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Altitude-Induced Sleep Apnea Is Highly Dependent on Ethnic Background 
(Sherpa Vs. Tamang) 
 
Contexte :  
 
L’altitude provoque une alcalose hypocapnique qui peut générer une apnée centrale lors du 
sommeil. Au Népal, deux groupes ethniques vivent à moyenne/haute altitude: Les Tamangs 
qui sont issus de populations tibéto-birmanes de basse altitude ainsi que les Sherpas qui 
descendent de Tibétains acclimatés à la haute altitude. 
 
Objectif de l’étude :  
 
Comparer la prévalence des apnées centrales en basse et en haute altitude entre des sujets 
Sherpas et Tamangs. 
 
Méthodes : 
 
 Des enregistrements polygraphiques, incluant le débit d'air et la saturation en oxygène ont 
été effectués au Népal à des altitudes " basses " (2 030 m) et " hautes " (4 380 m). La ventilation 
au repos (VE) et le CO2 expiré mixte (FECO2) ont également été mesurés aux mêmes altitudes. 
Les différences dans l'index d'apnée-hypopnée (AHI), l'index de désaturation d'oxygène (ODI), 
et le pourcentage de respiration périodique nocturne (NPB) aux deux altitudes ont été 
comparées entre les ethnies.  
 
Mesures et principaux résultats :  
 
Vingt Sherpas et 20 Tamangs ont été inclus (hommes, âge médian [intervalle inter-quartile] : 
24,5 [21,5-27,8] ans vs 26,0 [21,5-39,8] ans, indice de masse corporelle : 23,9 [22,1-26,1] 
kg/m2 contre 25,21 [20,6-27,6] kg/m2). Par rapport aux Tamangs, les Sherpas ont présenté 
une augmentation plus faible de l'IAH (+7,5 [2,6-17,2]/h contre +31,5 [18,2-57,3]/h, p<0,001), 
de l'IDO (+13,8 [5,5-28. 2]/h contre +42,0 [22,6-77,6]/h, p<0,001), et la proportion de NPB 
(+0,9 [0-3,5]% contre +12,8 [3,1-27,4]%, p < 0,001) de la basse à la haute altitude. La VE au 
repos était plus élevée chez les Sherpas que chez les Tamangs en basse altitude (8,45 [6,89-
10,70] l/min contre 6,3 [4,9-8,3] l/min, p = 0,005) et en haute altitude (9,7 [8,5-11] l/min 
contre 8,74 [7,39-9,73] l/min, p = 0. 020), tandis que la diminution moyenne de l'écart-type 
de la FECO2 entre la basse et la haute altitude était plus importante chez les Tamangs que 
chez les Sherpas (-0,50%-0,44% vs. -0,80%-0,33%, p < 0,023). 
 
Conclusion :  
 
Les sujets d’origine Tamangs ont montré une augmentation des troubles respiratoires 
nocturne entre la basse et la haute altitude 3 fois plus importante que les sujets Sherpas qui 
sont génétiquement adaptés à l'altitude. Les sujets Sherpas ont une ventilation plus élevée et 
une baisse plus faible de la FECO2 lors du passage de la basse à la haute altitude. Ces données 
suggèrent que des différences génétiques dans le contrôle de la respiration pourraient être 
protectrices contre les apnées centrales. 
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Altitude-Induced Sleep Apnea Is Highly Dependent
on Ethnic Background (Sherpa Vs. Tamang)

Grégory Heiniger,1 Simon Walbaum,2 Claudio Sartori,2 Alban Lovis,3 Marco Sazzini,4,5

Andrew Wellman,6 and Raphael Heinzer1

Abstract

Heiniger, Grégory, Simon Walbaum, Claudio Sartori, Alban Lovis, Marco Sazzini, Andrew Wellman, and
Raphael Heinzer. Altitude-Induced Sleep Apnea Is Highly Dependent on Ethnic Background (Sherpa Vs.
Tamang). High Alt Med Biol. 23:165–172, 2022.
Rationale: High altitude-induced hypocapnic alkalosis generates central sleep apnea (CSA). In Nepal, two
ethnic groups live at medium-to-high altitude: Tamangs originate from low-altitude Tibeto-Burman popula-
tions, whereas Sherpas descend from high-altitude Tibetans.
Objective: To compare apnea severity at low and high altitude between Sherpas and Tamangs.
Methods: Polygraphy recordings, including airflow and oxygen saturation, were performed in Nepal at ‘‘low’’
(2,030 m) and ‘‘high’’ (4,380 m) altitudes. Resting ventilation ( _VE) and mixed-exhaled CO2 (FECO2) were also
measured at the same altitudes. Differences in apnea-hypopnea index (AHI), oxygen desaturation index (ODI),
and % of nocturnal periodic breathing (NPB) at the two altitudes were compared between ethnicities.
Measurements and Main Results: Twenty Sherpas and 20 Tamangs were included (males, median [inter-
quartile range] age: 24.5 [21.5–27.8] years vs. 26.0 [21.5–39.8] years, body mass index: 23.9 [22.1–26.1] kg/m2

vs. 25.21 [20.6–27.6] kg/m2). Compared with Tamangs, Sherpas showed a lower increase in AHI (+7.5 [2.6–
17.2]/h vs. +31.5 [18.2–57.3]/h, p < 0.001), ODI (+13.8 [5.5–28.2]/h vs. +42.0 [22.6–77.6]/h, p < 0.001), and
NPB proportion (+0.9 [0–3.5]% vs. +12.8 [3.1–27.4]%, p < 0.001) from low to high altitude. Resting _VE was
higher in Sherpas versus Tamangs at both low (8.45 [6.89–10.70] l/min vs. 6.3 [4.9–8.3] l/min, p = 0.005) and
high (9.7 [8.5–11] l/min vs. 8.74 [7.39–9.73] l/min, p = 0.020) altitudes, whereas the mean –standard deviation
FECO2 decrease between low and high altitude was greater in Tamangs versus Sherpas (-0.50% –0.44% vs.
-0.80% –0.33%, p < 0.023).
Conclusion: Overall, altitude-adapted Sherpas showed a 3.2-times smaller increase in sleep-disordered
breathing between low and high altitude compared with Tamangs, and higher ventilation and a smaller drop in
FECO2 at high altitude. These data suggest that genetic differences in breathing control can be protective against
CSA.

Keywords: altitude; central sleep apnea; genetic ancestry; loop gain; periodic breathing
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Introduction

Altitude-induced hypoxia can have an impact on
sleep, and especially on the nocturnal breathing pattern

(Windsor and Rodway, 2012). Individuals with regular
breathing during sleep at low altitude may develop periodic
breathing with central sleep apnea (CSA) when sleeping at
high altitude (Bloch et al., 2010). Altitude-induced hypoxia
increases respiratory drive, resulting in decreased arterial
pressure of carbon dioxide (CO2) and increases in the ven-
tilatory response to variations in CO2 levels (increased che-
moreceptor sensitivity) (Weil, 2004; Burgess and Ainslie,
2016).

However, important individual variations in the propensity
to develop periodic breathing at high altitude have been ob-
served, with only about half of people affected at an altitude
of 3,500 m (Lovis et al., 2012). Thus, the altitude of onset and
the severity of altitude-induced CSA vary markedly between
individuals. This heterogeneity may be due to a genetic in-
fluence on breathing control adaptation to high altitude (La-
hiri and Data, 1992; Kong et al., 2015).

Nepal is populated by 126 ethnic groups (Nepal Go,
Central Bureau of Statistics, 2011) each with a unique history
and origin. Of these, the mountaineering Sherpas are cer-
tainly the most famous. Recently, genetic studies have traced
the origin of Sherpas, showing that Tibetans and Sherpas
share Tibeto-Burman ancestors who came from eastern Asia
during the Neolithic and admixed with the autochthonous
human groups that have colonized the Tibetan plateaus
starting about 30,000–40,000 years ago (Cole et al., 2017;
Gnecchi-Ruscone et al., 2017; Zhang et al., 2018). In historic
times, the Sherpas then left these plateaus to occupy the
previously uninhabited Nepalese high-altitude valleys
(Bhandari and Cavalleri, 2019).

The tremendous tolerance of Sherpas to hypoxia has been
long studied (Gilbert-Kawai et al., 2014) and some of the
genetic determinants underlying their physiological adap-
tive traits have been identified (Beall et al., 2010; Simonson
et al., 2010; Gnecchi-Ruscone et al., 2018; Sazzini, 2019).
This biological adaptation has also contributed to the leg-
endary performances of the Sherpas as guides and carriers in
high-altitude expeditions. Although men of Tamang ances-
try are also regularly hired as high-altitude carriers, very few
studies have focused on them (Law and Rodway, 2008).
Descending from Tibeto-Burman ancestors closely related
to those of the Sherpas, the Tamangs apparently had a dif-
ferent migratory journey (Gnecchi-Ruscone et al., 2017).
They bypassed the Himalayas from the east and joined Nepal
from South Asia. There, they admixed with low-altitude
populations of South Asian ancestry, which gives them a
different genetic heritage from the Sherpas (Cole et al.,
2017; Gnecchi-Ruscone et al., 2017).

The objective of the study was to determine whether there
are differences in the occurrence of altitude-induced sleep
apnea between the Sherpa and Tamang ethnic groups.

Methods

Study design

This open-label, prospective study was conducted in Nepal
in October 2019. The study protocol was reviewed and ac-
cepted by the Nepalese Ethics Committee (number 730-2019).
The trial was conducted in accordance with local laws/

regulations, International Conference on Harmonisation-
Good Clinical Practice (ICH-GCP), and the Declaration of
Helsinki and its current revision. All participants provided
written informed consent.

Participants

Male subjects from two groups of Nepalese carriers, the
Sherpas and the Tamangs, whose ancestors had belonged to
the same ethnic group for at least three generations were
eligible. Ancestry information was verified via their identity
documents. Subjects with any known health condition po-
tentially affecting nocturnal breathing were excluded. All
subjects were smokers but were asked not to smoke for 24
hours before days on which measurements were taken.

Protocol

Participants from both ethnic groups performed the same
6-day trek in Nepal (Fig. 1). This included spending 2 nights
and 2 days of rest at 2,030 m (in Dunche, baseline measure-
ments) followed by a first day of walking with a night at
2,200 m (in Thylo Syabru), and a second day of walking
with a night at 3,280 m (in Shin Gompa). After the third day
of trekking, the altitude camp at 4,380 m was reached
(in Gosainkund). Subjects stayed two nights and an entire day
at the altitude camp (4,380 m) where high-altitude evalua-
tions were performed before they returned home.

Measurements and assessments

Polygraphy. Subjects underwent one polygraphy re-
cording at 2,030 m and another at 4,380 m. For logistical
reasons, recordings at each altitude were split over the two
nights spent at that altitude. Polygraphy was performed using
ApneaLink! Plus devices (ResMed, San Diego, CA, USA),
which monitor pulse oximetry and nasal airflow (nasal
pressure cannula) during the night.

Polygraphic recordings were interpreted manually using
Noxturnal software (Noxmedical, Reykjavı́k, Iceland). The
apnea-hypopnea index (AHI; events/h) was calculated with
apneas defined as breathing cessation for ‡10 seconds and
hypopneas defined as a ‡30% decrease in the breathing sig-
nal followed by a ‡3% desaturation. Given that many short
apneas (<10 seconds) did not fulfil the American Academy of
Sleep Medicine criteria for an apnea but generated significant
oxygen desaturations (Fig. 2), we also calculated an ‘‘atypi-
cal apnea-hypopnea index’’ (A(at)HI) with apneas defined as
breathing cessation for ‡5 seconds followed by ‡3% desa-
turation and the same hypopnea definition.

Other respiratory parameters determined were the oxygen
desaturation index (ODI), defined as the number of oxygen
desaturations of ‡3% per hour, and the proportion of the night
(as a percentage) spent in periodic breathing characterized by
trains of ‡3 cycles composed of an apnea (including atypical
apnea)/hypopnea separated by a short period of ventilation.

Measurement of ventilation. Waking ventilation was
assessed on the day of the baseline polygraphy recording at
2,030 m and again at 4,380 m. After sitting quietly for 20
minutes, ventilation ( _VE) and mixed expired CO2 (FECO2)
were measured over a 5-minute period using a ‘‘Pnoe’’ de-
vice (Endo Medical, Palo Alto, USA). This device consists of
a mask connected to flow sensor (MEMS Mass Air Flow
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Meter) and a CO2 sensor (nondispersive infrared absorption
CO2 sensor). Mean ventilation (L/min) and mean FECO2 (%)
over the full-test duration were calculated.

Statistical analysis

The Kolmogorov–Smirnov test was used to assess data
distribution. Non-normally distributed data are reported as
medians [25th–75th percentile] (interquartile range [IQR]),
whereas normally distributed data are reported as
mean –standard deviation (SD). Differences in all parame-
ters between low and high altitude values were calculated and
compared between the two ethnic groups using t-tests (nor-
mally distributed data) or Mann–Whitney tests (non-
normally distributed data). A linear regression model was
used to determine associations between altitude-induced
variations in AHI and demographic or physiologic variables.

Results

Participants

Twenty individuals from each ethnic group were included
in the study (total of 40 participants). Participants of Sherpa
versus Tamang ethnicity had a similar age (median [IQR]:
24.5 [21.5–27.8] vs. 26.0 [21.5–39.8], p = 0.363), body
weight (median [IQR]: 66.5 [60–71.5] kg vs. 63.5 [52.8–
72.8] kg, p = 0.715), and body mass index (BMI) (median
[IQR]: 23.91 [22.1–26.1] kg/m2 vs. 25.2 [20.6–27.6] kg/m2,
p = 0.534), but Sherpa subjects were significantly taller than
Tamang subjects (median [IQR]: 1.67 [1.62–1.70] m vs. 1.60
[1.57–1.67] m, p = 0.015).

All Sherpas and Tamangs were each born and raised in two
different villages at altitude 1,500–1,980 m and 1,400–
2,000 m, respectively. The majority of Sherpa subjects had
spent the previous 3 months in their village or in Kathmandu

FIG. 1. Study protocol.

FIG. 2. Examples of typical and atypical apneas in a Tamang subject at 4,380 m. O2, oxygen. A, atypical apneas;
B, typical apnea.
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(1,400 m). Three Sherpas had worked as carriers earlier in the
season, but not within the 14 days before the study. All Ta-
mang subjects had spent the previous 3 months in the same
village. Due to illness, one Sherpa subject did not undergo
baseline polygraphy at 2,030 m and one Tamang subject did
not undergo polygraphy at 4,380 m.

Nocturnal breathing

Sherpa subjects showed a significantly smaller increase in
the AHI when sleeping at high altitude compared to low
altitude (AHI difference) compared with Tamang subjects
(median [IQR]: +7.5 [2.6–17.2]/h vs. +31.5 [18.2–57.3]/h,
p < 0.001). At low altitude, there was no significant difference
in AHI between Sherpa and Tamang subjects (median [IQR]:
6.8 [4.7–11.2]/h vs. 8.4 [4.95–14.57]/h, p = 0.325). At high
altitude, the AHI was lower in Sherpas compared with Ta-
mangs (median [IQR]: 18.8 [8.7–27.4]/h vs. 43.1 [23.0–
73.1]/h, p = 0.002).

Inclusion of atypical apnea events (A(at)AHI) did not have
any effect on the difference between ethnic groups at low
altitude (median [IQR]: 6.8 [4.7–11.7]/h vs. 8.4 [5.0–14.8]/h,
p = 0.346). However, at high altitude, the A(at)AHI was much
lower in Sherpa versus Tamang subjects (median [IQR]:
19.95 [8.7–27.4]/h vs. 51.6 [24.1–87.6]/h, p < 0.001). The
change in A(at)HI from low to high altitude was also much
smaller in the Sherpa versus Tamang group (Fig. 3). Using a
stepwise linear regression model, ethnic group showed the
strongest association with altitude-induced AHI difference (b
27.8, p < 0.0001). BMI (b 2.6, p = 0.021) and age (b 0.69,
p = 0.017) were the only other significant independent pre-
dictors of altitude-induced AHI difference.

Similar to AHI, there was no difference between ethnic
groups in the ODI at low altitude (median [IQR]: 7.3 [5.1–
11.5]/h in the Sherpa group versus 9.9 [6.1–15.9]/h in the
Tamang group, p = 0.255), while ODI at high altitude was
significantly lower in Sherpa versus Tamang subjects (median
[IQR]: 22.3 [12.9–39.3]/h vs. 57.4 [29.0–96.7]/h, p = 0.003).
The change in ODI from low to high altitude was also much
smaller in the Sherpa versus Tamang group (Fig. 3).

There was no significant difference between the two
groups in the median [IQR] amplitude of oxygen desaturation
at high altitude: (4.25 [3.9–4.77] % vs. 4.7 [4.2–6.5] %,
p = 0.052) or in median [IQR] oxygen saturation during the
whole night at high altitude: (Sherpa: 81.6 [79.3–82.6] % vs.
Tamang: 79.3 [77.0–81.9] %, p = 0.115).

At low altitude, the episodes of nocturnal periodic
breathing (NPB) were rare in both groups. In contrast, at high
altitude, NPB was observed in both ethnic groups, but in
lower proportion of the night in the Sherpa versus Tamang
group (median [IQR]: 1.2 [0.0–4.4] % vs 12.8 [3.1–30.2] %
of the night, p < 0.001). The difference in NPB between low
and high altitudes was also much smaller in Sherpa subjects
than in Tamang subjects (Fig. 3).

Ventilation during quiet wakefulness

Ventilation at rest and tidal volume were higher in Sherpas
compared with Tamangs at both low and high altitudes
(Fig. 4). There was no significant difference between the two
groups in the difference between low- and high-altitude
ventilation.

At low altitude, Sherpa subjects had lower FECO2 com-
pared with Tamang subjects (mean –SD: 3.36% –0.39% vs.
3.68% –0.3%, p = 0.0057). However, this difference was no
longer evident at high altitude (mean –SD: 2.85% –0.28%
vs. 2.89% –0.26%, p = 0.66). The change in FECO2 from low
to high altitude was also significantly smaller in the Sherpa
versus Tamang group (mean –SD: -0.50% –0.44% vs
-0.80% –0.33%, p < 0.023). There was no significant asso-
ciation between the decrease in FECO2 and the increase in
ventilation between low and high altitude.

Discussion

To our knowledge, this is the first study to report a dif-
ference in altitude-induced sleep apnea between two closely
related ethnic groups that differ only by the altitude at which
their ancestors lived. Individuals of Tamang ethnicity
showed an increase in AHI when ascending to high altitude

FIG. 3. Changes (delta) in nocturnal breathing parameters at high (4,380 m) versus low (2,030 m) altitudes in subjects of
Sherpa (grey boxes) or Tamang (black boxes) ethnicity.. In the graphs, the middle line of each box shows the median, the
lower/upper lines of each box show the first/third quartiles, the cross indicates the mean, and circles show individual data.
A(at)HI, apnea (atypical apnea included)-hypopnea index; NBP, nocturnal breathing patter; ODI, oxygen desaturation
index.
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that was more than three times higher than that seen indi-
viduals from altitude-adapted Sherpa ethnic group. Between-
group differences in awake breathing patterns were also
observed, with Sherpas having higher minute ventilation at
low and high altitudes, and a smaller fall in CO2 levels at high
altitude.

Lahiri et al. (1983) and Lahiri and Data (1992) previously
observed that Sherpa highlanders have a very low propensity
to CSA at high altitude because none of their subjects showed
any sustained periodic breathing with apnea during sleep at
an altitude of 5,400 m. Another study on Himalayan popu-
lations compared native Tibetans to lowlander Hans living in
Tibet and unexpectedly found no significant difference in
AHI between these groups at an altitude of 3,800 m. How-
ever, the AHI values reported in that study were unusually
low for this altitude (4.19 –2.48/h vs. 4.31 –2.83/h in the Han
and Tibetan groups, respectively), which may have attenu-
ated a possible difference (Kong et al., 2015).

At both low and high altitude, the Sherpa group showed
significantly higher resting minute ventilation compared with
the Tamang group. This difference is apparently due to a
higher tidal volume in Sherpas. Similar differences were
previously found between native Tibetans and Han people
living in Tibet, with native Tibetans having larger chest cir-
cumference, total lung capacity, vital capacity, residual vol-
ume, and tidal volume compared with Hans of lowland
Chinese origin (Sun et al., 1990; Droma et al., 1991; Chen
et al., 1997; Kapoor and Kapoor, 2005). This higher resting
ventilation seems to be specific to Himalayan populations. In
fact, Beall et al. (1997) showed that, compared with a high-
altitude Andes population, Tibetans showed a greater resting
ventilation and a larger tidal volume. This higher resting
ventilation can also indicate higher respiratory drive in the
Sherpa population.

However, the presence of differences in respiratory drive
or hypoxic ventilatory response between these Himalayan
populations and other populations are still debated (Gilbert-
Kawai et al., 2014). Looking at a Caucasian population for
comparison, Nussbaumer-Ochsner et al. (2012) observed that
European subjects had a higher propensity to develop CSA
during the first night at 4,559 m (n = 16, AHI 60.9/h) com-
pared with our observations in Sherpa and Tamang popula-

tions at a comparable altitude. In the Caucasian subjects,
resting ventilation (6.3 l/min) and tidal volume (0.335 l) at
4,559 m were also lower compared with our Sherpa and Ta-
mang subjects. Further study should compare nocturnal re-
spiratory disorders between Caucasian and Himalayan
populations by assessing the roles of respiratory drive and
tidal volume in the loop gain.

In the current study, we also observed that the magnitude
of FECO2 drop when ascending to high altitude was greater in
Tamangs compared with Sherpas. This may suggest differ-
ences in central CO2 regulation between these populations.
One previous study (Slessarev et al., 2010) investigated
ventilatory control in a high-altitude Himalayan population
in Ladak. They compared the ventilatory response to CO2

between 12 Himalayan residents and 21 unacclimated sea-
level resident of European ancestry. Although the difference
in acclimatization makes the results difficult to interpret, this
study showed that the Himalayan highlanders had a de-
creased ventilatory response to increasing inhaled CO2

compared with sea-levels residents.
This possible lower ventilatory response to CO2 in Sherpas

compared with Tamangs needs to be further investigated but
could have an impact on their ‘‘loop gain,’’ (Younes et al.,
2001), which represents the propensity to develop periodic
breathing.

Loop gain consists of a controller gain (ventilatory re-
sponse to changes in CO2 level), which may be lower in
Sherpas, and a ‘‘plant gain.’’ Plant gain represents the change
in CO2 caused by a given change in ventilation. Steady state
plant gain is the slope of the tangent line that touches the
metabolic hyperbola at the ventilation point (Fig. 5). The
metabolic hyperbola is a plot of the alveolar ventilation
equation. A higher resting ventilation is associated with a
flatter slope. Although we could not directly calculate their
plant gain, we suspect that Sherpas may have a lower steady
state plant gain (i.e., less change in partial pressure of carbon
dioxide (PCO2) for a given change in ventilation) because of
the higher ventilation and estimated alveolar ventilation,
making them less susceptible to periodic breathing.

Although previous studies suggested that the increase in
ventilation caused by the change from a normoxic to a hyp-
oxic environment did not have a protective effect on the

FIG. 4. Wake breathing characteristics at low and high altitudes in subjects of Sherpa (grey boxes) or Tamang (black
boxes) ethnicity. In the graphs, the middle line of each box shows the median, the lower/upper lines of each box show the
first/third quartiles, the cross indicates the mean, and circles show individual data.
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occurrence of CSA (Xie et al., 2001), this does not apply to
the present situation since Sherpas have a higher ventilation
than Tamangs while both groups are in the same hypoxic
conditions. To ensure that the metabolic curve is identical in
Tamang and Sherpas, we calculated CO2 production (VCO2)
in each group. In lowland and high altitude, we found no
significant difference between the size-adjusted VCO2 of
each group (Lowland: Sherpa vs. Tamang mean [95% con-
fident interval]: 0.253 [0.246–0.321] l/min vs. 0.283 [0.215–
0.291] l/min, p = 0.277; High-altitude: Sherpa vs. Tamang
mean [95% confident interval]: 0.277 [0.252–0.302] l/min vs.
0.254 [0.229–0.279] l/min, p = 0.218).

Another explanation for the observed findings could be a
lower ‘‘dynamic’’ plant gain in Sherpas. Dynamic plant gain
takes into account the rate of CO2 changes caused by a given
change in ventilation (Fig. 5). As shown on this figure, two
subjects may both ultimately reach the same delta PCO2 for a
given change in ventilation, that is, they have the same steady
state plant gain. However, one of the subjects reaches this
PCO2 more quickly, giving them a greater dynamic plant gain.

The faster the steady state PCO2 level is reached, the larger
the delta PCO2 achieved when periodic breathing occurs,
particularly if the cycle period is short, such as in high-
altitude periodic breathing. Functional residual capacity
(FRC) affects the dynamics of plant gain (Dempsey and
Smith, 2004): the greater the FRC, the lower the dynamic
plant gain. If, like Tibetans, Sherpas tend to have a large FRC
(Sun et al., 1990; Droma et al., 1991; Chen et al., 1997), we
can speculate that they may have lower dynamic plant gain.
Therefore, our data suggest that Sherpas may have a lower
controller gain and a lower plant gain, which could explain
their lower propensity to altitude-induced sleep apnea.

Finally, it is interesting to note that despite having a higher
desaturation index (ODI), Tamangs showed similar nocturnal
oxygen saturation to the Sherpas, suggesting that periodic
breathing may not negatively affect mean oxygen saturation,
as suggested by others (Levine et al., 1995; Salvaggio et al.,
1998).

Our study has some limitations that need to be mentioned.
Since the polygraphy recorders we used did not have chest

motion detectors, it was not possible to distinguish between
central and obstructive respiratory events. However, given that
we compared the same subjects at low and high altitudes, and
that obstructive events occurring at low altitude are mainly
caused by anatomical characteristics, we expect that the rapid
change in AHI observed between low- and high-altitude con-
ditions was essentially due to altitude-induced respiratory
events (Nussbaumer-Ochsner et al., 2010). Second, as we did
not perform a complete polysomnography, our recordings did
not include electroencephalographic parameters.

Therefore, we could not assess total sleep time. If Sherpas
had a longer wake time during the night compared to Ta-
mangs, this could have artificially lowered the AHI. More-
over, our recordings do not allow evaluating the arousal
thresholds. A lower arousal threshold in the Tamang could
have contributed to the increased in sleep disordered
breathing that was observed.

Third, polygraphy recordings were performed over 2 days at
each altitude meaning that there could be a difference of ac-
climatization between subjects tested during the first night and
those tested during the second night, but this bias is probably
negligible because the same order of testing was used at both
altitudes. Finally, the study population included only males,
which limits the ability to generalize our results to females.

Conclusion

High altitude-adapted Sherpas showed a significantly
smaller increase in sleep-disordered breathing and a smaller
fall in CO2 level between low and high altitude compared with
individuals from the Tamang ethnic group, whose ancestors
lived at low altitude. This suggests that genetic specificities in
breathing control could protect from altitude-induced sleep
apnea and may represent a previously neglected adaptive trait
evolved by Tibetan and Sherpa ancestors to cope with hypo-
baric hypoxia-related stresses.
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