
ARTICLE IN PRESS

Journal of Theoretical Biology 256 (2009) 76–80
Contents lists available at ScienceDirect
Journal of Theoretical Biology
0022-51

doi:10.1

� Corr

Univers

USA. Te

E-m
journal homepage: www.elsevier.com/locate/yjtbi
Removing ambiguity from the biological species concept
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a b s t r a c t

The biological species concept (BSC) is a common way to define species although it is ambiguous even

when strictly applied. I interpret it here syntactically in four different ways and show that one of them

is more suitable than previously thought. The first interpretation (fully restricted) produces discrete,

non-overlapping biological species with the inconvenience of being inapplicable when there is gradual

evolution of reproductive isolation. The second (cohesion relaxed) and fourth (fully relaxed)

interpretation are overly unrestricted to be useful. The third interpretation (isolation relaxed)

overcomes the problem of gradual evolution of reproductive isolation at the cost of recognizing non-

discrete, overlapping biological species. That is, some populations are members of more than one

species. Non-discreteness, however, removes hand-waving in infamous difficulties of the BSC such as

those with ring species, phyletic species, and syngameons. Moreover, it lets the BSC deal with

introgression with no appeal to subjectivity. Therefore, precision in terms underlying the BSC provides

an objective and still natural alternative to deal with gradual evolution of reproductive isolation.

& 2008 Elsevier Ltd. All rights reserved.
Defining what a species is has been attempted for centuries
(Mayr, 1982). Linnaeus regarded species as typological objects.
Buffon included the condition of interfertility for conspecificity.
Dobzhansky refined the concept by pointing to isolating mechan-
isms, and Mayr (1942, 1963) stated it in its well-known form:
‘‘groups of actually or potentially interbreeding natural popula-
tions [cohesion] that are reproductively isolated from other such
groups [isolation].’’ Mayr’s definition, named by him as the
biological species concept (BSC), still faced a number of difficul-
ties, however (Wheeler and Meier, 2000). In order to address
those difficulties, diverse refinements (e.g., Simpson, 1961;
Hennig, 1966), alternatives (e.g., Van Valen, 1976; Mallet, 1995),
particularizations (e.g., Paterson, 1985), and generalizations (e.g.,
Templeton, 1989; de Queiroz, 1998) have been attempted giving
rise to about two dozens of species concepts (Mayden, 1997),
all having their own particular weaknesses (Hull, 1997). In spite
of the effort, a contentious debate has prevailed which has
actually reinforced ‘‘One of the most pernicious uncertainties in
evolutionary biology’’ (Hey, 2008), known as the species problem
(Hey, 2001, 2006).

However, Mayr’s notion continues to play a central role
(de Queiroz, 2005), especially when studying the origin of species
(Coyne and Orr, 2004; Gavrilets, 2004). A primary means of
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speciation is gradual acquisition of reproductive isolation, which
poses unanswerable questions to the BSC such as where to delimit
ring species, phyletic species, and syngameons. Indeed, gradual
acquisition of reproductive isolation has urged for a relaxation
of the concept so that it allows for introgression, which has
the consequence of subjective gene flow thresholds to conclude
heterospecificity (Coyne and Orr, 2004). I show here that
removing ambiguity from the BSC lets it deal with gradual
evolution of reproductive isolation with no appeal to subjectivity
and with the possibility of introgression.

Mayr’s BSC defines a species as a set of populations for which
the cohesion and isolation conditions noted above hold. However,
these conditions can be given different interpretations. I consider
here two interpretations for each condition. First, both conditions
can be interpreted in fully restrictive terms. In this case, the
cohesion condition reads ‘‘every two populations in the set are
reproductively compatible’’ (C1) and the isolation condition reads
‘‘every two populations, one in the set and the other one not in the
set, are reproductively isolated’’ (I1). Second, both interpretations
can be relaxed without loss of rigor. In particular, the cohesion
condition can be interpreted instead as ‘‘every population in the
set is reproductively compatible with at least one other popula-
tion in the set’’ (C2) and the isolation condition as ‘‘every
population outside the set is reproductively isolated with at least
one population in the set’’ (I2). The relaxed interpretations
constitute slight modifications of the restrictive ones when put
in mathematical terms (see Supplementary Material). Combina-
tions of these conditions produce four different interpretations of
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Table 1
Four different interpretations of the BSC

Interpretation of the BSC Defining conditions

Fully restrictive C1 and I1

Cohesion relaxed C2 and I1

Isolation relaxed C1 and I2

Fully relaxed C2 and I2

Fig. 1. Biological species in the four interpretations. Each square depicts a natural

rooted population and lines connecting them indicate their reproductive

compatibility. Ellipses circle biological species (a) in the fully restricted

interpretation, (b) in the cohesion-relaxed interpretation, (c) in the isolation-

relaxed interpretation, and (d) in the fully relaxed interpretation. In (a)

populations on the right are not part of any species, in (b) and (d) species are

nested since there is a whole-embracing species, and in (c) and (d) a population on

the right belongs to three species.
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the BSC (Table 1, Fig. 1). I show that the fully restrictive
interpretation of the BSC is not capable of dealing with gradual
evolution of reproductive isolation, while the isolation-relaxed
interpretation can accomplish the task with the implication
of non-discrete biological species. The other two interpretations
are shown to be too unrestricted to be useful. I illustrate how
isolation-relaxed biological species deal with ring species,
phyletic species, and syngameons. It will then be apparent how
isolation-relaxed biological species allow for introgression.

I express the above interpretations in syntactic form as well as
their underlying notions (see methods online as Supplementary
Material). This produces a completely formal system with five
undefined signs (inheritance, immediate ancestry, potential
existential quantifier, natural conditions, and reproductive sym-
patry) and three axioms (for time, for space, and for potentiality).
I start from syntactically representing individuals and continue
with syntactically defining reproduction, populations and finally
species. Definitions are stated to fit standard concepts accurately;
however, populations are defined in a non-standard way and
are called rooted populations. A rooted population is defined as
the set of individuals that can compatibly interbreed directly or
immediately indirectly at a given time with a root individual, the
root individual being included in the set (Fig. 2). By immediately
indirectly I mean that an individual may be linked to another
individual via a third individual, which allows same gender
individuals to be in the same rooted population. Every individual
generates thus a rooted population. The fundamental difference
between rooted and standard populations is that rooted popula-
tions are defined from a root individual and not with respect to
a locality. Since deciding where the limits of the locality are
is frequently arbitrary, standard populations cannot often be
objectively delimited. Rooted populations are delimited spatially
by means of the root individual’s direct or immediately indirect
potential interbreeding at a given time, and temporally by the
existence intervals of their members. Hence, rooted populations
allow for an objective population delimitation. Thus, species are
here not taken to be constituted by standard populations but by
rooted populations. An important distinction that becomes
evident in syntactically expressing the BSC’s underlying notions
is the one between potential interbreeding and reproductive
compatibility. Potential interbreeding is shown to refer to the
possibility of interbreeding only among sympatric individuals (see
Propositions 1 and 2 in the Supplementary Material). Reproduc-
tive compatibility refers to the absence of reproductive isolating
barriers and is thus shown to be meaningful among allopatric
individuals (see Propositions 10 and 11 in the Supplementary
Material). Hence, potential interbreeding may be taken as de-
limiting rooted populations while reproductive compatibility as
delimiting biological species.

The BSC is typically regarded as equating conspecificity with
reproductive compatibility. To see whether any of the above four
interpretations of the BSC holds this view, some previous results
are obtained. By defining an obligate asexual individual as one
reproductively isolated from any individual (including itself,
otherwise selfing could be accomplished), it is immediate that
an obligate asexual individual is a member of a natural rooted
population formed only by itself, and that such population
constitutes a fully restrictive as well as an isolation-relaxed
biological species. However, it is obtained that obligate asexual
individuals cannot belong to any biological species under the
remaining two interpretations. This raises the question of whether
fully restrictive or isolation-relaxed biological species are applic-
able to all organisms. Indeed, this is found to be the case for
isolation-relaxed but not for fully restrictive biological species.
The proof of the strict universality of isolation-relaxed biological
species provides with a means to derive that this interpretation
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Fig. 2. A natural rooted population. Vertical lines indicate the existence intervals

of individuals. Double broken lines indicate that the two individuals can naturally

compatibly interbreed (i.e., can interbreed under natural conditions and progeny

can backcross). A natural rooted population is obtained from a root individual by

linking it to direct and immediately indirect mates at time t.

Ti
m
e

Fig. 3. Isolation-relaxed biological species and transitions between them. Natural

rooted populations with the same color are reproductively compatible. Transi-

tional populations have dashed lines and belong to both species. (a) Ring species

have transitions with respect to space. (b) Phyletic species have transitions with

respect to time. The green biological species originates instantaneously from the

orange and blue ones, while the purple biological species originates gradually from

the orange one.
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satisfies the equivalence between conspecificity and reproductive
compatibility. In particular, the following are conspecificity
criteria for the four interpretations.

Conspecificity criterion for fully restrictive biological species:
If two different natural rooted populations are reproductively
isolated, then they are heterospecific in the fully restrictive
interpretation. If two different natural rooted populations are
reproductively compatible and one of them belongs to a fully
restrictive biological species, then they are conspecific in the fully
restrictive interpretation.

Conspecificity criterion for cohesion-relaxed and fully relaxed
biological species: All facultative and obligate sexual individuals
are conspecific in the cohesion-relaxed and fully relaxed inter-
pretations.

Conspecificity criterion for isolation-relaxed biological species:
Two different natural rooted populations are conspecific in the
isolation-relaxed interpretation if and only if they are reproduc-
tively compatible. They are heterospecific in the isolation-relaxed
interpretation if and only if they are reproductively isolated.

Cohesion-relaxed and fully relaxed biological species are thus
exceedingly unrestricted to be useful in the present context.
On the other hand, isolation-relaxed biological species hold the
usual view of equating conspecificity to reproductive compat-
ibility although it may have been expected to be the case for fully
restricted ones. Indeed, when it can be guaranteed that at least
one of two populations belong to a fully restricted biological
species, the fully restricted and the isolation-relaxed interpreta-
tions are equivalent. However, since not all individuals can be
included in fully restricted biological species, this will not always
be the case as shown below.

Means of determining reproductive compatibility can be
derived from the definitions of isolating barriers and reproductive
compatibility. The following criterion is obtained.

Compatibility criterion I: Two individuals are reproductively
compatible if and only if, for each pair of their respective
hereditary character states, there is a pair of individuals with
those character states as hereditary that naturally compatibly
interbreed (i.e., interbreed under natural conditions and progeny
can backcross). Equivalently, two individuals are reproductively
isolated if and only if they have a pair of respective hereditary
character states such that no two individuals with those character
states as hereditary naturally compatibly interbreed.

Compatibility criterion I is, however, dependent on complete
descriptions of individuals in terms of their character states. Since
complete descriptions of individuals in terms of their character
states are not possible in practice, a more practicable case is
attempted with the following criterion in which a superclone
refers to an individual having as hereditary all the hereditary
character states of another individual.

Compatibility criterion II: If two individuals have superclones
that naturally compatibly interbreed, then the individuals are
reproductively compatible.

This compatibility criterion indicates, more clearly than the
previous one, that the compatibility of two individuals can
be evaluated by testing interbreeding on other individuals. In
particular, two individuals do not need to coincide in time to be
compatible and their compatibility could be tested in other two
individuals coexisting in time. It is to be noted that no simplifying
assumptions, like character independence, are made. Hence, given
possible interactions between traits making tested individuals
(superclones) compatible while the untested individuals are
isolated, these reproductive compatibility criteria may prove to
be misfounded. An example could be if a gene in the superclone
inhibits the isolating genes in the untested individuals. However,
the criterion follows from the definitions of isolating barriers and
reproductive compatibility which were syntactically stated to fit
standard notions accurately. Therefore, if the criterion is empiri-
cally disproved, a revision of the definitions of isolating barriers
and reproductive compatibility, and hence of their standard
notions, would be called for. Nevertheless, all the major points
in the present study are independent of the definitions used for
isolating barriers and reproductive compatibility.

Finally, to explore what kind of individuals cannot be covered
by the fully restrictive interpretation, it is noted that there are
rooted populations such that a first one is reproductively
compatible with a second one, the second one compatible with
a third one, and the third one isolated from the first one; for
example, in a ring species. With this it is obtained that only the
instantaneous origin of reproductive isolation can produce fully
restrictive biological species. Thus, the fully restrictive interpretation
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Fig. 4. A syngameon treated with the isolation-relaxed interpretation. The

syngameon involving the Pacific North American Coast irises, series Californicae

is redrawn with permission from Arnold (2006) which is in turn taken from Lenz

(1959). Each circle represents a separate morphospecies. The species designations

are as follows: BRA, Iris bracteata; MUN, I. munzii; TEN, I. tenax; PUR, I. purdyi; INN,

I. innominata; TMA, I. tenuissima; FER, I. fernaldii; MAC, I. macrosiphon; CHR, I.

chrysophilla; DOU, I. douglasiana; HAR, I. hartwegii. A line connecting two circles

indicates natural hybridization between those taxa. Hence, these 11 morphos-

pecies sort into eight highly overlapping biological species in the isolation-relaxed

interpretation (Table 2). The only fully restrictive biological species formed is that

of MUN.

Table 2
Isolation-relaxed biological species formed by the syngameon in the Pacific North

American Coast irises

Species Members of the species

A MUN

B DOU, TEN, INN

C TEN, CHR, INN

D PUR, DOU, MAC

E PUR, TMA, MAC

F FER, MAC, DOU

G MAC, HAR

H CHR, BRA
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leaves uncovered rooted populations in the process of acquiring
or having gradually acquired reproductive isolation. On the other
hand, the isolation-relaxed interpretation sorts every rooted
population into biological species, which may overlap if they
are gradually acquiring or have gradually acquired reproductive
isolation (Fig. 3). This offers an objective and natural way to
answer taxonomic problems caused by gradualness such as ring
species, phyletic species, and syngameons (Fig. 4, Table 2).

It was obtained that isolation-relaxed biological species may
be overlapping, not discrete, entities. With this, there is no need to
trace an arbitrary line to divide ambiguous cases such as in ring
species or phyletic species. The line is traced automatically with
objective population delimitation and with the conspecificity
criterion for the isolation-relaxed interpretation of the BSC.
There is no need to appeal to subjective gene flow thresholds.
Through transitions, which may be formed by a single individual,
introgression may happen. Furthermore, non-discrete biological
species are consistent with abundant evidence from plants and
animals (Coyne and Orr, 2004; Arnold, 2006; Mallet et al., 2007).
One way to taxonomically treat transitional individuals would
be as follows. Individuals belonging to more than one congeneric
species receive the corresponding generic name and then the
specific epithets in alphabetical order linked by a hyphen (e.g.,
Quercus gambelii-grisea.) Analogously, individuals belonging to
more than one heterogeneric species receive the corresponding
generic names in alphabetical order linked by a hyphen and then
the specific epithets in alphabetical order also linked by a hyphen.
Clearly, there will always be a supraspecific category to which
transitional individuals belong uniquely.

In spite of the occurrence of transitions, largely discrete groups
are commonly observed in nature (Rieseberg et al., 2006), which
suggests that transitional parts of species must be relatively small
when compared to non-transitional sections. It is not clear why
this is so but available explanations include fast speciation rates
and selection against hybrids (Coyne and Orr, 2004; Gavrilets,
2004).
The exhaustive syntactic expression given to the BSC reveals
significant subtleties that are easy to confuse. More than a
drawback of the syntactic expression, this suggests that intricacies
in the species notion prevent it from being properly understood
without a tool that accounts for such subtleties. Verbal arguments
become severely limited with such sensitivity to details. At this
point formal mathematics provides an alternative.

I thank Doris Forero and Vital Balthazar for private financial
support. Luis Fernando Echeverri and James Conant carefully
reviewed the mathematics; however, any error remaining is my
sole responsibility. The manuscript was greatly improved by the
critical comments of Leigh Van Valen, James Mallet, Benjamin
Fitzpatrick, Sergey Gavrilets, and one anonymous reviewer. Many
others were very helpful in expressing their views on the
manuscript. Daniel Ortiz-Barrientos offered valuable incentive
criticism. Joao Muñoz, Ricardo Callejas, and Gabriel Bedoya
crucially supported the initial idea.

Appendix A. Supplementary data

Supplementary data associated with this article can be found
in the online version at 10.1016/j.jtbi.2008.09.016.
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Rigorous care is taken in order to prevent details from being ignored. Importantly, this

reveals significant subtleties that have caused deep confusions. The process of obtaining a syn-

tactic formulation of the four interpretations of the biological species concept (BSC) is divided

in the following sections.

1. Entities: Entities (in particular, individuals) are syntactically described as collections of

character states.

2. Inheritance and ancestry: Inheritance and immediate ancestry between entities are intro-

duced as two primitive (i.e., undefined) signs.

3. Reproduction: Reproduction of entities is introduced by defining actual and potential

interbreeding. Potential interbreeding is stated in terms of a primitive sign asserting the

potential occurrence of a given event (in particular, reproductive events). An axiom about

1



this potential existence sign is also introduced. The system is given time order by means

of a second axiom. Entities capable of inheritance are from then on termed individuals.

4. Compatibility: Reproductive isolating barriers and reproductive compatibility are de-

fined. A fourth primitive sign is introduced for natural conditions.

5. Populations and species: Rooted population is defined and spatial ordering is introduced

to the system by means of the fifth primitive sign and the third axiom. Definitions for the

four interpretations of biological species are stated.

6. Results: Several consequences of the four interpretations and underlying definitions are

obtained.

The first five sections are thus largely composed of definitions and hence may be skipped

and used for reference when covering the sixth section. Notation used is listed at the end in the

Appendix of the Supplementary Material.

1 Entities

The following definition describes any object as a collection of character states.

Definition (Character, character state, entity, and existence interval).Consider the follow-

ing definitions:

1. A character is a functionc : C → X, whereC is a closed time interval andX is a set.

(X may be a set of sentences, numbers, or otherwise that describe character states of the

character given.)

2. A character state of the characterc is the value of the character at any timet.

2



3. Suppose that we have a set of charactersci : Ci → Xi indexed byi ∈ A, and thatE is a

closed time interval containing eachCi. Then, the function

e : E → ℘(
⋃
i∈A

Xi)

defined by

e(t) = {ci(t)|i ∈ A andt ∈ Ci}

is called entity. We say that the entitye exists during the time intervalE, and thatE is its

existence interval.

4. If e is an entity, then a character state,s, of e is an element ofe(t) for somet. This is

denoted bys ∈t e.

Thus, an individual having at timet the allelea in locusA, the genotypeb1b2 in locusB, and

the character stated for characterD, is represented ase(t) = {c1(t), c2(t), c3(t)} = {a, b1b2, d}.

Since characters are unordered, for this representation to work it is necessary to consider enough

characters so that two entities are equal if and only if the objects they represent are the same.

This assumes the population thinking principle (Mayr, 1976) or more explicitly that “no two

things have all their properties in common” (Goodman, 1970). Note that even identical copies

differ in some properties. To be sure, they differ at least in their positions in time and space.

From the equality of functions, it follows that two entities are equal if and only if both their

existence intervals and their character states in each instant are equal.

In the previous definition we also assume that the existence span of individuals can be

represented with closed time intervals. An objection to this is that it may be more appropriate

to consider these intervals as having fuzzy limits. However, this is counter-argued by noticing

that an individual can be said to exist even with a slightest indication of such state. A further

objection is that open time intervals might represent the existence interval of, for example, a cell.

3



Nevertheless, this seems intuitively bizarre. Note also that the definition considers ontogeny by

letting characters change as the existence interval of the individual advances.

2 Inheritance and ancestry

We will use the notions of immediate ancestry and inheritance to define interbreeding and re-

productive isolating barriers. These two notions are now introduced without definition, that is,

as primitive signs.

Inheritance. Let ej andej′ be entities, and letsi andsi′ be character states such thatsi ∈t ej

andsi′ ∈t′ ej′. Let (ej, si) denote the ordered pair ofej andsi. The relation(ej, si) h (ej′ , si′)

will be read as “ej′ inheritedsi′ from ej” (the character statesi is customarily not mentioned).

Definition (Inherited character state). Let si′ ∈t′ ej′. By si′ ∈i
t′ ej′ we denote thatej′

inheritedsi′ from someone. We say thatsi′ is an inherited character state iff there exists an

entity ej′ such thatsi′ ∈i
t′ ej′ for somet′ ∈ Ej′.

Immediate ancestry. Let ej andej′ be entities. The relationej A ej′ will be read as “ej is an

immediate ancestor ofej′”.

This notation for immediate ancestry is inverted with respect to that used by Williams

(1970), according to which the entity next to the small end ofA is the younger. The in-

tention with this inversion is to follow the standard notation in whichx < y indicates thatx

is in certain sense precedingy, depending on how the relation< is defined. Hence, it may

be clearer to think of the symbol to the left of A as the ancestor, since it indeed precedes its

descendants.

Ancestry is now defined.

4



Definition (Ancestry). Let ej andej′ be entities. We say thatej is an ancestor ofej′, denoted

by ej C ej′, iff there exist entitiesej∗, ej∗+1, ej∗+2, . . . , ej∗+N such that

ej∗ A ej∗+1 A ej∗+2 A · · · A ej∗+N A ej′ ,

whereej∗ = ej. Clearly, ifN = 0, ej A ej′.

Again and for the same reason, this notation is inverted with respect to that used by Williams

(1970).

3 Reproduction

We now define interbreeding by means of reproductive events. Reproductive events are in turn

defined as functions that assign to a set of parental individuals a set of their offspring. We need

the two following definitions.

Definition (Filial set). Let E be a set of entities and let[a, b] be a closed time interval. The set

of entities whose origin happens during the interval[a, b] that are immediate descendants of all

entities inE will be referred to as the filial set fromE during[a, b]. Formally, the set

F[a,b](E) = {ej′: entity|min Ej′ ∈ [a, b] ∧ ∀x ∈ E, x A ej′}

will be called the filial set fromE during [a, b]. The interval[a, b] is determined on a case-by-

case basis so thatF[a,b](E) includes all but solely the progeny originated in a single reproductive

event.

If F[a,b](E) is the filial set fromE during [a, b], we have thatE is composed entirely of

parents of the entities inF[a,b](E). However,E may not include all the parents of the entities in

F[a,b](E). We use the following definition to include all of them.

5



Definition (Parental set). Let E be a set of entities and letF[a,b](E) be the filial set fromE

during[a, b]. The set of parents of a filial set will be referred to as its parental set. Formally, we

will say thatE is the parental set ofF[a,b](E) iff

∀ej

[(
∀ej′ ∈ F[a,b](E), ej A ej′

)
⇒ ej ∈ E

]
.

The two previous definitions guarantee respectively that only and all the progenitors of

some filial set form its parental set. Thus, a parental set consists of a sole entity in uniparental

reproduction and two entities in biparental reproduction.

Reproductive events are now defined.

Definition (Reproductive event). Let E be a set of entities andU = {e|e : entity}. A function

(upsilon)Υ[a,b] : A ⊆ ℘(U) → ℘(U) will be called a reproductive event iff

Υ[a,b](E) =

{
F[a,b](E) if E is the parental set ofF[a,b](E),

∅ if E is not the parental set ofF[a,b](E),

whereF[a,b](E) is the filial set fromE during [a, b]. In such case,Υ[a,b] will be said to occur

during[a, b].

The classic version of the BSC (Mayr, 1942, 1963) makes a distinction between actual and

potential interbreeding. Although this distinction has long been debated (Hull, 1965; Sokal and

Crovello, 1970; Mayr, 1982), we will allow for it in the present context by means of a third

primitive sign. Expressed in terms of a primitive sign, the definition of potential interbreeding

will not offer a practical procedure for its determination (which could be done instead in proba-

bilistic terms). However, the meaning of the concept of potential interbreeding will be delimited

as a consequence of axioms for time and space. We introduce then the following primitive sign

and an axiom about it.

Potential existential quantifier. The signc∃ will be read as “there can exist”.
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Axiom (Of potentiality). “There existsx such thatR” implies that “there can existx such that

R” but not the converse.

We now use reproductive events and the potential existential quantifier to syntactically ex-

press actual and potential interbreeding. We define actual interbreeding, descriptively speaking,

as requiring the occurrence of a reproductive event during which offspring arise, while potential

interbreeding as claiming the possibility of such occurrence. Formally it is as follows.

Definition (Actual interbreeding). Let E be a set of entities. We will say that the entities in

E interbreed at timet during a reproductive eventΥ[a,b] iff there is an immediate descendant of

them whose origin occurs at timet. Formally, we will say that the entities inE interbreed at

time t during a reproductive eventΥ[a,b], denoted byIt(E), iff there exists anej′ ∈ Υ[a,b](E)

such thatmin Ej′ = t, whereΥ[a,b] is a reproductive event.

For the sake of simplicity, the phrase “during a reproductive eventΥ[a,b]” will be dropped

when possible, so the formulaIt(E) will usually be read as “the entities inE interbreed at

time t”. When it is not necessary to make explicit the timet at which interbreeding occurs, we

will alternatively say that the entities inE interbreed, denoted byI (E), iff there is a timet at

which the entities inE interbreed.

Definition (Potential interbreeding). Let E be a set of entities. We will say that the entities

in E can interbreed at timet iff a reproductive event can happen during which an immediate

descendant of the entities inE originates at timet. Formally, we will say that the entities inE

can interbreed at timet, denoted bycIt(E), iff there can exist a reproductive eventΥ[a,b] during

which the entities inE interbreed at timet. Alternatively, we will say that the entities inE can

interbreed, denoted bycI (E), if there is a timet at which the entities inE can interbreed.

A corollary and its proof illustrate the subtle difference between potential and actual inter-

breeding.
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Corollary. Actual interbreeding implies potential interbreeding, but the converse is not true.

Proof. It is easy to see that(c∃Υ[a,b])I is identical withcI . Given the axiom of potentiality, we

have thatI ⇒ (∃x)I ⇒ (c∃x)I but not the converse. Hence,I ⇒ cI , but cI ; I .

We now focus on entities exhibiting inheritance, that is, those possessing inherited or inher-

itable character states. Inherited character states were already defined. The potential existential

quantifier allows defining inheritable character states. Character states being either inherited or

inheritable are then termed hereditary. Entities with at least one character state of this kind will

be called individuals. The formal definitions are as follows.

Definition (Inheritable character state). Let si ∈t ej. We will say thatej can inheritsi to

someone, denoted bysi
c∈i

t ej, iff there can exist an entityej′ for which there is ansi′ such that

(ej, si) h (ej′ , si′). We will say that a character statesi is an inheritable character state iff there

exists an entityej such thatsi
c∈i

t ej for somet ∈ Ej.

Definition (Hereditary character state). Let si be a character state of an entityej at timet.

We will say thatsi is hereditary, denoted bysi ∈h
t ej, iff either si ∈i

t ej or si
c∈i

t ej. We will

say that a character statesi is a hereditary character state iff there is an entity for which it is

hereditary.

From now on, we focus on the following kind of entities.

Definition (Individual). Let Ij be an entity. We will say thatIj is an individual iff there is a

character statesi such thatsi ∈h
t Ij for somet ∈ Ej.

The meaning of potential interbreeding is first delimited by showing that allochronous indi-

viduals (individuals separated in time) cannot interbreed. We will need to define reproductive

adulthood and then introduce a time order to the system. Reproductive adulthood is defined as

the part of the existence interval during which an individual can breed. The objection of fuzzy
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limits may be raised again for the definition of reproductive adulthood; however, this is analo-

gously rebutted by noticing that when an individual has a slightest capability of breeding, it can

be said to have already reached its reproductive adulthood.

We will use the following definition.

Definition (Potential breeding). Let Ij be an individual. We will say thatIj can breed at time

t iff there is a set of individualsI such thatIj ∈ I and the organisms inI can interbreed at time

t.

Definition (Reproductive adulthood, synchrony, and reproductive synchrony).Let Ij be

an individual andEj its existence interval. LetAj be a bounded union of time intervals such

thatmin Ej < inf Aj (Remark 1).Aj will be called the reproductive adulthood ofIj iff for all

t, we have that

t ∈ Ej ∩ Aj ⇔ Ij can breed att.

In such case, we will say thatIj reaches its reproductive adulthood iffEj ∩ Aj 6= ∅. We will

say that two individualsIj andIj′ are synchronous iffEj ∩ Ej′ 6= ∅. Further, we will say that

two individualsIj andIj′ are reproductively synchronous at timet iff they are synchronous

at timet having reached their reproductive adulthoods or formally, denoted byT r
t ({Ij, Ij′}),

iff t ∈ (Ej ∩ Aj) ∩ (Ej′ ∩ Aj′). Alternatively, we will say thatIj andIj′ are reproductively

synchronous, denoted byT r({Ij, Ij′}), iff (Ej ∩ Aj) ∩ (Ej′ ∩ Aj′) 6= ∅. Finally, we will say

thatIj andIj′ are (reproductively) allochronous iff they are not (reproductively) synchronous.

Remark1. Aj is taken to be a bounded union because reproductive adulthood can consist of

several disjoint, necessarily bounded, time intervals. The conditionmin Ej < inf Aj is given

because it is not possible for an individual to breed at the same instant it originates; necessarily,

it can only do it later.inf is taken in case the time intervals of whichAj consists have open

limits (inf exists becauseAj is bounded).
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Allochrony is sometimes used with a somewhat different meaning and the term diachrony

is used instead. We use allochrony to preserve the pattern between sympatry and allopatry.

An axiom that gives time order to the system is introduced and called the axiom of origin.

It states that every immediate descendant originates during the reproductive adulthood of its

immediate ancestors.

Axiom (Of origin). Given two individualsIj andIj′, if Ij A Ij′, thenmin Ej′ ∈ (Ej ∩ Aj).

Corollary. The immediate ancestors of a given individual are reproductively synchronous.

Proof. Let I be the set of the immediate ancestors ofIj′. Then, by the axiom of origin,

min Ej′ ∈
⋂

j (Ej ∩ Aj), wherej is in a setB that indexesI. That is, the organisms inI

are reproductively synchronous at least atmin Ej′.

Proposition 1. If some individuals are allochronous, then they cannot interbreed.

Proof. We prove that if some individuals can interbreed, then they are synchronous. LetI

be a set of individuals that can interbreed. LetΥ[a,b] be a reproductive event such thatIj′ ∈

Υ[a,b](I). Hence, the individuals inI are immediate ancestors ofIj′. By the above corollary,

such individuals are reproductively synchronous and therefore, synchronous.

Proposition 1 helps provide potential interbreeding with some meaning by making it im-

possible between allochronous individuals. We will further delimit its meaning when space

separation is considered.

4 Compatibility

Mayr used the word interbreeding to define biological species. As made explicit in the previous

proposition, interbreeding cannot occur in allochrony and, as made explicit in the next section,
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it cannot occur in allopatry either. In spite of this, interbreeding is intended to refer to a partic-

ular condition: “The wordinterbreedingindicates a propensity; a spatially or chronologically

isolated population, of course, is not interbreeding with other populations but may have the

propensity to do so when the extrinsic isolation is terminated” (Mayr, 2000). This propensity

is to be understood in terms of reproductive isolating barriers (Dobzhansky, 1951; Mayr, 1963;

although the word mechanisms was originally used instead, barriers may be preferable; Coyne

and Orr, 2004). We now define isolating barriers and then use them to define such propensity,

that is, reproductive compatibility.

We use some previous definitions. First, an indirect interbreeding relation is defined, so that

same-gender individuals are not necessarily separated. We will call such relation kinship. We

use this relation to define as compatible interbreeding the interbreeding in which progeny can

backcross and then we make explicit its potential counterpart as follows.

Definition (Potential kinship). Let Ij andIj′ be individuals. We will say thatIj can become

akin toIj′ iff one of the following conditions holds:

1. Ij = Ij′.

2. There are sets of individualsIj andIj′ such thatIj ∈ Ij andIj′ ∈ Ij′, where the individ-

uals inIj can interbreed, the individuals inIj′ can interbreed, andIj ∩ Ij′ 6= ∅. (Hence,

if we have biparental reproduction the individualIj can interbreed either withIj′ or with

a third individual that in turn can interbreed withIj′.)

Definition (Compatible interbreeding). Let I be a set of individuals. We will say that the

individuals inI compatibly interbreed at timet iff the individuals inI interbreed at timet and

one of the individuals inI can become akin to one of the immediate descendants originated

at timet (in particular, biparental reproduction with possible backcrossing). Formally, we will

say that the individuals inI compatibly interbreed at timet (during a reproductive eventΥ[a,b]),
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denoted byI c
t (I), iff(

∃Ij′

Ij′ ∈ Υ[a,b](I) ∧min Ej′ = t

) (
∃Ij

Ij ∈ I

)
Ij can become akin toIj′ .

Alternatively, we will say that the individuals inI compatibly interbreed (during a reproductive

eventΥ[a,b]), denoted byI c(I), iff there is a timet at which the individuals inI compatibly

interbreed.

Definition (Potential compatible interbreeding). Let I be a set of individuals. We will say

that the individuals inI can compatibly interbreed at timet, denoted bycI c
t (I), iff there can

exist a reproductive eventΥ[a,b] during which the individuals inI compatibly interbreed at time

t. Alternatively, we will say that the individuals inI can compatibly interbreed, denoted by

cI c(I), iff there is a timet at which the individuals inI can compatibly interbreed.

Isolating barriers are understood as “biological properties of individuals which prevent the

interbreeding of populations that are actually or potentially sympatric” (Mayr, 1963). We des-

ignate here biological properties as those entailing inheritance. The word interbreeding in the

just quoted definition of isolating barriers refers to interbreeding under natural conditions, oth-

erwise breakable isolating barriers would be excluded (e.g., some behavioral isolating barriers).

Natural conditions are now introduced by means of a fourth primitive sign. This allows defining

natural interbreeding as interbreeding under natural conditions. Thus, we define reproductive

isolating barriers as hereditary character states that when present, the individuals involved do

not compatibly interbreed in nature. This definition is given for actual and not potential inter-

breeding because the latter excludes prezygotic isolating barriers.

Natural conditions. Let I be a set of individuals and[a, b] a closed time interval.N[a,b](I) will

be read as “the individuals inI are under natural conditions during[a, b]”.

Definition (Natural compatible interbreeding). Let I be a set of individuals. We will say that

the individuals inI naturally compatibly interbreed at timet (during a reproductive eventΥ[a,b]),
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denoted byI nc
t (I), iff I c

t (I) andN[a,b](I). Alternatively, we will say that the individuals in

I naturally compatibly interbreed, denoted byI nc(I), iff there is a timet at whichI nc
t (I).

The definition of potential natural compatible interbreeding (respectively, at timet), denoted by

cI nc (respectively,cI nc
t ), is analogous to that of potential compatible interbreeding.

A definition for reproductive isolating barriers is now stated.

Definition (Reproductive isolating barriers). Let si andsi′ be hereditary character states. We

will say thatsi andsi′ are reproductive isolating barriers to each other iff for any individualsIj

andIj′, (
si ∈h

t Ij ∧ si′ ∈h
t′ Ij′

)
⇒ ¬I nc({Ij, Ij′}),

for somet ∈ Ej, t′ ∈ Ej′. This definition is now generalized for a set of individuals of any size

(Remark 2). LetS be a set of hereditary character states and letI be a set of individuals. A

functionσ : S → I such that ifσ(si) = Ij, thensi ∈h
t Ij for somet ∈ Ej, will be referred to as

a hereditary-character-state function.S will be said to h-correspond toI iff there is a bijective

hereditary-character-state function fromS to I. Hence, we will say that the character states in

S are reproductive isolating barriers to one another, denoted byB(S), iff(
∀I

S h-corresponds toI

)
¬I nc(I).

Remark2. Such general a definition is obviously not necessary as there are no known cases of

such multiparental reproduction. However, it allows for a simpler notation.

Then, we define reproductive compatibility as the condition when there are no isolating

barriers between the individuals involved. It is stated as follows.

Definition (Reproductive compatibility). Let I be a set of individuals andS a set of hereditary

character states. We will say that the individuals inI are reproductively compatible iff they do
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not have corresponding reproductive isolating barriers. Formally, ifI has two members, we will

say that the individuals inI are reproductively compatible iff

¬
(

∃si, si′

si ∈h
t Ij, si′ ∈h

t′ Ij′

)
B({si, si′}),

for somet ∈ Ej, t
′ ∈ Ej′. In general, we will say that the individuals inI are reproductively

compatible, denoted byC r(I), iff

¬
(

∃S
S h-corresponds toI

)
B(S).

We will say that the individuals inI are reproductively isolated iff they are not reproductively

compatible.

5 Populations and species

We now introduce space to the system to later define populations and then species. A spatial

“order” is introduced by means of a fifth primitive sign and an axiom about it, called the axiom

of sympatry. Loosely speaking, the axiom of sympatry asserts that reproductive sympatry is the

remaining condition for potential interbreeding when compatible individuals coincide in time.

We proceed as follows.

Reproductive sympatry. Let I be a set of individuals and lett ∈ Ej for someIj ∈ I. Sr
t(I)

will be read as “the individuals inI are reproductively sympatric at timet”. Alternatively, we

will say that the individuals inI are reproductively sympatric iff there is a timet at which they

are reproductively sympatric. We will say that the individuals inI are reproductively allopatric

(respectively, at timet) iff they are not reproductively sympatric (respectively, at timet).

Axiom (Of sympatry). Given a set of individualsI and a timet ∈ Ej for someIj ∈ I,

C r(I) ∧T r
t (I) ∧ Sr

t(I) ⇔ cI nc
t (I).
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Therewith we can further delimit the meaning of potential interbreeding by means of the

following proposition.

Proposition 2. If some individuals are reproductively allopatric, then they cannot naturally

compatibly interbreed.

Proof. Let I be a set of reproductively allopatric individuals. That is,¬Sr
t(I) for every timet in

their existence intervals. From the axiom of sympatry,¬cI nc
t (I) for any timet in their existence

intervals.

Therefore, potential interbreeding refers only to synchronic and sympatric individuals. That

is, potential interbreeding is the one that is not accomplished for reasons other than temporal or

spatial separation and reproductive isolation (e.g., by chance).

The BSC defines biological species upon the notion of population. A population is under-

stood as a group of interbreeding individuals that share a locality in a restricted time extension,

although there is much subjectivity in such notion. A notion for populations objectively ex-

tended in time and space is here used instead (a different approach with a similar objective is

pursued in Pfeifer et al., 2007). We will use for this the relation of potential natural compatible

kinship. Hence, we define a natural rooted population as the set of individuals that can naturally

become akin at a given moment to a given individual, the individual included since kinship is

reflexive. We proceed as follows.

Definition (Potential natural compatible kinship). Let Ij andIj′ be individuals. We will

say thatIj can naturally become compatibly akin toIj′ (respectively, at timet) iff the defini-

tion of potential kinship holds when “can interbreed” is replaced by “can naturally compatibly

interbreed (respectively, at timet)”.

Definition (Natural rooted population). Let Ij be an individual. The set of individuals that
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can naturally become compatibly akin toIj at timet will be called the natural rooted population

from Ij at timet (see Fig. 2 on the main paper).

A natural rooted population is thus, loosely speaking, a group of synchronic, reproductively

sympatric, and naturally compatibly interbreeding individuals.

Mayr (1942, 1963) defines biological species as “groups of actually or potentially inter-

breeding natural populations [cohesion] that are reproductively isolated from other such groups

[isolation].” The word natural refers to populations under natural, not artificial or laboratory,

conditions. This is to guarantee that breakable isolating barriers are not excluded. Having

made this consideration already with the definition of natural rooted populations, we now de-

fine reproductive compatibility between natural rooted populations as the condition when two

populations have respective, compatible individuals. We consider two interpretations of the co-

hesion condition and two for the isolation condition of Mayr’s definition. Thus, four different

definitions are possible. Formally, we proceed as follows.

Definition (Reproductive compatibility between rooted populations).Let Pk andPk′ be

natural rooted populations. We will say thatPk andPk′ are reproductively compatible iff there

is a set of individualsI with individuals of bothPk andPk′ such thatC r(I). Formally,Pk and

Pk′ are reproductively compatible iff(
∃I

I ∩ Pk 6= ∅ ∧ I ∩ Pk′ 6= ∅

)
C r(I).

We will say thatPk andPk′ are reproductively isolated iff they are not reproductively compati-

ble.

Definition (Fully restrictive biological species).Let S be a set of natural rooted populations.

We will say thatS is a fully restrictive biological species iff the following conditions hold:

1.

(
∀Pk

Pk ∈ S

) (
∀Pk′ 6= Pk

Pk′ ∈ S

)
Pk andPk′ are reproductively compatible (C1).

16



2.

(
∀Pk

Pk /∈ S

) (
∀Pk′

Pk′ ∈ S

)
Pk andPk′ are reproductively isolated (I1).

Definition (Cohesion-relaxed biological species).LetS be a set of natural rooted populations.

We will say thatS is a cohesion-relaxed biological species iff the following conditions hold:

1.

(
∀Pk

Pk ∈ S

) (
∃Pk′ 6= Pk

Pk′ ∈ S

)
Pk andPk′ are reproductively compatible (C2).

2.

(
∀Pk

Pk /∈ S

) (
∀Pk′

Pk′ ∈ S

)
Pk andPk′ are reproductively isolated (I1).

Definition (Isolation-relaxed biological species).LetS be a set of natural rooted populations.

We will say thatS is an isolation-relaxed biological species iff the following conditions hold:

1.

(
∀Pk

Pk ∈ S

) (
∀Pk′ 6= Pk

Pk′ ∈ S

)
Pk andPk′ are reproductively compatible (C1).

2.

(
∀Pk

Pk /∈ S

) (
∃Pk′

Pk′ ∈ S

)
Pk andPk′ are reproductively isolated (I2).

Definition (Fully relaxed biological species).LetS be a set of natural rooted populations. We

will say thatS is a fully relaxed biological species iff the following conditions hold:

1.

(
∀Pk

Pk ∈ S

) (
∃Pk′ 6= Pk

Pk′ ∈ S

)
Pk andPk′ are reproductively compatible (C2).

2.

(
∀Pk

Pk /∈ S

) (
∃Pk′

Pk′ ∈ S

)
Pk andPk′ are reproductively isolated (I2).

Note that the only difference between C1 and C2 (as well as between I1 and I2) is that the

second universal quantifier (∀) is changed for an existential quantifier (∃). Sometimes the fol-

lowing equivalent form of I2 will be used for convenience: “there is no natural rooted population

outside the set that is reproductively compatible with all populations in the set”.
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6 Results

6.1 Universality of biological species

We now state a definition of obligate asexual individual, check the behavior of the interpre-

tations of the BSC with asexual individuals, and show that only isolation-relaxed biological

species are strictly universal (i.e., applicable to all kinds of organisms).

Definition (Obligate asexual individual). Let Ij be an individual. We will say thatIj is

obligate asexual iff for every individualIj′ (which includesIj), we have thatIj andIj′ are

reproductively isolated.

Proposition 3. If an individual is obligate asexual, then it is a member of a natural rooted

population formed only by itself. In addition, such population constitutes a fully restrictive

biological species as well as an isolation-relaxed biological species. However, such population

cannot belong to any cohesion-relaxed or fully relaxed biological species.

Proof. Let Ij be an obligate asexual individual. Thus,Ij is reproductively isolated of anyIj′.

From the axiom of sympatry, it follows thatIj andIj′ cannot naturally compatibly interbreed at

any timet. Thus,Ij cannot naturally become compatibly akin to anyIj′ 6= Ij. Therefore, from

the definition of potential natural compatible kinship,Ij can only naturally become compatibly

akin to itself and thus{Ij} is the natural rooted population fromIj at anyt ∈ Ej. Now consider

{{Ij}}. Since there are no two different natural rooted populations in{{Ij}}, the antecedent of

C1 is false and thus C1 follows. SinceIj is obligate asexual, I1 and I2 also follow. Therefore,

{{Ij}} is a fully restrictive and an isolation-relaxed biological species. Clearly, sinceIj is

obligate asexual, C2 does not hold for any set of natural rooted populations containing{Ij} and

hence{Ij} cannot belong to any cohesion-relaxed or fully relaxed biological species.

As seen in the previous proposition, obligate asexual individuals are not covered by the
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cohesion-relaxed or the fully relaxed interpretation of the BSC. It will be seen in section 6.4

that although fully restricted biological species include asexuals, they exclude some other kind

of organisms. However, the isolation-relaxed interpretation can be shown to be fully inclusive.

We use the following hypothesis that is guaranteed on a biological basis (Remark 3).

Remark3. This hypothesis would be required only if the number of natural rooted populations

were by far unrealistically large: of a much larger size than the cardinality of the set of real

numbers. The hypothesis can thus be safely dropped but I use it for the sake of generality of the

universality proposition obtained below.

Hypothesis. The class of all natural rooted populations is a set.

It will be useful to say thatx1 is included inxI whenx1 ∈ x2 ∈ · · · ∈ xI for somexi

(i = 2, . . . , I − 1).

Proposition 4. For any individual, there is at least one isolation-relaxed biological species in

which it is included.

Proof. Let I∗ be an individual and letP∗ be the natural rooted population fromI∗ at time

t (such population always exists because the potential natural compatible kinship relation is

reflexive). We prove that there exists an isolation-relaxed biological speciesS∗ such thatP∗ ∈

S∗.

Let P be the class of all natural rooted populations. Given the above hypothesis,P is a set.

Let ℘(P) be well ordered. Note that this induces a well ordering inP. We define by transfinite

recursion the functionε as:

1. ε(0) = {P∗}.

2. ε(α + 1) = ε(α) ∪ {Pα}, with Pα reproductively compatible with allP ∈ ε(α), being

P 6= Pα, for all α ∈ OR whereOR is the class of all the ordinal numbers. If there is no

suchPα, let ε(α + 1) = ε(α) ∪∅ = ε(α).
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3. If α is a limit ordinal, letAα be the set ofP ∈ P such thatP /∈
⋃

β<α ε(β) andP ,P ′ :

rep. comp. for allP ′ ∈
⋃

β<α ε(β). Thus,ε(α) =
⋃

β<α ε(β) ∪ {min Aα}. If Aα = ∅, let

ε(α) =
⋃

β<α ε(β).

Let S∗ =
⋃

α∈OR ε(α). From the definition ofε, every pair inS∗ is reproductively compat-

ible, that is, C1 follows. Sinceε exhausts all natural rooted populations, there is noPk /∈ S∗

that is reproductively compatible with allPk′ ∈ S∗, that is, I2 also follows. Therefore,S∗ is an

isolation-relaxed biological species withP∗ ∈ S∗.

The above proof describes a way to construct an isolation-relaxed biological species. It is

by starting with any natural rooted population and adding subsequent populations compatible

with all the previously added ones. Thus, an isolation-relaxed biological species is not built as

a block in which any individual exhibiting the defining properties of the species immediately

belongs to it. Instead, it is built as a chain whose links are added each at a time depending on

their reproductive compatibility.

6.2 Operationality of biological species

We now state definitions of conspecificity and heterospecificity, and derive criteria for such

conditions for the four interpretations.

Definition (Conspecific and heterospecific natural rooted populations).Let Pk andPk′ be

natural rooted populations. We will say thatPk andPk′ are conspecific in a given interpretation

iff there exists a biological speciesS in the interpretation such thatPk andPk′ are inS. We will

say thatPk andPk′ are heterospecific in a given interpretation iff they are not conspecific in the

interpretation, that is, for all biological speciesS in the interpretation, ifPk ∈ S, thenPk′ /∈ S.

Proposition 5 (Con/heterospecificity criterion for fully restricted biological species).If two

different natural rooted populations are reproductively isolated, then they are heterospecific
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in the fully restricted interpretation. If two different natural rooted populations are reproduc-

tively compatible and one of them belongs to a fully restricted biological species, then they are

conspecific in the fully restricted interpretation.

Proof. Let Pk andPk′ be different, reproductively isolated natural rooted populations. From

C1,Pk andPk′ are not conspecific in the fully restricted interpretation. Now, letPk andPk′ be

different, reproductively compatible natural rooted populations and letPk ∈ S, whereS is a

fully restricted biological species. From I1, it is not possible thatPk′ /∈ S.

Proposition 6 (Conspecificity criterion for cohesion-relaxed and fully relaxed biological

species).All facultative and obligate sexual individuals are conspecific in the cohesion-relaxed

and the fully relaxed interpretations.

Proof. LetS be the set of natural rooted populations that are not isolated from all other popula-

tions (that is, the set of populations with facultative or obligate sexual individuals). Hence, C2

holds forS. Since the only populations outside ofS are singletons of obligate asexuals, both I1

and I2 hold forS. Therefore,S is a cohesion-relaxed and a fully relaxed biological species.

Proposition 7 (Con/heterospecificity criterion for isolation-relaxed biological species).Two

different natural rooted populations are conspecific in the isolation-relaxed interpretation if and

only if they are reproductively compatible.

Proof. Let Pk andPk′ be different natural rooted populations such thatPk andPk′ are inS,

beingS an isolation-relaxed biological species. From C1,Pk andPk′ are reproductively com-

patible. On the other hand, letPk andPk′ be different reproductively compatible natural rooted

populations. Useε with ε(0) = {Pk,Pk′} to obtain an isolation-relaxed biological species.

We now derive criteria for reproductive compatibility. Proofs are for the case of biparental

reproduction, that is, the case in which the set of individualsI has two members. Proofs for the

general case of multiparental reproduction are analogous but are obviated.
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Proposition 8 (Compatibility criterion I). Two individuals are reproductively compatible if

and only if, for each pair of their respective hereditary character states, there is a pair of

individuals with those character states as hereditary that naturally compatibly interbreed.

Proof. Let Ij andIj′ be individuals. By definition,C r({Ij, Ij′}) is

¬
(

∃si, si′

si ∈h
t Ij, si′ ∈h

t′ Ij′

)
B({si, si′}),

which is also by definition

¬
(

∃si, si′

si ∈h
t Ij, si′ ∈h

t′ Ij′

) (
∀Ij∗ , Ij∗∗

si ∈h
t∗ Ij∗ , si′ ∈h

t∗∗ Ij∗∗

)
¬I nc({Ij∗ , Ij∗∗}),

which is equivalent to(
∀si, si′

si ∈h
t Ij, si′ ∈h

t′ Ij′

) (
∃Ij∗ , Ij∗∗

si ∈h
t∗ Ij∗ , si′ ∈h

t∗∗ Ij∗∗

)
I nc({Ij∗ , Ij∗∗}),

for somet ∈ Ej, t
′ ∈ Ej′ , t

∗ ∈ Ej∗ , t
∗∗ ∈ Ej∗∗.

The next compatibility criterion uses the following definition.

Definition (Superclone and clone).Let Ij andIj∗ be individuals. We will say thatIj∗ is a

superclone ofIj, denoted byIj∗ w Ij, iff(
∀si

si ∈h
t Ij

)
si ∈h

t∗ Ij∗ ,

for somet ∈ Ej, t
∗ ∈ Ej∗. We will say thatIj∗ is a clone ofIj, denoted byIj∗ ' Ij, iff

Ij∗ w Ij andIj w Ij∗.

Proposition 9 (Compatibility criterion II). If two individuals have superclones that naturally

compatibly interbreed, then the individuals are reproductively compatible.
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Proof. LetIj andIj′ be individuals with superclones that naturally compatibly interbreed. That

is, there existIj∗ andIj∗∗ such that(
∀si

si ∈h
t Ij

)
si ∈h

t∗ Ij∗ ∧
(

∀si′

si′ ∈h
t′ Ij′

)
si′ ∈h

t∗∗ Ij∗∗ ∧I nc({Ij∗ , Ij∗∗}),

for somet ∈ Ej, t
′ ∈ Ej′ , t

∗ ∈ Ej∗ , t
∗∗ ∈ Ej∗∗. Reorganizing this, there existIj∗ andIj∗∗ such

that (
∀si, si′

si ∈h
t Ij, si′ ∈h

t′ Ij′

)
(si ∈h

t∗ Ij∗ , si′ ∈h
t∗∗ Ij∗∗) ∧I nc({Ij∗ , Ij∗∗}),

for somet ∈ Ej, t
′ ∈ Ej′ , t

∗ ∈ Ej∗ , t
∗∗ ∈ Ej∗∗. This implies that(

∀si, si′

si ∈h
t Ij, si′ ∈h

t′ Ij′

) (
∃Ij∗ , Ij∗∗

si ∈h
t∗ Ij∗ , si′ ∈h

t∗∗ Ij∗∗

)
I nc({Ij∗ , Ij∗∗}),

for somet ∈ Ej, t
′ ∈ Ej′ , t

∗ ∈ Ej∗ , t
∗∗ ∈ Ej∗∗.

6.3 Dimensionality of biological species

We use two empirical assertions to show that unlike interbreeding, reproductive compatibility

is not by necessity impossible between individuals separated in time or space. The empirical

assertions say that there are at least two individuals separated in time or space that have two cor-

responding superclones that naturally compatibly interbreed. Verifying this is straightforward

as it suffices to do it for any two individuals slightly separated in time or space. The empirical

assertions are stated for the general case of multiparental reproduction.

Empirical assertion 1. There exists a set of allochronic individuals with corresponding super-

clones that naturally compatibly interbreed.

Proposition 10. Allochrony does not imply reproductive isolation.

Proof. Let Ij be a set of allochronic individuals with corresponding superclones that naturally

compatibly interbreed. LetIj∗ be the set of superclones of the individuals inIj that naturally
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compatibly interbreed. From compatibility criterion II, the individuals inIj are reproductively

compatible.

Empirical assertion 2. There exists a set of reproductively allopatric individuals with corre-

sponding superclones that naturally compatibly interbreed.

Proposition 11. Reproductive allopatry does not imply reproductive isolation.

Proof. Let Ij be a set of reproductive allopatric individuals with corresponding superclones that

naturally compatibly interbreed. Consider the setIj∗ of superclones of the individuals inIj that

naturally compatibly interbreed.

6.4 Discreteness of biological species

We now introduce the two tempos in which species arise, that is, instantaneously or gradu-

ally, by means of two empirical assertions. We then conclude that isolation-relaxed biological

species are not necessarily discrete and that fully restrictive ones cannot be produced gradually,

only instantaneously. This makes fully restrictive biological species non-existent when there is

gradual evolution of reproductive isolation. We use the following definition.

Definition (Immediately-ancestral natural rooted population). Let Pk andPk′ be natural

rooted populations. We will say thatPk is immediately ancestral toPk′, denoted byPk A Pk′,

iff there existIj ∈ Pk andIj′ ∈ Pk′ such thatIj A Ij′.

Empirical assertion 3. Evolution of reproductive isolation may be instantaneous, that is, there

exist natural rooted populationsPk andPk′ such thatPk APk′ that are reproductively isolated.

Empirical assertion 4. Evolution of reproductive isolation may be gradual, that is, there exist

natural rooted populationsPk,Pk′ ,Pk′′ such thatPk,Pk′: rep. comp.,Pk′ ,Pk′′: rep. comp.,

andPk,Pk′′: rep. isol.
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With empirical assertion 4 the conspecificity relation is not transitive for the isolation-

relaxed interpretation (as noted by Kornet, 1993 and Kornet et al., 1995) as shown as follows.

Definition (Transition). Let Sl andSl′ be different biological species in either interpretation.

Sl ∩ Sl′ will be called a transition iff it is non-empty.

Proposition 12. There exist transitions in the isolation-relaxed interpretation.

Proof. Let Pk,Pk′ ,Pk′′ be natural rooted populations such thatPk,Pk′: rep. comp.,Pk′ ,Pk′′:

rep. comp., andPk,Pk′′: rep. isol. From the conspecificity criterion for isolation-relaxed

biological species,Pk,Pk′: conspecific,Pk′ ,Pk′′: conspecific, andPk,Pk′′: heterospecific in

this interpretation. Thus, there are isolation-relaxed biological speciesSl andSl′ such that

Pk,Pk′ ∈ Sl andPk′ ,Pk′′ ∈ Sl′, butPk′′ /∈ Sl andPk /∈ Sl′. Therefore,Sl andSl′ are different

andPk′ ∈ Sl ∩ Sl′.

Proposition 13. Only the instantaneous origin of reproductive isolation can produce fully re-

strictive biological species.

Proof. We prove two things: (1) A transition in the isolation-relaxed interpretation is not con-

tained in any fully restrictive biological species, and (2) A natural rooted population reproduc-

tively compatible with populations in a transition in the isolation-relaxed interpretation does not

belong to any fully restrictive biological species.

Let T be a transition in the isolation-relaxed interpretation. (1) Suppose thatT ⊆ S where

S is a fully restrictive biological species. From the above proposition, there existPk,Pk′ re-

productively compatible to someP ∈ T that are reproductively isolated from each other. From

the conspecificity criterion for fully restrictive biological species,Pk,Pk′ ∈ S, but they are

reproductively isolated which is contradictory.

(2) Let Pk /∈ T be reproductively compatible with aP ∈ T . Then, there is aPk′ repro-

ductively compatible withP but reproductively isolated fromPk. SupposePk ∈ S, whereS
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is a fully restrictive biological species. From the conspecificity criterion for fully restrictive

biological species,P ∈ S and again by this conspecificity criterionPk′ ∈ S. However,Pk and

Pk′ are reproductively isolated which is contradictory.

Appendix: Notation

Table A1. Usage of typefaces

Typeface As in Refers to
Double-struck E Time intervals or their union
MathCal I Biological entities
Sans-serif h or N Primitive signs
Script I Non-primitive assertions
Double-struck sans-serif U Whole-embracing collections, such as the class

of all entities

Table A2. Set theory notation

Symbol Meaning
x1 ∈ x2 ∈ · · · ∈ xI x1 is included inxI

℘ (x) The power set ofx
(∃x)A There exists anx such thatA holds
A (x) The assertionA made onx(
∃x
A

)
B There exists anx for whichA holds such thatB also holds(

∀x
A

)
B For allx such thatA holds, we have thatB also holds(

∃x, y
A , B

)
C There existx andy for which A andB hold such thatC also

holds(
∀x, y
A , B

)
C For all x andy such thatA andB hold, we have thatC also

holds
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Table A3. Notation of biological assertions

Symbol Meaning
s ∈t e s is a character state ofe at timet
s ∈i

t e s is a character state ofe at timet that is inherited
s c∈i

t e s is a character state ofe at timet that is inheritable
s ∈h

t e s is a character state ofe at timet that is hereditary
(ej, si) h (ej′ , si′) ej′ inheritedsi′ from ej

ej A ej′ ej is an immediate ancestor ofej′

N[a,b](I) The individuals inI are under natural conditions during[a, b]
Sr

t(I) The individuals inI are reproductively sympatric at timet
It(I) The individuals inI interbreed at timet
I (I) The individuals inI interbreed
cI (I) The individuals inI can interbreed
I c(I) The individuals inI compatibly interbreed
I nc(I) The individuals inI naturally compatibly interbreed
cI nc(I) The individuals inI can naturally compatibly interbreed
T r(I) The individuals inI are reproductively synchronous
B(S) The character states inS are reproductive isolating barriers to one

another
C r(I) The individuals inI are reproductively compatible
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