption for each of the 24 hours of a 

the day. We then take the maximum of these 96 (24*4) values (peak average demand). Next 

we express each of the 96 values as a fraction of this peak average demand. We apply the 

same procedure to the data from the years 2009 to 2012 to verify that there has not been a 

significant change in demand patterns. Finally, for each season we calculate the average 

factors of the 24 hours with the 2009-2013 data to derive the demand patterns used in our 

model. We use the maximum load of 2013 (8,307 MW) to build the hourly consumption 

curves per season (see Figure A.3). This value does not include transmission losses or 

pumping consumption. Energy losses are estimated to be 8% of final consumption (data from 

the SFOE (2016c)). 
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Figure A.3. Initial conditions of hourly consumption per season. 

Next, we estimate an hourly consumption for a representative day of each quarter for the 

simulation period (2014 to 2050). We use the annual demand forecast for the three scenarios 

from SFOE (2013), updating them using SFOE (2014b) data to calculate the demand growth 

factors with respect to the 2013 annual consumption. Hence, we multiply the volumes shown 

in Figure A.3 by the factors presented in Figure A.4. 

 

Figure A.4. Growth factor for different demand scenarios. 
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Total consumption is thus the sum of final consumption, losses and pumping. Since there is 

no data available concerning hourly pumping, we made the following hypotheses. From 

Swissgrid (2015b) data, we can only calculate the joint volume of generators’ self-

consumption and pumping consumption. Furthermore, the annual aggregate of these volumes 

is lower than the pumping presented in SFOE (2016c) reports of the years 2009-2013. We 

thus use the hourly volumes of self-consumption and pumping consumption as weights to 

allocate the pumping per season (assumed to be the average pumping of the 2009-2013 

period, see Table A.3) to the 24 hours. As shown in Figure A.5, the pattern derived in this 

way is realistic as the pumping is concentrated on the off-peak hours. Recall that this data is 

only used in the Paper_SwissMarket, since pumping is computed endogenously in the 

Paper_PSP. 

Table A.3. Assumed pumping per season in GWh (average of historical data from the 2009-2013 period). 

Original data from SFOE (2016c). 

Winter Spring Summer Autumn Total 

376 706 830 493 2,405 

 

 

Figure A.5. Estimated for exogenous pumping used in Paper_SwissMarket for each representative day. 
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A.2.2. Availability factors 

Availability factors vary according to the technology. For CCGT and conventional thermal 

we assume annual availability factors of respectively 91% (IEA-ETSAP, 2010) and 51% 

(Kannan and Turton, 2012). We use historical production from the 2003-2013 (data from 

SFOE (2016c)) period to estimate the seasonal availability factors for nuclear power (see 

Table A.4). 

Given the unavailability of detailed information for Switzerland, we use data from Germany 

to estimate the PV and wind availability factors. To estimate them we use hourly production 

curves per month and the installed capacity in 2012 in Germany (data from Fraunhoffer ISE 

(2013)). The annual average of these factors (18% for wind and 11% for PV) are similar to 

those presented by Kannan and Turton (2012) for Switzerland. On the one hand, as there is no 

clear hourly pattern for wind energy, we only assume seasonal availability factors (see Table 

A.4). On the other hand, hourly availability factors are estimated for PV (see Figure A.6). 

Table A.4. Seasonal availability factors for nuclear and wind energy. 

Technology Winter Spring Summer Autumn 

Nuclear 99% 84% 75% 100% 

Wind 24% 15% 13% 21% 
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Figure A.6. Hourly availability factor per season of PV. 

For calculating run-of-river availability, we assume that the water inflows of these plants 

equal the average production of this technology between 2009 and 2013 (data from SFOE 

(2016c), see Table A.5). We then assume that water availability is distributed evenly across 

the hours of the day.  

Since reservoirs allow seasonal storage, hydro-storage availability is estimated differently. 

Using data from SFOE (2016c), we estimate seasonal water inflows as follows: 

𝐼𝑛𝑓𝑙𝑜𝑤𝑡 = 𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝐿𝑒𝑣𝑒𝑙𝑡 − 𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝐿𝑒𝑣𝑒𝑙𝑡−1 + 𝐻𝑆𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡

− 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑃𝑆𝑃𝑡 ∗ 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑃𝑆𝑃 
(1) 

We estimate water inflow as the average of the historical water inflows between 2009 and 

2013 for each season (see Table A.5). The estimation of hourly availability factors for HS is 

explained in Appendix A.3. 
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Table A.5. Seasonal availability for hydropower (GWh). 

Technology Winter Spring Summer Autumn 

Run-of-river 2,505 4,949 5,458 3,095 

Hydro-storage 906 7,516 8,443 2,304 

 

A.2.3. Exports  

The  neighbouring countries’ willingness to pay for exports from Switzerland is assumed to 

be the average between hourly median prices of 2012 and 2013 (original data of German and 

French prices from EPEX SPOT (2016) and Italian prices from GME (2014)) (see Figure 

A.7). 

   

Figure A.7. Willingness to pay of (a) France, (b) Germany and (c) Italy for exports from Switzerland. 

Likewise, demand for exports is assumed to be the median of hourly net transfer capacity 

(NTC) (data from Swissgrid (2016e)) between Switzerland and its neighbouring countries
5
 in 

                                                           
5
 NTC between Switzerland and Germany includes that between Switzerland and Austria. 
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2013. NTC with France and with Germany remained constant respectively at 1,200 MW and 

5,200 MW during the entire year. Figure A.8 shows the assumed demand from Italy. 

 

Figure A.8. Italy’s demand for exports from Switzerland. 

A.2.4. Imports  

There are two types of imports: long-term contracts and spot imports. To simulate imports 

resulting from the former, we use data about debit rights on French nuclear plants from the 

AES (2012) (see Figure A.9). 
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Figure A.9. Debit rights from French nuclear plants. 

According to AES (2012), these plants are available on average 90% of the time. Due to the 

unavailability of more detailed data, we use the model to infer the seasonal availability factors 

during the model calibration process (see Table A.6). Availability of nuclear plants is lower in 

spring/summer because maintenance is usually done in this period. 

Table A.6. Seasonal availability factors of long-term import contracts. 

Winter Spring Summer Autumn 

100% 65% 90% 100% 

 

For simulating imports, we use the 2013 NTC values for exports from France, Germany
6
 and 

Italy to Switzerland (see Figure A.10). We aggregate the NTC of France and Germany 

because, due to the large-scale exchange between Germany and France (prices tend to 

converge), it is difficult to identify the real origin of certain imports. 

                                                           
6
 NTC between Germany and Switzerland includes that between Austria and Switzerland. 
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Figure A.10. Spot imports availability from (a) France/Germany and (b) Italy to Switzerland. 

However, since the NTC comprises the entire availability of imports capacity, we subtract the 

available long-term imports from the France/Germany NTC. For instance, the actual 

availability of spot exports from those countries to Switzerland for the winter 2014 between 1 

and 2 a.m. is 4700-3466*100% = 1234 MWh. The NTC from Italy to Switzerland is 

considered as the spot imports availability from this country.  

We assume import prices are the same as the export prices because the maximum price that 

neighbouring countries are willing to pay for imports should equals the marginal cost at which 

they can produce. Since spot imports from France and Germany are aggregated, we estimate a 

single price for simulating their bid price in the Swiss market. Prices from both countries are 

weighted by the average share of imports from both countries between 2012 and 2013 (data 

from Swissgrid (2015b)) (see Figure A.11).  
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Figure A.11. Average share of German imports in aggregated imports from Germany and France. 

A.3. Model equations  

In this Appendix we present the detailed formulation of the model used in 

Paper_SwissMarket and Paper_PSP. The Appendix A.3.1 to A.3.3 present a more detailed 

version of the model formulation used in the Paper_SwissMarket and presented in its 

appendix. We present it again to help the reader understanding the Appendix A.3.4 and A.3.5, 

in which we explain the modifications done to the model in order to capture better the 

hydropower plants’ behaviour for the Paper_PSP. The list of the variables used is presented 

in Table A.7. 
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Table A.7. Model variables and sub-indexes. 

Sub-indexes 

c Countries to where electricity is exported (France, Germany and Italy) 

e Possible capacity investments sizes (1,… 10), with 1 being the smallest 

and 10 the largest 

h Hour of the day (1,… 24) 

j Producers: these include the different technologies (HS, RR, NUC, 

CCGT, PV, WI, TH) and imports (long term import contracts [LTI] 

and balancing imports [BI]) 

m1 Possible alternatives (1, …5) of seasonal volumes of water to be 

allocated by HS  

r1, r2 Possible patterns (1, …10) of hourly bids for HS. Note that we require 

two indices as we will consider the current and the next season.  

s Season (Winter [s=0], Spring [s=1], Summer [s=2], Autumn [s=3]) 

t, t1 Time (0,… 147) [quarters]. Note that we require two indices as we will 

consider estimations during the current season (t) about future seasons 

(t1). 

T, n Technology (Hydro-storage [HS], run-of-river [RR], nuclear [NUC], 

Combined cycle gas turbine [CCGT], photovoltaic [PV], wind energy 

[WI], other thermal [TH]). Note that we require two indices as we will 

consider estimations done by one technology (T) about the future 

capacity of others (n). 

w1, w2 Possible patterns (1, …10) of hourly reservation prices at which HS 

bids. Note that we require two indices as we will consider the current 

and the next season. 

Parameters 

EPc,h Maximum price paid by each importing neighbouring country c during 

hour h (CHF/MWh) 

LT Lifespan of technology T (quarters) 

RLaves Historical average filling ratio of the water reservoir at the end of 

season s (%) 

RLmaxs Historical maximum filling ratio of the water reservoir at the end of 

season s (%) 

RLmins Historical minimum filling ratio of the water reservoir at the end of 

season s (%) 
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α Pumping efficiency (80%) 

Variables  

AT,h,t Availability factor of technology T during hour h (%) 

𝐴𝑐𝑡(𝐵) Generation that PSP can allocate when bidding at a price B (MWh) 

𝐴𝐹𝐻𝑆,𝑡,𝑟1
𝑡1  Pattern r1 of HS hourly bids in t1, where t1=t,t+1 (dimensionless) 

𝐴𝐹𝑜𝑓𝑓𝑡,ℎ
𝑡1 Hourly bid pattern assuming HS focuses on off-peak hours in t1, where 

t1=t,t+1 (dimensionless) 

𝐴𝐹𝑝𝑒𝑎𝑘𝑡,ℎ
𝑡1  Hourly bid pattern assuming HS focuses on peak hours in t1, where 

t1=t,t+1 (dimensionless) 

CKT,t Construction start of capacity of technology T (MW/quarter) 

ConsDT Construction delay of technology T (quarters) 

Dh,t Hourly national demand (MWh) 

DEc,h,t Demand for imports from Switzerland by country c during hour h 

(MWh) 

𝐷𝑚𝑎𝑥𝑡,ℎ Maximum demand in hour h (MWh) 

En,e,t Capacity expansion of technology n assuming a capacity investment of 

size e (MW) 

EKT,t New capacity of technology T coming online (MW/quarter) 

ELF
T

e,t Expected load factor of technology T assuming a capacity investment 

of size e (MWh/MW) 

ESj,c,h,t Supply from producer j exported to country c during hour h (MWh) 

FCT,t Fixed annual costs of technology T (CHF/MW) 

𝐹𝐷𝑡 Dispatchability factor used by HS (dimensionless) 

FKT,t Future capacity of technology T (in t+20 [5 years]) 

FKE
T

n,e,t Forecast of future installed capacity (in t+20 [5 years]) of technology n 

made by technology T, assuming a capacity investment size e (MW) 

FRLt Forecasted reservoir level before production (%) 

It Water inflow to reservoirs (MWh/quarter) 

KT,t Installed capacity of technology T (MW) 

𝐾𝑡
𝑃𝑈 Pumping capacity of PSP (MW) 

KCT,t Annualised capital costs of technology T (CHF/MW) 
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LCOE
T

e,t Levelised cost of electricity expected by technology T, assuming a 

capacity investment of size e (CHF/MWh) 

MCj,h,t Marginal costs of producer j during hour h, i.e., price at which each 

producer bids in the day-ahead auction (CHF/MWh) 

𝑀𝐶𝐻𝑆,ℎ,𝑡,𝑤1
𝑡1  Pattern w1 of HS reservation price at which to bid during hour h in t1, 

where t1=t,t+1 (CHF/MWh) 

𝑁𝑇𝐶ℎ,𝑡 Net transfer capacity for imports during hour h (MW) 

OKT,t Obsolescence of capacity of technology T (MW/quarter) 

OK
*

T,t Obsolete capacity of technology T over the next 5 years (MW) 

OldKT,t Capacity of technology T that was installed before 2013 and remains 

available (MW) 

Pt Average weighted price (CHF/MWh) 

Ph,t Hourly price (CHF/MWh) 

P
T

e,t Expected price to be received by technology T assuming a capacity 

investment of size e (CHF/MWh) 

𝑃𝑡
𝑇 Average price received by a technology T (CHF/MWh) 

𝑃𝑡
𝑃𝑆𝑃 The maximum price that PSP is willing to pay for energy to pump 

(CHF/MWh) 

𝑃𝐹𝑡 Historical prices factors used by HS (dimensionless) 

𝑃𝑡,ℎ,𝑚1,𝑟1𝑤1
𝑡1  Price expected by HS during hour h, assuming a pattern r1 of 

generation bids, a pattern w1 of reservation prices and a volume m1 of 

available water during quarter t1, where t1=t,t+1 (MWh) 

Qj,t Total supply from producer j (MWh) 

Qj,h,t Total supply from producer j during hour h (MWh) 

𝑄𝐻𝑆,𝑡,ℎ,𝑚1,𝑟1𝑤1
𝑡1  HS supply during hour h, assuming a pattern r1 of generation bids, a 

pattern w1 of reservation prices and a volume m1 of available water 

during quarter t1, where t1=t,t+1 (MWh) 

Rt Reservoir capacity (MWh) 

𝑅𝑗,ℎ,𝑡 Energy bought by PSP at hour h from producer j (MWh) 

RLt Reservoir level (%) 

𝑅𝐿𝑡,𝑚1
𝑡1  Alternative m1 of the filling ratio at the end of t1, where t1=t,t+1 (%) 

Sj,t Available supply from producer j (MWh) 
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Sj,h,t Available supply from producer j during h (MWh) 

𝑆𝐻𝑆,𝑡,𝑚1
𝑡1  Volume m1 of water available to be allocated by HS in t1, where 

t1=t,t+1 (MWh) 

𝑆𝐻𝑆,𝑡,ℎ,𝑚1,𝑟1
𝑡1  Pattern r1 of HS generation to bid during hour h in period t1 (where 

t1=t,t+1), assuming a volume m1 of water available (MWh) 

𝑆𝑗,ℎ,𝑡
∗ (𝑃) Available volume for pumping during hour h from a producer j at a 

purchase price P (MWh) 

𝑆ℎ,𝑡
∗ (𝑃) Available volume for pumping during hour h at a purchase price P 

(MWh) 

SDj,h,t Supply dispatched from producer j during hour h in the Swiss market 

(MWh) 

𝑆𝑚𝑖𝑛𝐻𝑆,𝑡,ℎ
𝑡1  Minimum supply that HS has to generate during hour h in t1, where 

t1=t,t+1 (MWh) 

Spillt Water spillages (MWh/quarter) 

SRj,h,t Remaining available supply from producer j during hour h after 

national dispatch, i.e., supply available for exports (MWh) 

𝑆𝑈𝑗,ℎ,𝑡 Unallocated supply from a producer j during hour h (MWh) 

𝑈𝑐𝑡(𝑃) Available volume for pumping at a purchase price P (MWh) 

UKT,t Capacity under construction of technology T (MW) 

𝑉𝑡
𝑃𝑆𝑃 Energy available for PSP to generate (MWh) 

VCj,t Variable production costs of producers j (CHF/MWh) 

Wt Stock of water in the reservoir (MWh) 

W
T

e,t Binary variable indicating whether a capacity expansion of a size e by 

technology T is expected to be profitable (1) or not (0) 

X
T

e,t Expected profitability of technology T, assuming a capacity investment 

of size e (%) 

𝑋𝑗,ℎ,𝑡
∗ (𝐵) Volume that could be supplied by PSP bidding at a price B during hour 

h, replacing a producer j (MWh) 

𝑋ℎ,𝑡
∗ (𝐵) Volume that could be supplied by PSP bidding at a price B during hour 

h (MWh) 

𝑌𝑡
𝑃𝑆𝑃 Pumping consumption from PSP (MWh) 

𝑌ℎ,𝑡
𝑃𝑆𝑃 Pumping consumption from PSP during hour h (MWh) 
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𝑍𝑗,ℎ,𝑡 Energy bid by PSP during hour h aimed at replacing supply from 

producer j (MWh) 

 

A.3.1. Evolution of capacity 

Installed capacity KT,t of each technology increases as new capacity comes online (EKT,t) and 

decreases through obsolescence (OKT,t). 

𝜕𝐾𝑇,𝑡

𝜕𝑡
= 𝐸𝐾𝑇,𝑡 − 𝑂𝐾𝑇,𝑡 (2) 

Obsolesce is defined as the aggregated obsolescence of old projects and new projects as 

shown in Eq. (3). Old projects are those installed before 2013 that remain installed at time t 

(OldKT,t). This capacity becomes obsolete depending on its lifespan (LT). We do not use a 

decommission schedule for old projects as we do not have specific information about when 

each plant will be decommissioned. Obsolescence of old projects, OldKT,t is defined as  

𝜕𝑂𝑙𝑑𝐾𝑇,𝑡

𝜕𝑡
=

𝑂𝑙𝑑𝐾𝑇,𝑡−1

𝐿𝑇
 (3) 

New projects correspond to the capacity coming online between 2014 and 2050 (EKT,t). These 

become obsolete at the end of their lifespan.  

𝑂𝐾𝑇,𝑡 =
𝑂𝑙𝑑𝐾𝑇,𝑡

𝐿𝑇
+ 𝐸𝐾𝑇,𝑡−𝐿𝑇

 (4) 

We consider specific obsolescence conditions for hydropower and nuclear energy. We assume 

that hydro-storage and run-of-river capacity do not become obsolete but are refurbished to 

remain online without important losses of efficiency. We also assume that nuclear is 

decommissioned according to a fixed schedule which, for the BAU, is presented in Figure 

A.12.  
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Figure A.12. Assumed evolution of nuclear power installed capacity in BAU. 

Capacity under construction (UKT,t) increases by capacity starting construction (CKT,t) and 

decreases by the projects that start operation (EKT,t). 

𝜕𝑈𝐾𝑇,𝑡

𝜕𝑡
= 𝐶𝐾𝑇,𝑡 − 𝐸𝐾𝑇,𝑡 (5) 

New capacity results from the projects that started construction (CKT,t) and come online after 

a delay equivalent to the construction time, ConsDT, which is technology-dependent.  

𝐸𝐾𝑇,𝑡 = 𝐶𝐾𝑇,𝑡−𝐶𝑜𝑛𝑠𝐷𝑇
 (6) 

A.3.2. Market clearing 

To compute the day-ahead auction for each hour of a representative day of each quarter, 

available supply and bid prices from producers are needed. Supply from producers comes 

from generation by the different technologies T considered and from imports. The latter might 

be of two types: long-term contracts (LTI) and balancing imports (BI). The availability of 

imports from LTI is exogenous based on the estimations of AES (2012) as explained in 

Appendix A.2.4.  
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We thus estimate the availability of imports from balancing markets as the remaining 

available capacity from the cross-border capacity represented by the NTC, which is assumed 

to be 7,500 MW during the entire simulation.  

𝑆𝐵𝐼,ℎ,𝑡 = 𝑁𝑇𝐶ℎ,𝑡 −  𝑆𝐿𝑇𝐼,ℎ,𝑡 (7) 

The available supply from local technologies (ST,h,t) depends on the availability factor (AT,h,t) 

of each technology (recall Appendix A.2.2) during each hour h and on the installed capacity 

(KT,t).  

𝑆𝑇,ℎ,𝑡 = 𝐾𝑇,𝑡 × 𝐴𝑇,ℎ,𝑡 (8) 

Marginal costs of producers (MCj,h,t) do not depend on the hour of the day and equal their 

variable production costs (VCj,t), except for balancing imports (recall A.2.4) and hydro-

storage. In the specific case of long-term import contracts, which refer to the contracts with 

French nuclear plants, we assume a price (marginal cost) of 35 CHF/MWh. The marginal cost 

for hydro-storage equals the hydro-storage reservation price. 

MC𝑗,h,t = VC𝑗,t ∀𝑗 ≠ 𝐻𝑆, 𝐵𝐼 (9) 

Overall, modelling hydro-storage is slightly different than to other technologies, since 

availability depends on the reservoir level; the marginal cost reflects the water opportunity 

cost. This is modelled as a function of the forecasted maximum reservoir level (FRLt) as well 

as of the substitutes’ price, as presented in Figure A.13. The parameters R1, R2, R3 and R4 are 

estimated during model calibration. OHS equals the variable production costs of HS (VCHS,t), 

Vmax and Vmin are respectively the maximum and minimum prices of substitutes (CCGT, 

TH, LTI and BI), and Vsca is the scarcity price (assumed to be 500 CHF/MWh). The scarcity 

price was also estimated during model calibration. This way of modelling hydro-storage 

reservation prices is proposed by van Ackere and Ochoa (2010) and Ochoa and van Ackere 
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(2015), and allows modelling the strategic management of water reservoirs, which is crucial 

in countries highly dependent on hydro-storage.  

 

Figure A.13. Modelling of hydro-storage reservation prices. 

The variable FRLt captures the expected excess or shortage of water in a quarter. This is 

calculated in Eq. (10) considering the current amount of water in the reservoir (Wt), the water 

inflow It (inflow from natural stream flows and from pumping) and the reservoir capacity (Rt).  

𝐹𝑅𝐿𝑡 =
𝑊𝑡 + 𝐼𝑡

𝑅𝑡
 (10) 

Unlike other technologies in which one might consider that the primary resource is infinite, 

HS must choose when to produce. This implies that a unit of water not used is not necessarily 

an opportunity lost, i.e., water used today can alternatively be used tomorrow. Water has thus 

an opportunity cost, and allocation of water should depends on which season HS expects to 

have a higher revenue. To simulate this behaviour, we assume that the available amount of 

water for generating in period t depends on the simulated historical prices HS has received in 

season s and season s+1 (in which stored water could be available). We use the last two prices 

for each of these two seasons, e.g., in period 10 (summer), we take prices of periods 2 and 6 

(summer), and 3 and 6 (autumn), to calculate the price factor. We use this in the function 
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described in Figure A.14, to compute the dispatchability factor (FDt), i.e., the fraction of 

available water that can be allocated this period. The historical prices factor (PFt) is 

calculated in Eq. (11). This formulation ensures that if expected prices for the next period are 

higher than those for this period, HS is keen to store water from this period to the next one. 

Price expectations, as noted before, are based on historical prices received by HS (𝑃𝑡
𝐻𝑆). The 

parameters PF1 and FD1 are estimated through the model calibration at 1.2 and 0.55, 

respectively. This means that HS can never save more than 45% of available water in a period 

t for period t+1. 

 

Figure A.14. Modelling of hydro allocable water. 

𝑃𝐹𝑡 =
𝑃𝑡−3

𝐻𝑆 + 𝑃𝑡−7
𝐻𝑆

𝑃𝑡−4
𝐻𝑆 + 𝑃𝑡−8

𝐻𝑆  (11) 

The available water volume for each representative day of period t is calculated as follows: 

𝑆𝐻𝑆,𝑡
𝑡 =

𝐹𝐷𝑡 ∗ (𝑊𝑡 + 𝐼𝑡)

90
 (12) 

Hourly allocation of water, i.e., the available HS generation for each hour (SHS,h,t), is 

estimated using an allocation rule that depend on the demand and potential exports. 
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With the available generation from all producers we can now clear the market in order to find 

the dispatched volume of each producer and the resulting prices. Recall that we run our model 

from 2014 to 2050 with a quarterly step, i.e. 148 quarters. For each quarter we run the hourly 

dispatch of a representative day, i.e., we consider the representative hourly demand of each 

season. We thus assume that the 90 days of each quarter present the same pattern. The 

available supply of each producer (Sj,h,t) and their marginal costs (MCj,h,t) are used to build the 

supply curve for the hourly dispatch. We run a merit order dispatch according to producers’ 

marginal costs, which yields the quantity SDj,h,t dispatched by each producer. First we 

compute the local dispatch, i.e., supply from producers is dispatched to cover local demand 

Dh,t, which includes the consumption from PSP. We assume Dh,t is totally inelastic. Local 

dispatch is solved as a basic costs minimisation problem as follows: 

𝑚𝑖𝑛
𝑆𝐷𝑗,ℎ,𝑡

∑ 𝑀𝐶𝑗,ℎ,𝑡𝑆𝐷𝑗,ℎ,𝑡

𝑗

    ∀ ℎ, 𝑡 

Subject to 

𝑆𝐷𝑗,ℎ,𝑡 ≤ 𝑆𝑗,ℎ,𝑡 

𝐷ℎ,𝑡 = ∑ 𝑆𝐷𝑗,ℎ,𝑡

𝑗

 

(13) 

The remaining supply (𝑆𝑅𝑗,ℎ,𝑡) is then available for exports. It will be used only if the prices 

in the countries that import from Switzerland exceed the marginal costs of this remaining 

supply. 

𝑆𝑅𝑗,ℎ,𝑡 = 𝑆𝑗,ℎ,𝑡 − 𝑆𝐷𝑗,ℎ,𝑡 (14) 

Similar to the dispatch to cover national consumption, we compute a merit order dispatch for 

exports. However, unlike the national demand, which is inelastic, exports depend on the 

neighbouring countries’ demand for imports from Switzerland (DEc,h,t) and their willingness 
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to pay. The former is an exogenous variable and is estimated based on historical data between 

2009 and 2013. The latter equals the hourly prices in each country c (Italy, Germany and 

France), EPc,h,t. Exports from producers to each country (ESj,c,h,t) are calculated by solving a 

welfare maximisation problem, which allows calculating the clearing price Ph,t. 

𝑚𝑎𝑥
𝑃ℎ,𝑡,𝐸𝑆𝑗,𝑐,ℎ,𝑡

∑(𝐸𝑃𝑐,ℎ,𝑡 − 𝑃ℎ,𝑡) × 𝐸𝑆𝑗,𝑐,ℎ,𝑡

𝑇,𝑐

− (𝑃ℎ,𝑡 − 𝑀𝐶𝑗,ℎ,𝑡) × 𝐸𝑆𝑗,𝑐,ℎ,𝑡    ∀ ℎ, 𝑡 

Subject to 

∑ 𝐸𝑆𝑗,𝑐,ℎ,𝑡

𝑐

≤ 𝑆𝑅𝑗,ℎ,𝑡 

∑ 𝐸𝑆𝑗,𝑐,ℎ,𝑡

𝑗

≤ 𝐷𝐸𝑐,ℎ,𝑡 

(15) 

In the extreme case when the hourly supply (including imports) is lower than the national 

demand, the price would equal the VOLL, which is assumed to be 3,000 CHF/MWh. 

Then, the total quantity supplied (𝑄𝑗,𝑡) by each producer in a quarter is calculated as follows, 

assuming 90 days per quarter. 

𝑄𝑗,𝑡 = [∑(𝑆𝐷𝑗,ℎ,𝑡 + 𝐸𝑆𝑗,ℎ,𝑡)

ℎ

] × 90 (16) 

The stock of water in the reservoir varies from one quarter to another according to hydro-

storage production, the water inflow and the spillages (Spillt): 

𝜕𝑊𝑡

𝜕𝑡
= 𝐼𝑡 − 𝑄𝐻𝑆,𝑡 − 𝑆𝑝𝑖𝑙𝑙𝑡 (17) 

Spillages only occur if the stock of water at the end of the quarter exceeds the reservoir 

capacity. 
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𝑆𝑝𝑖𝑙𝑙𝑡 = 𝑀𝑎𝑥(0, 𝑅𝑡 + 𝐼𝑡 − 𝑄𝐻𝑆,𝑡) (18) 

The reservoir capacity (Rt) and the natural inflow evolve proportionally to the increase of 

hydro-storage generation capacity as presented in Eq. (19). Likewise, the amount of water 

pumped is adjusted by the increase of pumping capacity.  

𝑅𝑡 = 𝑅𝑡0

𝐾𝐻𝑆,𝑡

𝐾𝐻𝑆,𝑡0
 (19) 

A.3.3. Investments decisions 

To make investment decisions, each technology calculates its expected profits.  These depend 

on the future capacity and the resulting dispatch. Future capacity (FKn,t) equals all the 

capacity already commissioned (i.e., installed capacity (Kn,t) and capacity under construction 

(UKn,t)), minus capacity that will not be available in 5 years (the maximum time for a plant to 

come online) because of obsolescence (OK
*

n,t):  

𝐹𝐾𝑛,𝑡 = 𝐾𝑛,𝑡 + 𝑈𝐾𝑛,𝑡 − 𝑂𝐾𝑛,𝑡
∗  (20) 

Each technology T needs to calculate the future capacity of other technologies and its own 

future capacity under different capacity investment assumption, i.e., each technology T 

considers it is the only technology that expands. In other words, when evaluating their 

expected profitability, a technology T considers already planned expansion of others 

technologies but not further expansions.  This is a realistic assumption as each technology T 

has incomplete and imperfect information about the others, i.e., they know what is currently 

under construction but they cannot know the investment decisions of competitors in real time. 

Hence, the forecast of future installed capacity of technology n made by technology T, 

assuming a capacity investment size e (FKE
T

n,e,t), considers the capacity already 

commissioned (FKn,t) and the expansion being considered (En,e,t).  
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𝐹𝐾𝐸𝑛,𝑒,𝑡
𝑇 = {

𝐹𝐾𝑛,𝑡 + 𝐸𝑛,𝑒,𝑡   𝑖𝑓 𝑇 = 𝑛

𝐹𝐾𝑛,𝑡                  𝑖𝑓 𝑇 ≠ 𝑛
 (21) 

For each technology T we define a maximum quarterly capacity expansion (MaxCKT). Then, 

to calculate En,e,t we define 10 sizes, ranging from 10% to 100% of MaxCKT.  

𝐸𝑛,𝑒.𝑡 = 𝑒 (
𝑀𝑎𝑥𝐶𝐾𝑛

10
) (22) 

For instance, investments in CCGT vary between 60 and 600 MW. Considering more than 10 

expansion sizes could increase significantly the computing time without affecting results. 

Allowing for different size alternatives is important as, for instance, the minimum size of a 

CCGT plant is 60 MW. This allows us to include these technical constraints and capture the 

potential effects of the discrete nature of investments.  

For each of the expansion alternatives we compute the market clearing, in which future local 

demand should be satisfied, while future export demands depend on the residual supply. We 

thus use Eq. (9) to (15), but consider future expected installed capacity and imports 

availability. We assume that hydro-storage bids the same volumes and prices as in period t, 

i.e., the volumes and prices bid by HS at t are assumed to be the same in an hypothetical 

dispatch in t+20 (in 5 years). Assuming the current HS behaviour is a reasonable hypothesis 

given the uncertainty about future water availability and hydro-storage behaviour. When 

computing the market clearing, each technology T calculates the average price (P
T

e,t) it would 

receive if expanding by En,e,t.  

The 𝐿𝐶𝑂𝐸𝑒,𝑡
𝑇  is calculated in Eq. (23) by each technology T using its annualized capital costs 

(KCT,t), annual fixed costs (FCT,t), variable production costs (VCT,t) and resulting load factor 

(ELF
T

e,t) when expanding En,e,t. The latter is used to calculate the annualized capital costs and 

the annual fixed costs per unit of electricity expected to be produced.  
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𝐿𝐶𝑂𝐸𝑒,𝑡
𝑇 =

𝐾𝐶𝑇,𝑒,𝑡 + 𝐹𝐶𝑇,𝑡

𝐸𝐿𝐹𝑒,𝑡
𝑇 × 24 × 360

+ 𝑉𝐶𝑇,𝑡 

(24 × 360 are the number of hours in a year) 

(23) 

The resulting price is compared to the levelised cost (LCOE
T

e,t) in order to calculate the 

expected profitability. 

𝑋𝑒,𝑡
𝑇 =

𝑃𝑒,𝑡
𝑇

𝐿𝐶𝑂𝐸𝑒,𝑡
𝑇 − 1 (24) 

Finally, the largest profitable investment size is selected. 

𝐶𝐾𝑇,𝑡 = 𝑀𝑎𝑥(𝐸𝑇,𝑒.𝑡 × 𝑊𝑒,𝑡
𝑇 ), (25) 

where W
T

e,t is defined as: 

𝑊𝑒,𝑡
𝑇 = {

1,               𝑖𝑓 𝑋𝑒,𝑡
𝑇 > 0

0, 𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒
 (26) 

The model used in Paper_SwissMarket and described so far has several limitations. These 

are: 

a) The prices and exports are very sensitive to hydro-storage behaviour. The current 

reservoir modelling (Eq. (10) to (18)) allows a very limited control of reservation 

prices and the water available for generating in each period, i.e., the volume to store 

for the next period. This leads to some periods with excess production, which results 

in sudden price drops, and could affect the PSP operation simulations. A new 

approach for modelling conventional hydro-storage is explained in Appendix A.3.4. 

b) Pumping is exogenous. This does not allow assessing the long-term dynamics of 

energy arbitrage in Switzerland, which is the main goal of the Paper_PSP. Although 

results from Paper_SwissMarket indicate that prices and within-day price differences 
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increase in the long-term, the changes in the generation-mix make pumping dynamics 

highly uncertain. The algorithm used to simulate PSP operation is described in 

Appendix A.3.5 

c) Italy is not considered as a potential exporter to Switzerland. Although exports from 

this country to Switzerland have been negligible so far, given the very precarious 

situation of local capacity adequacy in the long-term (one of the main results of 

Paper_SwissMarket), imports from this country might gain in importance in the long-

term.  

A.3.4. Modelling conventional hydro-storage 

Unlike other producers, HS has limited volume of “fuel” (water), so they need to manage the 

reservoir and decide their generation among different hours. This is possible because of its 

flexibility. The water has an opportunity cost, i.e., the water not used at certain time can be 

used later. HS power plants thus need to decide how much water to store, how to bid and the 

price at which to bid in order to maximise their profits. Solving this problem implies a 

simultaneous maximization of HS profits and minimisation of costs when clearing the market, 

which is highly complex to solve given its non-linearity. This, together with the limitations of 

Vensim to carry out optimisation problems for each period leads us to follow a different 

approach in the Paper_PSP. 

Considering that we model one representative day per season, conventional hydro-storage 

plants need to take two decisions when bidding in the day-ahead market: 

 The available water to generate during the season, i.e., the desired filling ratio at the 

end of the season. 

 The bid volumes for each hour.  

 The price at which to bid these volumes each hour. 
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Further complexity is added to this decision given that there is seasonal water storage: the 

water inflows in spring and summer are higher than the aggregate production in those months, 

i.e., water is stored from one season to the next one. To simulate the HS bidding strategy, we 

assume five possible volumes of water available to be allocated during the current season, ten 

possible patterns of hourly bids and ten possible patterns of hourly bid prices. Since the 

decisions in a period t affect those in period t+1 and the possibility of inter-seasonal storage, 

these three decisions are simulated for the next period. The formulation presented in this 

Appendix thus replaces in the model the one presented in Eq. (10) to (12). 

The possible volumes of water available depend on the desired filling ratio at the end of the 

period. From historical data of the 1991-2013 period (SFOE, 2016c), we find the minimum 

and the maximum filling ratios for each season RLmins and RLmaxs (see Table A.8). Recall, 

s=mod(t,4).  

Table A.8. Minimum, average and maximum filling ratios of hydro-storage reservoirs at the end of each 

season, according to historical data from the 1991-2013 period (SFOE, 2016c) 

 Winter Spring Summer Autumn 

Minimum 10% 35% 75% 50% 

Average 19% 51% 89% 63% 

Maximum 33% 67% 98% 77% 

 

We use them to simulate five possible filling ratios at the end of the period t1, as follows.  

𝑅𝐿𝑡,𝑚1
𝑡1 = 𝑅𝐿𝑚𝑖𝑛𝑡 + (𝑚1 − 1)

𝑅𝐿𝑚𝑎𝑥𝑡−𝑅𝐿𝑚𝑖𝑛𝑡

𝑐𝑜𝑢𝑛𝑡(𝑚1)−1
, where 𝑡1 = 𝑡 (27) 

The volumes m1 of water available to be allocated during the representative day of t1 

(assuming seasons of 90 days) is calculated as follows: 



Security of Supply in the Electricity Sector: The Case of Switzerland 

132 

 

𝑆𝐻𝑆,𝑡,𝑚1
𝑡1 =

[𝑅𝑡−1𝑅𝐿𝑡−1+𝐼𝑡−𝑅𝑡𝑅𝐿𝑡,𝑚1
𝑡1 ]

90
, where 𝑡1 = 𝑡 (28) 

For estimating the hourly bids, we first estimate the minimum that HS should produce each 

hour (𝑆𝑚𝑖𝑛𝐻𝑆,𝑡,ℎ
𝑡 ) to insure the country does not have a shortage. 

𝑆𝑚𝑖𝑛𝐻𝑆,𝑡,ℎ
𝑡1 = 𝑚𝑖𝑛(𝐾𝐻𝑆,𝑡; 𝐷𝑡,ℎ − ∑ 𝑆𝑗,𝑡,ℎ𝑗≠𝐻𝑆 ), where 𝑡1 = 𝑡 (29) 

Then, using the maximum demand volumes, i.e., the aggregated local demand and the 

demand for exports, as weights (eq. (30)), we define how water is allocated to the 24 hours of 

the day by calculating the pattern r1 of HS hourly bids (𝐴𝐹𝐻𝑆,𝑡,ℎ,𝑟1
𝑡1 ), i.e., the fraction of 

𝑆𝐻𝑆,𝑡,𝑚1
𝑡1  to be produced each hour. We first calculate this fraction assuming HS focuses either 

on peak hours ( 𝐴𝐹𝑝𝑒𝑎𝑘𝑡,ℎ
𝑡1 ) or on off-peak hours (𝐴𝐹𝑜𝑓𝑓𝑡,ℎ

𝑡1 ). From these two extreme 

patterns, we compute each pattern r1 of hourly bids.  

𝐷𝑚𝑎𝑥𝑡,ℎ = 𝐷𝑡,ℎ + ∑ 𝐷𝐸𝑐.𝑡,ℎ

𝑐

 (30) 

𝐴𝐹𝑝𝑒𝑎𝑘𝑡,ℎ
𝑡1 =

𝐷𝑚𝑎𝑥𝑡,ℎ−𝑚𝑖𝑛(𝐷𝑚𝑎𝑥𝑡,ℎ)

∑ 𝐷𝑚𝑎𝑥𝑡,ℎ−𝑚𝑖𝑛(𝐷𝑚𝑎𝑥𝑡,ℎ)ℎ
 , where 𝑡1 = 𝑡 (31) 

𝐴𝐹𝑜𝑓𝑓𝑡,ℎ
𝑡1 =

𝑎𝑏𝑠(𝐷𝑚𝑎𝑥𝑡,ℎ−𝑚𝑎𝑥(𝐷𝑚𝑎𝑥𝑡,ℎ))

∑ 𝑎𝑏𝑠(𝐷𝑚𝑎𝑥𝑡,ℎ−𝑚𝑎𝑥(𝐷𝑚𝑎𝑥𝑡,ℎ))ℎ

 , where 𝑡1 = 𝑡 (32) 

𝐴𝐹𝐻𝑆,𝑡,ℎ,𝑟1
𝑡1 = 𝐴𝐹𝑝𝑒𝑎𝑘𝑡,ℎ

𝑡1 + (𝑟1 − 1)
𝑎𝑏𝑠(𝐴𝐹𝑝𝑒𝑎𝑘𝑡,ℎ

𝑡1 −𝐴𝐹𝑜𝑓𝑓𝑡,ℎ
𝑡1)

𝑐𝑜𝑢𝑛𝑡(𝑟1)−1
, where 𝑡1 = 𝑡 (33) 

Consequently the ten hourly bid curves are defined as: 
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𝑆𝐻𝑆,𝑡,ℎ,𝑚1,𝑟1
𝑡1 = 𝑆𝑚𝑖𝑛𝐻𝑆,𝑡,ℎ

𝑡1 + 𝐴𝐹𝐻𝑆,𝑡,ℎ,𝑟1
𝑡1 (𝑆𝐻𝑆,𝑡,𝑚1

𝑡1 − ∑ 𝑆𝑚𝑖𝑛𝐻𝑆,𝑡,ℎ
𝑡1

ℎ ), where 𝑡1 = 𝑡 (34) 

We follow a similar process for computing the each pattern w1 of hourly bid prices. The 

possible bid prices lie in-between the HS variable production cost and the maximum bid price 

of other producers. This implies that the HS bid price depends on substitutes’ bid prices.  

𝑀𝐶𝐻𝑆,ℎ,𝑡,𝑤1
𝑡1 = 𝑉𝐶𝐻𝑆,𝑡 + (𝑤1 − 1)

max𝑗≠𝐻𝑆(𝑀𝐶𝑗,ℎ,𝑡)−min𝑗≠𝐻𝑆(𝑀𝐶𝑗,ℎ,𝑡)

𝑐𝑜𝑢𝑛𝑡(𝑤1)−1
, where 𝑡1 = 𝑡 (35) 

Next, we compute the market clearings resulting for all the combinations (5*10*10=500) of 

HS bidding strategies. The market clearing includes the cost minimisation problem for 

satisfying local demand, and the welfare maximisation problem for satisfying exports demand 

described in equations (13) to (16).  

Since we assume that the HS bidding strategy for a period t is based on a two-period 

optimisation, all the possible patterns of hourly bids and bidding prices for this period and the 

next one are also computed in t (see Figure A.15). Given that the volume of water available in 

t1+1 depends on the reservoir filling ratio at the end of t1 (𝑅𝐿𝑡,𝑚1
𝑡1 ), assuming five possible 

filling ratios at the end of t1+1, would yield 25 pairs of volumes of water available for the 

periods t1 and t1+1. This approach has several problems. First, the computational time 

increases significantly. Second, this could lead to frontier problems: the resulting available 

volumes could be unrealisticly high, e.g., the reservoir could be emptied in t1+1 because the 

optimisation does not consider the time beyond t1+2 in which water is necessary for HS to 

operate. Since estimating the HS bidding strategy in t considering more than two periods is 

not realistic, we assume the reservoir filling ratio at the end of t1+1 (𝑅𝐿𝑡,𝑚1
𝑡1+1) equals the 

historical average filling ratio for that season ( 𝑅𝐿𝑎𝑣𝑒𝑡+1 ). This approach prevents the 

calculations to increase by a factor of 5 (the number of m1 indexes) and provides control over 



Security of Supply in the Electricity Sector: The Case of Switzerland 

134 

 

the available water in the long-term. Hence, at time t only five pairs of volumes of water 

available are estimated for the periods t1 and t1+1. The minimum, maximum and average 

filling ratios for each season were presented above in Table A.8. 

 

Figure A.15. Modelling the alternatives of water available in the next two periods. 

Assuming seasons of 90 days, the volume m1 of water available for each representative day of 

t1+1 (𝑆𝐻𝑆,𝑡,𝑚1
𝑡1+1 ) is calculated at t as follows: 

𝑆𝐻𝑆,𝑡,𝑚1
𝑡1+1 =

[𝑅𝑡𝑅𝐿𝑡,𝑚1
𝑡1 +𝐼𝑡+1−𝑅𝑡+1𝑅𝐿𝑎𝑣𝑒𝑡+1]

90
, where 𝑡1 = 𝑡 (36) 

For each of these volumes we next calculate each pattern r2 of hourly bids (𝑆𝐻𝑆,𝑡,ℎ,𝑚1,𝑟2
𝑡1+1 ), and 

each pattern w2 of bid prices (𝑀𝐶𝐻𝑆,ℎ,𝑡,𝑤2
𝑡1+1 ) for a representative day in quarter t1+1 using 

equations (29) to (35). Subsequently, we compute the market clearing for a representative day 

in quarter t1+1. With the resulting estimation of HS dispatched volumes (𝑄𝐻𝑆,𝑡,ℎ,𝑚1,𝑟1𝑤1
𝑡1  and 

𝑄𝐻𝑆,𝑡,ℎ,𝑚1,𝑟2𝑤2
𝑡1+1 ) and the market prices (𝑃𝑡,ℎ,𝑚1,𝑟1𝑤1

𝑡1  and 𝑃𝑡,ℎ,𝑚1,𝑟2𝑤2
𝑡1+1 ), we calculate the HS 

revenues over the two periods. Based on the maximum revenue, we identify the best bidding 

strategy for a representative day in quarter t, i.e., the bid volumes ( 𝑆𝐻𝑆,ℎ,𝑡 ) and prices 

(𝑀𝐶𝐻𝑆,ℎ,𝑡). 
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A.3.5. PSP operation  

We assume that PSP have perfect information about other producers concerning their 

available hourly supply and marginal costs (bidding prices). We run a dispatch (including the 

electricity exchange) excluding PSP and calculate the hourly prices and the volumes 

dispatched. We call this a “pre-dispatch”. Recall 𝑆𝑗,ℎ,𝑡  denote the available supply from 

producer j for hour h. Producers bid these volumes at their marginal costs 𝑀𝐶𝑗,ℎ,𝑡 and the 

market is cleared by merit-order dispatch; 𝑄𝑗,ℎ,𝑡 denotes the quantity dispatched and 𝑆𝑈𝑗,ℎ,𝑡 is 

the unallocated supply (Eq. (37)). The unallocated supply of each technology is associated 

with the respective marginal costs at which it can be dispatched. This allows us to calculate 

the volumes available for pumping at a purchase price P, i.e., 𝑆𝑗,ℎ,𝑡
∗ (𝑃)  (Eq. (38)). We 

calculate the maximum pumping for each hour at each price 𝑆ℎ,𝑡
∗ (𝑃) taking into account that 

pumping is constrained by the pumping capacity 𝐾𝑡
𝑃𝑈  (Eq. (39)). Next we build the 

Unallocated curve (Uc in Figure A.16) from hourly unused supply volumes and considering 

the pumps’ efficiency α so as to obtain the effective available energy (Eq. (40)). 

𝑆𝑈𝑗,ℎ,𝑡 = 𝑆𝑗,ℎ,𝑡 − 𝑄𝑗,ℎ,𝑡 ∀𝑗 ≠ 𝑃𝑆𝑃 (37) 

𝑆𝑗,ℎ,𝑡
∗ (𝑃) = {

𝑆𝑈𝑗,ℎ,𝑡  if 𝑃 ≥ 𝑀𝐶𝑗,ℎ,𝑡

0   𝑒𝑙𝑠𝑒
  

(38) 

𝑆ℎ,𝑡
∗ (𝑃) = 𝑚𝑖𝑛 (∑ 𝑆𝑗,ℎ,𝑡

∗ (𝑃)

𝑗

, 𝐾𝑡
𝑃𝑈) 

(39) 

𝑈𝑐𝑡(𝑃) =  𝛼 ∑ 𝑆ℎ,𝑡
∗ (𝑃)

ℎ

 
(40) 

We follow a similar process to build the Allocated curve (Ac in Figure A.16). First, we 

calculate the volumes that can be supplied by PSP at a bid price B, 𝑋𝑗,ℎ,𝑡
∗ (𝐵), i.e., the allocated 
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volumes that PSP would displace at that price (Eq. (41)). These are the volumes that can be 

supplied by PSP if they bid at B. Then, we calculate the maximum volumes that can be 

supplied per hour considering that generation is constrained by the generation capacity 𝐾𝑃𝑆𝑃,𝑡 

(Eq. (42)). Finally, we build the Allocated curve 𝑋𝑡(𝐵) as a function of the bid price B (Eq. 

(43)). 

𝑋𝑗,ℎ,𝑡
∗ (𝐵) = {

𝑄𝑡ℎ  if 𝐵 ≤ 𝑀𝐶𝑗,ℎ,𝑡

0   𝑒𝑙𝑠𝑒
 

(41) 

𝑋ℎ,𝑡
∗ (𝐵) = 𝑚𝑖𝑛 (∑ 𝑋𝑗,ℎ,𝑡

∗ (𝐵)

𝑗

, 𝐾𝑃𝑆𝑃,𝑡) 

(42) 

𝐴𝑐𝑡(𝐵) =  ∑ 𝑋ℎ,𝑡
∗ (𝐵)

ℎ

 
(43) 

 

Figure A.16. Simplified representation of Allocated and Unallocated volumes. 

Since B = P/α, both the Unallocated curve 𝑈𝑐𝑡 and the Allocated curve 𝐴𝑐𝑡 for each time t 

can be written as a function of the purchase price P. The energy available for PSP to generate, 

𝑉𝑡
𝑃𝑆𝑃, can be calculated from the intersection of 𝑈𝑐𝑡(𝑃) and 𝐴𝑐𝑡(𝐵). The variables 𝑉𝑡

𝑃𝑆𝑃 is 
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thus the energy available after subtracting the pumps’ efficiency losses, while 𝑃𝑡
𝑃𝑆𝑃  the 

maximum price that PSP is willing to pay for energy to pump. Therefore, for a purchase price 

𝑃𝑡
𝑃𝑆𝑃, 𝑉𝑡

𝑃𝑆𝑃 is the energy obtained after pumping (Eq. (44)). Finally, the energy PSP have to 

buy, i.e., their pumping, is calculated as 𝑌𝑡
𝑃𝑆𝑃 =

𝑉𝑡
𝑃𝑆𝑃

𝛼⁄ . 

𝑉𝑡
𝑃𝑆𝑃 = 𝐴𝑐𝑡(𝑃𝑡

𝑃𝑆𝑃) = 𝑈𝑐𝑡(𝑃𝑡
𝑃𝑆𝑃) (44) 

Next we calculate PSP hourly pumping 𝑌ℎ,𝑡
𝑃𝑆𝑃 and hourly bids 𝑆𝑃𝑆𝑃,ℎ,𝑡, which are used for the 

“real” dispatch. The former are calculated from the cheapest unallocated volumes 𝑅𝑗,ℎ,𝑡 (see 

Eq. (45)), while the latter is calculated from the most expensive allocated volumes 𝑍𝑗,ℎ,𝑡 (see 

Eq. (46)).  

min
𝑅𝑗,ℎ,𝑡

∑ 𝑀𝐶𝑗,ℎ,𝑡𝑅𝑗,ℎ,𝑡

𝑗,ℎ

 

Subject to 

𝑅𝑗,ℎ,𝑡 ≤ 𝑆𝑈𝑗,ℎ,𝑡 (availability of unallocated energy) 

𝑌ℎ,𝑡
𝑃𝑆𝑃 = ∑ 𝑅𝑗,ℎ,𝑡𝑗  (hourly pumping) 

𝑌𝑡
𝑃𝑆𝑃 = ∑ 𝑌ℎ,𝑡

𝑃𝑆𝑃
ℎ  (daily pumping) 

(45) 

  

max
𝑍𝑗,ℎ,𝑡

∑ 𝑀𝐶𝑗,ℎ,𝑡𝑍𝑗,ℎ,𝑡

𝑗,ℎ

 

Subject to 

𝑍𝑗,ℎ,𝑡 ≤ 𝑄𝑗,ℎ,𝑡 (generation of expensive producers) 

(46) 
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𝑆𝑃𝑆𝑃,ℎ,𝑡 = ∑ 𝑍𝑗,ℎ,𝑡𝑗  (PSP hourly bids) 

𝑉𝑡
𝑃𝑆𝑃 = ∑ 𝑆𝑃𝑆𝑃,ℎ,𝑡ℎ  (PSP daily generation) 

The volumes 𝑌ℎ,𝑡
𝑃𝑆𝑃 are treated as an additional consumption, so they are aggregate to the local 

consumption (including losses) and PSP is included as the 11
th

 producer with its hourly bids 

𝑆𝑃𝑆𝑃,ℎ,𝑡 for computing the “real dispatch” (Eq. (13) in Appendix A.3.2). 
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Abstract  

Liberalisation and the ever larger share of variable renewable energies (VRES), e.g. 

photovoltaic (PV) and wind energy, affect security of supply (SoS). We develop a system 

dynamics model to analyse the impact of VRES on the investment decision process and to 

understand how SoS is affected. We focus on the Swiss electricity market, which is currently 

undergoing a liberalisation process, and simultaneously faces the encouragement of VRES 

and a nuclear phase out. Our results show that nuclear production is replaced mainly by PV 

and imports; the country becomes a net importer. This evolution points to a problem of 

capacity adequacy. The resulting price rise, together with the subsidies needed to support 

VRES, lead to a rise in tariffs. In the presence of a high share of hydro, the de-rated margin 

may give a misleading picture of the capacity adequacy. We thus propose a new metric, the 

annual energy margin, which considers the energy available from all sources, while 

acknowledging that hydro-storage can function as a battery. This measure shows a much less 

reassuring picture of the country’s capacity adequacy. 
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Keywords: Swiss electricity market, system dynamics, renewable energies, security of 

supply, capacity adequacy. 

1. Introduction 

Before the 1980s, electricity was mainly produced using hydro-power, nuclear and thermal-

based units. Most markets were monopolies, whose only concern was to ensure capacity 

adequacy (Lieb-Dóczy et al., 2003). The liberalisation process of electricity markets, which 

started in the 1990s, has led to the creation of competitive wholesale and retail markets and 

the unbundling of the sector segments (generation, transmission and distribution), often 

resulting in the privatisation of generators (Joskow, 2006). As a consequence, guaranteeing 

the electricity supply has become more complex. In this paper we focus on the challenges 

currently faced by Switzerland, one of the last European countries to start a liberalisation 

process. 

Liberalisation enhances competition among generators, resulting in investment decisions 

being increasingly based on profitability, at the expenses of system security (Lieb-Dóczy et 

al., 2003). The resulting lack of coordination in investments results in price and capacity 

cycles, which add complexity to the investment decision process (Arango and Larsen, 2011).  

The electricity sector has also experienced several changes in generation technologies. 

Combined cycle gas turbines (CCGT) gained in importance in the 1990s due to significant 

efficiency improvements, reduced pollution and shorter construction lead times (Ford, 1997). 

Over the last two decades, governments have encouraged investments in renewable 

generation, mostly in variable renewable energies (VRES), i.e., solar and wind. However, 

these technologies create a new challenge for the sector. Their availability factors are 

significantly lower than those of, e.g., thermal generation, and their production is subject to 

inherent variability that needs to be balanced in real-time (Lise et al., 2013). Additionally, 
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their large penetration has a price-lowering effect, which decreases the profitability of other 

generators. However, consumers do not benefit from these lower prices as they are charged 

cost of the subsidising renewable energies (BMWi, 2015). The uncertainty concerning new 

investments and rising tariffs due to VRES subsidies affects numerous markets. Many 

countries are thus facing the challenge of providing increasing amounts of affordable ‘green’ 

electricity, in the right place, at the right time. 

Additionally, electricity markets are increasingly interconnected. This can improve security of 

supply (SoS) as it gives countries access to more supply, and helps balancing the load, e.g., in 

countries with complementary seasonal patterns. However, a high degree of dependency can 

discourage new investments in the long-term, negatively impacting SoS (Ochoa and van 

Ackere, 2009).  

Although assessing SoS has been mainly addressed as a capacity adequacy problem, today 

other aspects such as import dependency, environmental issues and tariff affordability must 

be considered. Actions to enhance capacity adequacy may conflict with economic efficiency 

or environmental protection or both. Thus, understanding the dynamics of electricity markets 

is a necessity to develop appropriate policies. 

We develop a simulation model calibrated to the Swiss electricity market to analyse the 

investment decision process and the impact on SoS of the changing generation mix. The 

model is developed using system dynamics (SD), which aims mainly at understanding a 

problem based on its causal structure, by analysing the feed-back loops among the key 

variables (Sterman, 2000). This methodology provides several advantages including (i) 

visualizing the interactions and causal relationships between the different variables, (ii) 

providing understanding of the impact of delays on the system’s evolution, and (iii) allowing 

evaluating SoS under different scenarios of energy policy.  
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As shown in Table 1, in 2013 nuclear energy accounted for 36% of Swiss electricity 

generation and hydro-power for 58%, split between run-of-river (26%) and hydro-storage 

(32%). The share of other sources was only 6%, with PV and wind energy accounted for 

barely 1% (SFOE, 2014a). However, the government is strongly encouraging these 

technologies through feed-in tariffs (FiTs). For instance, the FiT for PV installed since 

January 1st, 2014, lasts 20 years, and varies, depending on the nominal capacity, between 172 

and 304 CHF/MWh
7
 (The Swiss Federal Council, 2015). It is noticeable that PV capacity has 

increased nearly ten-fold between 2009 and 2013: 755 MW compared to 79 MW (SFOE, 

2014a). Switzerland appears self-sufficient, achieving net exports equivalent to 3% of net 

production. However, when considering the hydraulic year, we observe net exports of 2.0 

TWh between September 2012 and August 2013, but net imports of 2.6 TWh between 

October 2012 and April 2013, indicating a strong import dependency in winter. 

Table 1. Main statistics of the Swiss electricity market in 2013 (SFOE, 2014b). 

 Volume 

(GWh) 

Share 

(%) 

Total production 68,312 100 

Run-of-river  17,759 26 

Hydro-storage  21,813 32 

Nuclear 24,871 26 

Others 3869 6 

Net production   66,180  

Pumping 2132  

Net exports  2396  

                                                           
7
 1 CHF = 0.92 Euro (exchange rate December 2015).  
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National consumption 63,784  

 

Switzerland currently benefits from long-term contracts for importing cheap off-peak energy 

from France but they will expire by 2040 (AES, 2012). Since the Federal Council plans to 

gradually decommission the nuclear power capacity, SoS is threatened in the middle- and 

long-term.  The government expects VRES to partly replace the expiring contracts and the 

capacity that will be dismantled.  

Besides the support to VRES, the government and the Swiss Federal Office of Energy 

(SFOE) aim to create a favourable framework for CCGT. This technology's availability is 

similar to nuclear power and it is flexible enough to complement hydro-storage to meet the 

balancing needs resulting from VRES. However, the high emissions challenge its profitability 

(carbon costs) and its acceptance by the Swiss population.  

The next section motivates the methodology (SD) and describes the model. In Section 3 we 

present our results and we conclude with a discussion of policy implications.  

2. Methods 

Gary and Larsen (2000) argue that traditional economic equilibrium models do not adequately 

address the issues faced by recently liberalised industries: during their transition to 

competitive markets they do not comply with the equilibrium assumptions. We therefore 

model the system’s structure explicitly to gain understanding of the dynamics of the industry, 

using SD. 

SD models take a system's view of strategic problems and focus on capturing the feedback 

mechanisms (created by a series of causal relationships) and time delays that define the 

structure of a system as understood by the decision makers (Sterman, 2000). The system is 
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represented by a set of differential equations. Modelling causality and delays is important in 

energy policy formulation since this helps investigate whether policies trigger instabilities 

which may affect future system performance (Arango, 2007). SD has been used to explain the 

dynamics of electric markets. Bunn and Larsen (1992), Ford (1999) and Ochoa (2007) were 

among the first to use SD to analyse how these new investment dynamics impact capacity 

adequacy, and in turn the SoS, in respectively England and Wales, the western market of the 

U.S.A., and Switzerland. More recently Pereira and Saraiva (2013) developed an hybrid SD-

optimisation model for the Spanish-Portuguese market to evaluate expansion plans in view of 

the increased renewable generation. A detailed review of the main system dynamics models 

used to simulate electricity systems can be found in Teufel et al. (2013). 

SD is particularly suitable for capturing the dynamics of markets at an early stage of 

liberalisation since it allows incorporating bounded rationality and stakeholders’ behaviour. 

Given that there is no historical data for a competitive Swiss market, this approach offers an 

attractive way of understanding how the market might evolve, generating for instance insights 

into the effect of price shocks or parameter uncertainties as well as illustrating potential 

undesirable consequences of the proposed regulation (Larsen and Bunn, 1999). Given the 

huge uncertainty concerning the future of nuclear power in Switzerland, the possibility to 

evaluate different scenarios is essential.  

Our model includes VRES generation and expansion, which allows us to understand their 

long-term effect on the SoS. The model is divided into three modules: market clearance and 

electricity exchange, which are shown in Figure 1, and the investment decision process is 

presented in Figure 2. These diagrams show the relations among the main variables, whose 

interactions determine the dynamics of electricity markets. 
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Figure 1. Electricity exchange and market clearance. 

 

Figure 2. VRES effect on the investment decision process.   

Figure 1 explains how the market is cleared. Total demand results from the local demand and 

the net flow of electricity exchange. Loops B1 and B2 explain the balance of exchanges 

(imports and exports). If total demand grows, the gap between supply and total demand (Gap 

S-D) will fall. Since the merit order dispatch depends on marginal costs, a tighter Gap S-D 
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leads to higher prices. The market price is compared to the price abroad to determine whether 

the country imports (B1) or exports (B2).  

Investment dynamics (Figure 2) represent Ford's (2002) theory of investor behaviour, 

according to which investment decisions are based on expected profitability. Such 

expectations are affected by expectations of future prices and costs, as well as competitors’ 

investments. Capacity construction is thus encouraged by high profits, and in turn increases 

the future supply. As explained before, a higher expected supply leads to lower prices and, in 

turn, to lower profits. Hence, a balance is reached since lower profits discourage further 

investments (loops B3 and B4). The investors’ expected profitability depends also on their 

expected costs (LCOE8). According to Ueckerdt et al. (2013), using LCOE for comparing 

technologies, in particular VRES with non-VRES, is not appropriate because VRES create  

balancing, grid and profile costs for the system. However, these costs are not supported by 

investors, who decide based on their financial costs.  

If VRES are supported by FiTs, they always receive a fixed price, which is defined so as to 

allow them to recover their capital and fixed costs. Consequently, the expected price does not 

affect VRES profitability, nor investments in VRES. Without FiTs, lower prices lead to lower 

investments (loops B5 and B6), as for other technologies. In this paper we assume that, until 

2035, VRES are supported by FiTs and grow according to a planned expansion in order to 

meet government targets. After 2035, investment decisions in VRES are endogenous and 

based on their profitability, which depends on market prices.  

                                                           
8
 The levelized costs of electricity (LCOE) consider capital and operational costs and are expressed in 

money/electricity generation, i.e., CHF/kWh. The operational costs are easily assessed in these units. When 

assessing the capital cost per unit generated for a future plant, it is necessary to calculate the Full Load 

Equivalent Operating Hours (FLEOH) of the plant. As the plant incurs costs throughout its lifespan, it is 

necessary to take the present value of all the annualized costs.  
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The expected profitability of other technologies is affected by expected future capacity of all 

technologies, including VRES. Since electricity markets are dispatched by merit order and 

VRES have marginal costs close to zero, the same demand can be met by generation with 

lower variable costs, resulting in a lower clearing price. A reduction in the expected price will 

affect other technologies’ profitability, discouraging investments in new capacity. Peak units 

(CCGT and hydro-storage) are particularly affected since larger amounts of VRES generation 

not only reduce prices, but also the residual demand (demand minus the production of VRES). 

Hence, generation needed from CCGT and hydro storage, and thus their operating hours, 

decrease. Consequently, their expected LCOE increases which, together with lower prices, 

decreases their expected profitability.  

We assume that imports compete with local generation. Thus, the country imports either 

because local capacity is not sufficient to meet local demand or because the price of imports is 

below that of other alternatives (merit order dispatch).The possibility to import increase the 

expected supply, which might decrease prices. Appendix A provides a detailed model 

description, including the model equations. 

We run the simulation from 2014 to 2050. For each quarter (season) we simulate a 

representative day. For each representative day, hourly demand shapes for each season are 

estimated using historical data from 2009-2013. This allows us to capture the hourly and 

seasonal patterns of supply and demand, both of which are important given the low short-term 

elasticity of demand and the non-storability of electricity. To fit the Swiss hydrological 

pattern, seasons are defined as follows: January-March (winter), April-June (spring), July-

September (summer) and October-December (autumn). Following the SFOE (2013), we 

assume an increasing demand (on average 0.5%/year) for our base case, labelled business as 

usual (BAU). Other demand scenarios proposed in SFOE (2013) are considered later. This 

estimation of demand includes neither losses nor pumping consumption, which are thus added 
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to build the hourly demand estimations. Losses are assumed to be 8%, according to historical 

data (SFOE, 2014b). During simulation, pumping and natural inflows are assumed to increase 

proportionally to pumping and hydro-storage generation capacity, respectively. The model is 

initialised (2014) using the average seasonal values from 2009 to 2013. 

We consider 7 technologies, whose initial capacities and expansion potential, i.e., the 

maximum they can expand, are specified in Table 2. Our model implements the government 

objectives of VRES generation: 4.4 TWh by 2020 and 14.5 TWh by 2035 (The Swiss Federal 

Council, 2013). We thus assume a planned expansion over the simulation horizon of PV and 

wind energy, proportional to their expansion potential. Given the potentials of PV and wind 

energy, 90% of the 4.4 TWh must be met by PV in 2020. The availability factor of PV, being 

11%, 4110 MW of capacity are needed to produce 3.96 TWh (90% of 4.4 TWh) in 2020. We 

perform similar calculations for the 2035 objective and for wind energy. The FiT values 

specified in the Energy Act have been modified several times since their initial 

implementation in 2009. We thus set the FiTs so as to cover the expected LCOE of each 

technology, under the assumption that FiTs last 20 years, as is currently the case. Investments 

after 2035 are determined by their profitability and are limited by their remaining potential.  

Table 2. Main simulation parameters. 

 Initial 

capacity 

(MW)
a
 

Expansion 

potential 

(MW)
b,c

 

Annual 

fixed costs 

(CHF/ 

MW)
d
 

Marginal 

cost 

(CHF/ 

MWh)
d
 

Lifetime 

(years)
 d,e

 

Average 

availability 

factors 
b
 

(%) 

Hydro Storage 

(HS) 

9920 1311   24,000  6-56* 80 28 

Run-of-River 

(RR) 

3853 254      53,000  11 80 65 
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 Initial 

capacity 

(MW)
a
 

Expansion 

potential 

(MW)
b,c

 

Annual 

fixed costs 

(CHF/ 

MW)
d
 

Marginal 

cost 

(CHF/ 

MWh)
d
 

Lifetime 

(years)
 d,e

 

Average 

availability 

factors 
b
 

(%) 

Nuclear (NUC) 3278 0     89,760  10 50 89 

CCGT (CCGT) 89 3167     42,000  45-65** 30 92 

Photovoltaic 

(PV) 

755 18,947   23,000  2 20 11 

Wind energy 

(WI) 

60 2222   38,400  1 20 18 

Other thermal 

(TH) 

760 1333      25,000  4-21 

**/*** 

20 51 

Total 18,715 27,234     

a
 SFOE (2014a, 2014c, 2014b) 

b 
 AES (2012) 

c
 SFOE (2012) 

d
 Poyry (2012a) 

e
 Kannan and Turton (2012) 

*Opportunity cost, which depends on reservoir level and on the prices of other producers. 

**We assume step-wise increases for fuel and CO2 prices over the simulation period (Poyry, 2012a). 

***Net cost after subtracting the income from heat sales. 

 

After the Fukushima accident in March 2011, the Swiss Federal Council announced the 

phase-out of nuclear plants after 50 years of operation, i.e., between 2019 and 2034 (The 

Swiss Federal Council, 2011). This was a major commitment because nuclear capacity 

equalled 3278 MW in December 2013, accounting for 18% of total capacity. The Parliament 

is currently reconsidering this decision. Mühleberg (373 MW) should be decommissioned in 
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2019, as the investments needed are financially non-viable. Biznau I and II (365 MW each) 

will be decommissioned after 60 years of operation, in 2029 and 2032, respectively. Gösgen 

(985 MW) and Leibstadt (1190 MW), the more recent plants, can initially operate for 60 

years, until 2039 and 2044, and request successive 10 year extensions, which will be granted 

if the security conditions are fulfilled (Le Temps, 2014). However, the future of nuclear 

power remains uncertain as at the same time, a referendum demanding that all plants be 

decommissioned after 45 years of operation is being launched (Swiss Confederation 

Administration, 2013).  

In our base case scenario (BAU) we assume what currently seems to be the most likely 

scenario: Muhleberg being decommissioned in 2019 and the others plants being 

decommissioned after 60 years of operation. We also assume that hydro projects currently 

under construction will come online at their scheduled start of operation (SFOE, 2014c).  

The market is dispatched according to the marginal costs of the different technologies (see 

Table 2), and the prices of imports, both of which are exogenous. Hydro-storage bids at its 

opportunity costs, which are a function of the reservoir level and the prices of other 

producers. Fossil-fuel generation includes CCGT and other thermal, (mainly cogeneration 

plants (CHP)). The costs of these plants depend on fuel and carbon prices; their marginal cost 

is assumed to increase step-wise according to the Poyry (2012a) forecast. The marginal costs 

of the other technologies are assumed constant over the entire simulation. We use capital 

costs, fixed costs, marginal costs, and the expected load factor to calculate the LCOE in the 

model. Annual fixed costs are given in Table 2 and capital costs in Figure 3.  
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Figure 3. Capital costs of technologies considered in the model. Data from Poyry (2012a). 

Cross-border transmission capacity remains fixed at 7500 MW for imports. We consider two 

types of imports: long-term imports based on existing contracts and balancing imports. Long-

term imports availability is assumed to decrease progressively from 27 TWh/year in 2014 to 

zero in 2040, when these contracts will expire. We assume step-wise decreases according to 

AES (2012). Their cost is assumed to be 35 CHF/MWh, which lies within the range of costs 

of nuclear plants found in literature (Boccard, 2014; Lévêque, 2014). Balancing imports are 

traded in the spot market and their availability equals the difference between the imports 

transmission capacity and the available long-term import contracts. Hence, the expiration of 

long term import contracts increases the transmission capacity availability for short-term 

imports (see more detailed explanation in Appendix A). Balancing import and export prices 

are exogenous. For each representative day, we built a curve of import prices based on 2012-

2013 historical data from France and Germany (97% of imports come from these countries). 

Likewise, we build hourly demand curves as a function of price for Italy, Germany and 

France, the countries to which Switzerland exports. As balancing imports and long-term 

imports are considered as additional technologies when clearing the Swiss market (meeting 
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local and export demand), imports and exports can occur simultaneously, but not to the same 

country. We run our simulation in Vensim® DSS 6.1. 

The model was calibrated using publicly available data, mainly from the SFOE, the Swiss 

Federal Council, the Swiss Utilities Association (AES), the International Energy Agency 

(IEA, 2012), the European Power Exchange (EPEX SPOT, 2014), the Swiss Transmission 

System Operator (Swissgrid, 2015) and the Italian System Operator (GME, 2014). Other 

sources included Boccard (2014), Kannan and Turton (2012), and reports from the 

management consulting company Poyry and the Fraunhofer Institute for Solar Energy (ISE). 

The impact of VRES inherent variability on grid stability is beyond the scope of this paper as 

balancing the load from VRES should not be a problem given the large hydro-storage 

capacity, which is very flexible.  

We use the classical SD validation tests (Sterman, 2000). The model’s equations correctly 

represent the structure presented in the causal diagrams and are dimensionally consistent, 

while results of the model are coherent under extreme conditions. We have also performed an 

extensive sensitivity analysis, which is summarised at the end of Section 3. 

3. Results  

We perform a long-term simulation of the Swiss electricity market, focussing on the impact of 

the nuclear phase-out and the increasing penetration of VRES on SoS. A thorough analysis of 

SoS requires considering multiple dimensions (Larsen et al., 2015), which could in the 

medium to long-term affect the continuity of supply. The three core elements of SoS we focus 

on are capacity adequacy, imports dependency and price.  

The total available capacity grows from 19 GW at the start of simulation to a maximum of 33 

GW in 2035 (see Figure 4). Recall that VRES expansion until 2035 and nuclear 

decommissioning are exogenous. PV capacity increases from 755 MW in 2013 to 14,436 MW 
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in 2035, and has the highest absolute growth among all technologies; wind energy capacity 

grows from 60 MW to 917 MW between 2013 and 2035. There are no further investments in 

these technologies after 2035, when FiTs for new projects are no longer available. In the 

absence of new investments, capacity of both PV and wind energy decreases from 2035 

onwards as a consequence of obsolescence.  

Figure 4. Simulation of installed capacity and peak demand from 2014 to 2050. 

There are no investments in other technologies during the entire simulation horizon beyond 

the investments already committed to. For instance, hydro-storage generation capacity 

increases significantly in 2016 and 2017, when respectively Nante de Drance (900 MW) and 

Limmern (1000 MW) are scheduled to start operating (SFOE, 2014c). Both hydro-storage and 

run-of-river capacity remain constant after 2017. As a result of the massive retirements due to 

nuclear phase-out and the obsolescence of mainly VRES, total installed capacity decreases to 

18 GW by 2050. 
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The changes in capacity mix also affect the amount and mix of electricity generated (Figure 

5). From 2037 onwards the country is always a net importer (Figure 6). The situation 

deteriorates further in 2039 when Gösgen is decommissioned; net imports reach 33 TWh at 

the end of simulation (44% of national consumption). In comparison, over the 1993-2013 

period, maximum net imports equalled 6.4 TWh in 2005, and in only 4 years out of 21 did 

imports exceeded exports. This dependency is exacerbated in winter, when net imports 

average 51% of national consumption in the 2041-2050 period. Nuclear generation is thus 

partially replaced by PV, but the gap left by the last nuclear plant (2044) is mostly filled by 

imports.  

 

Figure 5. Simulation of energy mix of Swiss net production from 2014 to 2050. 
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Figure 6. Exchange of electricity under BAU and EXP scenarios. Exports are expressed in positive values, 

while imports are expressed in negative values. 

The availability of imports reduces the loss of load expectation (LOLE) (Baritaud and Volk, 

2014). Also, purchases could be made at prices below those of national producers. However, 

such a dependency is risky. Imports might be cut by neighbours for political reasons or due to 

extreme weather conditions. For instance, in case of extremely cold weather, the supply in 

Switzerland would be seriously endangered if France and/or Germany lacked excess capacity. 

Besides geopolitical and climate factors, a large dependency might be politically 

unacceptable. Furthermore, dependency can have a negative impact on investments in the 

long-term (Ochoa and van Ackere, 2009).  

An increasing dependency on imports is not the only element affecting future SoS in 

Switzerland. While one might expect prices to decrease due to the larger share of zero-

marginal cost sources (PV and wind), we observe the opposite: the electricity price increases 

from 40 CHF/MWh in 2014 to 57 CHF/MWh in 2050 (Figure 7). The annual average price 
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the last two nuclear plants (2039), and increases sharply over the next 7 years. According to 

our model, prices are expected to increase in Switzerland because of the changing generation-

mix: nuclear energy is replaced by less expensive technologies such as PV and wind, but also 

by more expensive sources such as balancing imports.  

 

Figure 7. Seasonal and annual average wholesale prices in BAU and EXP. 

This increase is mainly driven by prices in autumn and winter, when there is little (noon) or 

no (evening) solar generation when demand peaks (see results of winter in Figure 8). The 

price increase during the peak hours is higher in the evening than at noon. The 

decommissioning of nuclear plants has increased the ratio between peak load and base load, 

and the country has become dependent on balancing imports to meet both the noon and 

evening peaks. However, as there is some solar energy at noon, prices are lower than in the 

evening. Such higher evening peak prices and lower noon prices have already been observed 

in the German market since 2011, resulting from the larger penetration of PV.  
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Figure 8. Comparison between hourly demand and prices in winter in 2015 and 2050. 

The increasing price and RPC (fee aimed at covering FiTs for VRES) will certainly lead to 

higher tariffs. We distinguish tariffs from prices in that the former comprises wholesale prices 

and other levies included in consumers bills, while the latter refers exclusively to the 

wholesale price. We thus compute tariffs by aggregating wholesale prices (energy prices), 

transmission and distribution network levies (which are assumed to equal those of 2014), 

other public levies and RPC fees. The total levies are assumed to equal 135 CHF/MWh for 

the residential and the commercial sectors, and 85 CHF/MWh for the industrial and the 

transportation sectors, according to the regulated fees for 2014 (ElCom, 2015). Household 

tariffs are assumed for the service sector, while industry tariffs are assumed for the 

transportation sector. 

The model generates prices based on the computed dispatch and exchange clearing, while 

RPC is calculated as follows. Based on capital and fixed costs, and investors' required return, 

the total cost of FiTs (PV and wind energy) is estimated exogenously at 105 CHF billion.  To 

reflect government policy we assume that the RPC fee progressively increases until 2030, 

remains stable between 2030 and 2040 and gradually declines to zero by 2050. The RPC fee 
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is recalculated each quarter to account for the change in demand and the revenues from 

renewable energy sales. RPC thus increase progressively from 10 CHF/MWh (defined by the 

Swiss Energy Act for 2015) to a maximum of 58 CHF/MWh in 2030 in BAU. This increase is 

realistic if one compares it for instance with Germany, where the fee paid by households to 

support renewable energies soared from 3 €/MWh in 2000 to 63 €/MWh in 2014 (BMWi, 

2015). Figure 9 illustrates that under these assumptions household and industry tariffs in the 

BAU scenario increase respectively by 32% and 38% over the period 2014-2030 period and 

decrease after 2040. 

  

Figure 9. Composition of household (left) and industry (right) tariffs. 

In general, we can conclude that all scenarios point to increasing net imports and prices, 

which increases dependency and decreases affordability. These signals warn about the 

unsustainability of the system. In particular, the increasing dependency can be interpreted as a 

symptom of inadequate investments in new capacity.  

We now turn to a more detailed analysis of the capacity adequacy. Capacity adequacy has 

traditionally been measured by the reserve margin, which depends on the ratio between 

capacity and annual peak demand. This measure is appropriate for systems relying mainly on 
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thermal and nuclear generation, in which technologies’ availability is close to 100% or hydro-

thermal systems in which seasonality of hydro is less pronounced. Given the increasing role 

of VRES, whose average availability is considerably more limited, the de-rated capacity 

margin, which allows measuring the system’s capacity to meet annual peak demand, is 

increasingly preferred as capacity adequacy measure (OFGEM, 2013; Royal Academy of 

Engineering, 2013). However, this measure could be misleading in some cases. For instance, 

countries with a significant share of hydro-storage generation might overestimate their 

capacity adequacy. A very high de-rating factor (80% or more) is usually assumed for this 

technology, ignoring a possible winter shortage.  

We propose an alternative metric, the annual energy margin, defined as the ratio between 

excess energy and annual domestic demand. The excess energy is calculated as the difference 

between the total hydro-storage availability (including pumping) and the annual unmet 

demand. The latter is estimated as follows. For each hour, we calculate the demand that 

cannot be met by technologies other than hydro-storage (hourly unmet demand). These are 

summed to calculate the annual unmet demand. A detailed description of both the de-rated 

and the annual energy margin are given in the Appendix 0. Note that when energy available 

from non-hydro-storage technologies exceeds domestic demand, this excess can be stored by 

pumped-storage plants (PSP), thus increasing total hydro-storage availability. This hydro-

storage is also available to cover the annual unmet demand.  

The energy margin thus captures the seasonal patterns of intermittent sources and the actual 

availability of hydro-storage generation, incorporating the idea that this technology could 

perform as a battery. We evaluate the de-rated margin and the energy margin under three 

scenarios of nuclear phase-out: the current BAU, a scenario in which the last two nuclear 

plants receive operation extensions that go beyond our simulation horizon (NucInd), and a 
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scenario which assumes that the initiative to close all nuclear plants after 45 years is 

successful (Nuc45). Assuming a referendum in 2015, Muhleberg would close in 2015, and the 

others would close between 2015 and 2029.   

As was shown in Figure 4, in the BAU case total capacity largely exceeds peak demand; 

however, the de-rated margin never exceeds 30% (Figure 10). It is important to recall that the 

de-rated capacity margin is calculated as spare de-rated capacity divided by total de-rated 

capacity. Between 2014 and 2018 the de-rated margin increases from 20% to 27% as the two 

large hydro-power plants currently under construction start operation. Afterwards, the de-

rated margin gradually decreases to a minimum of -5% in 2050. In BAU and NucInd de-rated 

margins are identical until 2040, but afterwards the BAU de-rated margin in BAU decreases 

sharply due to the decommissioning of the last two nuclear plants. In Nuc45, the de-rated 

margin is below the other two scenarios until 2045; afterwards it equals that of BAU, as the 

generation-mix is the same. Negative margins, as in Nuc45 and BAU, do not imply black-outs 

as the country can rely on imports. However, they show that even if water is saved to satisfy 

demand at this time, installed capacity is insufficient.  
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Figure 10. Evolution of the de-rated margin for the three scenarios. 

There is a negative exponential relationship between the de-rated margin and the loss of load 

expectation (LOLE). For instance, according to OFGEM (2013), a de-rated margin of 4% 

could result in 3 h/year in which supply is expected to be lower than demand in UK. This 

does not mean that users are disconnected: the system operator may implement mitigation 

actions, e.g., voltage reduction, to solve the problem without disconnecting any consumers. 

Although this estimate corresponds to the capacity assessment of the UK and cannot be 

extrapolated to Switzerland, it gives some insight into the risk of having such a low de-rated 

margin. Reliability standards vary significantly across countries, e.g. 3 h in France and 18 

hours in Belgium (OFGEM, 2013).  

The annual energy margin captures the medium-term capacity adequacy improvements 

resulting from the addition of PV, but Figure 11 shows a much less reassuring long-term 

picture for the three scenarios in the long-terms. For instance, while the BAU de-rated margin 

showed a downward trend from 2019 onwards, the energy margin follows an up-ward trend 

until 2028. This is due to the large amounts of PV being installed, which are not considered in 
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the de-rated margin. Although it is clear that PV cannot be used to meet annual peak demand, 

PV at noon allows hydro-storage to remain out of the merit-order or even pump, increasing its 

availability during the evening peak. The energy margin is thus a more appropriate metric to 

assess a country’s capacity adequacy in the presence of VRES. Still, one should be aware of 

the implicit assumption that reservoirs are large enough to store water from one season to 

another.  

 

Figure 11. Evolution of the annual energy margin for the three scenarios. 

In BAU, the annual energy margin turns negative after 2038. This means that even with 

optimal reservoir management, the total amount of electricity available is insufficient to cover 

annual demand. Again, this does not necessarily imply blackouts, but the country must rely on 

imports to satisfy local demand.  Thus, dependency after 2037 (recall Figure 6) onwards is 

due to the unavailability of local sources to meet national consumption: investments in PV are 

insufficient to cover the increasing demand in the absence of a third of the nuclear power.  

The BAU and NucInd energy margins are identical until the decommissioning of the last 

nuclear plants in the BAU scenario. The exit of the third part of nuclear capacity by 2033 
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leaves the country with insufficient resources to meet domestic demand; however, imports are 

sufficient. Although balancing imports increase prices, the rise is insufficient to trigger 

investments in new capacity. The system thus perpetuates its imports dependency.  

The scenario Nuc45 has the lowest energy margin, as expected. The margin turns negative in 

2015, as the closures of Muhleberg and Biznau I have not been anticipated. The margin 

remains stable between 2016 and 2024 because of the two new large hydro-storage plants and 

the installation of PV. Two further drops occur in 2023 and 2028, as the remaining nuclear 

plants close. The margin reaches an all-time low in 2050 (-44%), i.e., net imports cover at 

least 44% of national consumption (without considering pumping consumption).This implies 

that, assuming an annual availability factor of 90%, 4,200 MW of CCGT would need to be 

installed to achieve self-sufficiency by 2050.  

In summary, we can say that while the system deteriorates following the decommissioning of 

the first three nuclear plants in all three scenarios, it is the decommissioning of the last two 

plants that creates a critical situation. Whatever the decommissioning scenario, there are no 

investments in CCGT: their high marginal costs relegate these plants to the role of marginal 

producers, unable to recover their fixed costs. Marginal costs are particularly high after 2030 

because of the CO2 price assumption (see Figure 12). This lack of investments is problematic 

as CCGT is generally considered to be the most likely replacement for nuclear plants.  
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Figure 12. Scenarios of CO2 prices.  

Since CCGT would produce at peak times, mainly to export, we run multiple combinations of 

CO2 prices and Italian prices to identify favourable conditions for CCGT investments. We 

identify two scenarios in these are profitable, labelled COA and COB. In COA we assume that 

the CO2 price remains at 36.6 CHF/ton CO2 after 2023 and that the Italian prices increase by 

30%, while in COB the CO2 price remains in 28.0 CHF/ton CO2 for the entire simulation (see 

Figure 12) and Italian prices increase by 20%. In both scenarios investments become 

profitable when the fourth nuclear plant closes (see Figure 13). This highlights that it is 

important for potential investors to know with certainty, with a reasonable lead time, when 

nuclear plants will close. 

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

2014201620182020202220242026202820302032203420362038204020422044204620482050

E
u

r/
to

n
 C

O
2

 

BAU COA COB



From nuclear phase-out to renewable energies in the Swiss electricity market 

167 

 

 

Figure 13. Installed capacity of CCGT under different CO2 scenarios. 

Since Italian prices are more likely to decrease than to increase in the medium-term, CCGT 

will not be profitable unless there is either a technological breakthrough in CCGT and/or a 

decrease in gas or CO2 prices. Alternatively, programs aimed at supporting CCGT (e.g., 

subsidising investments in carbon capture and storage (CCS) technology) could be 

considered. An analysis of future fuel and CO2 prices is beyond the scope of our work. These 

are traded in international markets, subject to political and geopolitical factors. 

To assess the robustness of our results we perform a detailed sensitivity analysis with respect 

to, among others, prices of neighbouring countries (which affects their willingness to pay for 

imports from Switzerland and the price of volumes exported to Switzerland), their available 

volumes for exporting to Switzerland and their desired import volumes from Switzerland; 

responsiveness of demand to tariffs, the cross-border import capacity, and the costs of the 

different generation technologies. The main results are summarised below 

First, we consider variations between -30% and 30% in German (main source of net imports 

in Switzerland) and Italian (main destination of net exports from Switzerland) prices, which 

could occur due to changes in their energy mix and have significant consequences for 
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Switzerland. The two countries have currently a large penetration of VRES (around 15%). 

Note that these prices not only affect the price that Switzerland pays for imports (in the case 

of Germany), but also the two countries’ (Italy and Germany) willingness to pay for imports 

from Switzerland.  

While import and export volumes are not sensitive to changes in the German prices, a 30% 

price change in Germany results in a 10% price change in Switzerland, because balancing 

imports are usually the marginal producer in the Swiss market. Exports do not vary since the 

difference between Italian and German prices is so large, that exports to Italy remain 

profitable. Our results are robust to changes in Italian prices between -20% and +30%. 

However, for larger drops (-30%), imports and exports decrease by about 10%, because of 

Italy’s lower willingness to pay for imports from Switzerland. Net imports remain unchanged. 

We observe that, regardless of the scenario, prices are expected to increase. This increase 

leads to a rise in tariffs, which in turn could affect consumption. In the case of Switzerland, 

assessing this impact is difficult due to the limited information about consumers’ response to 

tariff variations, i.e., demand elasticity. We have therefore taken two different approaches to 

perform a sensitivity analysis with respect to our demand hypothesis: considering different 

demand scenarios (with implicit demand management) and modelling a tariff-dependant 

demand.   

Aside from the demand assumed in BAU, the (SFOE, 2013) considers a scenario in which 

demand remains mostly stable (DS) and a scenario in which demand decreases compared to 

2014 level (DD), as shown in Figure 14. Both scenarios implicitly consider some demand 

management measures. When simulating our model with the DS and DD demands, average 

prices are respectively 5% and 8% below those of the BAU scenario (Table 3). While the 

country eventually becomes a net importer in the three scenarios, the timing depends on the 
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demand assumptions: 2037 in BAU, 2039 in DS and 2041 in DD. Also, the increase in net 

imports after the fourth nuclear plant is decommissioned is more limited in DS and DD than 

in BAU. Overall, as expected, measures aimed at decreasing demand lead to import 

dependency, while making electricity more affordable. 

 

Figure 14. Annual demand for scenarios BAU, DS and DD. Forecast adapted from SFOE (2013) using 

SFOE (2014b) data. 

Table 3. Comparison among scenarios of demand. 

 

BAU DS DD 

Average price (CHF/MWh) 49.2 46.4 45.1 

Average exports (TWh/year) 31.7 33.2 33.9 

Average imports (TWh/year) 36.6 32.8 30.4 

Average net imports (TWh/year) 4.9 -0.4 -3.5 

 

Next we consider an extreme scenario where demand in Switzerland is highly sensitive to 

changes in tariffs. More specifically, based on a comparison between the BAU and DD 
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demand to decrease by as much as 28%. In this scenario, demand is endogenous to the model 

and depends on the simulated tariff. 

Modelling demand as an endogenous function of tariffs also has a significant impact on 

international exchange volumes. In this scenario the country only becomes a net importer in 

2044, compared to 2037 in BAU. The lower demand also leads to lower prices, but RPC is 

higher as total FiTs costs must be recovered from a lower volume of demand. Tariffs are 

slightly higher than in BAU (up to 7% for households and 9% for industry).  Industry and 

household tariffs peak in 2038 at respectively 45% and 31% above 2014 tariffs. However, 

evidence from Germany, where demand did not decrease despite a 58% and 113% tariffs 

increase for households and industry respectively over the 2000-2013 period (BMWi, 2015), 

suggests that such a significant demand decrease, as simulated here, is unlikely. This scenario 

should thus be interpreted as an upper bound on potential changes in demand.  

The next sensitivity analyses concern capital, fuel and CO2 costs. First we assume a 20% 

decrease in capital costs for PV, for wind and for both.  In these scenarios the country 

achieves its renewables target earlier as we assume that the fund aimed at supporting VRES 

remains unchanged. However, this leads neither to changes in prices, nor in electricity 

exchanges.  

Next we consider a scenario without FiTs for new VRES plants (labelled NoFiTs), i.e., 

achieving the 2020 and 2035 targets is left in the hands of the market, and investment 

decisions are based on VRES expected profitability. Under this assumption  there are no 

investments in VRES: prices are too low to cover capital expenses. Compared to BAU, net 

imports increase by 150%, mainly because exports decrease significantly. Wholesale prices 

are also higher in NoFiTs as the lower available capacity results in a tighter margin. However, 

tariffs are lower as the absence of an RPC levy (aimed at covering a total of CHF 105 billion) 
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more than offsets the higher prices (extra cost of CHF 8 billion). Finally, our sensitivity 

analysis indicates that imports, exports and prices are not sensitive to fuel and CO2 cost 

variations between -30% and 30%. 

Finally, we turn to the cross-border import capacity, which in the BAU scenario is 

constraining at peak hours, with congestion increasing over the simulation period. To evaluate 

the impact of this constraint, we run a scenario in which, following the ENTSO-E (2014) 

forecast, cross-border transmission capacity for imports is assumed to increase from 7,500 

MW in 2016 to 10,000 MW in 2020. In this scenario, labelled EXP, imports are higher than in 

BAU (recall Figure 6), particularly towards the end of the simulation period,  where  imports 

in EXP exceed those of BAU by 12%.. Exports are higher in EXP than in BAU because the 

higher availability of imports increases the country’s ability to export. More precisely, the 

increase in off-peak imports allows shifting hydro production from off-peak to peak-times 

which, together with the increase in peak imports, enables Switzerland to increase exports to 

Italy.  Consequently, net import volumes are very similar in the two scenarios. These higher 

imports replace more expensive local production, resulting in lower prices (on average 11% 

lower over the 2040-2050 period, see Figure 7). Cross-border expansion thus improves the 

country’s SoS as it provides access to cheaper electricity, without increasing dependency. 

As the availability of such imports is uncertain, we also tested the impact of reducing 

Switzerland's maximum hourly trade with France and Germany (under BAU assumptions). 

Total imports and exports are insensitive to a reduction of up to 30% due to Switzerland’s 

large storage capacity: increased off-peak imports allow hydro-storage generation to 

compensate the shortage of imports at peak time, and exports to Italy are not affected. If 

import capacity is reduced by more than 30%, shortages occur from 2045 onwards. This 

results in significantly higher prices, which make CCGT investments profitable. 
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These sensitivity analyses allow us to conclude that our results are robust to reasonable 

changes in parameter values. 

4. Conclusion and policy implications 

The proposed model allows us to simulate the Swiss electricity market and, in particular, the 

impact of the nuclear phase-out and the incentives for VRES (mostly for PV) to partially 

replace nuclear power. While the country has historically been a net exporter, creating a 

surplus for Swiss utilities, our results indicate that imports are bound to increase significantly 

in the future; in all scenarios the country sooner or later becomes a net importer. Import 

dependency is expected to be particularly critical in winter.  

These changes in the energy mix and exchange patterns cause prices to rise which, together 

with the RPC, cause tariffs to increase. The higher dependency on imports and the tariff 

increases highlight a capacity adequacy problem. We introduce a new metric, the annual 

energy margin, to assess the impact of investment decisions on capacity adequacy, and 

discuss its advantages compared to the de-rated margin. In the three scenarios of nuclear 

phase-out, the energy margin gives a less reassuring picture than the de-rated margin. Our 

results show that the generation capacity adequacy deteriorates to a level where the country is 

no longer capable of meeting domestic demand. Even when the last two nuclear plants are 

assumed to remain operational beyond a 60 years lifespan, available energy is insufficient to 

meet annual demand.  

Our model thus helps to understand the new challenges that a large(r) capacity and output of 

VRES pose to regulators, and how this evolution can jeopardise SoS in electricity markets. In 

particular, the price-lowering effect of VRES has been widely discussed in the literature. 

Although the penetration of VRES increases significantly in the Swiss market, our 

simulations do not indicate a price drop, due to the cost of the sources that replace nuclear 
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power. The impact of VRES and of the nuclear phase-out thus cannot be analysed separately. 

Import dependency and price rise are tightly interrelated and our results suggest that both are 

symptoms of a decreasing capacity adequacy.    

Since the IEA (2014) refers to energy security as the uninterrupted availability of energy 

sources at an affordable price, we can conclude that the SoS in the Swiss electricity market is 

seriously threatened by this import dependency and the decreasing availability of energy, as 

well as by the significant tariff increases. This large dependency affects utilities’ revenues and 

makes the country vulnerable to climatic and geopolitical risks.  

Simulated imports and exports are sensitive to large drops in Italian prices. Historically, 

Italian prices have been significantly higher than in the rest of Europe. As the Italian market is 

changing (e.g., encouraging investments in VRES and renegotiating gas contracts), its prices 

are likely to decrease in the future. France's and Germany’s available export volumes are 

dependent not only on technical and economic factors, but are also subject to political 

decisions. A major drop in these volumes (in excess of 30%) would significantly affect Swiss 

prices and CCGT investments.  

Following the acceptance of a referendum on February 9th, 2014, the EU has unilaterally 

suspended negotiations on the entry of Switzerland in the European single energy market. 

This, together with the political unpopularity of such imports dependency, is leading the 

country to review its energy policy, in particular regarding nuclear power plants and the 

constraints on the expansion potential of hydro-power. The recent parliamentary proposal to 

allow four nuclear plants to operate for 60 years (with the possibility of an extension for two 

of them) shows that the Swiss politicians are aware that abandoning nuclear energy in the 

middle-term endangers self-sufficiency. 
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Policy should thus focus on sending adequate signals to investors so as to at least limit 

imports dependency. Under current policy, prices seem inadequate to encourage investments 

in hydro-storage, a reliable and clean technology, in order to fil the gap left by nuclear energy. 

Likewise, investments in CCGT are not profitable in the BAU scenario; lower CO2 prices 

and/or a higher Italian willingness to pay for imports from Switzerland would be required. 

Furthermore, in those cases in which CCGT are profitable, investments only occur shortly 

before the nuclear phase-out completion. The lack of CCGT investments is particularly 

critical after the decommissioning of the fourth nuclear plant. Therefore, if the country really 

is committed to closing down all the nuclear power plants, it is essential to provide attractive 

conditions, including adequate infrastructure, incentives aimed at improving plant efficiency 

and/or reducing emissions, and a stable regulatory framework, so as to trigger investments in 

CCGT.  

Supporting this technology might not be the most environmentally friendly alternative and 

could imply higher costs for the system, and in turn, for consumers, but it seems to be the 

only alternative given the current strong legislation concerning water flows. Still, this 

technology is likely to face strong opposition from the population. Given the Swiss direct 

democracy system, the population can delay and potentially block any policy the government 

might want to implement; this is an additional source of uncertainty for investors. 

The population might also object to the expected tariff rise resulting from the support for 

renewable energies. Still, these potential additional costs might be justified in order to avoid a 

much more costly blackout. A 2008 study by the SFOE estimates the costs resulting from a 

blackout in Switzerland at between CHF 8 and 30 million/min. For a day-long power outage, 

the estimate is between CHF 12 and 42 billion (without including the damage to 

Switzerland’s reputation as a business location) (Credit Suisse, 2013). In comparison, our 

model assumes that the investment necessary to support VRES is of the order of CHF 105 
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billion.  The resulting price decrease s partially offsets the cost of these subsidies. Although 

total costs for consumers are higher in the scenario with incentives, policy maker should also 

consider that a scenario with FiTs leads to significantly lower dependency. 

Another issue affecting dependency is market integration and cross-border capacity 

expansion. Our results show that if imports transmission capacity is expanded, prices would 

decrease, but import dependency would increase further. These issues illustrate the complex 

problem that the policy makers face: incentivising green technologies to meet environmental 

commitments, without discouraging investments in other technologies, so as to limit imports 

dependency. 

Our model has several limitations. First, we assume that pumping will follow the same pattern 

as during the 2009-2013 period. However, changes in the generation-mix might affect this 

pattern: while higher price differences between peak and off-peak prices could enhance 

arbitrage opportunities and lead to more pumping, dismantling nuclear plants could 

significantly reduce the availability of cheap energy to pump. Another model boundary issue 

relates to the interaction with neighbouring markets. Our results are robust to realistic changes 

in German and Italian prices. However, since demand for exports from Switzerland is 

calibrated using historical data, our model can only partially capture the consequences of a 

significant expansion of cross-border transmission capacity.  
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Appendix A. Model description 

Below we provide a detailed description of the model explained in Section 2. A full list of the 

variables and parameters is presented in Table A1. 

A.1. Dynamics of capacity 

Installed capacity KT,t of each technology increases as new capacity comes online (EKT,t) and 

decreases through obsolescence (OKT,t). 

𝜕𝐾𝑇,𝑡

𝜕𝑡
= 𝐸𝐾𝑇,𝑡 − 𝑂𝐾𝑇,𝑡 (1) 

Obsolesce is defined as the aggregated obsolescence of old projects and new projects as 

shown in Eq. (3). Old projects are those installed before 2013 that remain installed at time t 

(OldKT,t). This capacity becomes obsolete depending on its lifespan (LT). We do not use a 

decommission schedule for old projects as we do not have specific information about when 

each plant will be decommissioned. Obsolescence of old projects, OldKT,t is defined as  

𝜕𝑂𝑙𝑑𝐾𝑇,𝑡

𝜕𝑡
=

𝑂𝑙𝑑𝐾𝑇,𝑡−1

𝐿𝑇
 (2) 

New projects correspond to the capacity coming online between 2014 and 2050 (EKT,t). These 

become obsolete at the end of their lifespan.  

𝑂𝐾𝑇,𝑡 =
𝑂𝑙𝑑𝐾𝑇,𝑡

𝐿𝑇
+ 𝐸𝐾𝑇,𝑡−𝐿𝑇

 (3) 

We consider specific obsolescence conditions for hydropower and nuclear energy. We assume 

that hydro-storage and run-of-river capacity do not become obsolete but are refurbished to 

remain online without important losses of efficiency. We also assume that nuclear is 

decommissioned according to a fixed schedule, represented by the variable OKT,t.  
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Capacity under construction (UKT,t) increases by capacity starting construction (CKT,t) and 

decreases by the projects that start operation (EKT,t). 

𝜕𝑈𝐾𝑇,𝑡

𝜕𝑡
= 𝐶𝐾𝑇,𝑡 − 𝐸𝐾𝑇,𝑡 (4) 

New capacity results from the projects that started construction (CKT,t) and come online after 

a delay equivalent to the construction time, ConsDT, which is technology-dependent.  

𝐸𝐾𝑇,𝑡 = 𝐶𝐾𝑇,𝑡−𝐶𝑜𝑛𝑠𝐷𝑇
 (5) 

A.2. Market clearing 

To compute the day-ahead auction for each hour of a representative day of each quarter, 

available supply and bid prices from producers are needed. Supply from producers comes 

from generation by the different technologies T considered and from imports. The latter might 

be of two types: long-term contracts (LTI) and balancing imports (BI). The availability of 

imports from LTI is exogenous based on the estimations of AES (2012). The availability of 

LTI and BI per hour is presented in Figure A1.  

 

Figure A1. Imports availability by type in BAU. Data for long-term import availability (ALTI,h,t) from AES 

(2012). 
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We thus estimate the availability of imports from balancing markets as the remaining 

available capacity from the cross-border capacity, which is assumed to be 7500 MW during 

the entire simulation.  

𝐴𝐵𝐼,ℎ,𝑡 = 7500 − 𝐴𝐿𝑇𝐼,ℎ,𝑡 (6) 

The available supply from local technologies (ST,h,t) depends on the availability factor (AT,h,t) 

of each technology during each hour h and on the installed capacity (KT,t).  

𝑆𝑇,ℎ,𝑡 = 𝐾𝑇,𝑡 × 𝐴𝑇,ℎ,𝑡 (7) 

Marginal costs of producers (MCj,h,t) do not depend on the hour of the day and equal their 

variable production costs (VCj,t), except for hydro-storage and balancing imports, as shown in 

Eq. (8). In the specific case of long-term import contracts, which refer to the contracts with 

French nuclear plants, we assume a price (marginal cost) of 35 CHF/MWh. 

MC𝑗,h,t = VC𝑗,t ∀𝑗 ≠ 𝐻𝑆, 𝐵𝐼 (8) 

The marginal cost for hydro-storage equals the hydro-storage reservation price, which will be 

explained in detail later (equations (14) – (17)). The marginal cost of balancing imports 

equals the weighted average price of the French and German spot markets (EPFrance,h and 

EPGermany,h) according to the 2012 and 2013 shares of hourly imports.  

𝑀𝐶𝐵𝐼,ℎ,𝑡 = 𝐹(𝐸𝑃𝐺𝑒𝑟𝑚𝑎𝑛𝑦,ℎ, 𝐸𝑃𝐹𝑟𝑎𝑛𝑐𝑒,ℎ) (9) 

Recall that we run our model from 2014 to 2050 with a quarterly step, i.e. 147 quarters. For 

each quarter we run the hourly dispatch of a representative day, i.e., we consider the 

representative hourly demand of each season. We thus assume that the 90 days of each quarter 

present the same pattern. The available supply of each producer (Sj,h,t) and their marginal costs 

(MCj,h,t) are used to build the supply curve for the hourly dispatch. We run a merit order 

dispatch according to producers’ marginal costs, which yields the quantity SDj,h,t dispatched 

by each producer. First we compute the local dispatch, i.e., supply from producers is 
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dispatched to cover local demand Dh,t, which includes the consumption from PSP. We assume 

Dh,t is totally inelastic. Local dispatch is solved as a basic costs minimisation problem as 

follows: 

𝑚𝑖𝑛
𝑆𝐷𝑗,ℎ,𝑡

∑ 𝑀𝐶𝑗,ℎ,𝑡𝑆𝐷𝑗,ℎ,𝑡

𝑗

    ∀ ℎ, 𝑡 

Subject to 

𝑆𝐷𝑗,ℎ,𝑡 ≤ 𝑆𝑗,ℎ,𝑡 

𝐷ℎ,𝑡 = ∑ 𝑆𝐷𝑗,ℎ,𝑡

𝑗

 

(10) 

The remaining supply (𝑆𝑅𝑗,ℎ,𝑡) is then available for exports. It will be used only if the prices 

in the countries that import from Switzerland exceed the marginal costs of this remaining 

supply. 

𝑆𝑅𝑗,ℎ,𝑡 = 𝑆𝑗,ℎ,𝑡 − 𝑆𝐷𝑗,ℎ,𝑡 (11) 

Similar to the dispatch to cover national consumption, we compute a merit order dispatch for 

exports. However, unlike the national demand, which is inelastic, exports depend on the 

neighbouring countries’ demand for imports from Switzerland (DEc,h,t) and their willingness 

to pay. The former is an exogenous variable and is estimated based on historical data between 

2009 and 2013. The latter equals the hourly prices in each country c (Italy, Germany and 

France), EPc,h,t. Exports from producers to each country (ESj,c,h,t) are calculated by solving a 

welfare maximisation problem, which allows calculating the clearing price Ph,t. 

𝑚𝑎𝑥
𝑃ℎ,𝑡,𝐸𝑆𝑗,𝑐,ℎ,𝑡

∑(𝐸𝑃𝑐,ℎ,𝑡 − 𝑃ℎ,𝑡) × 𝐸𝑆𝑗,𝑐,ℎ,𝑡

𝑇,𝑐

− (𝑃ℎ,𝑡 − 𝑀𝐶𝑗,ℎ,𝑡) × 𝐸𝑆𝑗,𝑐,ℎ,𝑡    ∀ ℎ, 𝑡 

Subject to 

(12) 
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∑ 𝐸𝑆𝑗,𝑐,ℎ,𝑡

𝑐

≤ 𝑆𝑅𝑗,ℎ,𝑡 

∑ 𝐸𝑆𝑗,𝑐,ℎ,𝑡

𝑗

≤ 𝐷𝐸𝑐,ℎ,𝑡 

In the extreme case when the hourly supply (including imports) is lower than the national 

demand, the price would equal the VOLL, which is assumed to be 3000 CHF/MWh. 

Then, the total quantity supplied (𝑄𝑗,ℎ,𝑡) by each producer in a quarter is calculated as follows, 

assuming 90 days per quarter. 

𝑄𝑗,𝑡 = [∑(𝑆𝐷𝑗,ℎ,𝑡 + 𝐸𝑆𝑗,ℎ,𝑡)

ℎ

] × 90 (13) 

In the case of hydro-storage, the modelling is slightly different to that of other technologies as 

availability depends on reservoir level; the marginal cost reflects the water opportunity cost. 

This is modelled as a function of the forecasted maximum reservoir level (FRLt) as well as of 

the substitutes’ price, as presented in Figure A2. The parameters R1, R2, R3 and R4 are 

estimated during model calibration. OHS equals the variable production costs of HS (VCHS,t), 

Vmax and Vmin are respectively the maximum and minimum prices of substitutes (CCGT, 

TH, LTI and BI), and Vsca is the scarcity price (assumed to be 500 CHF/MWh). The scarcity 

price was also estimated during model calibration. This way of modelling hydro-storage 

reservation prices is proposed by van Ackere and Ochoa (2010) and Ochoa and van Ackere 

(2015), and allows modelling the strategic management of water reservoirs, which is crucial 

in countries highly dependent on hydro-storage.  
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Figure A2. Modelling of hydro-storage reservation prices.  

The variable FRLt captures the expected excess or shortage of water in a quarter. This is 

calculated in Eq. (14) considering the current amount of water in the reservoir (Wt), the water 

inflow It (inflow from natural stream flows and from pumping) and the reservoir capacity (Rt).  

𝐹𝑅𝐿𝑡 =
𝑊𝑡 + 𝐼𝑡

𝑅𝑡
 (14) 

The reservoir capacity (Rt) and the natural inflow evolve proportionally to the increase of 

hydro-storage generation capacity as presented in Eq. (15). Likewise, the amount of water 

pumped is adjusted by the increase of pumping capacity.  

𝑅𝑡 = 𝑅𝑡0

𝐾𝐻𝑆,𝑡

𝐾𝐻𝑆,𝑡0
 (15) 

The stock of water in the reservoir varies from one quarter to another according to hydro-

storage production, the water inflow and the spillages (Spillt): 

𝜕𝑊𝑡

𝜕𝑡
= 𝐼𝑡 − 𝑄𝐻𝑆,𝑡 − 𝑆𝑝𝑖𝑙𝑙𝑡 (16) 

Spillages only occur if the stock of water at the end of the quarter exceeds the reservoir 

capacity. 
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𝑆𝑝𝑖𝑙𝑙𝑡 = 𝑀𝑎𝑥(0, 𝑅𝑡 + 𝐼𝑡 − 𝑄𝐻𝑆,𝑡) (17) 

A.3. Investments decisions 

To make investment decisions, each technology calculates its expected profits.  These depend 

on the future capacity and the resulting dispatch. Future capacity (FKn,t) equals all the 

capacity already commissioned (i.e., installed capacity (Kn,t) and capacity under construction 

(UKn,t)), minus capacity that will not be available in 5 years (the maximum time for a plant to 

come online) because of obsolescence (OK
*

n,t):  

𝐹𝐾𝑛,𝑡 = 𝐾𝑛,𝑡 + 𝑈𝐾𝑛,𝑡 − 𝑂𝐾𝑛,𝑡
∗  (18) 

Each technology T needs to calculate the future capacity of other technologies and its own 

future capacity under different capacity investment assumption, i.e., each technology T 

considers it is the only technology that expands. In other words, when evaluating their 

expected profitability, a technology T considers already planned expansion of others 

technologies but not further expansions.  This is a realistic assumption as each technology T 

has incomplete and imperfect information about the others, i.e., they know what is currently 

under construction but they cannot know the investment decisions of competitors in real time. 

Hence, the forecast of future installed capacity of technology n made by technology T, 

assuming a capacity investment size e (FKE
T

n,e,t), considers the capacity already 

commissioned (FKn,t) and the expansion being considered (En,e,t).  

𝐹𝐾𝐸𝑛,𝑒,𝑡
𝑇 = {

𝐹𝐾𝑛,𝑡 + 𝐸𝑛,𝑒,𝑡   𝑖𝑓 𝑇 = 𝑛

𝐹𝐾𝑛,𝑡                  𝑖𝑓 𝑇 ≠ 𝑛
 

 

(19) 

For each technology T we define a maximum quarterly capacity expansion (MaxCKT). Then, 

to calculate En,e,t we define 10 sizes, ranging from 10% to 100% of MaxCKT.  
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𝐸𝑛,𝑒.𝑡 = 𝑒 (
𝑀𝑎𝑥𝐶𝐾𝑛

10
) (20) 

For instance, investments in CCGT vary between 60 and 600 MW. Considering more than 10 

expansion sizes could increase significantly the computing time without affecting results. 

Considering different size alternatives is important as, for instance, the minimum size of a 

CCGT plant is 60 MW. This allows us to include these technical constraints and capture the 

potential effects of the discrete nature of investments.  

When computing the dispatch, imports availability and demand 5 years hence are considered. 

Each technology T calculates the average price it would receive when expanding (P
T

e,t). The 

resulting price is compared to the levelised cost (LCOE
T

e,t) in order to calculate the expected 

profitability. 

𝑋𝑒,𝑡
𝑇 =

𝑃𝑒,𝑡
𝑇

𝐿𝐶𝑂𝐸𝑒,𝑡
𝑇 − 1 (21) 

The LCOE
T

e,t is calculated in Eq. (22) by each technology T using its annualized capital costs 

(KCT,t), annual fixed costs (FCT,t), variable production costs (VCT,t) and resulting load factor 

(ELF
T

e,t) when expanding En,e,t. The latter is used to calculate the annualized capital costs and 

the annual fixed costs per unit of electricity expected to be produced.  

𝐿𝐶𝑂𝐸𝑒,𝑡
𝑇 =

𝐾𝐶𝑇,𝑒,𝑡 + 𝐹𝐶𝑇,𝑡

𝐸𝐿𝐹𝑒,𝑡
𝑇 × 24 × 360

+ 𝑉𝐶𝑇,𝑡 

(24 × 360 are the number of hours in a year) 

(22) 

Finally, the largest profitable investment size is selected. 

𝐶𝐾𝑇,𝑡 = 𝑀𝑎𝑥(𝐸𝑇,𝑒.𝑡 × 𝑊𝑒,𝑡
𝑇 ), (23) 

where W
T

e,t is defined as: 

𝑊𝑒,𝑡
𝑇 = {

1,               𝑖𝑓 𝑋𝑒,𝑡
𝑇 > 0

0, 𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒
 (24) 



Security of Supply in the Electricity Sector: The Case of Switzerland 

184 

 

 

Some exogenous variables such as natural water inflows, pumping, hourly demand, hourly 

prices for exports and imports, and PV and wind availability factors have seasonal (quarterly) 

patterns. The value thus depends on the season, which is modelled for each quarter t. For 

instance, the availability factor of PV (APV,h,t) equals APV,h,s, where s equals 𝑚𝑜𝑑(𝑡, 4) (see 

Figure A3). Availability factors of PV and wind energy are estimated from diurnal German 

power courses of presented in Fraunhoffer ISE (2013) and adjusted using the annual average 

values for Switzerland presented in Kannan and Turton (2012). 

 

Figure A3. Seasonal availability factor of PV.  

Table A1. Model variables and sub-indexes. 

Sub-indexes 

t Time (0,… 147) [quarters] 

T, n Technology (Hydro-storage [HS], run-of-river [RR], nuclear [NUC], 

Combined cycle gas turbine [CCGT], photovoltaic [PV], wind energy [WI], 

other thermal [TH]) 

j Producers: these include the different technologies (HS, RR, NUC, CCGT, 
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PV, WI, TH) and imports (long term import contracts [LTI] and balancing 

imports [BI]) 

h Hour of the day (1,… 24) 

s Season (Winter [s=0], Spring [s=1], Summer [s=2], Autumn [s=3]) 

c Countries to where electricity is exported (France, Germany and Italy) 

e Possible capacity investments sizes (1,… 10), with 1 being the smallest and 

10 the largest 

Parameters 

LT Lifespan of technology T (quarters) 

EPc,h Maximum price paid by each country c to where export go at hour h 

(CHF/MWh) 

Variables  

KT,t Installed capacity of technology T (MW) 

EKT,t New capacity of technology T coming online (MW/quarter) 

OKT,t Obsolescence of capacity of technology T (MW/quarter) 

CKT,t Construction start of capacity of technology T (MW/quarter) 

UKT,t Capacity under construction of technology T (MW) 

ConsDT Construction delay of technology T (quarters) 

OldKT,t Capacity of technology T that was installed before 2013 and remains 

available at time t (MW) 

AT,h,t Availability factor of technology T at hour h (%) 

Sj,h,t Available supply from producer j at hour h (MWh) 

MCj,h,t Marginal costs of producer j at hour h, i.e., price at which each producer 

bids in the day-ahead auction (CHF/MWh) 
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VCj,t Variable production costs of producers j (CHF/MWh) 

Dh,t Hourly national demand (MWh) 

SDj,h,t Supply dispatched from producer j during hour h in the Swiss market 

(MWh) 

SRj,h,t Remaining available supply from producer j during hour h after national 

dispatch, i.e., supply available for exports (MWh) 

DEc,h,t Demand for imports from Switzerland by country c during hour h (MWh) 

ESj,c,h,t Supply from producer j exported to country c during hour h (MWh) 

Qj,t Total supply from producer j in a quarter t (MWh) 

RLt Reservoir level (%) 

FRLt Forecasted reservoir level before production (%) 

Wt Stock of water in the reservoir (MWh) 

It Water inflow to reservoirs (MWh/quarter) 

Rt Reservoir capacity (MWh) 

Spillt Water spillages (MWh) 

FKT,t Future capacity of technology T (in t+20 [5 years]) 

FKE
T

n,e,t Forecast of future installed capacity (in t+20 [5 years]) of technologies n 

made by technology T, assuming a capacity investment size e (MW) 

OK
*

T,t Obsolete capacity of technology T over the next 5 years (MW) 

P
T

e,t Expected price to be received by technology T assuming a capacity 

investment of size e (CHF/MWh) 

En,e,t Capacity expansion of technology n assumed, assuming a capacity 

investment of size e (MW) 

X
T

e,t Expected profitability of technology T assuming a capacity investment of 

size e (%) 
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LCOE
T

e,t Levelised cost of electricity expected by a technology T assuming a capacity 

investment of size e (CHF/MWh) 

KCT,t Annualised capital costs of technology T (CHF/MW) 

FCT,t Fixed annual costs of technology T (CHF/MW) 

ELF
T

e,t Expected load factor of technology T assuming a capacity investment of size 

e (MWh/MW) 

W
T

e,t Binary variable for expected profitability of technology T assuming a 

capacity investment of size e 

 

Appendix B. Description of generation capacity adequacy metrics 

B.1. De-rated margin 

De-rating factors are used to calculate the de-rated capacity, which is the amount of capacity 

that is available to meet the annual demand peak. The de-rated margin is calculated as the 

margin between peak demand and de-rated capacity. Since the demand peak in Switzerland 

occurs in the winter evening, the de-rating factor of PV is 0% (see Table B1). The de-rating 

factor of hydro-storage is significantly higher than its annual availability factor, because water 

can be saved to meet peak demand. We did not find any estimate for Switzerland; we 

therefore use the factor calculated for the UK (Poyry, 2012a). The de-rating factors for the 

remaining technologies equal their availability factor in winter.  

Table B1. De-rated factors for the technologies considered (AES, 2012; Poyry, 2012b). 

Technologies De-rating factors 

Hydro Storage 84% 

Run-of-the-River 34% 
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Technologies De-rating factors 

Nuclear 89% 

CCGT  92% 

Photovoltaic  0% 

Wind energy 24% 

Other thermal 51% 

B.2. Annual energy margin 

We first calculate the demand that remains unmet after subtracting the total production of 

non-hydro-storage technologies for each season s at each hour h (Eq. (25)). As explained 

before, hydro-storage is the only technology t whose production can be shifted from one hour 

to another because of storability. If aggregated production of other technologies is higher than 

demand at certain time, this excess cannot be used at another moment unless it is pumped (Eq. 

(26))9. The additional energy available resulting from pumping is constrained by the pumping 

capacity (KPSP) and efficiency (ρ) (Eq. (27)).  The aggregated annual unmet demand can only 

be covered by hydro-storage, whose annual availability depends on the aggregated natural 

inflows (per season) plus those from pumping. The annual excess energy is calculated as the 

difference between hydro availability and annual unmet demand. The ratio between excess 

energy and the domestic demand is used to estimate the annual energy margin (Eq. (28)). A 

low margin points to an adequacy problem.  

𝑈𝑛𝑚𝑒𝑡_𝑑𝑒𝑚𝑎𝑛𝑑𝑠ℎ = max (0, 𝐷𝑒𝑚𝑎𝑛𝑑𝑠ℎ − ∑ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑡

𝑡≠𝐻𝑆

) 
(25) 

 

                                                           
9
 This approach could be extended to other storage technologies. 



From nuclear phase-out to renewable energies in the Swiss electricity market 

189 

 

𝑆𝑡𝑜𝑟𝑎𝑏𝑙𝑒_𝑒𝑥𝑐𝑒𝑠𝑠𝑠ℎ = max (0, ∑ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑡

𝑡≠𝐻𝑆

− 𝐷𝑒𝑚𝑎𝑛𝑑𝑠ℎ) (26) 

𝐴𝑣𝑎𝑖𝑙_𝑝𝑢𝑚𝑝𝑖𝑛𝑔𝑠ℎ = min(KPSP, 𝑆𝑡𝑜𝑟𝑎𝑏𝑙𝑒_𝑒𝑥𝑐𝑒𝑠𝑠𝑠ℎ) × ρ (27) 

𝐸𝑛𝑒𝑟𝑔𝑦_𝑚𝑎𝑟𝑔𝑖𝑛 =
∑ 𝐼𝑛𝑓𝑙𝑜𝑤𝑠𝑠 + 𝐴𝑣𝑎𝑖𝑙_𝑝𝑢𝑚𝑝𝑖𝑛𝑔𝑠ℎ − 𝑈𝑛𝑚𝑒𝑡_𝑑𝑒𝑚𝑎𝑛𝑑𝑠ℎ𝑠ℎ

∑ 𝐷𝑒𝑚𝑎𝑛𝑑𝑠ℎ𝑠ℎ
 (28) 
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Abstract 

Over the past decade Switzerland has invested significantly in pumped storage plants (PSP). 

They aim to exploit arbitrage opportunities by pumping water from a lower reservoir to an 

upper reservoir to store electricity in the form of hydraulic potential energy when prices are 

low and generating when prices are high. The changing generation-mix in Switzerland 

threatens these arbitrage opportunities in the long-term. To study this, we develop a heuristic 

to endogenise PSP bidding decisions, and integrate it in [1]’s simulation model of the Swiss 

electricity market. Our results show that initially the increase of photovoltaic capacity 

encourages pumping, but the nuclear phase-out and the expiration of long-term import 

contracts significantly decrease the available energy, leading to a decline in pumping. 

Although those changes in the capacity-mix increase the difference between peak and off-

peak prices significantly, PSP are unable to exploit these because of the low availability of 

cheap energy to pump. This situation severely limits arbitrage opportunities in the long-term. 

We conclude that large scale arbitrage requires the availability of cheap excess energy. This 

can be achieved either by demand management or by supporting base load technologies.  
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1. Introduction 

Storage has recently gained major attention given the need to integrate non-dispatchable 

renewable energies (NDRES) into electricity systems. Unlike other energy sources, electricity 

demand needs to match power load in real time. Generation thus must adapt to the demand’s 

daily and seasonal patterns. Historically, hydro-storage power plants have been used to cope 

with load and demand variations. While the largest allow storing water from one season to 

another, the smaller ones are useful to manage within-day load variations. These plants also 

provide flexibility to the system, i.e., they can adjust their supply in the very short term 

(minutes), contrary to base-load technologies.  

Operability of conventional hydro-storage plants is nonetheless subject to the availability of 

water from natural inflows. The integration of pumping systems allows enhancing the 

utilisation of these plants as they can absorb excess energy by pumping water from a lower 

reservoir to an upper reservoir to store electric energy in the form of hydraulic potential 

energy. This was of paramount importance for integrating nuclear plants into electricity 

systems as these cannot modify their output to follow demand in the short-term [2]. 

Worldwide, the largest contingent of pumped-storage plants (PSP) was built in the 1970s, in 

parallel with the development of nuclear energy, following the significant increase in oil and 

gas prices, and the resulting concerns about security of supply (SoS). In those days, the 

energy-mix composition led to highly correlated price and demand patterns. This, together 

with the existence of excess base-load supply allowed PSP not only to balance the load but 

also to play an arbitrage role in the system by pumping when prices and demand were low 
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(off-peak) and producing when they were high (peak). Arbitrage opportunities depend on 

price differences and the cycle performance (ratio between energy produced and energy 

consumed, 75% to 80%) [3]. 

Pumped hydroelectric energy storage is currently by far the most widely used technology for 

large-scale energy storage (>100 MW) [4,5]. Very specific site conditions are needed to 

ensure the technical feasibility of a PSP project; these include high head, favourable 

topography, good geotechnical conditions, access to the electricity transmission network, and 

water availability. Switzerland’s topography and the expansion of nuclear power have 

favoured the development of the pumping business. In the 1990s few facilities were built due 

to the saturation of available locations and limited nuclear development, but with electricity 

markets across Europe being increasingly interconnected, Switzerland has over the past 

decade aimed to exploit its hydro potential to become the electricity hub of Europe: major 

investments in PSP will more than double their capacity (from 1560 MW to 3716 MW) by 

2018. 

However, electricity markets have evolved since those decisions were taken. Not only have 

electricity prices dropped across Europe, but daily price patterns have changed significantly: 

peak prices are lower and their time of occurrence is increasingly variable [6]. These elements 

threaten the profitability of both conventional hydro-storage and PSP. Additionally, three 

major changes are expected to impact PSP operation: the government’s decision to 

decommission all nuclear plants in the medium-term, the expiration of long-term contracts 

(cheap off-peak imports) and the expected larger penetration of PV. While the first two will 

considerably reduce the availability of energy to pump, the impact of the increasing share of 

PV remains unknown. Large amounts of PV could provide cheap energy for PSP to pump, but 

they simultaneously decrease the difference between peak and off-peak prices. Therefore, the 
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interaction of these three elements is expected to affect PSP operation and their economic 

viability.   

In this paper we study the future of PSP arbitrage opportunities in Switzerland and identify 

under what conditions these could be enhanced. We build on [1], who develop a system 

dynamics (SD) model calibrated for the Swiss market. We endogenise PSP decisions 

regarding volumes and timing of pumping and generation. This is essential to capture how the 

changes in the energy-mix of the Swiss electricity market affect the operation of PSP.  

Pumping and generating generally follow a daily cycle, but weekly and seasonal cycles occur 

for larger PSP. This load-shifting puts upward pressure on off-peak prices and downward 

pressure on peak prices, thus decreasing price differences [7]. Although this can stabilise 

prices over time [8], flatter prices affect PSP’s business. There thus is a natural limit to PSP 

operation; because the value of energy storage decreases as storage capacity increases. This 

counterproductive effect of expansion is similar to the problem faced by investors in new 

transmission: these power lines alleviate congestion, eliminating the congestion rents that 

were expected to finance them. Consequently, PSP overcapacity would prevent these plants 

from recovering the capital costs if their main source of income was energy arbitrage [9]. 

Large scale PSP might thus need incentives that provide financial support and a more stable 

income [10].  

Besides the impact of PSP’s price-smoothing on its own profitability, PSP affect the whole 

market: they allow a more efficient utilisation of resources, avoiding expensive peak 

generators. This can lead to large net increases in consumer surplus, as shown by [7] for the 

PJM market. PSP can also reduce needs for grid expansion as storage can relieve grid 

congestion [7,11]. But in less competitive markets large producers could use PSP to exercise 
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market power [12]. For instance, companies with both conventional thermal plants and PSP in 

their portfolio might want to underutilise their PSP to limit the price-smoothing effect [13].  

While our focus is on PSP’s role as merchant in the market, PSP also provide ancillary 

services. These are expected to gain in importance as NDRES, particularly wind energy, 

increase their penetration. This has indeed been the main motivation of most previous 

research [11,14–16]. By focusing only on their participation in electricity arbitrage regardless 

their load-levelling role through ancillary services, we provide a conservative estimate of PSP 

profitability. However, in Switzerland, we expect profits from ancillary services to be limited 

given the already large hydro-storage installed capacity, which provides enough flexibility 

and the limited potential of wind energy in Switzerland.  Consequently, the profitability of 

energy arbitrage in the long-term is essential for Swiss PSP.  

This paper is structured as follows: in Section 2 we present the main characteristics of the 

Swiss electricity market, in Section 3 describe the model and discuss its main assumptions. 

Then, we present the results of our model in Section 4. In Section 5 we discuss the policy 

implications. 

2. The Swiss electricity market 

As Figure 1 shows, electricity consumption in Switzerland has remained fairly stable since 

2000. Electricity is mainly generated by nuclear (38%) and hydropower (57%). About 60% of 

hydropower generation comes from hydro-storage and the remaining from run-of river plants. 

The former have an aggregated storage capacity of 8.8 TWh, i.e., approximately 15% of 

demand. The remaining local production is generated by other sources such as cogeneration 

plants.  
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Figure 1. Generation by type of source and consumption in Switzerland since 2000. Data from [17]. 

After the Fukushima accident in March 2011, the Swiss Federal Council announced the 

phase-out of nuclear plants after 50 years of operation, i.e., between 2019 and 2034 [18]. This 

was a major commitment because nuclear capacity equalled 3,278 MW in December 2013, 

accounting for 18% of total capacity and 40% of generation. There is currently a heated 

debate about the future of nuclear energy in the country and only the decommissioning of 

Mühleberg is certain (373 MW in 2019). The parliament is currently considering an extension 

of at least 10 years for the remaining nuclear plants.  

Although non-hydro renewable energy production currently represents less than 1%, this 

might change in the medium-term. Switzerland is strongly encouraging investments in 

renewable energies so as to enhance SoS by diversifying the production sources. Efforts were 

significantly stepped up when the country decided to phase out nuclear power, to avoid 

replacing this capacity with polluting sources, e.g., CCGT. For instance, both PV and wind 

energy receive a compensatory feed-in remuneration (CFR) of up to 250 CHF/MWh during 
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2009 and 2013, from 79 MW to 756 MW [17], while wind energy has only increased from 18 

to 69 MW over the same period. This is due to the larger estimated potential of the former (18 

vs. 4 TWh/year [20]) and the opposition from local communities to wind projects, i.e., 

NIMBY phenomena [21]. 

Historically Switzerland has been a net exporter (Figure 1) and the country plays an important 

role in European interconnection. The following numbers illustrate the magnitude of 

electricity flows to and from Switzerland: around 10% of EU-28 exports transit through 

Switzerland, while Swiss consumption is equivalent to 2% of these countries’ final 

consumption [17,22]. These flows generate a surplus for local generators due to the difference 

between export and import prices. For instance, in 2014 exports exceeded imports by 5,389 

GWh, generating a profit of CHF 442 million [17]. In 2011, despite imports exceeding 

exports by 2,587 GWh, net revenues were even higher (CHF 1,018 millions). PSP typically 

use cheap off-peak electricity from France and generate at peak hours to export to Italy.  

As shown in Figure 2, most pumping capacity started operating between the 1960s and the 

1980s, following the development of nuclear power: the entire current capacity, 3,278 MW, 

was installed in that period. Generation capacity of PSP has followed a similar development. 

But recently, major investments have been undertaken: 140 MW were installed in 2010 and 

three large projects are currently under construction (see Table 1). These will increase 

pumping capacity by 2,156 MW and generation capacity by 2,140 MW. At the end of 2013, 

total hydro-storage generation capacity equalled 9,920 MW, and PSP had a pumping and 

generation capacity of 1,561 MW and 1,977 MW, respectively10, which allowed them to 

generate about 1.7 TWh that year [23]. This expansion represents respectively a 20% and 

138% increase in generation and pumping capacity.  

                                                           
10

 Only pure and mixed pumped-storage plants are considered. Generation capacity from adjacent plants, using 

the same reservoirs is not considered. 
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Figure 2. Evolution of pumping capacity in Switzerland. Data from [23]. 

The next section presents the methodology used to model the Swiss electricity market and, 

particularly, PSP decisions.  
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Table 1. PSP under construction. Information from [23–25] 

Plants Generation / 

Pumping 

Capacity (MW) 

Published cost 

(million CHF) 

Project developer Construction 

start 

Starting date 

(first published 

date) 

Nant de Drance 900/900 1,900  Nant de Drance SA (Alpiq 39%, CFF 36%, IWB 

15% and FMV 10%) 

2008 2018 (2014) 

Limmern* 1,000/1,000 2,100 Linth-Limmern AG (Canton of Glarus 15% and 

Axpo 85%) 

2009 2016 (2015) 

Veyteaux 

(extension) 

240/256 331 Forces Motrices Hongrin-Léman (Romande 

Energie 41.13%, Alpiq 39,31%, Groupe E 13.13% 

and the municipality of Lausanne 6.43%) 

2011 2015 (2014) 

CHF: Swiss francs. Average exchange rate in 2015: 1.07 CHF = 1 EUR 

*The cost of Limmern includes the costs of additional facilities such as the expansion of two plants in Tierfehd, where a 140 MW pumped/turbine was installed and already 

commissioned. 
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3. Methods 

System dynamics (SD) is a simulation methodology that has been widely used over the past 

20 years to study electricity systems due to its ability to capture the long-time delays and the 

feedback mechanisms in this industry [26]. Also, unlike traditional economic equilibrium 

models, SD adequately address the issues faced by recently liberalised industries [27]. Among 

the seminal papers addressing the consequences of liberalisation in investments, we find [28] 

and [29]. A survey of SD models of energy systems can be found in [30]. [1] propose an SD 

model of the Swiss electricity market to gain understanding of long-term SoS. Here we extend 

this model in order to endogenise pumping decisions. We next present a brief description of 

the [1]’s model, before explaining how PSP strategic decisions are simulated. The model is 

divided into three modules. The first two, investment decisions and market operation, are 

based on [1] and are summarised in Section 3.1. The third module, the simulation of PSP 

decisions, is explained in Section 3.2. Section 3.3 gives the main assumptions of the model.  

3.1. Investments and market operation 

In [1], investments are made in each technology according to expected profitability. Capacity 

construction is thus encouraged by high profits, which increases the future supply. A higher 

expected supply increases the expected reserve margin. As electricity prices reflect the 

scarcity of supply, a higher reserve margin leads to lower prices and, in turn, to lower 

expected profits.  

As NDRES’ marginal costs are very close to zero, a larger share of these technologies leads to 

lower prices and a lower residual demand. This implies lower revenues for the other 

technologies, discouraging new investments, except for NDRES, which are typically 

subsidised by feed-in tariffs (FiTs). These are expected to cover all the plant’s costs and are 

allocated regardless of the market price. Therefore, prices do not affect the expected profits of 
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those plants, so investments in NDRES are not subject to market dynamics. There is thus a 

distortion in investments, which is captured by the model.   

Installed capacity defines the available supply, while total demand results from the local 

demand and the net flow of electricity exchange. Since the market is cleared by merit order 

dispatch, higher total demand leads to higher prices. The wholesale price is compared to the 

price abroad to determine whether the country will import or export. Next, we explain the 

heuristic used for simulating the pumping/generation decisions. 

3.2. PSP arbitrage 

We only consider PSP operation as a merchant unit in the wholesale market, i.e., bidding and 

buying in the day-ahead market. Hence, we assume that PSP do not pump and generate at the 

same time; this would not be profitable taking into account the efficiency losses. As our 

analysis is based on a long-term model, the impact of NDRES on grid stability (very short-

term) is beyond the scope of this paper.  

PSP profit from arbitrage opportunities by pumping typically at off-peak hours (buying 

energy at low prices) and using this energy to generate at peak hours (expecting to receive 

high prices). We assume a daily cycle for PSP. Before the ‘green revolution’ of NDRES, 

planning was easy as were highly predictable daily price patterns. Currently, these patterns 

change from day to day and peak prices are less and less correlated with peak demand. This 

justifies the need to endogenise pumping decisions in the model. The process used to make 

this strategic decision is described in the flow diagram presented in Figure 3. A detailed 

description of the heuristic is given in Appendix.  
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Figure 3. Flow diagram of arbitrage heuristic. 

We assume PSP have perfect information about other technologies’ bid prices and bid-offers. 

PSP thus assess a “pre-dispatch”, which allows them to calculate the volumes of allocated and 

unallocated supply of each technology. Figure 4 shows a numerical example of a daily “pre-

dispatch”, which consists of the aggregation of hourly bids according to their bid price. The 

stacked bars in Figure 4 correspond to the bids, with the cheapest at the bottom and the most 

expensive ones at the top, so as to represent a merit order dispatch. Different fill pattern are 

used to illustrate the prices at which these volumes are bid. The areas below (black) and 

above (green) demand correspond respectively to the allocated and unallocated volumes.  

Then, we aggregate the hourly allocated volumes (those below the demand in black in Figure 

4) on a daily basis according to their prices. This allows defining what we call the daily curve 

of allocated energy (Ac in Figure 5), i.e., the amount of electricity to be dispatched at each 

price. This curve thus shows the volumes that can be displaced by PSP when bidding at a 
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certain price. For instance, a plant bidding at a price of $0 displaces all allocated volumes, 

while a plant bidding at a price of $20 displaces only those bidding at higher prices than $20. 

In Figure 5 we use linear functions to simplify the presentation. The negative slope indicates 

that few high-bid producers are “pre-dispatched”. 

 

Figure 4. Example of a daily pre-dispatch.  

Likewise, volumes of unused supply (above the demand curve, in green in Figure 4) are 

aggregated over a day so as to build the curve of unallocated energy (Uc in Figure 5), i.e., the 

amount of electricity that could be bought by PSP at different purchase prices for pumping. 

This curve has a positive slope, indicating that the higher the price PSP are willing to pay, the 

more energy they can pump. The amounts that can effectively be pumped each hour are 

constrained by the pumping capacity. These amounts are multiplied by the efficiency factor of 
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the pumps, to obtain the volumes of energy available after pumping. We assume an efficiency 

factor α of 80%.  

The price at which PSP buy energy to pump should not exceed 80% of that at which they bid 

in order to ensure profitability of operation. For instance, to buy 10 MWh at 80 CHF/MWh, a 

PSP must expect to sell the resulting 8 MWh of generation (after discounting losses) at a price 

above 100 CHF/MWh.  

Next we estimate the hourly volumes pumped for each day. To enable comparison of the two 

curves, we replace the purchase prices of the Unallocated curve by the equivalent bid price. 

Recall that Purchase price = α*Bid price, i.e., a bid price of 100 CHF/MWh requires a 

maximum purchase price of 80 CHF/MWh. The point at which both curves intersect thus 

gives the volume V* that PSP expect to allocate in the market in one day, as well as the bid 

price P* (the minimum price PSP expects to receive for the energy generated). The 

corresponding purchase price (the maximum price PSP is willing to pay for energy to pump), 

equals αP*, and the amount of energy that has to be pumped in one day is V*/α.  

 

Figure 5. Simplified representation of Allocated and Unallocated volumes. 
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Finally, we use the data from the “pre-dispatch” to identify the volumes from the Allocated 

curve that are displaced by PSP. This allows determining the PSP hourly bids. Likewise, we 

use the data from the “pre-dispatch” to identify the volumes from the Unallocated curve that 

provide PSP energy to pump, i.e., the hourly pumping. PSP’s hourly pumping and hourly bid-

offer are used to run the market dispatch. We do not consider any other additional cost for 

PSP when bidding. Our formulation ensures that PSP will always sell at prices at least 25% 

above their costs to guarantee that they recover the efficiency losses.  

A capacity-mix change impacts both curves, which in turn affects pumping. For instance, the 

replacement of a nuclear power plant by a more expensive unit leads to more expensive 

allocated energy. PSP bids at a certain price could displace a larger amount of generation, 

resulting in Ac to shift to the right. But the dismantling of a nuclear plant reduces the cheap 

unused energy, which results in Uc to also shift to the right. The net effect on pumping of 

such an event depends on the shape and slopes of the two curves. This highlights the 

complexity of analysing the effect of changes in the energy mix on PSP arbitrage 

opportunities, and the need to integrate the arbitrage heuristic into a dynamic model of the 

Swiss electricity market. 

3.3. Simulation setup 

The simulation runs from 2014 to 2050 with a quarterly time step. For each quarter (season) 

we consider a representative day with hourly demand curves and hourly availability factors 

for the different technologies, so as to capture the seasonal and hourly effects of production 

and demand. The eight technologies considered are: conventional hydro-storage (HS), run-of-

river (RR), nuclear power (NUC), wind energy (WI), photovoltaics (PV), combined cycle gas 

turbines (CCGT), conventional thermal (TH) and pumped-storage plants (PSP). Three 

additional sources are considered: long-term import contracts, short-term imports from France 



Security of Supply in the Electricity Sector: The Case of Switzerland 

210 

 

and Germany11 and short-term imports from Italy. Capturing seasonal and hourly patterns is 

important given the increasing role of PV and wind energy. To fit the Swiss hydrological 

pattern, seasons are defined as follows: January-March (winter), April-June (spring), July-

September (summer) and October-December (autumn). We run our simulation in Vensim ® 

DSS 6.3. 

We assume PSP bid separately from conventional hydro storage, yet both might use the same 

reservoirs and generation units. This implies a strict separation of the pumping business. 

Generation from pumped water is bid as explained in Section 3.2, while generation from 

natural inflows is bid at the water opportunity cost. Indeed, HS has three decisions to make: 

how to allocate water between this season and the next, how much to bid each hour and the 

prices at which to bid those volumes (water opportunity cost). The price at which they bid 

depends on the price of substitutes (other producers). 

The expansion potential of pumping capacity is limited by economic conditions and 

topographical suitability, among others. This potential has not been estimated, contrary to the 

expansion potential of overall hydropower generation (and the other technologies considered), 

which has been assessed by [20]. Since PSP potential is strictly linked to the expansion 

potential of hydropower generation, we assume that PSP capacity growth is proportional to 

the increase of hydro-storage generation capacity. Hence, in addition to the 2,156 MW of 

pumping capacity expansion projects under construction mentioned in Table 1, we assume 

that PSP capacity increases proportionally to HS generation capacity expansion. To simulate 

investments in hydro-storage, we assess the aggregated profitability of HS and PSP. 

Exogenous expansion is assumed for PV and wind energy during the first 20 years of the 

simulation as we hypothesise that the country will keep FiTs so as to achieve the 2035 

                                                           
11

 We aggregate export capacity of the two countries to Switzerland as some of those exports transit through the 

other country and their prices tend to converge. 
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NDRES production target set by the government. Expansion of these technologies is assumed 

to be 13,600 MW for PV and 845 MW for wind. Endogenous expansion is assumed 

afterwards, while for the other technologies endogenous expansion is assumed during the 

entire simulation period.  

In our base case scenario (BAU) we assume what currently seems to be the most likely 

scenario for nuclear power: Muhleberg being decommissioned in 2019 and the others plants12 

being decommissioned after 60 years of operation. We also assume that hydro projects 

currently under construction will come online at their scheduled start of operation [23].  

4. Results  

We analyse the impact of different policies on the economic viability of PSP arbitrage and 

identify conditions under which arbitrage opportunities are enhanced. The business as usual 

(BAU) capacity-mix is as discussed in [1].  

A threatening future for PSP 

Changes in the availability of energy sources resulting mainly from nuclear plant 

decommissioning, expiration of long-term contracts and PV deployment affect pumping 

patterns. Figure 6 shows how long-term contracts progressively expire by 2040, while last 

nuclear plant closes down in 2044. PV increases to a maximum of 14,000 MW by 2035, and 

then starts decreasing as a consequence of the discontinuation of FiTs. Recall that we consider 

that FiTs are not renewed after 2035; therefore investments after this date are endogenous.  

We assume that capital costs for PV decrease from 3,300 CHF/MW in 2015 to 1,500 

CHF/MW in 2050 [31]. Despite this decrease, investments in PV are not profitable under 

market conditions. Consequently, in the absence of subsidies, PV capacity will decrease after 

                                                           
12

 Beznau I and II (365 MW each) in 2029 and 2032, respectively; Gösgen (985 MW) in 2039 and Leibstadt 

(1190 MW) in 2044. 
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2035 due to obsolescence after the assumed lifetime of 20 years. Current government policies 

aim at encouraging PV in the middle term seeking to achieve the 2035 target, but longer-term 

support remains uncertain. However, if large PV capacity becomes obsolete and market prices 

are inadequate to trigger their replacement, the government is likely to intervene.  

One of the main reasons to encourage investments in NDRES is the nuclear phase-out. Even 

if the 2035 PV objective is achieved, this will not be sufficient to replace the nuclear power 

and expiring long term contracts. While the annual availability factors of those long-term 

imports and nuclear power are up to 90%, PV’s is only 13%. However, the PV availability 

factor at noon in summer reaches 50%. 

 

Figure 6. Evolution of PV and nuclear capacity, and long-term contracts availability. 

Changes in capacity-mix affect the difference between peak and off-peak prices and the 

amount of cheap energy available for pumping. We present the 10
th

 and 90
th

 percentiles (P10 

and P90) of prices, respectively in Figure 7(a) and (b). According to our results, the average 

cost of energy pumped by PSP is below the 20
th

 percentile of prices, while the average price 

received by PSP is above the 80
th

 percentile. We thus use P10 as a reference for the price of 

“cheap energy” and P90 as reference for the revenues of PSP. Figure 7(c) shows the 

difference between the P90 and P10 for each quarter. We work on a quarterly basis with a 
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representative day for each one. PSP patterns vary across seasons. Hence, we need to look at 

the differences between peak and off-peak prices on a quarterly basis. As shown in Figure 

7(a) and (b), both these percentiles have and increasing trend. Therefore, sudden increases or 

drops in Figure 7 (c) are caused respectively by large increases of P90 or P10. For instance, 

the complete decommissioning of nuclear leads to a significant increase of P10 in the summer 

of 2044 and consequent decrease in the difference between P90 and P10.  

 

 

Figure 7. Simulated prices. (a) 10th percentile (P10) of prices per season. (b) 90th percentile (P90) of prices per season. 

(c) Difference between P90 and P10.  

The cheap energy available for pumping in a given year can be approximated by the 

aggregation of seasonal volumes of energy available after meeting local demand and exports, 

at a price equivalent to the 10
th

 percentile (see Figure 8). Note that large drops in cheap 

energy volumes occur when long-term contracts expire, e.g., in 2015 and 2040, and when 
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nuclear plants are decommissioned, e.g., in 2019. Cheap excess energy remains fairly stable 

until 2034. After this date cheap excess energy availability decreases rapidly because of the 

expiration of long-term import contracts equalling 1 GW/hour, the dismantling of Gösgen (the 

fourth decommissioned plant) in 2039 and the increasing obsolescence of PV panels. By 2050 

cheap excess energy is only a quarter of its 2014 value. 

 

Figure 8. Excess energy available at P10.  

The evolution of the generation-mix thus triggers significant changes in pumping patterns. 

We can distinguish two periods in the pumping behaviour: before and after 2020. As Figure 9 

shows, pumping exhibits a first peak in 2017 at 1,925 GWh. This increase results from the 

expansion of PSP pumping and generation capacity from 1,560 MW in 2013 to 3,716 MW by 

2017. This allows PSP to pump more as pumping capacity was fully used at certain hours 

before the expansion. In 2019, the first nuclear plant decommissioning reduces excess energy, 

which decreases pumping.  

In the second period (2021-2050) pumping increases to a maximum of 2,258 GWh in 2034 

and then decreases rapidly. Pumping is particularly high in the period 2026-2034 due to the 

following factors. First, the decommissioning of Beznau I and II increase the difference 

between peak and off-peak prices, especially in autumn. Note in Figure 9 pumping increases 

significantly in that season. Second, new PV capacity partially fills the gap left by contract 
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expirations and decomissionings, keeping excess energy at around 900 GWh. PV thus 

provides excess energy to PSP. Hence, there is a joint effect of nuclear decommissioning and 

PV expansion before 2034. 

Note that the impact of the first decommissioning (373 MW in 2019) has an opposite impact 

compared to the second and third decommissionings (730 MW in 2029 and 2033). In the 

former case, dismantling was preceded by hydro-storage expansion, which leads to lower 

differences between peak and off-peak prices. In the latter case, decommissioning occurs 

simultaneously with a large PV expansion, which can only produce during daylight hours. 

This implies a higher utilisation of expensive sources in the evening. As a consequence peak 

prices in the evening are higher, which leads to higher differences between peak and off-peak 

prices (see Figure 7(c)). Note that the difference between P90 and P10 is higher in the 2029-

2033 period than in the 2019-2020 period, leading to more pumping in the latter case. In both 

cases, excess energy is quite similar. Consequently, pumping decreases in the former despite 

the nuclear capacity is higher than in the latter.  

 

Figure 9. Simulated seasonal pumping. 
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After 2034, pumping decreases significantly. Despite the higher difference between peak and 

off-peak prices in all seasons except autumn, the lack of cheap energy pushes down pumping. 

As shown in Figure 7, differences between prices are higher after 2034 in all seasons, except 

autumn. The only exception occurs in summer 2044, when difference between prices is not 

enough to cover pumps’ losses, which leads to zero pumping that season. In autumn 

difference between peak and off-peak prices decreases by up to 20% after 2034, which 

discourages further pumping. At the end of the simulation period, in 2050, pumping is down 

to 432 GWh.  

Although pumping increases in the medium-term (2025-2035), profitability of PSP is 

threatened even in this period. As Figure 10 shows, pumping does not increase in the same 

proportion as pumping capacity. PSP pump the equivalent of 912 hours at full capacity in 

2014 and of 116 hours in 2050, i.e., PSP utilisation for arbitrage opportunities decreases from 

10.5% to 1.3%. Even when pumping peaks (2,258 GWh in 2034), pumps only run the 

equivalent of 608 hours per year. Pumps never run more than the equivalent of 935 hours at 

full capacity (in 2015). 

Pumping for arbitrage should not be expected to occur 24 hours per day given technical and 

economic limits. Additionally, there are PSP capacity needs for ancillary services. Still, the 

observed values of capacity utilisation are too low for investments to be amortised.  
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Figure 10. Pumping capacity and full operating hours of PSP.  

Now we turn to evaluating the impact of different scenarios on arbitrage opportunities. Given 

the strong decrease of pumping in the long-term, we first evaluate scenarios aimed at 

encouraging PSP operation. Then, as our results so far show that the nuclear phase-out 

significantly decrease the energy excess, we focus on analysing the impact on PSP of 

alternative dismantling schedules. Finally, we investigate which scenarios provide favourable 

long-term conditions for PSP.  

Encouraging PSP operation 

As mentioned above, several events affect PSP operation. Although we cannot point to a 

unique cause for the decrease in pumping, our results show that the financial viability, 

especially of the new projects, is seriously threatened. Therefore we first analyse different 

policies aimed at improving the profitability of PSP and evaluate their consequences for the 

market and the country’s SoS.  

We evaluate two approaches. The first, focused entirely on PSP operation, is the 

implementation of a premium for PSP generation. The government is aware of the current 

financial problems faced by some hydro-storage plants, e.g., Alpiq [32]. We model two 

scenarios of premiums for PSP generation, which artificially increase the price difference in 
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those periods in which excess energy is still available, but the price difference is too low to 

cover efficiency losses. Such a mechanism addresses one of the key issues of PSP operation: 

the difference between sale and purchase price. In these scenarios, labelled Premium5 and 

Premium10, PSP receive a premium of respectively 5 and 10 CHF per MWh generated. This 

implies that PSP would receive the wholesale price plus this payment for each MWh 

generated. These values are much lower than the incentive currently given to NDRES. For 

instance, PV and wind producers currently receive a CFR exceeding 200 CHF/MWh, which is 

more than 100 CHF/MWh above the wholesale price.  

The second approach, focusing on improving SoS and providing favourable conditions for 

PSP, is the extension of FiTs for NDRES. This would allow owners of obsolete plants to 

refurbish their PV and wind energy facilities after their initial lifespan. This not only increases 

the total available capacity but also indirectly encourages PSP operation by providing cheap 

energy to pump. More precisely, the large penetration of PV leads to lower prices at noon, 

from which PSP could profit. We label this scenario ExtFiT.    

Figure 11 shows that supporting PSP directly achieves the objective of increasing pumping 

significantly (on average by 37% in Premium5 and 77% in Premium10), while the extension 

of FiTs (ExtFiT) only shows a slight improvement after 2040. The four scenarios exhibit very 

similar patterns: pumping increases slightly until 2034 and then decreases rapidly. Unlike 

BAU, in ExtFiT pumping remains steady after 2045 and thus the income of PSP stabilizes in 

that period. If premiums are implemented, policy makers should define their values carefully 

because a value exceeding 20% of purchase price would make it profitable to pump and to 

generate simultaneously, transforming PSP into money printing machines. 
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Figure 11. Simulated pumping under different schemes aimed at increasing PSP operation.  

As expected, PSP achieve better results in scenarios with a premium (see Table 2). Profits are 

respectively 45% and 102% higher in Premium5 and in Premium10 than in BAU. Net income 

is significantly higher in these two scenarios compared to BAU: 74% in Premium5 and 169% 

in Premium10. Operational margins are also higher than in BAU and ExtFiT. Still, the 

warning message remains as pumping from 2034 onwards decreases severely and full 

operating hours are far below their 2014 level. 

Table 2. Simulated financial results of PSP under scenarios aimed to encourage pumping (numbers in parentheses are 

relative changes with respect to BAU). 

 BAU Premium5 Premium10 ExtFiT 

(1) Average pumping (GWh/year) 1,554 2,138 

(37%) 

2,765  

(77%) 

1,627 

(5%) 

(2) PSP income (Millions CHF) 2,740 3,995 

(45%) 

5,537 

(102%) 

2,868 

(5%) 

 -

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

 4,000

 4,500
G

W
h

 

BAU Premium5 Premium10 ExtFiT



Security of Supply in the Electricity Sector: The Case of Switzerland 

220 

 

 BAU Premium5 Premium10 ExtFiT 

(3) Cost of electricity used by PSP 

(Millions CHF) 

2,283 3,200 

(40%) 

4,304  

(88%) 

2,385 

(4%) 

(4) Net income of PSP (Millions 

CHF) [(2) - (3)] 

457 795  

(74%) 

1,233 

(169%) 

483 

(6%) 

(6) Change in net income of PSP 

with respect to the base scenario 

(Millions CHF) 

-- 338 776 26 

(7) Operational margin [(2) - (3)]/(3) 17% 20% 22% 17% 

We perform a welfare analysis to assess the impact on the whole market (Table 3). The four 

scenarios are comparable as they have the same pumping capacity. We calculate the change in 

consumer surplus with respect to BAU as the difference in consumers’ costs. A rise in 

consumers’ costs is a reduction in consumer surplus. Wholesale prices are lower when FiTs 

are extended (cost of electricity, line (8)) because there is larger NDRES penetration after 

2035. However, higher fees are paid by consumers in order to support the extension of FiTs 

(ExtFiT) than in other scenarios (line (9)), and this cost is not offset by the drop in wholesale 

prices. As a consequence consumers’ costs increase by 10% (line (11)). While extending FiTs 

significantly decreases consumers’ surplus, the premiums for PSP have a negligible impact 

(line (12)). However, note that premiums leading to more pumping do not lower average 

wholesale prices (line (8)). Although at certain hours very expensive peak producers are 

avoided, the resulting reduction in peak prices is offset by the rise in off-peak prices when 

PSP pump.  

Prices in ExtFiT lead to lower producer surplus (cost of electricity in line (13) in Table 3) 

compared to BAU, Premium5 and Premium10. This result is coherent with the change in 
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consumer surplus as the highest producer surplus occurs when premiums are implemented, 

and the lowest when FiTs for renewable are extended. Still, the surplus of local producers is 

very similar in the four scenarios (a maximum difference of 2.5% with respect to BAU, line 

(14)). The Swiss producers’ surplus (line (15)) follows also the same pattern: highest loss in 

ExtFiT and increased surplus when premiums are implemented. These increases nonetheless 

do not offset the loss in consumers’ surplus and thus total welfare in Switzerland (line (17)) 

decreases in the three alternatives.  

Table 3. Simulated results of market welfare analysis. 

 BAU Premium5 Premium10 ExtFiT 

Consumer surplus 

(8) Cost of electricity (Billions CHF) 143.3 144.0 144.9 140.3 

(9) Cost of subsidising NDRES (Billions 

CHF) 

93.2 93.2 93.2 116.9 

(10) Cost of subsidising PSP (Billions CHF) -- 0.3 0.8 -- 

(11) Cost electricity + subsidies (Billions 

CHF) [(8) + (9) + (10)] 

236.4 237.5 238.9 257.1 

(12) Change in consumer surplus with 

respect to BAU (Billions CHF) 

-- -1.1 -2.5 -20.7 

Producer surplus 

(13) Producer surplus (Billions CHF) 106.6 107.4 108.0 100.8 

(14) Change in producer surplus with 

respect to BAU (Billions CHF)  

-- 0.8 1.4 -5.8 

(15) Swiss producer surplus (Billions CHF) 94.0 94.8 95.3 91.7 

(16) Change in Swiss producer surplus with -- 0.8 1.3 -2.7 
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 BAU Premium5 Premium10 ExtFiT 

respect to BAU (Billions CHF) 

Total welfare 

(17) Change in Swiss market welfare with 

respect to BAU (Billions CHF) [(12) + (16)] 

-- -0.3 -1.2 -23.4 

Impact of the timing of the nuclear phase-out on PSP 

The Parliament is currently reconsidering its decision to decommission nuclear plants. A 

position in which these plants should only be decommissioned based on security measures is 

gaining support. Consequently, the only plant that will certainly be decommissioned is 

Mühleberg (373 MW) in 2019 as the investments needed to improve its security are too high. 

The debate on the extension of the lifespan of the remaining four plants continues. 

We consider two scenarios besides BAU. In both Mühleberg (373 MW) closes in 2019, while 

Gösgen (985 MW) and Leibstadt (1190 MW) continue operating until at least 2050. While in 

the first scenario (labelled Nuc3Out) Beznau I and II (365 MW each) are decommissioned 

after 60 years of operation, in 2029 and 2032, respectively, in the second (labelled Nuc1Out) 

these plants are also allowed to operate until at least 2050. 

PSP operation is similar in the three scenarios (see Figure 12). Pumping achieves its highest 

level in the mid to late 30s before decreasing sharply, despite the higher generation capacity 

in Nuc1Out and Nuc3Out compared to BAU. As expected, in the scenarios where some 

nuclear power plants remain operational (Nuc1Out and Nuc3Out), pumping is higher than in 

BAU as more excess supply is available. This leads not only to more income, but also to 

higher operational margins. However, the situation in the 2040-2050 period remains critical. 

Even the availability of 90% of current nuclear capacity cannot avoid the drop in pumping. 

This highlights the importance of an ample supply of cheap energy. 
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Figure 12. Simulated pumping under different nuclear power phase-out scenarios. 

In the three scenarios total generation capacity decreases as obsolete PV plants are not 

replaced as investments are not profitable; this leads to lower SoS. We thus evaluated three 

additional scenarios in which government provides incentives to build CCGT of the same 

capacity as the dismantled nuclear plants. The results are very similar to the previous 

scenarios; therefore we do not discuss them. This highlights that while the replacement of a 

base-load technology (nuclear) by a mid-peak technology (CCGT) improves SoS, it does not 

improve arbitrage opportunities for PSP because the fundamental problem of lack of cheap 

energy is not solved. Also, spot imports are still most of the time the marginal producer, so 

peak prices remain unchanged.  

Is there a future for PSP arbitrage? 

Results presented so far show that even when keeping most of the nuclear capacity, arbitrage 

opportunities decrease significantly in the long-term and direct incentives cannot reverse the 

downward trend after 2035. We thus turn the question around: is there a plausible evolution in 

which PSP arbitrage would be profitable? 
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In a first scenario we consider the evolution of the German electricity market. We assume that 

once the German nuclear phase-out is completed by 2022, its prices will increase and its 

export capability will decrease, particularly in the evening, leading to lower competition for 

PSP at peak hours. This would also increase the possibilities of exporting to Germany in the 

evening as the difference between German peak prices and Swiss off-peak prices would 

increase. We thus consider a scenario in which prices increase by 35% and exports 

availability decreases by 50% between 5 p.m. and 9 p.m. in Germany. Given that we assume 

an aggregated export capacity from France and Germany to Switzerland, and that exports 

from Germany to Switzerland are about two thirds of the volume that Switzerland imports 

from the two countries, we reduce the joint net transfer capacity (NTC) by 35%. We label this 

scenario HighPriceDE. NTC and prices are season dependents. We acknowledge this is an 

stylised scenario as there is huge uncertainty about the impact of the German nuclear phase-

out on prices in that country, but we aim to illustrate the extent to which these conditions 

could affect operation of Swiss PSP. As an example, Figure 13 shows the daily German prices 

and France/Germany NTC for exports to Switzerland in winter.  

 

Figure 13. Assumptions of scenarios BAU and HighPriceDE. Left axis : prices in Germany in winter. Right axis : NTC 

of imports from France and Germany (in MW) in winter. 
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In a second scenario we focus on local policies. We combine the scenarios ExtFiT and 

Nuc1Out, i.e., we assume that FiTs for NDRES are extended after 2035 and that all nuclear 

plants except Muhleberg operate during the entire simulation horizon. We label this scenario 

FiT&Nuc. Finally, we propose a variation of this scenario, with lower demand. For this we 

assume the demand scenario “new policies” proposed in [33], which implies stronger 

efficiency measures. The remaining conditions are as in FiT&Nuc. We label this scenario 

FiT&Nuc&Dem. Finally, we have also run the BAU scenario with this more conservative 

demand hypothesis. As results are very similar to those of BAU, we do not present them here. 

Figure 14 shows that in these three scenarios pumping is higher than in BAU. While in 

HighPriceDE the highest pumping volumes are achieved, the pattern is similar to the one of 

BAU: a peak in 2037 (3,988 GWh), followed by a rapid decrease. This occurs because of the 

expiration of the long-term contracts. In the other two scenarios, FiT&Nuc and 

FiT&Nuc&Dem, the higher availability of energy results in pumping remaining stable in the 

long-term. It even increases in FiT&Nuc&Dem because there is a higher availability of cheap 

energy due to the lower demand. Although on average pumping in HighPriceDE is 

respectively 33% and 45% higher than in FiT&Nuc and FiT&Nuc&Dem (line (18) in Table 

4), pumping in the 2041-2050 period is respectively 13% and 45% higher in FiT&Nuc and in 

FiT&Nuc&Dem than in HighPriceDE. This leads to a higher utilisation of pumps in the 2041-

2050 period. Therefore, although conditions assumed for the German market in HighPriceDE 

are favourable for PSP in the medium term, they do not address the lack of cheap energy 

available; the extension of FiTs and nuclear plants provide more favourable conditions to 

exploit arbitrage opportunities in the long term.  
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Figure 14. Comparison between simulated pumping in BAU and under scenarios with more favourable conditions. 

Prices, daily pumping patterns and electricity exchange in HighPriceDE differ from those of 

the other scenarios. Wholesale prices are higher due to exports to Germany in the evening, 

making pumping significantly more profitable. An operational margin of 42% is achieved 

compared to a maximum of 20% for the other three scenarios (line (23) in Table 4).  

Pumping increases in the three scenarios during daylight hours. The highest increase occurs in 

HighPriceDE, because of the higher difference between evening and noon prices. This not 

only renders arbitrage more profitable but also allows accessing larger energy volumes for 

pumping. Therefore, imports during daylight hours are used not only to meet local demand, 

but also to pump. This energy is then used to generate in the evening, which reduces imports 

from Germany, and even allows increasing exports to Germany and Italy, yielding higher 

operational margins. Overall imports and exports decrease: the rise of imports at noon does 

not compensate the imports drop in the evening. After 2038, pumping decreases significantly 

in HighPriceDE: like in BAU, arbitrage opportunities are considerably limited due to the lack 

of excess energy PSP despite the even larger difference between evening and noon prices. 

While better than BAU, pumping in HighPriceDE in 2050 is still below the 2014 level.  
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Although the impact of such conditions in Germany appears to be positive for PSP, the lower 

exchange could affect profits of the system operator because of lower income from grid 

utilisation and congestion rents. In such a scenario, cross-border expansion projects could be 

endangered. Also, there seems to be a trade-off between PSP and conventional HS. While the 

former’s surplus increases by 1.5 CHF billion (line (21) in Table 4), the latter’s surplus 

decreases by 2.2 CHF billion (line (24) in Table 4) in HighPriceDE compared to BAU. More 

pumping increases competition during evening hours, which relegates conventional HS 

generation to hours when prices are lower.  

Table 4. Simulated results under scenarios with favourable conditions for PSP. 

 BAU HighPriceDE FiT&Nuc FiT&Nuc&Dem 

(18) Average pumping 

(GWh/year) 

   

1,554 

2,855   1,963  2,155  

(19) PSP income (Millions CHF) 2,740 6,168 3,332 3,612 

(20) Cost of electricity used by 

PSP (Millions CHF) 

2,283 4,333 2,788 2,998 

(21) Net income of PSP (Millions 

CHF) [(2) - (3)] 

457 1835 544 614 

(22) Change in net income of PSP 

with respect to the base scenario 

(Millions CHF) 

-- 1378 87 157 

(23) Operational margin  

(21) /(20) 

17% 42% 20% 20% 

(24) HS surplus (Billions CHF) 28.9 26.7 26.9 24.4 

(25) Cost of electricity (Billion 143.3 152.1 137.7 119.7 
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 BAU HighPriceDE FiT&Nuc FiT&Nuc&Dem 

CHF) 

(26) Cost of subsidies to NDRES 

(Billions CHF) 

93.2 93.0 117.9 118.6 

(27) Cost electricity + subsidies 

to NDRES (Billions CHF) [(8) + 

(9) + (10)] 

236.4 245.1 251.7 238.2 

(28) Change in consumer surplus 

with respect to BAU (Billions 

CHF) 

-- -8.7 -15.3 -1.8 

Although to a lower extent, PSP also profit from excess energy produced by PV in FiT&Nuc 

and FiT&Nuc&Dem, allowing them to pump during daylight hours. Unlike in BAU and 

HighPriceDE, this pattern continues through the entire simulation period because of the larger 

penetration of PV after 2034. Financial results are also better than in BAU, not only in terms 

of higher income but also in terms of a larger operational margin. Although average 

wholesale prices in FiT&Nuc and FiT&Nuc&Dem are respectively 7% and 10% lower than in 

BAU (line (25) in Table 4), net profits of PSP are not affected because both off-peak and peak 

prices decrease in the same proportion. However, the cost of supporting the extension of FiT 

are the highest (line (26) in Table 4), not only because of the larger investments in these 

technologies, but also because the average prices being lower, the difference between the 

levelised investment cost and prices increases. Hence, for consumers, these two scenarios 

have higher costs than in BAU as the cost of supporting the extension of FiTs offsets the 

lower wholesale prices (line (28) in Table 4). Overall SoS is improved since profitability of 

PSP is enhanced, prices are more stable and capacity adequacy is higher.  
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5. Conclusion  

Our model simulates the strategic behaviour of PSP and allows evaluating their long-term 

arbitrage opportunities. PSP decide simultaneously the volume and time of generation and 

pumping. Their decisions depend on price differences and on the available energy to pump, 

which is due to decrease significantly in the long-term because of the major changes in the 

Swiss electricity market: the nuclear phase-out, expiration of long-term import contracts and 

obsolescence of PV. 

Our results show that pumping peaks in 2034 following the rise in PV production. From there 

onwards, pumping decreases rapidly due to tighter capacity margins resulting from the 

expiration of long-term contracts and the nuclear phase-out. There is thus a significant 

decrease of excess energy which, despite the higher difference between peak and off-peak 

prices, severely limits pumping. Neither a premium for PSP generation, nor the decrease of 

demand, nor the extension of FiTs appear to have a significant long-term impact. But the 

combination of certain of these policies could significantly encourage PSP operation. 

The scenarios with alternative timings for the nuclear phase-out and/or an extension of FiTs 

for NDRES show that pumping increases under large penetration of both PV and nuclear. 

Still, we cannot conclude that PV and PSP complement each other; such complementarity 

depends on the size of PV capacity. On the one hand, PV and PSP compete as they both bid 

during the summer and spring noon peak. Therefore, a limited installed capacity of PV 

displaces PSP generation and decreases noon prices. On the other hand, a large penetration of 

PV makes the noon peak disappear and decreases prices significantly, which is an opportunity 

for PSP: they pump at midday, and produce in the evening. This limits the price-lowering 

effect of PV, which is particularly important if the technology is no longer subsidised by FiTs, 

but by a market-dependent mechanism, e.g., market premiums, as currently being considered 
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in Switzerland’s “Energy strategy 2050”. These mechanisms provide a premium in addition to 

a strike price, e.g., the average monthly price.  In this case, PSP could help PV limit the price 

drop when there is excess PV supply, while PV still provides cheap energy to pump. 

Nonetheless, conclusions about such complementarity (or lack of it) are limited by the 

characteristics of our model, which assumes a representative daily pattern for PV availability 

in each season. Variations from one day to another are thus not captured. On the one hand, 

these could provide an opportunity for PSP, as they could pump more water on a sunny day 

(with lower expected prices) and use it for generation on a cloudy day (with higher expected 

prices). On the other hand, these variations dramatically change the timing of daily price 

patterns and significantly limit the occurrence of peak prices at noon, as highlighted recently 

in Germany [6], which could affect PSP operation. Accurate models and transparent 

information are thus needed for PSP operation economic efficient.   

As mentioned before, our results only concern arbitrage related PSP operations. Any 

assessment about PSP profitability is thus a conservative estimate as PSP also provide 

ancillary services. However, the expected scale of ancillary services needs is small compared 

to the size of the PSP under construction. Although PV output is subject to variations, these 

are significantly lower than those of wind energy. Because of limited potential and the 

NIMBY phenomenon, wind energy is expected to have a lower development than PV in 

Switzerland. The potential to provide ancillary services to foreign markets is limited. 

Germany is the only neighbouring country with a significant share of wind energy, but most 

of its facilities are located in the north and there is significant congestion between north and 

south. This prevents a potentially active participation of Swiss PSP in the German market. 

The increase of the value of ancillary services in Switzerland might thus be limited and is 

unlikely to compensate the lack of arbitrage opportunities. 
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Our results thus show that PSP currently under construction will face conditions totally 

different from those forecasted 10 years ago, when investments were committed. If the 

regulator is keen to guarantee PSP profitability, support is needed. Not only incentives such as 

the premiums proposed in this work, but also policies aimed at enhancing capacity adequacy, 

e.g., supporting technologies with low variable costs such as NDRES and nuclear power. This 

is not only important for investors of PSP currently under construction, whose major 

motivation was exploiting arbitrage opportunities, but also for the country as the drop in 

pumping limits the potential benefits PSP can bring in terms of SoS, through reduction of 

peak imports, peak demand shaving, prices stabilisation and higher system reliability. 
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7. Appendix: arbitrage heuristic 

We assume that PSP have perfect information about other technologies13 concerning their 

available hourly supply and marginal costs (bidding prices). We run a dispatch (including the 

electricity exchange) excluding PSP and calculate the hourly prices and the volumes 

dispatched. We call this a “pre-dispatch”. Let 𝐴𝑡ℎ  denote the available supply from 

technology t for hour h. Technologies bid these volumes at their marginal costs 𝐶𝑡ℎ and the 

market is cleared by merit-order dispatch; 𝑄𝑡ℎ denotes the quantity dispatched and 𝑆𝑡ℎ is the 

unallocated supply (Eq. (1)). The unallocated supply of each technology is associated with the 

respective marginal costs at which it can be dispatched. This allows us to calculate the 

volumes available for pumping at a purchase price P, i.e., 𝑆𝑡ℎ
∗ (𝑃) (Eq. (2)). We calculate the 

                                                           
13

 These are conventional hydro-storage, run-of-river, nuclear power, wind energy, PV, CCGT and conventional 

thermal.  
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maximum pumping for each hour at each price 𝑆ℎ
∗(𝑃) taking into account that pumping is 

constrained by the pumping capacity 𝐾 (Eq. (3)). Next we build the Unallocated curve S(P) 

from hourly unused supply volumes and considering the pumps’ efficiency α so as to obtain 

the effective available energy (Eq. (4)). 

𝑆𝑡ℎ = 𝐴𝑡ℎ − 𝑄𝑡ℎ ∀𝑡 ≠ 𝑃𝑆𝑃 (1) 

𝑆𝑡ℎ
∗ (𝑃) = {

𝑆𝑡ℎ  if 𝑃 ≥ 𝐶𝑡ℎ

0   𝑒𝑙𝑠𝑒
  

(2) 

𝑆ℎ
∗(𝑃) = 𝑚𝑖𝑛 (∑ 𝑆𝑡ℎ

∗ (𝑃)

𝑡

, 𝐾) 
(3) 

𝑆(𝑃) =  𝛼 ∑ 𝑆ℎ
∗(𝑃)

ℎ

 
(4) 

We follow a similar process to build the Allocated curve. First, we calculate the volumes that 

can be supplied by PSP at a bid price B, 𝑋𝑡ℎ
∗ (𝐵), i.e., the allocated volumes that PSP would 

displace at that price (Eq. (5)). These are the volumes that can be supplied by PSP if they bid 

at B. Then, we calculate the maximum volumes that can be supplied per hour considering that 

generation is constrained by the generation capacity G (Eq. (6)). Finally, we build the 

Allocated curve X(B) as a function of the bid price B (Eq. (7)). 

𝑋𝑡ℎ
∗ (𝐵) = {

𝑄𝑡ℎ  if 𝐵 ≤ 𝐶𝑡ℎ

0   𝑒𝑙𝑠𝑒
 

(5) 

𝑋ℎ
∗(𝐵) = 𝑚𝑖𝑛 (∑ 𝑋𝑡ℎ

∗ (𝐵)

𝑡

, 𝐺) 
(6) 

𝑋(𝐵) =  ∑ 𝑋ℎ
∗(𝐵)

ℎ

 
(7) 

Since B = P/α, both the Unallocated curve S and the Allocated curve X can be written as a 

function of the purchase price P. The energy available for PSP to generate, V*, can be 

calculated from the intersection of S(P) and X(P). V* is thus the energy available after 

subtracting the pumps’ efficiency losses, while P* the maximum price that PSP is willing to 
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pay for energy to pump. Therefore, for a purchase price P*, V* is the energy obtained after 

pumping (Eq. (8)). Finally, the energy PSP have to buy, i.e., their pumping, is calculated as 

Y*= V*/α. 

𝑉∗ = 𝑋(𝑃∗) = 𝑆(𝑃∗) (8) 

Next we calculate PSP hourly pumping Yh and hourly bids APSP,h, which are used for the 

“real” dispatch. The former are calculated from the cheapest unallocated volumes Rth (see Eq. 

(9)), while the latter is calculated from the most expensive allocated volumes Zth (see Eq. 

(10)).  

min
𝑅𝑡ℎ

∑ 𝐶𝑡ℎ𝑅𝑡ℎ

𝑡ℎ

 

Subject to 

𝑅𝑡ℎ ≤ 𝑆𝑡ℎ (availability of unallocated energy) 

𝑌ℎ = ∑ 𝑅𝑡ℎ𝑡  (hourly pumping) 

𝑌∗ = ∑ 𝑌ℎℎ  (daily pumping) 

(9) 

  

max
𝑍𝑡ℎ

∑ 𝐶𝑡ℎ𝑍𝑡ℎ

𝑡ℎ

 

Subject to 

𝑍𝑡ℎ ≤ 𝑄𝑡ℎ (generation of expensive producers) 

𝐴𝑃𝑆𝑃,ℎ = ∑ 𝑍𝑡ℎ𝑡  (PSP hourly bids) 

𝑉∗ = ∑ 𝐴𝑃𝑆𝑃,ℎℎ  (PSP daily generation) 

(10) 

When PSP is incentivised, the heuristic changes slightly. Suppose PSP receive a premium M 

for each unit generated. We thus modify Eq. (2). Now PSP can purchase energy to store at a 

higher price, while considering the pumps efficiency α. This payment causes an upward 

displacement on S(P): Eq. (11) replaces Eq. (2). The other equations remain unchanged.  
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𝑆𝑡ℎ
∗ (𝑃) = {

𝑆𝑡ℎ  if 𝑃 ≥ 𝐶𝑡ℎ + 𝛼𝑀
0   𝑒𝑙𝑠𝑒

 
(11) 

In this case the Unallocated curve Uc will shift to the left (Ucl in Figure A1) as more energy 

can be bought by PSP at a given price. Since the allocated volumes remain unchanged, Ac 

does not shift. Consequently, more pumping is profitable (Vc > V*). The bid price decreases, 

but the incentive for PSP covers the difference between P* and PC. 

 

Figure A1. Impact of a premium for PSP on daily Allocated and Unallocated curves.  
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Abstract 

Security of Electricity Supply (SoES) has become a major concern for regulators and 

policymakers over the last decade. However, most work focusses either more generally on 

energy security or on a single fuel. We develop a comprehensive but flexible framework to 

assess the SoES for a single jurisdiction, taking into the account the specificities of electricity. 

This framework has two aims: (i) provide a snapshot of the situation to understand current 

weaknesses and determine what actions are required; (ii) capture the evolution over time to 

evaluate progress and identify potential problems before they materialise. The framework, 

based on an extensive literature review, consists of twelve dimensions that are critical for 

SoES. We develop metrics that capture the state and evolution of each dimension. This 

framework is intended to be a management information tool for all stakeholders, aimed at 

organising data and structuring its analysis, to enable monitoring the evolution of the SoES, 

while also functioning as an early-warning system by flagging potential future problems. 
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1. Introduction 

Energy security (ES) has been a concern for regulators and policymakers since the oil crisis in 

the seventies [1]. However, security of electricity supply (SoES) has only recently become a 

major issue. Over the last two decades many countries around the world have developed 

competitive electricity markets [2], and regional markets are emerging [3], implying an 

increase in cross-border transmission and trade. Research has thus focussed on the 

consequences of the deregulation [4] and privatisation of the electricity sector [5], including 

market design [6,7], market regulation, and providing the right incentives [8].  

Over the last few years electricity markets have undergone major changes: decisions to close 

down nuclear capacity, a shift to renewable energies, insufficient new investments in thermal 

generation, and the decreasing profitability of utility companies. This has resulted in security 

of supply becoming a central issue for all the actors of the electricity industry, from 

consumers, through utility companies to regulators and policymakers; several national 

regulators have expressed concerns about long-term SoES, e.g., in the UK [9] and in Belgium 

[10].  

The particularities of electricity systems, the changes in the market structure, and the pressure 

resulting from environmentally driven policies, together with technological innovations over 

the last thirty years, have also led to a notable change in the technologies used for electricity 

generation. The significant shift towards gas-fired turbines as the main technology for newly 

installed conventional generation capacity [8] has, among others, made the European 

electricity market increasingly dependent on gas imports [11]. Recently, renewable energy 

technologies have reached a significant share of new installed capacity [12,13]. Regional 
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issues further complicate the situation. For instance, a significant share of Europe's existing 

generation capacity will soon become obsolete, and thus needs to be replaced [14]. Several 

countries intend to phase-out nuclear plants, which often represent a non-trivial share of their 

generation; this will affect future capacity adequacy [15].   

These issues need to be understood in the context of environmental factors. For instance, 

while a move from old generation plants to new gas fired plants typically reduces emissions, 

the opposite is true when gas fired plants replace nuclear ones [16]. This raises the question of 

the degree to which renewables can play a role in this replacement. Furthermore, in many 

countries the grid is more fragile than anticipated, as illustrated by several large blackouts in 

Europe and the USA [17]. Finally, there is the question of whether consumers are able to 

understand these issues, and will accept to pay what might be significantly higher tariffs to 

ensure SoES, generally considered a “non-issue” until blackouts start occurring [18,19]. The 

magnitude of the economic impact of such events is huge. For instance, the blackout in the 

U.S.A in 2003 costed between 4 and 10 billion U.S. dollars [20], and according to a study of 

the Swiss Federal Office of Energy, the cost of a blackout in Switzerland varies between 8 

and 30 million CHF per minute [21]. Such estimates do not include less tangible 

consequences, such as loss of reputation. 

Finally, there is the question of time horizon. Investment planning in the electricity system is 

a long-term process: building new thermal capacity requires at least three years, large hydro 

might take up to ten years, and the expected lifetime of investments ranges from twenty to 

more than fifty years.  While disruptions to the electricity supply are often attributed to 

sudden, short term, events (e.g., grid failure, unscheduled plant outage, unexpected demand 

peak), the true underlying cause is a lack of long-term planning. These disruptions force the 
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regulators to become reactive rather than proactive, preventing them from taking a long-term 

perspective. 

In this paper we develop a framework to assess the level of security of supply of the 

electricity sector, and its evolution over time, for a single jurisdiction.  The term framework 

refers to a set of principles, ideas, etc., used to form a judgement and reach a decision. Our 

aim is to provide a framework for regulators, policy makers, utilities and other stakeholders to 

understand, asses and act on the state of the security of supply of an electricity system.  

In legal terms, a jurisdiction is formally defined as "the limits or territory within which 

authority may be exercised" [22]. In our context, the electricity sector, this refers to a 

geographical area under the authority of a single regulator, governed by a common set of 

rules. A jurisdiction may or may not coincide with national borders or with the area under the 

control of a single system operator. For instance, despite being divided into different areas, 

each with its own system operator, Germany is considered as a single jurisdiction, because the 

legislation of its market is determined at the national level [23]. On the contrary, while in the 

USA the Federal Energy Regulatory Commission (FERC) provides general guidelines and 

directives to the regional markets, there are well-established, autonomous, regional markets 

(e.g., PJM, NYISO and ERCOT), each with its own independent system operator and public 

utilities commission, resulting in very different regulatory frameworks; we therefore consider 

these regional markets to be jurisdictions. We thus use the term jurisdiction to refer to an area 

under the control of a single regulator or policy maker. 

The paper is organised as follows: first we review the existing literature and outline our 

framework. Then we develop our framework and the metrics necessary for its evaluation. 

Next we elaborate on how this framework can be used, and conclude with a more general 

discussion, including the limitations of the proposed framework. 
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2. Literature review 

Jewell et al. [24] define energy security as low vulnerability of vital energy systems. More 

concretely, according to the IEA [25], energy security refers to the uninterrupted availability 

of energy sources at an affordable price. The IEA [26] emphasises the importance of the time-

frame: while in the short-term energy security focuses on the ability of the energy system to 

react promptly to sudden changes within the supply-demand balance, in the long-term it 

mainly deals with timely investments to supply energy in line with economic developments 

and sustainable environmental needs. A similar definition is provided by Chester [27], who 

suggests that the concept is based on ‘reliability’ and ‘adequacy’ at ‘reasonable’ market-

determined energy prices. Likewise, Sovacool et al. [28] define energy security as “how to 

equitably provide available, affordable, reliable, efficient, environmentally benign, 

proactively governed and socially acceptable energy services to end-users” (p. 5846). An 

extensive review of energy security definitions is presented in Winzer [29]. These definitions 

illustrate that SoES is a complex concept, with a very broad scope.  

Previous work has focused on the conceptualisation of the multiple factors affecting ES, using 

different approaches depending on the specific fuels analysed, the geographic dimension and 

the time-horizon under consideration. Other work has focused on specific energy sectors or 

primary energy sources, (mainly oil, and to a lesser degree gas). Examples include [30–33]. 

Studies regarding security of oil supply tend to take a global view, while those concerning the 

gas industry, due to the network aspects, take a regional view [34]. 

One of the most widely used frameworks, proposed by the APERC [35], defines ES using the 

four A’s: availability, accessibility, affordability and acceptability. Several authors have built 

on this framework. For instance, Jonsson et al. [36] base their work on the first three A’s, 

focusing on whether energy systems are exposed to insecurity (e.g., infrastructural 
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disturbances), or whether they create insecurity, (e.g., energy used as a “weapon” in 

geopolitics). Cherp and Jewell [37] build on this definition by discussing whether the four A’s 

deal with the fundamentals of security in the broadest sense. Likewise, Gracceva and 

Zeniewski [38] propose five properties, strongly related to the four A’s, that energy systems 

should have to ensure supply: stability, flexibility, resilience, market adequacy and 

robustness. They also identify potential threats to those properties and classify them according 

to the time-horizon of their impact and the segment of the supply chain that they affect.  

Other authors focus on defining the different dimensions of ES, and indicators to assess these, 

rather than on conceptualising a definition for ES. For instance, Von Hippel et al. [39] 

propose four major elements that should be included in a definition of energy security: the 

environment, technology, demand-side management and domestic socio-cultural and political 

factors. Cherp et al. [40] insist on the need to include environmental factors given the tangible 

impact of climate change on energy systems. Vivoda [41] adds three further dimensions: 

human security, international issues and policy aspects. This work [39,41] is closely related to 

that based on the APERC’s four A’s [35]. For instance, an environmentally friendly electricity 

system will gain acceptability from society. Likewise, Kruyt et al. [42] argue that their four 

dimensions of ES (globalisation, regionalisation, economic efficiency and environmental 

acceptability) are strongly linked to the four A’s. For instance, political embargoes 

(regionalisation dimension) endanger the accessibility (property) of energy resources.   

Several authors focus on evaluating the multiple dimensions of ES. Kruyt et al. [42] provide a 

review of the available indicators to assess ES in the long-term, while Löschel et al. [43] 

elaborate on two indicators proposed by the IEA for evaluating the risk of price disturbances 

and physical availability of fossil fuels. Others develop a single metric for ES by aggregating 

the indicators used to measure the different dimensions. For instance, Sovaccol [28] and 

Vivoda [41] both calculate a global index to assess the level of energy security in the Asia-
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Pacific region. The very different nature of the dimensions of ES casts doubts on the 

usefulness of aggregate indicators: a good performance on one dimension will not necessarily 

compensate a poor performance on another one; worse, a reasonable overall performance 

could hide critical situation on one dimension. Several authors, including [38], are very 

critical towards the use of indicators due to the simplifications required for their calculation. 

Two of the more comprehensive ES frameworks found in the literature are the Model of 

Short-term Energy Security (MOSES) [44] and the General Energy Assessment (GEA) [40]. 

The main difference between these two studies is the time frame. While the former focusses 

on issues affecting ES in the short-term, the latter considers the short- to medium-term. The 

former considers how an energy system’s resilience could mitigate the risks of energy 

disruptions related to domestic and foreign external factors. The latter proposes three main 

perspectives (robustness, sovereignty and resilience) to classify threats and mitigation 

strategies. Thus, while these studies incorporate some aspects of the electricity system, we 

consider the level of detail insufficient to evaluate the security of electricity supply.  

Although the electricity sector and the generation technologies (e.g., hydropower and nuclear 

power) are included as one element of the ES frameworks previously mentioned [40,44], there 

is relatively little work focusing specifically on the SoES. In particular, while the Cherp et al. 

framework [40] includes a wide range of potential threats to energy systems, it only provides 

a very narrow set of indicators for electricity systems. Furthermore, the impact of renewable 

energies, which are leading the electricity markets’ transition and reshaping their dynamics, is 

not analysed in detail. Overall, studies analysing the SoES focus on the supply-side view of 

the problem, dismissing the increasingly active role of demand. 

Several frameworks focused on the electricity sector have been developed [45,46]. In both 

papers, the frameworks are tailored to national specificities. Consequently, they ignore 
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important dimensions, such as the environmental impact and the profitability of peak 

generators, which hinders their adaptability to other regions. The framework developed by 

Nepal and Jamasb [20] focusses on the network risks, and proposes an aggregated risk 

measure. 

Finally, there is a significant amount of work on estimating the value of SoES. For instance, 

de Nooij et al. [47] compute estimates for different economic sectors in the Netherlands, 

based on the opportunity cost resulting from an interruption of the electricity supply. A 

similar analysis has been performed for Spain [48].  

We can thus conclude that, although most studies acknowledge the multidimensional nature 

of security of supply, they focus on energy systems as a whole. The few studies that 

specifically analyse SoES, do not attempt to provide a comprehensive and general framework; 

they are context-dependant, tailored to the particular features of a country or adapted to 

specific scenarios [38,45]. Assessing the SoES of a jurisdiction requires a sound 

understanding of its particularities, and the conclusions and policy implications are 

necessarily context dependant. Still, we believe that an appropriate framework should be 

comprehensive and sufficiently flexible to be adaptable to the electricity sector of any 

jurisdiction. 

3. Framework development: objective and boundaries 

Electricity markets deserve particular attention due to their specific characteristics. These 

include non-storability of electricity (thus requiring real-time balancing of demand and 

supply), long construction delays and life-times for generation and transmission 

infrastructure, low demand elasticity, rigidity of the transport infrastructure and the regional 

nature of markets [49]. These elements differentiate electricity from other energy markets, 

such as oil or gas, which can be stored and transported over long distances. Also, oil and gas 
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are traded in global markets, with a global price, while electricity is priced locally; several 

prices can co-exist inside a single country, e.g., in Norway [50]. Furthermore, the 

infrastructure and the regulation differ significantly from most other energy forms. Therefore 

there is a need for a framework designed specifically for electricity.    

We develop a framework focused on the electricity sector of a single jurisdiction. This 

framework is comprehensive enough to ensure that the central elements determining SoES are 

taken into account, while being sufficiently flexible to be adaptable to the specificities of most 

jurisdictions. Our framework enables the various stakeholders to monitor the changes in the 

industry. We do not make any attempt to prioritise the different dimensions, as this would 

induce users to focus on a (small) subset of measures. We believe all are important and need 

to be monitored, allowing policy makers and regulators to act on the appropriate parts of the 

system to ensure SoES.   

Our framework differs from previous work in the area of energy security in the following 

respects: 

 Given its specificities, we consider only the electricity sector, not the energy sector as 

a whole.  

 We aim to develop a set of measures that can be used to evaluate the current state of 

SoES, using a multi-dimensional view; we do not try to aggregate these measures into 

one single indicator.  

 We aim to develop a framework that will allow decision makers to follow the 

development of SoES over time, enabling them to observe the changes that take place 

in the different dimensions.  

 We focus on a single jurisdiction, because the ability of regulators and policy makers 

to act on signals indicating potential problems is limited to their jurisdiction.  
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 The framework is not intended to compare jurisdictions; we do not prioritise the 

dimensions, nor do we provide a single measure that would enable such a comparison.  

The framework could be used to make comparisons between jurisdictions but, given 

the specificities of each jurisdiction, we do not believe that this would provide any 

useful insights for a regulator attempting to solve problems in the jurisdiction he is in 

charge of. Furthermore, the disaggregated nature of the framework makes a 

comparison across jurisdictions difficult. 

Based on an extensive literature review of work analysing security of supply in energy 

systems, we have identified twelve dimensions that influence the performance of an electricity 

system. This review included a wide variety of approaches, ranging from quantitative 

frameworks to policy papers.  It covered different aspects such as the primary energy sources 

and potential energy-uses. We considered studies that took a disaggregated, as well as an 

aggregated approach to evaluating security of supply.  

For each dimension we either suggest an existing metric or develop a new one. The metrics 

we propose can be calculated using data that is (usually) publicly available, as this enables a 

wider use. While more accurate measures exist, their calculation requires more sophisticated 

tools, e.g., operational models of electricity systems. These cases will be discussed in detail in 

the next section.  

Another important aspect of the framework is its longitudinal nature. Drawing a comparison 

with accounting, numbers for a single year are not particular useful to understand the 

development of a company. Similarly, to valuate an electricity system, it is necessary to 

monitor the evolution of the indicators over several years, focussing on those that worsen, and 

taking action when an indicator points to a potential threat to SoES in the near- or medium-
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term. Given the long investment delays in this sector, the framework should function as an 

early-warning system, aimed at preventing future SoES problems.   

In this paper we have chosen to focus on a detailed motivation of the framework, its 

dimensions, and their measures, at the expense of providing a numerical example or a case 

study. Indeed, applying our framework to a specific jurisdiction is a major undertaking; the 

outcome of such an endeavour would be a 100-page policy report. 

4. Dimensions of the framework 

In this section we discuss the twelve key dimensions policymakers should considered when 

assessing security of supply in an electricity market. For each dimension we develop one or 

more indicators to evaluate the current state of the system. 

4.1 Generation adequacy 

This dimension refers to a jurisdiction's capability to meet domestic demand in the short- and 

medium-term with its own generation capacity. SoES has mostly been approached as a 

capacity adequacy problem [49,51–53], which is appropriate as demand has to be matched in 

real-time; capacity should thus be available in the right amount at the right time. Capacity 

adequacy has traditionally been measured by the reserve margin, the ratio between installed 

capacity and peak-demand. The increasing role of renewable intermittent resources makes the 

reserve margin less informative: while their long-term average production level is known, 

their actual availability at a given point in time is difficult to predict. This has led to an 

increasing use of the de-rated capacity margin to measure a system’s capacity to meet annual 

peak-demand [54,55].  

Rather than considering peak-demand, we suggest focussing on the hour that exhibits the 

lowest de-rated margin within a year. For systems with, for instance, a significant share of 
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hydro and annual peak-demand occurring during summer afternoons, this measure may be 

more representative as the tightest margin does not necessarily occur when demand peaks. 

One example is California, where in 2009 the de-rated margin was lower in winter (10%) than 

in summer (14%), when demand peaked [56]. 

Still, this measure could overestimate capacity adequacy in countries with a significant share 

of hydro-storage generation, as this technology's de-rating factor is generally assumed to 

exceed 80%, ignoring the constraint created by a limited water supply. In such a situation the 

energy margin, which estimates the ratio between the surplus (or lack of) energy and demand, 

might be more appropriate [57]. Depending on the generation mix of a country, we thus 

propose the de-rated capacity margin or the energy margin as indicator of generation capacity 

adequacy. 

4.2 Resilience  

This concept is defined as “the ability to reduce the magnitude and/or duration of disruptive 

events. The effectiveness of a resilient infrastructure or enterprise depends upon its ability to 

anticipate, absorb, adapt to, and/or rapidly recover from a potentially disruptive event” [58]. 

While capacity adequacy captures energy availability under normal conditions, resilience 

refers to the capacity of electricity systems to maintain an uninterrupted electricity supply in 

the face of sudden changes in resource availability.  

Causes of disruption can be environmental, technological or political factors, human error or 

deliberate actions. One example of an environmental factor is the ENSO phenomenon in 

South American countries, which can result in reservoir inflows being 30% lower than normal 

for periods lasting from 6 months to over a year. The consequences can be devastating as 

illustrated by the programmed blackouts in Colombia in the 1990s [4]. Turning to political 

factors, a country without gas reserves, relying mainly on CCGT generation (e.g., Ukraine) 
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might be seriously affected by a disruption in the gas supply [59]. This dimension is thus 

about ensuring that available capacity can actually be used, so the jurisdiction is able to meet 

demand in the short-term under changing supply availability.  

Measuring the intrinsic ability of a country to adapt to sudden change is quite abstract; 

running “real” experiments to establish this capability is inconceivable, and simulation 

experiments only provide limited insights. This makes it necessary to rely on proxies to track 

the evolution of resilience. It has been argued that geographical expansion through the 

interconnection of electricity markets reduces vulnerability, as a larger entity is more likely to 

be able to absorb short-term disruptions [60]. However, there is no clear empirical evidence 

yet for how strong these effects are [61].  

Dependence on one or a few technologies endangers resilience as the system becomes more 

vulnerable to changes in the availability of the resource used by that technology (e.g., sudden 

gas cuts in a country highly dependent on CCGT). A more diversified country will be in a 

better position to prevent shortages resulting from external events. Resilience can thus be 

measured as the concentration of generation technologies, using an approach similar to the 

Herfindahl - Hirschman index (HHI): the higher the value of this index, the higher the 

dependency on a limited number of technologies.   

4.3 Reliability 

This concept is related to the quality of the service, i.e., electricity supply. Since electricity is 

a non-differentiated product, quality refers exclusively to being uninterrupted. While the 

metrics used above to assess capacity adequacy and resilience show a trend in SoES, they are 

not as such a measure of the risk of interruption. Nor do they provide any information on how 

large an outage event may be. Reliability thus refers to the capability of the system to provide 
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an uninterrupted supply. The most commonly used metric is the System Average Interruption 

Duration Index (SAIDI), i.e., the ratio between the total annual customer-minutes without 

service and the total number of customers in the system [20]. This data is typically provided 

by the Transmission system operator (TSO), based on information from the utilities, and is 

used as a benchmark in reliability improvement programmes. 

4.4 Supply flexibility  

Electricity systems must be able to deal with sudden imbalances, whether due to inaccurate 

demand forecasts, technical problems or, more recently the inherent variability of intermittent 

renewable generation sources. Events like a solar eclipse or an unexpected thunderstorm 

suddenly become of major concern when photovoltaic plays a significant part in the 

production [62]. Generators with fast response times, e.g., hydro-storage plants and CCGT, 

can meet sudden fluctuations in demand or help compensate for the loss of other power 

supply options [63].  

While variable renewable energies (VRES), i.e., wind and solar (PV), create short-term 

problems, countries with a large share of hydro, but limited reservoirs, face medium-term 

problems as they also need sufficient non-hydro capacity to withstand longer periods of 

drought caused by local weather systems [4]. As metric for flexibility, we use the ratio 

between, on the one hand, the available flexible load (hydro-storage and CCGT) and, on the 

other hand, the maximal load supplied by VRES over the last year. 

4.5 Condition of the grid  

This dimension refers to grid performance and adequacy. The degree to which both transport 

capacity adequacy and grid ageing affect the reliability of the system depends on grid 

topology, which in turn depends on the geographical distribution of the demand/supply nodes. 

The locational constraints of PV and wind lead to a much more decentralised generation 
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system, which increases topological complexity. In the presence of congested power-lines, the 

reorganisation of electricity flows in a highly decentralised system, following either an ageing 

failure or a power loss, becomes increasingly complicated and might lead to disruption [64]. 

Older systems operating close to their saturation level are more likely to suffer cascade 

events, as occurred in the USA in 2003 and in Europe in 2003 and 2006 [17,65].  

Grid capacity adequacy 

While capacity adequacy assessments tend to focus exclusively on the generation segment, 

the adequacy of power-grid capacity also deserves attention, as transportation of electricity 

depends on the transmission and distribution grid. Some work has focused on the impact of 

different congestion management mechanisms on investments in cross-border interconnectors 

[66,67] and on the TSO costs within a jurisdiction.  

Grid congestion leads to deterioration of service quality due to frequent power outages [20]. It 

can also lead to higher prices and to an inefficient allocation of resources, highlighted by 

significant price differences among pricing zones within a single market. For instance, in 

2012 average prices in Norway differed by more than 8% across regions [50]. In Germany, 

curtailment of wind power plants due to network congestion has increased in recent years 

[68].There are several mechanisms to deal with congestion management within a market; the 

two most widely used are market splitting and redispatch. In the former a market is split into 

different zones, leading to zonal prices. This mechanism is used among others in Nordpool 

and Italy. In the latter some generators, whose power contributes to congestion, are asked to 

produce less while others are requested to increase production. This mechanism is used for 

instance in Germany and some markets in the USA. Kumar et al. [69] provide a detailed 

review of the different mechanisms. According to the type of mechanism, Alomoush [70] 

proposes different indicators to measure congestion and its severity. With zonal prices, he 
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proposes an “index of locational marginal prices” as measure of the differences between zonal 

prices and the unconstrained marginal price. The unconstrained marginal price might be 

difficult to calculate, or not publicly available; one could instead use the weighted average of 

zonal prices. When there is redispatching, [70] proposes the “Index of Total Congestion 

Charge”, which is the ratio between the total congestion charge (TCC) and the total system 

generation. TCC expresses the difference between what consumers pay (strictly for the 

electricity, i.e., excluding any other fees) and what generators are paid. Since TCC data can be 

unavailable, an alternative could be the number of hours with redispatching, such as reported 

for Germany [71]. Alternatively, congestion might be measured in just a single critical power 

line. This can be done using the power transfer distribution factor, which is the physical flow 

on the transmission line in question as a fraction of the flow between the two points connected 

by the power line.  

Grid ageing  

A significant share of grid infrastructure in western countries was developed after the Second 

World War. For instance, two thirds of Swiss transmission capacity was built in the 1950s and 

the 1960s [72] and 70% of the transmission lines and power transformers of the USA's grid 

are now over 25 years old [73]. Unplanned interruptions due to system breakdowns and 

increased planned outages due to maintenance and upgrades are more frequent in old and/or 

poorly maintained networks [20]. The share of ageing failures grows significantly when 

components age [74]. Operating conditions such as bad weather may also increase a 

component’s failure rate, particularly in the presence of ageing components [75]. As a result, 

the age of the grid’s components contributes to the incidence of weather-related power 

outages.  



A Framework to Evaluate Security of Supply in the Electricity Sector 

255 
 
 

Investments in transmission should aim not only at relieving congestion by adding 

transmission capacity, but also at modernising and increasing the resilience of the grid. The 

amounts invested, while a useful indicator of the state of the network, are not a satisfactory 

measure as a component is not restored to an as good as new condition from a reliability 

perspective [76]. The age of the grid seems a more appropriate indicator of current 

performance and potential problems. In particular, it provides an indication of the investments 

that will be required in the medium- to long-term to maintain reliable transmission. 

4.6 Demand management 

Security of supply can also be improved by influencing demand, referred to as demand side 

management (DSM); this includes demand conservation, consumer efficiency, and load-

shifting.  

Conservation 

Conservation is the reduction in energy demand resulting from users foregoing certain 

services. This can be achieved, among others, by direct load control, demand bidding and 

industrial/commercial programmes, such as interruptible contracts [77]. Conservation usually 

provides only a temporary demand reduction in response to either higher prices or other 

external pressures [78]. We do not propose a specific metric for this aspect as it can be 

measured by subtracting interruptible demand from peak demand when calculating the de-

rated margin. For instance, the California ISO accounts for demand response and interruptible 

load programmes when assessing capacity adequacy [79].  

Efficiency 

Consumer efficiency is the ratio of energy service to the energy required to deliver that 

service. Improving consumer efficiency decreases demand [78], leading to higher margins of 
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available capacity and a higher level of SoES. This dimension thus focuses on the impact of 

energy efficiency measures, e.g., white certificates, energy efficiency obligations, and 

electricity savings trusts [80]. A successful demand side management programme focussing 

on efficiency gains (e.g., electricity saving light bulbs or improved insulation) will also reduce 

electricity intensity. To measure efficiency we use electricity intensity (adapted from 

Sovacool [28]), which represents the economic activity of a country (GDP) per unit of 

electricity consumed. This metric is preferable to the electricity consumption to avoid 

interpreting a decrease in consumption due to an economic recession as improved efficiency 

[81,82].  

Demand flexibility 

Unlike conservation and efficiency measures, load-shifting does not imply a demand 

reduction, but it relieves the stress on the electricity systems during demand spikes, or more 

generally, when demand/supply imbalances occur. The more flexible the demand, the more 

load can be shifted when needed. Consequently, increasing demand flexibility also contributes 

to the SoES. A TSO might be interested in “load shifting” or “load shaping” to fill a load 

valley, allowing for more efficient energy scheduling. This can be done either to increase 

demand when there is excess production, e.g., wind at night, or to dampen demand when 

prices are high [83]. Demand flexibility is thus strongly linked to capacity adequacy: for a 

given energy margin, SoES is higher when demand is more flexible. 

As metric, we use estimates of flexible demand relative to total demand. As explained above, 

shifted load is not necessarily peak-demand but rather demand that can be ‘allocated’ in a 

more efficient way to match the generation profile, which usually leads to a more cost-

effective allocation of resources. As meeting annual peak-demand tends to remains the main 

challenge of electricity system planners, load shifts generally lead to flatter load curves. On 
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the positive side, these flatter load curves avoid price spikes and decrease generators' 

uncertainty regarding their operating hours. On the negative side, they may result in the 

highest cost producers no longer being profitable and withdrawing from the market, thus 

creating an availability problem [84]. Therefore, the long-term effects of such measures need 

to be monitored carefully, as the benefit in terms of SoES from a higher de-rated margin 

resulting from a flatter load curve could be more than off-set by the closure of a peak unit due 

to decreased profitability. 

4.7 Regulatory efficiency  

Regulation should aim at ensuring well-functioning electricity markets; this includes sending 

the right signals to investors at the right time, without need for repeated regulatory 

interventions. Here we focus specifically on market performance and the need to provide 

incentives to conventional generators; environmental regulations are included in the 

sustainability dimension. There is also a link with the socio-cultural dimension, e.g., the main 

barriers to building new high-voltage lines in the U.S.A and optimizing the grid are not so 

much technical or economic, as bureaucratic [85]. 

Market performance 

This dimension focuses mainly on the prevention of market power, which could lead to 

market distortions, such as artificially high prices [86]. For instance, reform failures in the 90s 

in Norway and California, leading to uncertainty, created transmission congestion and a 

capacity shortage. This resulted in market power, leading to high prices [87]. Market power is 

generally more likely when there are fewer companies, i.e., competition is positively 

correlated with the number of competitors [88]. Regulation aimed at preventing market 

concentration has been one of the main issues for regulators after market liberalisation. For 



Security of Supply in the Electricity Sector: The Case of Switzerland 

258 

 

instance, it is recognised by most experts that there were too few companies in the England 

and Wales market in the early nineties, resulting in relatively high prices, until the regulator 

intervened [89]. Concentration is often measured by the HHI, using the market share of the 

five largest companies in the sector [90]. A high value indicates a high concentration, which is 

likely to lead to higher prices, thus decreasing affordability.  

Incentives for conventional generators 

Environmental pressures, combined with the current uncompetitive cost-level of VRES, have 

induced policy-makers to provide incentives for these technologies. However, this support 

leads to a lower residual demand for thermal generators, who become economically unviable. 

Still, thermal units are required for balancing and as backup during adverse weather 

conditions, when output from renewables is low, leading to regulatory concerns [84]. This has 

resulted in the implementation of different forms of support for thermal generation, such as 

capacity markets, capacity payments and strategic reserves [91,92]. While supporting VRES 

can be considered a long-term investment, aimed at allowing the technology to mature and 

achieve grid parity, supporting conventional generators indicates a market failure. The 

percentage of the tariff allocated to supporting conventional generators, i.e., hydro, nuclear 

and thermal generators, measures the support needed to keep these technologies online. 

4.8 Sustainability  

In the literature, the term "sustainability" is usually found to refer solely to the environmental 

implications of energy use: a sustainable system is unlikely to damage the environment. This 

aspect increasingly dominates current energy policy decisions at national and EU levels [93]. 

Furthermore, environmental commitments are acknowledged to have a considerable impact 

on security of supply because of the significant transformations and investments required to 

reduce the environmental impact of energy systems.  
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However, the concept of sustainability goes beyond the environmental aspect: it includes 

longer-term economic viability as well as the long-term physical availability of resources. 

While most studies addressing the economic aspect of sustainability focus on the fact that 

energy should be affordable for consumers, little attention has been given to the supply-side: 

energy production should be profitable so as to ensure the availability of facilities to produce 

and transport energy.  

Finally, energy availability is one of the dimensions receiving major attention in studies 

concerning energy security. This dimension refers mainly to the existence of resources, which 

is particularly important in fossil fuel markets. Still, fossil fuels are used not only to generate 

electricity, but also for, among others, transportation and heating. Therefore their availability 

specifically for electricity generation is hard to quantify. However, given the exhaustible 

character of fossil fuels, relying on these to generate electricity endangers the future 

availability of electricity. We next discuss in more depth these four aspects of sustainability: 

environmental sustainability, affordability, profitability, and fossil fuel dependency. 

Environmental sustainability 

Discussion persists on whether environmental sustainability should be considered as one of 

the dimensions of SoES; for instance [93] and [38] implicitly split environmental 

sustainability and energy security. However, environmental consequences of energy 

production and consumption affect energy systems; e.g., climate change has an effect on 

water patterns and availability [40]. According to van Vliet et al. [94] over two thirds of 

hydropower plants will face a reduction in their capacity due to reduced inflows and increased 

sedimentation. Thermoelectric plants will also be affected as they use large amount of water 

for their cooling systems. Given that 98% of world generation comes from the two sources, 

this impact cannot be ignored [94]. Climate change is also expected to affect the demand-side; 
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for instance, Eskeland and Mideksa [95] show that in Europe an increase in temperature will 

result in significantly higher demand.  

Given the complexity of measuring to what extent electricity-related environmental impacts 

affect the electricity sector, we focus on the driver of climate change, emissions, a directly 

measurable environmental aspect. We propose the annual carbon emissions per unit of 

production, e.g., TWh. Depending on a country's characteristics, other emissions, such as 

sulphur, particles or NOx, may need to be considered. 

Affordability 

There exist many approaches to measuring affordability. Some authors address the issue of 

high costs in energy markets by considering fuel prices as a metric [28,42,43]. Other metrics 

depend on very detailed information that is not always available, e.g., energy systems’ 

internal costs [96]. However, these metrics do not take into account the purchasing power of 

consumers. A suitable metric should thus relate costs and income, e.g., by calculating the ratio 

between fuel costs and GDP [41] or fuel expenses as a share of household revenues [97]. A 

measure for the affordability of electricity tariffs  should specifically incorporate consumers' 

income [27]; we therefore adapt the approach of [97] and define the metric as the ratio 

between the average cost of electricity cost per household and the median  household wage.  

The validity of this measure depends on the electricity grid coverage. Developing countries 

often have high income inequality and/or low coverage. Therefore, comparing the cost of 

electricity to the median income in a country with high income inequality might provide a 

misleading view of affordability, as the indicator hides the real cost of electricity for the 

poorest part of the population. Likewise, a high level of affordability in a country with low 

coverage is a poor indicator as it does not capture access to electricity. Furthermore, in some 

situations there can be a trade-off between electricity tariffs and the electricity coverage 
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policy, when the income from high tariffs is dedicated to improving coverage. If countries 

have differentiated tariffs depending on household income (e.g., the Ontario Electricity 

Support Program [98]), this should be taken into account when evaluating this measure.  

Profitability 

On the supply side, a measure of the economic sustainability of the system should reflect the 

adequacy of generators' revenues. A price decrease does not necessarily reduce generators' 

profitability as it can result from technological progress, such as a more efficient use of fuel 

[89]. Similarly, a price increase resulting from changing oil and gas prices or exchange rates 

does not necessarily affect the generators’ profitability.  

We focus on generators because the transmission and retail segments usually have regulated 

tariffs that ensure their economic viability. This is not the case of the generators, who are 

increasingly facing very difficult market conditions due to the larger penetration of subsidised 

VRES [99]. Consequently, not only are prices decreasing, but so is the residual load.  

It is important to distinguish between base-load and peak-load generators. Base-load 

generators are likely to be profitable as the price mostly exceeds their marginal costs. 

Marginal producers, i.e., peak units, have relatively short production hours and may at times 

only recover their marginal costs, leaving them without a margin to cover their fixed costs. 

The profitability of these generators, who are the most affected by large VRES penetration, is 

important: prolonged periods of insufficient profitability result in few or no investments in 

new capacity, and may even cause mothballing or early closures, leading to a shortage. 

Data about individual plants' profitability is rarely publicly available, and mostly unknown 

even to TSOs; we thus suggest as alternative metric the load factor of conventional and peak 

generators. A significant decrease of their load factor should act as an early-warning, 
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signalling potential future problems. For instance, the Belgian gas-power plant Drogenbos 

used to operate on average 8,000 hours/year, but in the first quarter of 2014 it only operated 

100 hours [100]; likewise, the German plants Irsching 4 and 5 supplied no merchant power at 

all in 2014 and were only dispatched when they were needed to stabilize the network [101]. 

The resulting lack of profitability is endangering their availability; these and other plants are 

being mothballed across Europe [102]. 

Fossil fuel dependency 

Although dependency on fossil-fuels is included by [41] in the measurement of the 

environmental impact, the explicit inclusion in our framework is not redundant. This is indeed 

tightly related to the economic and environmental aspects: fossil-fuels are expected to become 

more expensive not only because of the environmental commitments, but also because of their 

depletion.  

The finite nature of fossil fuels will require the eventual replacement of fossil-based 

generation. While this can partly be achieved through a decrease in demand, a shift to 

renewable generation technologies, existing or new, will be necessary in the long-term. This 

might be possible with technological progress in electricity generation and storage [103], but 

future technological breakthroughs are difficult to predict. As a measure we propose the ratio 

between current fossil-based generation and the expansion potential of generation by 

renewable sources. 

4.9 Geopolitics  

Yergin [104] recognises that energy security is affected by international relations. Import 

dependency has attracted major attention, in particular in the oil and gas markets, as non-

competitive pricing could result from the exercise of market-power by fuel exporters, with 

adverse socio-economic implications for consumers [31]. Furthermore, import dependency is 
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seen as a threat because of some suppliers’ political instability [27,41]. There are numerous 

examples of countries using gas as a political instrument; examples include Russia [105] and 

Bolivia [106]. Dependency on imported gas for electricity is recognised as a threat to SoES. 

While the increased interconnection of electricity markets has been seen as a major 

achievement of foreign policy to promote SoES, this exposes the system to threats of cascade 

failures [20]. Furthermore, reliance on imported electricity might decrease investment 

incentives in the long-term [52]. The degree to which a country is vulnerable depends on the 

concentration of imports. We distinguish two main sub-dimensions: dependency and 

vulnerability. The metrics we propose for these dimensions are adapted from Constantini et al. 

[107] to be applicable to single jurisdictions.  

Dependency 

This dimension captures to what extent imports are necessary to meet local demand. Imports 

include direct electricity imports, as well as imports of primary fuels used for electricity 

generation, e.g., gas, coal and oil. The higher the percentage, the more dependent the country 

is; particular attention should be given to the evolution over time. An analysis of the stability 

of the countries of origin, the relationships with exporters and the balance of trade are also 

essential. For instance, the EU is developing an integrated electricity market, and can be 

considered as politically stable, implying that significant exchanges between EU countries 

should not be seen as a threat from a geopolitical point of view. However, sudden shortages 

due to extreme weather conditions or significant price changes could threaten SoES in 

countries which are net importers, e.g., Italy. 
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Vulnerability  

This dimension focuses on the concentration of imports, which depends on volumes imported 

and the number of jurisdictions where imports come from. As was the case for resilience of 

generation capacity, the aim is to highlight the risk of relying on a limited number of fuels, or 

on electricity from a few jurisdictions. The SoES in the importing jurisdiction could be 

seriously endangered in case of political problems or extreme weather conditions in the 

exporting jurisdictions. This was observed for instance during the Californian crisis in 2000 

and 2001, which was caused among others by an excessive dependence on imports from the 

Northwest of the USA [108]. We suggest two metrics, similar to the HHI, to measure the 

concentration of import jurisdictions and of electricity and primary fuels respectively. In their 

analysis of oil trade, Cohen et al. [30] propose to adjust the metric for political risk. Their 

arguments also apply to electricity markets, as political factors in the exporting jurisdiction 

could lead to sudden disruptions. We thus propose the use of the “Government effectiveness” 

index, provided by the Global Risk Service and included in the Worldwide Governance 

Indicators – WGI [109], which measures how confident businesses can be of the continuity of 

economic policy. 

4.10 Socio-cultural factors  

Opposition caused by environmental concerns may result in investments in new transmission 

or generation capacity being delayed, suspended or even cancelled. For instance, a heated 

debate about wind energy and hydropower is taking place in Switzerland. Opponents of wind 

energy projects criticise the construction of wind farms, because of their impact on the 

landscape, birds, etc. These debates have led to the cancellation of several projects [110]. 

Likewise, hydropower expansion potential is severely limited because opponents criticise the 

impact of these projects on water flows and ecosystems [111]. The installation of new high-
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voltage transmission lines is often objected to by people living close-by. Recent examples 

include projects in Switzerland [112], Germany [113] and the USA [85]. Furthermore, several 

wind projects in the north of Germany have been suspended due to the resistance to a new 

north-south “super-grid” [114]. 

Opposition is not limited to new technologies. For instance, nuclear energy has faced political 

and grassroot pressure for many decades: a moratorium on new plants was launched in 

California in the 70s [115]. More recently, following the 2011 Fukushima accident, Germany 

closed several plants [116] and Switzerland plans to close at least a third of its  nuclear 

capacity between 2019 and 2032 [117]. In these decisions, political arguments and fear often 

outweigh technical, economic and security arguments [118]. These decisions will have a 

significant influence on the capacity adequacy issue discussed above, and there is evidence 

that prices might increase as a result of nuclear plant shutdowns [119].  

Although socio-cultural factors are rather subjective, they could be approximated by estimates 

of the total time required to implement a project (including the time for consultations and 

delays due to appeals). For instance, installing a new high voltage grid in Switzerland takes 

between 9 and 12 years [120], a multiple of the actual construction time. 

4.11 Access 

For many developing countries it is furthermore necessary to keep track of the share of the 

population who have the physical possibility of connecting to the grid and receive electricity, 

i.e., energy access;  this can in some countries be less than half the population [121]. Indeed, 

there could be a trade-off between increasing the share of the population connected to the 

grid, and the degree of SoES for those who do have access. It is important to keep track of 
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how this fraction evolves over time, yielding as metric the percentage of the population 

having access to the grid. 

4.12 Terrorism  

High voltage transmission systems, in particular overhead transmission lines, are vulnerable 

to sabotage. Simultaneous attacks at several places in an electricity system, including cyber-

attacks, could leave a region without electricity for an extended period of time [122]. While 

the economic impact of such power outages would be significant, the long-term consequences 

are limited [63]. Since the costs of damages due to terrorist attacks in the electricity sector 

might not be publicly available, we propose using one of the measures of the World 

Economic Forum (WEF) Report: the business cost of terrorism. 

5. The framework as policy tool 

Our aim in this section is to outline how our framework can help stakeholders understand the 

opportunities and threats that will shape the future of the electricity industry. This framework 

will not provide a “silver bullet” for SoES; rather, it is a decision support tool aimed at 

helping to organise and present data, and structure the analysis. By providing an overview of 

the state of SoES, it will highlight potential future problems and help decision makers 

understand the challenges they face, putting them in a better position to optimally allocate 

their limited resources. The objective of the framework is to understand where, when and how 

to intervene to maintain the desired level of SoES. In this sense, the framework also works as 

a form of “early-warning system”. By drawing attention to changes in the values of the 

different metrics while there is still time to intervene, decision-makers can take the necessary 

steps to prevent potential problems from materialising.  

Each jurisdiction should aim to establish appropriate critical values for the various metrics. A 

metric approaching its critical value signals that this dimension could endanger SoES in the 
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near future. It is also crucial to keep in mind a metric's time-scale when comparing its current 

and critical values. When a metric reaches its critical value, it is too late to react: there thus is 

a need for “lag-adjusted critical values”. An indicator getting close to its lag-adjusted critical 

value signals to decision makers that this is their last opportunity to act before the SoES 

becomes endangered.  

While a simple graphical representation of the metrics' time-series is a useful way to visualise 

their evolution, other, more sophisticated charts, may be more informative. For instance, 

spider-web diagrams showing the evolution of (a subset of) the metrics over a number of 

years could provide an overview of the “dynamics” of SoES, identifying which metrics have 

improved and which have deteriorated.  

As mentioned previously, we do not propose one single aggregate metric representing SoES, 

as such a metric would not provide insights for investors, regulators or policy makers to act 

on. Rather, the focus should be on the evolution over time of the metrics, as long time-scales 

are one of the key characteristics of the industry. Consequently, observing the evolution of the 

metrics over time is critical, as reversing a trend can take years, even decades. One should 

particularly be aware of the fact that each measure has its own time-frame. For instance, 

reversing a decreasing trend in the de-rated margin takes years due to construction delays, 

while strengthening the high-voltage grid requires decades. 

6. Conclusion and policy implications 

Ensuring the security of electricity supply is currently a matter of concern for regulators and 

policy makers. There is a need for a comprehensive framework that clearly maps out the 

dimensions of SoES in a way that allows decision makers to monitor the system's evolution 

and act before problems arise. Most of the previously proposed frameworks either address the 

entire energy sector or focus on selected fossil fuels. The few frameworks developed for the 
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electricity sector are too specific to be generalised. This paper has developed a framework to 

evaluate security of supply in the electricity industry, acknowledging its multidimensional and 

inter-temporal nature, and the need for one or more accompanying metrics to assess each 

dimension.  

Our framework enables regulators and policymakers to act timely as it offers the following 

advantages: (i) an exclusive focus on the electricity sector; (ii) a disaggregation of SoES into a 

series of key indicators that allow identification of specific potential problem areas; (iii) a 

temporal dimension that enables tracking the evolution of these indicators over time, 

highlighting emerging trends; (iv) a focus on a single jurisdiction within the decision makers 

remit and responsibility; (v) a reliance on publicly available data for most indicators. 

The debate on SoES has often been very one-dimensional, focussing on the most critical issue 

at a given point in time, rather than on the bigger picture. Examples include the European 

dependence on Russian gas [123–125] and insufficient investments in the electricity sector 

[92,126,127]. Our framework aims to broaden the debate, by pointing to the need to focus not 

on one, but on a multitude of dimensions simultaneously, to achieve a true understanding of 

SoES. Focusing on one dimension removes attention for what might be the next issue, leading 

to a situation of constant firefighting: problems which could have been resolved easily and 

cheaply if addressed at an early stage become major issues. The framework developed here 

should induce stakeholders to keep the bigger picture in mind when analysing the situation, 

thus contributing to the quality and pertinence of the public debate about the priorities in the 

electricity industry.  

This framework has a number of limitations one needs to be aware of. While it is 

comprehensive and covers the most important aspects of the electricity industry, it may 

require adaptation for use in jurisdictions with very atypical characteristics; some of the 
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proposed dimensions or metrics may be irrelevant, while others may need to be added. For 

instance, for Norway, which is close to 100% hydro-based, CO2 is clearly not an issue, but 

climate change is an essential dimension. 

A further complexity that we have not dealt with explicitly is the increasing interdependency 

of the many factors that determine security of supply, i.e., addressing problems in isolation is 

difficult as any action will have knock-on effects: an action might improve one dimension 

while adversely affecting others. Understanding these interdependencies, and their 

consequences across the whole electricity sector, is essential if we are to achieve a real 

understanding of the security of electricity supply. Although defining such interdependencies 

is beyond the scope of this paper, our work does point out some of these, increasing policy 

makers' awareness of the consequences and potential side effects of policy modifications. For 

instance, while regulators may tolerate a reasonable tariff increase to subsidise renewable 

energies, there is a limit to how much tariffs can rise before affecting the standard of living of 

the general population or industrial competitiveness. 

Finally, one of the main obstacles to a successful implementation of this framework is data 

availability: while we have privileged measures requiring only publicly available data, 

required data may be unreliable (e.g., socio-cultural factors) or simply non-existent (e.g., 

congestion costs). A successful use of the framework will only be possible with the 

collaboration of all parties involved.  

Future work will include the mapping of the interdependencies between the different 

dimensions, as well as the development of a number of cases for specific jurisdictions to 

illustrate the applicability of the framework. 
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