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Living organisms have either innate or acquired mechanisms for reacting to percepts

with an appropriate behavior e.g., by escaping from the source of a perception detected

as threat, or conversely by approaching a target perceived as potential food. In the

case of artifacts, such capabilities must be built in through either wired connections or

software. The problem addressed here is to define a neural basis for such behaviors

to be possibly learned by bio-inspired artifacts. Toward this end, a thought experiment

involving an autonomous vehicle is first simulated as a random search. The stochastic

decision tree that drives this behavior is then transformed into a plastic neuronal circuit.

This leads the vehicle to adopt a deterministic behavior by learning and applying a

causality rule just as a conscious human driver would do. From there, a principle of using

synchronized multimodal perceptions in association with the Hebb principle of wiring

together neuronal cells is induced. This overall framework is implemented as a virtual

machine i.e., a concept widely used in software engineering. It is argued that such an

interface situated at a meso-scale level between abstracted micro-circuits representing

synaptic plasticity, on one hand, and that of the emergence of behaviors, on the other,

allows for a strict delineation of successive levels of complexity. More specifically, isolating

levels allows for simulating yet unknown processes of cognition independently of their

underlying neurological grounding.

Keywords: developmental cognition, behavioral learning, synchronized perceptions, neural circuit, virtual machine

INTRODUCTION

Living organisms use either innate or acquired (i.e., learned) mechanisms for reacting to percepts
with an appropriate behavior e.g., by escaping from the source of a perception detected as threat
(even an amoeba reacts to turning away from light), or conversely by approaching a target perceived
as potential food. In the case of learned behaviors, seminal work in comparative zoology has
stressed the importance of unimodal percepts in the development of animal cognition leading
to deterministic behaviors (see e.g., Zentall et al., 1981). The term “modality” is used here to
distinguish between percepts and/or actions that can be compared and eventually equated (e.g.,
the color of objects to choose from) from those which cannot (e.g., a right/left spatial percept
cannot be directly associated with the selection of a forward/backward gear). By definition, a
deterministic behavior does not depend on randomness i.e., it follows a specific pattern (e.g.,
could be described by a rule). In bio-inspired artifacts (e.g., robots), such capabilities can be either
built in through wired connections, as in Braitenberg (1986) vehicles, or defined in software. In
this second case, a further distinction must be made as to whether a priori defined associations
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betweenmodalities must be specified, or if one wants to construct
a machine with evolving capabilities, i.e., encompassing learning
and awareness capabilities. The problem addressed in this study
is to define a possible neural basis for artifacts of this later type.

According to Pepperberg and Lynn (2000), the first level of
animal awareness corresponds to the ability to follow a simple
rule involving the perception of a specific item or event and then
its acceptation or its rejection e.g., a case of matching/oddity to
sample (Zentall et al., 1981; Katz et al., 2008). Whereas this first
level does not allow for an immediate transfer to a similar task,
an organism with the second level is aware enough of a rule
to transfer it across situations and thus to adopt for example
a win/stay lose/shift rule (Cole et al., 1982). The third level
of animal awareness provides an organism with the additional
capacity to refer to some previous experiences and integrate two
sets of information in order for example to make a categorical
judgment e.g., to sort items (Savage-Rumbaugh et al., 1980).
These three levels thus offer a model for a developmental process
based on a single perceptive modality e.g., vision. More precisely,
the evolution that underlies this taxonomy shows a progressive
shift from a single event involving two unimodal percepts (e.g.,
matching the color of two objects), toward the combination
of two events involving a single percept (e.g., the view of an
object that in turns triggers an episodic memory). Moreover,
these successive cognitive abilities refer to static associations (i.e.,
they do not include an explicit time dimension, whereas later
levels do) that are perceived between objects and/or events. As
such, they are often said to belong to the restricted domain of
perceptual (or access) consciousness (Block, 1995).

The introduction of a time dimension projects into the
domain of dynamical systems e.g., monitoring (or behavioral)
consciousness, in which associations between percepts are
replaced by causality rules (Freeman, 1999) that can involve
contextual and/or multimodal perceptions. The complexity of
the corresponding neural phenomena has so far prevented the
definition of models directly relating single neuron dynamics to
global brain states (see e.g., Goldman et al., 2019). As an example,
whereas neurological measurements (Tomov et al., 2018) have
validated a computational Bayesian model positing a dedicated
neural mechanism for causal learning (Gershman, 2017), nothing
is known about the corresponding basic neuronal processes that
could be reproduced in a bio-inspired robot.

As pointed by many authors (e.g., Carandini, 2012; Cooper
and Peebles, 2015; Love, 2015), bridging the gap between
brain measurements and cognitive processes requires formal
models that do provide links between neural circuits and
behaviors. In other words, and in contrast to formalisms that
use statistical methods to search for patterns existing in a brain,
one needs to consider processes and not just data. Toward this
end, a new computational approach implementing a symbolic
model of asynchronous neural dynamics has been proposed
(Bonzon, 2017a). While this does not provide evidence about
the links between neural circuits and behaviors, it allows for
constructing brain structures that might be associated with
higher level cognitive capabilities, stressing thus the fact that
the corresponding grounded neural processes are yet unknown.
Given under the form of a virtual machine, this framework
offers an interface situated at a meso-scale level between

abstracted micro-circuits representing synaptic plasticity (this
representation relying on a detector of coincidence, as evidenced
by neurological findings), on one hand, and behaviors, on
the other; this interface thus allows for a delineation and
implementation of successive levels of complexity.

This formalism has been used to simulate the first three
levels of animal awareness and to model its possible roots
(Bonzon, 2017a, 2019). In order to go beyond behaviors
based on a single modality, we design and simulate here a
thought experiment involving an autonomous vehicle with two
perceptive modalities. Its behavior is first implemented as a
random search. The stochastic decision tree that drives it is
then transformed into a plastic neuronal circuit learning an
appropriate deterministic behavior. This leads to posit a model
of causal learning based on synchronized multimodal percepts.
Extending the Hebb principle of wiring together neuronal cells
(Hebb, 1949), which was originally expressed at the level of
coincidentally firing neuronal cells, this new learning principle
relies on the concept of asynchronous threads within a given
stream (i.e., at a meso-scale level superimposed on the micro-
scale level of neuronal cells). An application of this principle
will reveal how inhibition/disinhibition processes of neural
assemblies (i.e., a keymechanism for circuit learning as evidenced
by neurological findings) allow for learning the equivalence
relations among different modalities, which in turn leads to the
learning of behaviors.

THEORETICAL REVIEW

This theoretical review is intended to situate our work within the
overall framework of developmental cognition, and in particular
to highlight the relation between a multimodal brain and
synchronized processes.

The Development of Rodent’s Brain
The development of both animal and human brains includes
processes ranging from gene expression to environmental inputs.
It is out of the scope of this study to review all these processes (see
e.g., Stiles and Jernigan, 2010). We shall rather restrict ourselves
to issues directly related to our work i.e., the origin of a rodent’s
brain ability to represent space and the role played in this context
by the synchrony of circuits.

Following the early seminal work performed on rats by
O’Keefe and Dostrovsky, 1971, followed later by that of Moser
and Moser (2008), which earned them together the Nobel prize
in 2014, events associated with space are represented in the brain
by assemblies of a variety of specialized neurons (i.e., place, head
direction, grid, and border cells), which together constitute visual
receptive fields. These assemblies form a dynamic representation
of positions when one moves through the environment. This
raises in turn the following question: is this ability to situate
oneself in space acquired before birth or learned through
encounters with the environment? Both (Langston et al., 2010;
Wills et al., 2010) report that components of the brain’s spatial
representation systems are already present when an animal
starts to move in its environment. Moreover, the evolution
of this representation follows from an increase in network
synchrony among cortex cells (Langston et al., 2010). As a result
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of experienced stimuli from environmental inputs, Hebbian
learning eventually allows for “overwriting the earlier ante-natal
configuration” (Wright and Bourke, 2013).

Perception Development
Two successive and somehow intervened processes must be
distinguished: first, sensation, which is the process of receiving
information from the world, and then perception, which refers
to the interpretation of that information and its contribution,
via motor responses, to the choice of actions. Whereas the
reception of visual information, as sketched above in the case of
rodents, is achieved through receptive fields, its interpretation,
which in turn is grounded in the brain, results from yet mostly
unknown circuits and mechanisms. Furthermore, because of the
existence of multiple sensory asynchronous organs and inputs,
resulting sensations, perceptions, and actions are multimodal in
nature (Bertenthal, 1996), and their proper discrimination and
integration rely, among others things, on a differentiation based
on a common synchrony (Bahrick, 2004).

Development of Consciousness
A recurring debate about the functioning of the brain concerns
the characteristics and the roles played both at the neurological
and cognitive levels by synchronous vs. asynchronous processes,
their relation to conscious vs. unconscious behaviors, and a
possible fundamental duality in neural dynamics. While the
synchronous activation of brain processes is widely used
for describing the functioning of the cortex (Singer, 1993),
diverging views apply to the specialized tasks supported by
these synchronized processes. Experimental results have revealed
in particular the existence of transient long-range phase
synchronization leading to the hypothesis that synchronization
vs. desynchronization is a candidate mechanism for controlling
visual attention (Gross, 2004). Other studies related to the
integration of attributes in a visual scene suggest that there is no
central neural clock involved in this mechanism, thus making the
brain a massively asynchronous organ (Zeki, 2015). In support
of this diversity, results from a large scale simulation (Markram
et al., 2015) report “a spectrum of network states with a sharp
transition from synchronous to asynchronous activity.”

Unconscious and conscious behaviors have been described
respectively as lacking conscious attention and enjoying an
introspective reporting capability (Shanahan, 2009). Various
studies have focused on the search for the neural activity
that differentiates between the two, but their overall results
appear inconsistent (Dehaene and Changeux, 2011). As an
example, experiments related to a delayed matching to sample
task (Dehaene et al., 2003) have suggested that the neural
signature of unconscious vs. conscious perception could be a
local coordination vs. a global synchronization of neural activity.
Further results (Dehaene et al., 2006; Melloni et al., 2007) about
the same task have concluded that transient synchronization is
the critical event that triggers an access to consciousness. While
no definite links between neural activity and conscious behavior
(which would constitute neural correlates of consciousness) have
been identified yet, it is nevertheless common to postulate the
existence of a dynamical stream of consciousness mediated by
a global workspace (Baars, 1988) defined as a distributed brain

state connected to various brain areas, thus making perceptual
information available to different tasks. In one of these theories
(Dehaene and Naccache, 2001) pertaining to the particular case
of conscious perception (referred to also as access consciousness),
sensory stimuli are associated with a population of excitatory
neurons that in turn inhibits other neural assemblies, thus
preventing the conscious processing of other stimuli.

More generally, an emergent picture of the brain shows
opposing spiking patterns in populations of neurons engaged in a
competition (Zagha et al., 2015). The demonstration of temporal
competition in eligibility traces for long term potentiation
and depreciation (ltp/ltd) designates these traces as plausible
synaptic substrate for reward-based learning (He et al., 2015).
Together, these findings enforce a fundamental principle in
circuit neuroscience according to which, as result of synaptic
plasticity, inhibition in neuronal networks allows in turn for
disinhibition and stands as a key mechanism for circuit plasticity,
learning, and memory retrieval (Letzkus et al., 2015).

The Bayesian Coding Hypothesis
According to the so-called “Bayesian coding hypothesis” (see e.g.,
Doya, 2007), the brain represents sensory information under
the form of probability distributions. Statistical methods based
on Bayes’ theorem allow then to update these probabilities
by using newly available data. Briefly stated, Bayes’ theorem
allows for calculating the a posteriori conditional probability
of an event based on a priori existing data about both the
event itself and some conditions related to that event. In other
words, the brain supposedly encodes a model of the world and
makes predictions about its future sensations. Predictions are
compared with actual inputs and the differences between them
i.e., the prediction errors, are propagated in the model (Knill
and Pouget, 2004). Driven by a hierarchical structure, prediction
errors from a lower-level are given as inputs to a higher-level.
In parallel, feedback from the higher level provides prior data
to lower levels. Let us just mention in passing that in this
view, “neuropsychological deficits can be thought of as false
inferences that arise due to aberrant prior beliefs” (Parr et al.,
2018). However, as already noted in the introduction, the neural
grounding of bayesian processes is still unknown, and a subject
of ongoing controversies.

Focus of This Work
As suggested throughout this theoretical review, associating
various perceptions and/or actions through synchronization
processes could constitute the basis onwhich to build a functional
model of a multimodal brain. Somehow tautological, this idea is
developed below.

Let us first recall the distinction between sensations i.e., the
capture of sensory inputs throughneuronal receptive fields, on one
hand, andperceptions i.e., their interpretation throughhigher level
neurological structures and mechanisms related to cognition, on
the other. The choice of a virtualmachine situated at an abstracted
meso-scale levelallowsforsimulatingtheseyetunknownprocesses
of cognition independently of their neurological grounding.
Therefore, and contrary to the usual (but also controversial,
because to date they do not offer any link to implement cognitive
processes) approaches (e.g., Markram et al., 2015),
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• individual neurons will not be simulated in any of their
anatomical and/or functional details, and considered solely
as communicating entities receiving and transmitting signals
from abstracted aggregated sensory inputs represented by
symbolic data

Furthermore, in order to allow for simple abstracted sensory
inputs (i.e., thus ignoring their capture through multiple
receptive fields),

• space will be restricted and defined as a one dimensional axis.

The viability of this approach has been tested in a simulated
unimodal context (Bonzon, 2019) that reproduced experimental
results in the field of comparative zoology. In the absence of
published material matching multimodal concepts as introduced
in the present study, we shall rely here on a thought experiment.

MATERIALS AND METHODS

The formalism and tools used in this study have been previously
published (Bonzon, 2017a). In order to help the reader follow and
understand the results that will be presented in the next section,
we introduce them here by providing first their methodological
background. This is followed in turn by an overview of these tools
and some implementation details of the basic concepts they are
based on.

Methodological Background
In order to characterize different approaches in model-based
cognitive neuroscience (Palmeri et al., 2017), Turner et al. (2017)
consider a set of neural data denoted by N and a set of behavioral
data denoted by B, and distinguish three ways these two domains
can interact i.e.,

(1) using the neural data to constrain a behavioral model
(2) using the behavioral model to predict neural data
(3) modeling both neural and behavioral data simultaneously.

Whereas the first two cases use unidirectional statistical
influence, the third one relies on a bidirectional link between
measures of different modes to formalize a connection between
N and B through a cognitive model. As an example of this third
case, and in order to relate the model parameters that respectively
predicts N and B, (Turner, 2015) uses a hierarchical Bayesian
structure connecting the neural and behavioral levels. All these
approaches rely on statistical methods to relate data to patterns
of neural activity. In order to introduce processes, as argued in
the Introduction, a new type of interface borrowed from the
field of software engineering is proposed under the form of a
virtual machine. This new approach falls thus into the domain
of computational cognitive neuroscience (Ashby and Helie, 2011;
Kriegeskorte and Douglas, 2018).

Generally speaking, a virtual machine is a software
construction having its own execution language L that emulates
the execution of a program written in another higher level
language S, thus allowing for interfacing two domains. A classical
example is given by the Java machine, where the languages L and
S correspond respectively to Java byte code obtained from the
compilation of Java source code. The virtual machine that we shall

consider here allows for interpreting code given under the form
of logical implications l ǫ L compiled from symbolic expressions
s ǫ S. With regard to the statistical framework considered by
Turner et al. (2017) relating neural data N to behavioral data B,
we have the following bottom up correspondence:

N → L

B → S

where logical implications l ǫ L are used to deduce virtual
machine instructions (i.e., the model’s grounding) and symbolic
expressions s ǫ S represent virtual circuits driving behaviors.

Tools Overview
An experimental platform for a new type of brainmodeling based
on a virtual machine (i.e., similar to a Java machine that allows
for software developments without having to worry about the
idiosyncrasies of the underlying hardware), has been developed
(see Bonzon, 2017a). It is defined, and thus at the same time
implemented, by a logic program of about 300 lines that can run
on any PC equipped with a Prolog compiler.

In a first approximation, this machine does function as non
deterministic learning automaton that is defined by a repeated
sense-react cycle of embodied cognition. In this particular
instance of embodied cognition, brain processes are first
abstracted through virtual microcircuits representing synaptic
plasticity. Sets of microcircuits can be then assembled into meso-
scale virtual circuits linking perceptions and actions.

In order to get an intuitive idea of the functioning of
this virtual machine, let Model designate its current state,
comprising various machine registers and a repository of
contextual implications compiled from the symbolic expressions
representing virtual circuits. At the top level, the virtual machine
is defined by a run procedure that consists of a loop whose cycle
comprises a sense procedure followed by a react procedure:

run(Model)
loop sense(Model)

react(Model)
At the next level, the sense procedure monitors spike trains
directed to sensory neurons. After capturing an Input interrupt,
it updatesModel registers through a transition function input:

sense(Model)
if interrupt(Input)
then input(Model,Input)

The react procedure in turn consists of a loop using implications
in Model to first deduce a virtual machine Instruction and then
updateModel using a transition function output:

react(Model)
for each (Instruction)
such that ist(Model, Instruction)
do output(Model,Instruction)

The ist predicate (standing for “is true”) implements contextual
deduction (Bonzon et al., 2000). The output function corresponds
to the execution of a virtual machine instruction.

Extended Virtual Machine Definition
The virtual machine used in this study, originally designed to
execute a “sense-act” cycle of embodied cognition as sketched
above, is extended here to implement a “sense-act-reflect” cycle.
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The basic units of processing making up microcircuits are
constituted by threads. In computer science, a thread is a piece
of program made of a sequence of instructions that executes
concurrently with other threads to constitute a formal process.
In the present context, a thread is similarly defined by a tree
(i.e., a hierarchical data structure) of instructions enclosed in a
symbolic expression that stands in one to one correspondence
with a circuit (see section Basic Concepts Implementation).
Threads are communicating entities intended to represent either
a single or a group of neurons. Contrary to traditional neuron
models in which their inputs are summed up, threads do process
their inputs individually, thus making them a kind of free
quasi-particle (Frégnac, 2017). In order implement a detector
of coincidence for handling messages (Buzsaki and Llinas,
2017), synaptic plasticity is abstracted through asynchronous
communication protocols.

This overall approach can be then summarized as follows:

- micro-scale virtual circuits implementing synaptic plasticity
through asynchronous communicating threads are
first defined

- meso-scale virtual circuits corresponding to basic, but yet
unknown cognitive processes, are then composed out of these
micro-scale circuits

- virtual circuits, represented by symbolic expressions, are
finally compiled into contextual implications allowing for the
deduction of virtual instructions to be eventually interpreted
by a virtual machine.

In order to represent neurons as a kind of free quasi-particle
that, according to the tri-level framework based on synaptic

plasticity considered by (Frégnac, 2017), participate in multiple
functional sub-networks, disjoint sets of threads form fibers.
Fibers correspond to the formal notion of independent processes
made of concurrent threads, and are used to model neural
assemblies (Huyck and Passmore, 2013). An active thread within
a fiber gives rise to a stream. Each communication taking place
within a given stream do involve a pair of threads and entails
on one side the signal transmitted by a pre-synaptic source
thread, and on the other side its reception, via a given synapse,
by a postsynaptic recipient thread. Similarly to a neuron, a
thread can be both a source and a recipient and functions
as a gate receiving incoming signals from different sources
and sending an outgoing signal to possibly many recipients.
There are however two essential differences between threads and
neurons that allow for a single thread to represent a group of
neurons i.e.,

• contrary to a neuron that alternates roles in cycles, a thread
can be simultaneously a source and a recipient by maintaining
parallel communications

• contrary to traditional neuron models in which incoming
signals are summed in some way into an integrated value,
thread inputs can be processed individually.

On this basis, the extended virtual machine is defined in
Figure 1.

One must clearly distinguish here between two things i.e.,
the way the virtual machine is implemented, one hand, and
what this machine does (say as opposed to solving differential
equations in the case of a traditional brain simulator), on
the other:

FIGURE 1 | High level definition of a virtual machine run.

Frontiers in Neurorobotics | www.frontiersin.org 5 December 2020 | Volume 14 | Article 570358

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Bonzon Modeling the Synchronization of Multimodal Perceptions

1) the virtual machine itself is a program, written in Prolog,
which gets compiled in C and is finally executed by the
native code of any computer (exactly like a traditional
brain simulator)

2) this virtual machine implements a “sense-act-reflect” cycle
that allows for tracing down the sequences of synchronized
events associating a thread and a stimulus.

Let Model represents the state of the machine holding, among
other things, virtual code logical implications compiled from
fibers as well as the local time T of each thread within a given
stream, which is maintained in clock(T) machine registers. As
defined in Figure 1,

- the sense loop allows for the input of data from sensors
- the react loop, in which the ist predicate stands for “is true,”
implements contextual deduction (Bonzon et al., 2000); more
precisely, local times T are used to deduce and execute the next
instruction; whenever an instruction succeeds, its thread clock
is advanced and the next instruction is deduced, and whenever
it fails, it is executed again until it eventually succeeds

- the reflect loop tracks down and reports synchronized events,
which are defined by the association of a stream sequence
number I, a thread and a stimulus.

This machine therefore essentially functions like a theorem prover
that first deduces “just in time” virtual machine instructions
and then executes them. By relying on the implementation
of synaptic plasticity included in the machine state under the
form of primitive built-in threads common to each stream,
the execution of virtual instructions leads to a wiring/unwiring
process that produces model configurations that are akin
to plastic brain states. As postulated for instance by Zeki
(2015), there is no central clock, thus “making of the brain
a massively asynchronous organ.” There are two time scales
i.e., one defined at the micro-scale level, and the other at the
meso-scale level. The micro-scale time corresponds to the set
of local times T of asynchronous threads maintained in the
registers clock(T); the meso-scale time corresponds to the set of
sequence numbers I of streams maintained in registers seq(I).
Both of these time scales are not predefined and unfold as
the model execution proceeds: more precisely, a local time
T is incremented by the virtual machine after the successful
execution of a virtual machine execution (which can be delayed,
as stated above); a sequence number I, which corresponds
to a global time within a given stream, is incremented after
a move.

Basic Concepts Implementation
As introduced above, the tools used in this study rely on three
fundamental concepts i.e., the formal notions of

- a thread i.e., an object in context defined by a symbolic
expression enclosing an instruction tree and representing
a circuit

- concurrent communicating threads that obey various
communication protocols and model a network of
interactive circuits

- a virtual machine interpreting virtual code deduced from
contextual implications compiled themselves from symbolic
expressions representing circuits.

The complete formal specifications and implementation details
of this formalism, which includes both the language of the
symbolic expressions and that of the virtual machine instructions
compiled from these expressions, can be found in (Bonzon,
2017a). The virtual machine language refers to entities such as
data registers, signal queues and a content accessible memory;
the graphical representation of circuits, which stands in one to
one correspondence with symbolic expressions, is privileged here
because of its more synthetic and intuitive format.

The interaction of threads obeys various communication
protocols. These protocols are implemented by means of
procedures that operate in pairs and are depicted in the graphical
representation of circuits by symbols i.e.,

- the symbol - >=>- depicts a synaptic transmission
implemented by a send/receive pair

- the symbol /| \ depicts the modulation of a synapse;
depending of its associated thread, it corresponds to either
a processes of long term potentiation (ltp) or depression
(ltd) both implemented by a join/merge pair.

As a first example, a simple asynchronous communication
between any two threadsPandQcan be represented by the circuit
fragment given in Figure 2.

This circuit fragment can be represented by the two symbolic
expressions in Figure 3.

These two expressions will be compiled into virtual code
l ǫ L, in this case logical implications implementing the
communication protocol given in Figure 4.

At a meso-scale level, threads represent clusters of connected
neurons i.e., neural assemblies, and the send/receive instruction
pair is used to implement an aggregated communication
mechanism, yet to be identified in actual neuronal structures.
Altogether, this mechanism constitutes an implementation of
synaptic plasticity in neural circuits.

FIGURE 2 | Circuit fragment implementing a synaptic transmission. A signal is

transferred between P and Q, and - >=>- depicts a synapse.

FIGURE 3 | Thread patterns for a synaptic transmission. Thread P will fire in

reaction to the capture of an external stimulus, with the send procedure

corresponding to sending a signal, or spike train, carried by a pre-synaptic

neuron’s axon. In the thread Q, the receive procedure represents the

reception of this signal by a post-synaptic neuron.
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Example: A Model of a Simple Case of Classical

Conditioning
As example, let us consider classical conditioning. In one
experiment (Kandel and Tauc, 1965), a light tactile conditioned
stimulus cs elicits a weak defensive reflex, and a strong noxious
unconditioned stimulus us produces a massive withdrawal
reflex. After a few pairings of cs and us , where cs
slightly precedes us , cs alone triggers a significantly enhanced
withdrawal reflex. The corresponding circuit, adapted from a
similar schema (Carew et al., 1981), is represented in Figure 5.

Classical conditioning then follows from the application
of hebbian learning (Hebb, 1949) i.e., “neurons that fire
together wire together.” Though it is admitted today that
classical conditioning in aplysia is mediated by multiple
neuronal mechanisms including a postsynaptic retroaction on a
presynaptic site (Antonov et al., 2003), the important issue is that
this activity depends on the temporal pairing of the conditioned
and unconditioned stimuli, which leads to implement the thread
ltp as a detector of coincidence as done in the protocol given in
Figure 5.

The generic microcircuit abstracting the mechanism of
long term potentiation is reproduced in Figure 6 with its
communication protocol.

RESULTS

This section first presents the goals and design of a thought
experiment, followed in turn by the implementation details and
results of various simulation runs. Finally, an extended Hebbian
learning principle is induced from a summary of these results.

Goals of a Thought Experiment
By simulating observed behaviors supported by unknown
cognitive processes, this work follows a behaviorist approach.
Behaviorism was founded on the idea that the minds of
humans and non-human animals alike have to be considered
as black boxes i.e., as systems for which one does not postulate
anything about the processes that control them, behaviors being
then be defined solely by the input-output relations between
sensations and actions. Behaviorist studies eventually culminated
in the throughout exploration of operant conditioning (Skinner,
1953). In contrast, according to cognitivist views, behaviors are
driven by mental states, which are themselves defined in brain
internal structures.

In order to reconcile these two approaches, they should be
both grounded in a common abstract biological substrate, leading

to address the question: which neural structure could possibly
drive an observed behavior and thus reveal its underlying
cognitive processes? Behavioral rules can be considered as
synthetic ways of expressing observed behaviors i.e., specific
input/output relations, thus allowing for rephrasing the question
as: “which neural structure could possibly be associated with a
given behavioral rule?”

Design of a Thought Experiment
In order to simulate a “thought experiment,” let us consider
a vehicle that can move along a finite bidirectional track
with discrete coordinates F(X), where F=right or left
and X=1,..,7 . The coordinates _(0), where F is undefined,
correspond to the vehicle home station. Let us further suppose
that this vehicle is equipped with a forward and backward
gear that allows him to move step by step in respectively the
right and left direction, each step corresponding to moving
from one coordinate to the next. In what follows, these two
modalities will be systematically distinguished by their b and
green color. Let us finally assume that this vehicle can perceive
and/or access (see Figure 7)

- his current position
- a fire at his current position
- the smoke of a fire in a given direction.

The vehicle will be first programmed so that, upon perception of a
smoke, it randomly selects its forward or backward gear and,

FIGURE 5 | A circuit implementing classical conditioning. The symbol /| \

represents the modulation of a synaptic transmission, the sign * used in the

upper branch indicates the conjunction of converging signals, and the sign +

either the splitting of a diverging signal, as used in the lower branch, or a

choice between converging signals, as used in the right branch instantiating

the thread motor(X) , where X is a variable parameter to be instantiated into

either cs or us. The thread ltp (standing for long term potentiation) acts as a

facilitatory interneuron reinforcing the pathway between sense(cs) and

motor(cs ).

FIGURE 4 | Communication protocol for an asynchronous communication. The send/receive protocol corresponds to an asynchronous communication subject

to a threshold. It involves a predefined weight between the sender P and the receiver Q. This weight can be incremented/decremented by an ltp/ltd thread (see

below). After firing thread Qand sending it a signal, thread P goes on executing its next instruction. On the other side, thread Qwaits for the reception of a signal from

thread P and proceeds only if the weight between P and Qstands above a given threshold.
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FIGURE 6 | Micro-circuit and communication protocol for ltp. In order to detect the coincidence of P and Q, thread P fires an ltp thread that in turn calls on a join

procedure to wait for a signal from thread Q. In parallel, thread Qcalls on procedure merge to post a signal for ltp and then executes a send ® command to establish

a link with thread R. After its synchronization with thread Q, thread ltp increments the weight between Qand R (NB This protocol will be at the heart of the

developments to come and will allow for the learning of causality rules).

FIGURE 7 | Experiment configuration. The vehicle is at home, smoke at

right, and a fire at right(3).

FIGURE 8 | Vehicle two possible moves: (A) the vehicle moved backward to

the left and missed the fire, (B) the vehicle moved forward to the right and

cleared the fire.

starting from his home station, goes searching for the fire into the
right or left direction. Regardless of having hit the fire (in
which case it will clear it) or not, the vehicle then continues
moving up to the track limit position and stop (Figure 8). The
vehicle will eventually turn his smoke detector off, shift his gear
and return to his home station, this last part not being reported
in the simulation.

Implementation of a Random Detector
Using the formalism recalled above, this behavior can be driven
by the circuit given in Figure 9, which in this case takes the form
of a wired (i.e., non-plastic) random decision tree.

As an essential characteristic, these specifications do not use
the equivalence relation which actually exists among the two
basic modalities represented in blue and green i.e., the fact that
in order to go right or left, one has to select respectively the
forward and backward gear. For the simulation to be consistent
however, the detect and move threads must be implemented
such that whenever the vehicle has reached the fire location, both
tests check(on(F(X))) and check(at(F(X))) , although
they refer to different modalities (i.e., being on the fire at a
given location on the track), will provide an excite stimulus,
thus signaling the synchronization of these two perceptions with
respect to a global clock.

Simulation Runs of a Random Detector
The execution traces of two simulation runs, where the vehicle
first randomly moved into the left (Figure 10) and then into
the right direction (Figure 11) are given below. As defined in
section Extended Virtual Machine Definition, these traces report
synchronized events associating a stream sequence number I,

a thread and a stimulus. In these traces, prefixes 0:, 1:, 2:, 2:,.. are
stream’s sequence numbers I akin to a global time series. These
sequence number correspond to successivemove steps. Diagrams
appearing below the traces have been constructed by hand from
the actual simulation results in order to provide a more intuitive
representation. In these diagrams, the global time is reported on
the stream axis.

Implementation of a Deterministic Detector
In order to allow for the vehicle to adopt a deterministic behavior
based on the correct association of the two basic modalities,
synaptic plasticity will be introduced into the circuit of Figure 9,
thus turning it into a virtual neural circuit implementing a form
of operant conditioning. Operant conditioning is an associative
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FIGURE 9 | Circuit implementing a random detector. In this circuit, (1) detecting the smoke of a fire at location F(X) is implemented by the thread sense(F(X)) , (2)

the random choice between two gears A or B follows from the execution of the virtual machine instruction choice([A,B]) that produces an internal fetch stimulus,

(3) detecting the fire proceeds through the thread detect(F(X)) , with the execution of the virtual machine instruction check(on(F(X))) producing an excite

internal stimulus if the vehicle did hit the fire (in which case he will clear the fire) or an inhibit internal stimulus (in which case he will resume detecting) (4) moving

is achieved through the move(A) or move(B) threads; depending on whether or not the current vehicle position F(X) is defined, the execution of the virtual machine

instruction check(at(F(X))) similarly produces an internal excite (in which case he will resume moving) or an inhibit stimulus indicating that he has reached

the track limit and must stop .

FIGURE 10 | Execution trace of the vehicle randomly moving in the wrong direction. Following an incorrect fetch(backward ) random choice, the detect and move

concurrently produced a series of inhibit and excite stimuli until a single inhibit produced by the move thread at time 9 (signaling that the vehicle had reached the

track limit) forced him to stop. At the same time, the detect threads went on producing inhibit stimuli (signaling that the fire had not been detected, and the detector

not yet turned off).
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FIGURE 11 | Execution trace of the vehicle randomly moving into the correct direction. Following a correct fetch(forward) random choice, two simultaneous

excite internal stimuli indicate that two synchronized perceptions occurred, namely the detection of a fire at the vehicle’s position. Subsequently the fire was cleared.

learning process through which the strength of a behavior is
modified by reward or punishment i.e., a case of reinforcement
learning by positive or negative stimuli. In its simplest form,
the operant conditioning response to a single perception is to
generate either an excite or inhibit internal stimulus that in turn
triggers an accept or reject action, as show in Figure 12.

This procedure matches a fundamental principle in circuit
neuroscience according to which, as a result of synaptic
plasticity (expressed here through ltp/ltd threads), inhibition
in neuronal networks allows in turn for disinhibition and
constitutes a key mechanism for learning (Letzkus et al., 2015).
The schema of Figure 12 will now be introduced in Figure 9 so
that the ltp/ltd threads will be triggered by the synchronized
multimodal perceptions of on(F(X)) and at(F(X)) . The
resulting neural circuit is given in Figure 13.

Simulation Runs of a Deterministic
Detector
Two learning cases will be distinguished depending on whether
the vehicle learns one move at a time (i.e., learns and applies
instantiated rules) or is able of generalized learning (i.e., learns
and applies non instantiated rules):

1. the vehicle learns and applies instantiated rules e.g.,

- if detect(right(3) then move(forward)
- if detect(right(2) then move(forward), etc.

2. the vehicle learns and applies general rules i.e.,

- if detect(right(_)) then move(forward)
- if detect(left(_)) then move(backward)

Learning Single Moves
A first example of a run performed to learn an instantiated rule
with the circuit of Figure 13 is given in Figure 14.

The run reproduced in Figure 15 shows a successful
deterministic run that just followed the learning of an
instantiated move.

In contrast, the run reported in Figure 16, which directly
followed the two previous ones, shows a failure to detect a new
fire located in the same direction but at a different position.

Learning Causality Rules
The execution traces of Figure 17 demonstrate the learning of the
rule “if detect(right(_)) then move(forward).” This was achieved
by applying weight changes to non instantiated links.

Finally, the run in Figure 18 shows a successful search for a
fire at a different location in the same direction without going
through learning i.e., by applying a learned rule.

Results Assessment
In summary, the results of the work reported above are both
methodological (i.e. provide a new simulation framework under
the form of a virtual machine) and theoretical (i.e., propose an
extended principle of hebbian learning that can be applied to
learn deterministic behaviors).
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FIGURE 12 | Neural circuit implementing a simple form operant conditioning. At the beginning, the pathway from sense to learn is open, while the pathways to

accept and reject are closed. The learn thread discriminates between positive and negative external stimuli, and thus functions as a fork directing synaptic

plasticity. Synaptic plasticity is expressed through ltp/ltd threads and eventually leads to open the path to either accept or reject , and close the path to learn .

FIGURE 13 | Circuit implementing a deterministic behavior. Let Y represent A or B. The ltp/ltd threads are activated via recall(Y) threads by synchronization

threads synchro(detect(F(X)),move(Y)) , which themselves fire whenever the tests check(on(F(X))) in detect(F(X)) and check(at(F(X))) in

move(Y) provide a simultaneous excite stimulus.

On the methodological side, one must clearly distinguish
between the implementation of the virtual machine itself, which
is a computer program like any other brain simulator, and

the brain processes it simulates, which are assembled from
virtual microcircuits implementing synaptic plasticity. This
virtual machine offers an interface situated at a meso-scale
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FIGURE 14 | Execution trace of learning a single move. Facing an open path to learn , a random choice learn(right):fetch(forward) successfully led to

find the fire at position right(3) , activating a synchro thread that initiated ltp/ltd threads (see Figure 5 for the communication protocol of ltp/ltd ), thus

inducing synaptic weight changes into instantiated links and leading in turn to both open the path to (sense(right(3)),recall(forward)) and close the path

to (sense(right(3)),learn(right)) .

level between neural circuits and cognitive processes. This
intermediate level is not claimed to “exist,” but is proposed as a
way to delineate successive levels of complexity and to achieve a
kind of independence and/or modularity between these levels.

On the theoretical side, the goal of this study was to explore
synchronous vs. asynchronous processes associated with percepts
and/or actions of different modalities. As evidence from the
virtual neural circuit of Figure 13 that served as a basis to run
simulations, we observe that:

- the ltp/ltd threads expressing synaptic plasticity
and allowing in turn for inhibition/disinhibition
processes are activated by synchronization
threads synchro(detect(F(X)),move(Y))

- these synchronization threads themselves are triggered by
simultaneous excite stimuli signaling the synchronized
multimodal perceptions of on(F(X)) and at(F(X))

- the learning of single equivalences under the form of
instantiated rules e.g., “if detect(right(3) then move(forward)”
follow from synaptic weight changes that are applied to
instantiated links

- the learning of an equivalence relation given under the form
of general rules e.g., “ if detect(right(_) then move(forward)”
similarly follow from synaptic weight changes that are applied
to non instantiated links.

This leads to induce an extended Hebb principle formulated
as follows:
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FIGURE 15 | Execution trace of a repeated move. Facing a closed path to learn , the vehicle did proceed without fetch stimulus (but with a repeated inhibit at

time 1), and went through the open path of recall to detect a fire at the same position as before.

Extended Hebbian learning principle

Within a stream of multimodal perceptions supported by asynchronous

threads, simultaneous internal stimuli trigger inhibition and disinhibition

processes driven by synaptic plasticity; these processes allow for learning

equivalence relations among different modalities; these relations actually

represent causality rules and lead in turn to define deterministic behaviors.

DISCUSSION

This discussion will extend in three directions i.e., the relevance
of the proposed formalism to bio-inspired robotics, the use of
simulated thoughts experiments as a part of the scientificmethod,
and finally limitations, comparisons, and possible future work.

Relevance of the Proposed Formalism
The two main formalisms used today in computational
neuroscience follow from pioneering work dating at about the
same time i.e., the work of McCulloch and Pitts (1943) defining
abstract finite-state automata that implement a threshold logic
and led to the development of artificial neural networks, on

one hand, and the analytical treatment of Hodgkin and Huxley
(1952) simulating the electrical processes surrounding neurons
and forming the basis of neural simulators, on the other. These
two formalisms do not address the behavioral learning dimension
of cognition. In his assessment of this situation, Poggio (2012)
argues that in order to discover the representations used by the
brain, one needs to understand “how an individual organism
learns and evolves them from experience of the natural world,”
and that “learning algorithms and their a priori assumptions are
deeper and more useful than a description of the details of what
is actually learned.” On their side, van der Velde and de Kamps
(2015) note that “cognitive processes are executed in connection
structures that connect sensory circuits to motors circuits” i.e,
sensations with actions. Therefore, they add, “we need the
description of a mechanism that shows how the information
(synchrony of activation in this case) can be used by the brain.”
This should be accomplished through a “middle-out” approach
identifying plausible structures linking biology and cognition
(Mulder et al., 2014; Frank, 2015).

As introduced in software engineering, the concept of a virtual
machine allows for a strict delineation of successive levels of
complexity. In the present context, by providing an interface
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FIGURE 16 | Execution trace of failing to detect a new fire: Facing an open path to learn , the vehicle made a random choice learn(right):fetch(backward)

i.e., an incorrect choice that did not lead him to detect the fire.

situated at a meso-scale level between abstracted micro-circuits
representing synaptic plasticity, on one hand, and that of the
emergence of behaviors, on the other, this tool has been used
to simulate yet unknown processes of cognition independently
of their underlying neurological grounding. As an example,
formal studies of consciousness focus on the so-called “neural
correlates of consciousness” i.e., on the “search for the minimal
neural mechanisms sufficient for any one specific conscious

percept” (Koch et al., 2016). As evidenced from our simulation

results, the random detector implemented in this study to drive
an autonomous vehicle does not incorporate the equivalence
between the right/left and the forward/backward
modalities. Nor does it allow for learning it. Consequently, the
vehicle cannot change his behavior. In contrast, the detector

endowed with synaptic plasticity and relying on an extended
Hebb learning principle learns and adopts a deterministic
behavior corresponding to the application of a causality rule, just
as a conscious human driver would do.

Using Simulated Thought Experiments
Arguments and developments relying on thought experiments
are sometimes dismissed as lacking any scientific value. One
has to distinguish however between thought experiments
which remain at the level of discourse from those actually
implemented through a simulation. This later kind, as used
here, truly allows for trying to reproduce the reality of nature
and possibly unfold some causality rules. More precisely,
and in accordance with the requirements of the scientific
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FIGURE 17 | Execution trace of learning a non instantiated rule. This run is similar to the one presented in Figure 14, with the only difference being the weight

changes applied to non instantiated links i.e., (sense(right(_)),recall(forward)) and (sense(right(_)),learn(right)) .

method, they do allow for formalizing hypothesis involving
a theory and leading to predictions, and then confront these
predictions with experimental observations. Contrary to some
thoughts experiments proposed under the form of mere abstract
constructions that could never be materialized (e.g., such
as the so-called “Schrödinger cat” illustrating concepts in
quantum physics), the thought experiment proposed here could
be attempted in its corresponding concrete form. Thought
experiments designed and implemented as virtual machines
could thus eventually provide formal specifications for neuro-
robotics developments.

Limitations, Comparisons, and Further
Directions
As indicated in the Material and methods section, the virtual
machine considered in this study was implemented in Prolog

i.e., a language that can be coupled with other programming
environments, but is not appropriate for controlling real-time
systems. Interfacing this virtual machine with an actual vehicle
might thus not be an easy task. It is proposed as a challenge to the
neuro-robotic community.

To contrast this new approach with the more traditional
one, let us point out to the recent contribution of Zeng et al.
(2020). In this work, anatomically distinct brain areas, as
identified by previously published experimental research, are first
simulated through a leaky integrate-and-fire (LIF) neuron model
(Gerstner and Kistler, 2002), and then connected to interact
through control methods tailored to perform specific tasks,
thus reconstructing parts of a functional brain. The LIF neuron

model was obtained by trimming the original Hodgkin and

Huxley differential equations, thus resulting in a computationally
tractablemodel that, contrary to themore complex ones that have
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FIGURE 18 | Execution trace of applying a rule. This run is similar to the one of Figure 15, but with a fire at different location in the same direction.

culminated in recent years (see e.g., Markram et al., 2015), allows
for a feasible simulation of a functional brain.

Reconstructing a functional brain as it exists today somehow
constitutes an attempt to reproduce the results of millions of
years of evolution. This evolution process started with simple
unimodal insect andmollusk brains, gradually adding specialized
brain components endowed with more and more complex
multimodal mechanisms, to eventually end up with the human
brain. In contrast, as emphasized throughout this paper, the aim
of the present work was to try and identify a general learning
principle that could be applied to simulate from scratch the
capabilities of an inherently multimodal brain in isolation from
its underlying biological substrate.

In order to discuss the continuity between animals and
humans from a developmental point of view and possibly
extent it into vehicles behavior, let us quote (Darwin, 1871):
“the difference in mind between man and the higher animals,
great as it is, certainly is one of degree and not of kind.”
Following the modeling of the first three levels of animal
awareness reported in the Introduction, the same approach
has been applied to simulate simple forms of both meta-
cognition (namely memory awareness, which provides subjects
with the capacity to make “judgments” about the quality of

their memory e.g., to discriminate between strong and weak
memories) and analogical reasoning (in this case, by applying
inference schemas that allow for discovering structural and/or
functional similarities between sets of objects e.g., finding out that
“large blue triangle” is to “small blue triangle” as “large yellow
crescent” is to “small yellow crescent”). These results (Bonzon,
2017b) indicate first that memory awareness can be reduced
to successive layers of associative processes driven by noisy
transmissions, which is quite compatible with the hypothesis of
an overall continuity between human and nonhuman minds.
Secondly whereas analogical inference schemas involving one
kind of transfer (i.e., the transfer of either a property or a subject)
correspond to cognitive abilities observed in animals, schemas
involving a combination of transfers correspond to abilities
presumably enjoyed by humans only. This gap however could be
ignored when building artifacts with extended capabilities such
as those just discussed.

More generally, further work should try and integrate
sensory inputs from more realistic experiments situated in
a two- or three-dimensional space. These extensions might
eventually turn the original virtual machine into a kind
of programmable Braitenberg vehicle with wired connections
replaced by cognitive software.

Frontiers in Neurorobotics | www.frontiersin.org 16 December 2020 | Volume 14 | Article 570358

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Bonzon Modeling the Synchronization of Multimodal Perceptions

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article, further inquiries can be directed to the
corresponding author.

AUTHOR CONTRIBUTIONS

The author confirms being the sole
contributor of this work and has approved it
for publication.

REFERENCES

Antonov, I., Antonova, I., Kandel, E., and Hawkins, R. (2003). Activity-

dependent presynaptic facilitation and hebbian LTP are both required

and interact during classical conditioning in Aplysia. Neuron 37, 135–147.

doi: 10.1016/S0896-6273(02)01129-7

Ashby, F., and Helie, S. (2011). A tutorial on computational cognitive

neuroscience, modeling the neurodynamics of cognition. J. Math. Psychol. 55,

273–289. doi: 10.1016/j.jmp.2011.04.003

Baars, B. (1988). A Cognitive Theory of Consciousness. Cambridge: Cambridge

University Press.

Bahrick, L. E. (2004). “The development of perception in a multimodal

environment,” in Theories of Infant Development, eds G. Bremner, and A.

Slater (Hoboken, NJ: Blackwell Publishing), 90–120. doi: 10.1002/97804707521

80.ch4

Bertenthal, B. I. (1996). Origins and early development of perception,

action and representation. Ann. Rev. Psychol. 47, 431–459.

doi: 10.1146/annurev.psych.47.1.431

Block, N. (1995). On a confusion about a function of consciousness. Behav. Brain

Sci. 18, 227–247. doi: 10.1017/S0140525X00038188

Bonzon, P. (2017a). Towards neuro-inspired symbolic models of cognition: linking

neural dynamics to behaviors through asynchronous communications. Cogn.

Neurodyn. 11, 327–353. doi: 10.1007/s11571-017-9435-3

Bonzon, P. (2017b). “Behaviorism revisited: linking perception and action through

symbolic models of cognition,” in Proceedings of KI 2017 Workshop on Formal

and Cognitive Reasoning (Dortmund). Available online at: http://ceur-ws.org/

Vol-1928

Bonzon, P. (2019). Symbolic modeling of asychronous neural dynamics reveal

potential synchronous roots of awereness. Front. Comput. Neurosci. 13:1.

doi: 10.3389/fncom.2019.00001

Bonzon, P., Cavalcanti, M., and Nossum, R. (2000). Formal Aspects of

Context, Applied Logic Series 20. Dordrecht: Kluver Academic Publishers.

doi: 10.1007/978-94-015-9397-7

Braitenberg, W. (1986). Vehicles, Experiments in Synthetic Psychology. Cambridge,

MA: Bradford Book/MIT Press.

Buzsaki, G., and Llinas, L. (2017). Space and time in the brain. Science 358,

482–485. doi: 10.1126/science.aan8869

Carandini, M. (2012). From circuits to behavior: a bridge too far? Nat. Neurosci.

15, 505–507. doi: 10.1038/nn.3043

Carew, T., Walters, E., and Kandel, E. (1981). Classical conditioning in a

simple withdrawal reflex in Aplysia californica. J. Neurosci. 1, 1426–1437.

doi: 10.1523/JNEUROSCI.01-12-01426.1981

Cole, S., Hainsworth, F. R., Kamil, A., Mercier, T., and Wolf, L. L. (1982).

Spatial learning as an adaptation in hummingbirds. Science 217, 655–657.

doi: 10.1126/science.217.4560.655

Cooper, R., and Peebles, D. (2015). Beyond single-level accounts: the role of

cognitive architectures in cognitive scientific explanation. Top. Cogn. Sci. 7,

243–258. doi: 10.1111/tops.12132

Darwin, C. (1871). The Descent of Man, and Selection Related to Sex. London: John

Murray. doi: 10.5962/bhl.title.2092

Dehaene, S., Changeux, J.-P., Naccachea, L., Sackura, J., and Sergenta, C. (2006).

Conscious, preconscious, and subliminal processing: a testable taxonomy.

Neuron 10, 204–211. doi: 10.1016/j.tics.2006.03.007

Dehaene, S., and Changeux, J. P. (2011). Experimental and theoretical

approaches to conscious processing. Neuron 70, 220–227.

doi: 10.1016/j.neuron.2011.03.018

Dehaene, S., and Naccache, L. (2001). Towards a cognitive neuroscience of

consciousness: basic evidence and a workspace framework. Cognition 79, 1–37.

doi: 10.1016/S0010-0277(00)00123-2

Dehaene, S., Sergent, C., and Changeux, J. P. (2003). A neuronal network

model linking subjective reports and objective physiological data during

conscious perception. Proc Nat. Acad. Sci. U.S.A. 100, 8520–8525.

doi: 10.1073/pnas.1332574100

Doya, K. (2007). Bayesian Brain: Probabilistic Approaches to Neural Coding.

Cambridge, MA: MIT Press. doi: 10.7551/mitpress/9780262042383.001.0001

Frank, M. J. (2015). “Linking across levels of computation in model-based

cognitive neuroscience,” in An introduction to Model-Based Cognitive

Neuroscience, eds B. Forstmann, and E.-J. Wagenmakers (New York, NY:

Springer), 159–177. doi: 10.1007/978-1-4939-2236-9_8

Freeman,W. J. (1999). Consciousness, intentionality, and causality. J. Consci. Stud.

6, 14–72.

Frégnac, Y. (2017). Big data and the industrialization of neuroscience:

a safe roadmap for understanding the brain? Science 358, 470–477.

doi: 10.1126/science.aan8866

Gershman, S. (2017). Context-dependent learning and causal structure. Psychon.

Bull. Rev. 24, 557–565. doi: 10.3758/s13423-016-1110-x

Gerstner, W., and Kistler, W. (2002). Spiking Neuron Models: Single

Neurons, Populations, Plasticity. Cambridge: Cambridge University Press.

doi: 10.1017/CBO9780511815706

Goldman, J. S., Tort-Colet, N., di Volo, M., Susin, E., Bouté, J., Dali, M., et al.

(2019). Bridging single neuron dynamics to global brain states. Front. Syst.

Neurosci. 13:75. doi: 10.3389/fnsys.2019.00075

Gross, J. (2004). Modulation of long-range neural synchrony reflects temporal

limitations of visual attention in humans. Proc. Natl. Acad. Sci. U.S.A. 101,

13050–13055. doi: 10.1073/pnas.0404944101

He, K., Huertas, M., Hong, S. Z., Tie, X., Hell, J. W., Shouval, H., et al. (2015).

Distinct eligibility traces for LTP and LTD in cortical synapses. Neuron 88,

528–538. doi: 10.1016/j.neuron.2015.09.037

Hebb, D. (1949). The Organization of Behavior: A Neuropsychological Theory. New

York, NY: John Wiley.

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane

current and its application to conduction and excitation in nerve. J. Physiol. 17,

500–544. doi: 10.1113/jphysiol.1952.sp004764

Huyck, C., and Passmore, P. (2013). A review of cell assemblies. Biol. Cybern. 107,

263–288. doi: 10.1007/s00422-013-0555-5

Kandel, E., and Tauc, L. (1965). Heterosynaptic facilitation in neurones

of the abdominal ganglion of Aplysia depilans. J. Physiol. 181:1.

doi: 10.1113/jphysiol.1965.sp007742

Katz, J., Bodily, K., and Wright, A. (2008). Learning strategies in matching

to sample: if-then and configural learning by pigeons. Behav. Processes 77,

223–230. doi: 10.1016/j.beproc.2007.10.011

Knill, K., and Pouget, A. (2004). The Bayesian brain: the role of uncertainty

in neural coding and computation. Trends Neurosci. 27, 712–719.

doi: 10.1016/j.tins.2004.10.007

Koch, C., Massimini, M., Boly, M., and Tononi, G. (2016). Neural correlates

of consciousness: progress and problems. Nat. Rev. Neurosci. 17, 307–321.

doi: 10.1038/nrn.2016.22

Kriegeskorte, N., and Douglas, P. (2018). Cognitive computational neuroscience.

Nat. Neurosci. 21, 1148–1160. doi: 10.1038/s41593-018-0210-5

Langston, R. F., Ainge, J. A., Couey, J. J., Canto, C. B., Bjerknes, T. L., Witter, M.

P., et al. (2010). Space and direction are already represented in specific neurons

when rat pups navigate a location for the first time. Science 328, 1576–1580.

doi: 10.1126/science.1188210

Letzkus, J., Wolff, S., and Lüthi, A. (2015). Disinhibition, a circuit

mechanism for associative learning and memory. Neuron 88, 264–276.

doi: 10.1016/j.neuron.2015.09.024

Love, B. (2015). The algorithmic level is the bridge between computation and brain.

Top. Cogn. Sci. 7, 230–242. doi: 10.1111/tops.12131

Frontiers in Neurorobotics | www.frontiersin.org 17 December 2020 | Volume 14 | Article 570358

https://doi.org/10.1016/S0896-6273(02)01129-7
https://doi.org/10.1016/j.jmp.2011.04.003
https://doi.org/10.1002/9780470752180.ch4
https://doi.org/10.1146/annurev.psych.47.1.431
https://doi.org/10.1017/S0140525X00038188
https://doi.org/10.1007/s11571-017-9435-3
http://ceur-ws.org/Vol-1928
http://ceur-ws.org/Vol-1928
https://doi.org/10.3389/fncom.2019.00001
https://doi.org/10.1007/978-94-015-9397-7
https://doi.org/10.1126/science.aan8869
https://doi.org/10.1038/nn.3043
https://doi.org/10.1523/JNEUROSCI.01-12-01426.1981
https://doi.org/10.1126/science.217.4560.655
https://doi.org/10.1111/tops.12132
https://doi.org/10.5962/bhl.title.2092
https://doi.org/10.1016/j.tics.2006.03.007
https://doi.org/10.1016/j.neuron.2011.03.018
https://doi.org/10.1016/S0010-0277(00)00123-2
https://doi.org/10.1073/pnas.1332574100
https://doi.org/10.7551/mitpress/9780262042383.001.0001
https://doi.org/10.1007/978-1-4939-2236-9_8
https://doi.org/10.1126/science.aan8866
https://doi.org/10.3758/s13423-016-1110-x
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.3389/fnsys.2019.00075
https://doi.org/10.1073/pnas.0404944101
https://doi.org/10.1016/j.neuron.2015.09.037
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1007/s00422-013-0555-5
https://doi.org/10.1113/jphysiol.1965.sp007742
https://doi.org/10.1016/j.beproc.2007.10.011
https://doi.org/10.1016/j.tins.2004.10.007
https://doi.org/10.1038/nrn.2016.22
https://doi.org/10.1038/s41593-018-0210-5
https://doi.org/10.1126/science.1188210
https://doi.org/10.1016/j.neuron.2015.09.024
https://doi.org/10.1111/tops.12131
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Bonzon Modeling the Synchronization of Multimodal Perceptions

Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M.,

Sanchez, C. A., et al. (2015). Reconstruction and simulation of neocortical

microcircuitry. Cell 163, 456–492. doi: 10.1016/j.cell.2015.09.029

McCulloch, W., and Pitts, W. (1943). A logical calculus of the ideas immanent in

nervous activity. Bull. Math. Biophys. 7, 115–133. doi: 10.1007/BF02478259

Melloni, L., Molina, C., Pena, M., Torres, D., Singer, W., and Rodriguez,

E. (2007). Synchronization of neural activity across cortical areas

correlates with conscious perception. J. Neurosci. 14, 2858–2865.

doi: 10.1523/JNEUROSCI.4623-06.2007

Moser, E. I., and Moser, M.-B. (2008). A metric for space. Hippocampus 18,

1142–1156. doi: 10.1002/hipo.20483

Mulder, M. J., van Maanen, L., and Forstmann, B. J. (2014). Perceptual

decision neurosciences – A model-based review. Neuroscience 277, 872–884.

doi: 10.1016/j.neuroscience.2014.07.031

O’Keefe, J., and Dostrovsky, J. (1971). The hippocampus as a spatial map:

preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34,

171–175. doi: 10.1016/0006-8993(71)90358-1

Palmeri, T. J., Love, B. C., and Turner, B. M. (2017). Model-based cognitive

neuroscience. J. Math. Psychol. 76, 59–64. doi: 10.1016/j.jmp.2016.10.010

Parr, T., Rees, G., and Friston, K. (2018). Computational

neuropsychology and bayesian inference. Front. Hum. Neurosci. 12:61.

doi: 10.3389/fnhum.2018.00061

Pepperberg, I., and Lynn, S. (2000). Possible levels of animal consciousness

with reference to grey parrots (Psittaccus erithacus). Am. Zool. 40, 893–901.

doi: 10.1093/icb/40.6.893

Poggio, T. (2012). The level of understandings framework. Perception 41,

1007–1023. doi: 10.1068/p7299

Savage-Rumbaugh, E. S., Rumbaugh, D. M., Smith, S., and Lawson,

J. (1980). Reference, the linguistic essential. Nature 210, 922–925.

doi: 10.1126/science.7434008

Shanahan, M. (2009). Embodiment and the Inner Life: Cognition and

Consciousness in the Space of Possible Minds. Oxford: Oxford University

Press. doi: 10.1093/acprof:oso/9780199226559.001.0001

Singer, W. (1993). Synchronization of cortical activity and its putative role

in information processing and learning. Annu. Rev. Physiol. 55, 349–374.

doi: 10.1146/annurev.ph.55.030193.002025

Skinner, B. (1953). Science and Human Behavior. New York, NY: MacMillan.

Stiles, J., and Jernigan, T. (2010). The basics of brain development. Neuropsychol.

Rev. 20, 327–348. doi: 10.1007/s11065-010-9148-4

Tomov, M. S., Dorfman, H. M., and Gershman, S. (2018). Neural

computations underlying causal structure learning. J. Neurosci. 38, 7143–57.

doi: 10.1523/JNEUROSCI.3336-17.2018

Turner, B. (2015). “Constraining cognitive abstractions through

Bayesian modeling,” in An Introduction to Model-Based Cognitive

Neuroscience, eds B. U. Forstmann, and E.-J. Wagenmakers

(New York, NY: Springer), 199–220. doi: 10.1007/978-1-4939-22

36-9_10

Turner, B. M., Forstmann, B. U., Love, B. C., Palmeri, T. J., and Van

Maanen, L. (2017). Approaches to analysis in model-based cognitive

neuroscience. J. Math. Psychol. 76, 65–79. doi: 10.1016/j.jmp.201

6.01.001

van der Velde, F., and de Kamps, M. (2015). The necessity of connection

structures in neural models of variable binding. Cogn. Neurodyn. 9, 359–37.

doi: 10.1007/s11571-015-9331-7

Wills, T. J., Cacucci, F., Burgess, N., and O’Keefe, J. (2010). Development of

the hippocampal cognitive map in preweanling rats. Science 328, 1573–1576.

doi: 10.1126/science.1188224

Wright, J. J., and Bourke, P. D. (2013). On the dynamics of

cortical development: synchrony and synaptic self-organization.

Front. Comput. Neurosci. 7:4. doi: 10.3389/fncom.2013.

00004

Zagha, E., Ge, X., and McCormick, D. (2015). Competing neural ensembles

in motor cortex gate goal-directed motor output. Neuron 88, 565–577.

doi: 10.1016/j.neuron.2015.09.044

Zeki, S. (2015). A massively asynchronous, parallel brain.

Phil. Tran. R. Soc. B 370:20140174. doi: 10.1098/rstb.201

4.0174

Zeng, Y., Zhao, Y., Zhang, T., Zhao, D., Zhao, F., and Lu, E. (2020).

A brain-inspired model of theory of mind. Front. Neurorobot. 14:60.

doi: 10.3389/fnbot.2020.00060

Zentall, T., Edwards, C., Moore, B., and Hogan, D. (1981). Identity: the basis

for both matching and oddity learning in pigeons. J. Exp. Psychol. 7, 70–86.

doi: 10.1037/0097-7403.7.1.70

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Bonzon. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 18 December 2020 | Volume 14 | Article 570358

https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1007/BF02478259
https://doi.org/10.1523/JNEUROSCI.4623-06.2007
https://doi.org/10.1002/hipo.20483
https://doi.org/10.1016/j.neuroscience.2014.07.031
https://doi.org/10.1016/0006-8993(71)90358-1
https://doi.org/10.1016/j.jmp.2016.10.010
https://doi.org/10.3389/fnhum.2018.00061
https://doi.org/10.1093/icb/40.6.893
https://doi.org/10.1068/p7299
https://doi.org/10.1126/science.7434008
https://doi.org/10.1093/acprof:oso/9780199226559.001.0001
https://doi.org/10.1146/annurev.ph.55.030193.002025
https://doi.org/10.1007/s11065-010-9148-4
https://doi.org/10.1523/JNEUROSCI.3336-17.2018
https://doi.org/10.1007/978-1-4939-2236-9_10
https://doi.org/10.1016/j.jmp.2016.01.001
https://doi.org/10.1007/s11571-015-9331-7
https://doi.org/10.1126/science.1188224
https://doi.org/10.3389/fncom.2013.00004
https://doi.org/10.1016/j.neuron.2015.09.044
https://doi.org/10.1098/rstb.2014.0174
https://doi.org/10.3389/fnbot.2020.00060
https://doi.org/10.1037/0097-7403.7.1.70
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Modeling the Synchronization of Multimodal Perceptions as a Basis for the Emergence of Deterministic Behaviors
	Introduction
	Theoretical Review
	The Development of Rodent's Brain
	Perception Development
	Development of Consciousness
	The Bayesian Coding Hypothesis
	Focus of This Work

	Materials and Methods
	Methodological Background
	Tools Overview
	Extended Virtual Machine Definition
	Basic Concepts Implementation
	Example: A Model of a Simple Case of Classical Conditioning


	Results
	Goals of a Thought Experiment
	Design of a Thought Experiment
	Implementation of a Random Detector
	Simulation Runs of a Random Detector
	Implementation of a Deterministic Detector
	Simulation Runs of a Deterministic Detector
	Learning Single Moves
	Learning Causality Rules

	Results Assessment

	Discussion
	Relevance of the Proposed Formalism
	Using Simulated Thought Experiments
	Limitations, Comparisons, and Further Directions

	Data Availability Statement
	Author Contributions
	References


