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ABSTRACT

A mutual information-based weighted network representation of a wide wind speed-monitoring system in Switzerland was analyzed in order
to detect communities. Two communities have been revealed, corresponding to two clusters of sensors situated, respectively, on the Alps and on
the Jura-Plateau that de�ne the two major climatic zones of Switzerland. The silhouette measure is used to evaluate the obtained communities
and con�rm the membership of each sensor to its cluster.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5054724

Since the installation of dense meteorological monitoring sys-
tems made available a huge amount of data, investigating the
properties of meteoclimatic parameters has become challeng-
ing to understand the mechanisms underlying climatic systems.
Complex networks represent an important theoretical framework
that helps to describe and understand the interaction among
meteoclimatic parameters concomitantly measured by sensors of
a very dense monitoring system. This work proposes a mutual
information-based network to study the interaction between the
wind speed series measured by a meteorological monitoring sys-
tem in Switzerland, characterized by so diverse topographies.
Applying a multilevel community detection method, two clus-
ters of wind stations were identi�ed, matching the two main cli-
matic zones of Switzerland. The results of this study suggest new
methodological approaches to investigate wind speed time series.

I. INTRODUCTION

Over the past few years, more and more data have been being
collected at ever higher frequencies that developing e�cient pattern-
detection methods and data-mining techniques has become very
crucial to identify a few highly informative features. In this con-
text, one of the most relevant examples is given by high-dimensional

(multiple) time series that originate from constituent units of large
systems characterized by inner interactions.

The cooperative behavior within a complex system involving
relationships among its constituent units can be e�ectively described
bynetworks, where the interactions among the constituents (or nodes
of the network) are represented by links. The topology of the network,
which coincides with the topology of such interconnections or links,
is in itself complex.3,25 These networks show a certain organization at
a mesoscopic level, which is intermediate between the microscopic
level that involves the single constituent units and the macroscopic
level that involves the entire system as a whole. This mesoscopic
level re�ects themodular organization of the system, characterized by
the existence of interconnected groups where some units are heavily
linkedwith each otherwhile, at the same time, are less correlatedwith
the rest of the network. These interconnected groups are generally
featured as communities.14,16Detecting such communities represents
an important step in the dynamical characterization of a network,
because it could reveal special relationships between the nodes that
may not be easily detectable by direct empirical tests:24 this helps to a
better understanding of the characteristics of dynamic processes that
take place in a network.

The use of complex networks to understand the interac-
tions characterizing a climatic system has been growing in the
past years,9,10,17,38,39 and various approaches have been used in
constructing the related networks.10,34,37,38,44 Furthermore, a complex
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FIG. 1. Study area and location of measuring stations. The named stations are used as examples in Fig. 2 (see Table I for more details).

network o�ers a new mathmatical modeling approach for nonlinear
dynamics11 and for climatological data analysis.12

Among the meteoclimatic parameters, wind is an important
factor that in�uences the evolution of a climatic system; several stud-
ies have been devoted to understand better its time dynamics by
using several methods, such as extreme value theory and copula,8

machine learning algorithms,36 visibility graph analysis,28 Markov
chains models,18 fractal,13,27 and multifractal analysis.15,35

The topological properties of wind systems have been a focus
of investigation only in the very recent years. Laib et al.23 studied
the long-range �uctuations in the connectivity density time series of
a correlation-based network of high-dimensional wind speed time
series recorded by a monitoring system in Switzerland. They found
that the daily time series of a connectivity density of the wind speed
network is characterized by a clear annual periodicity that modulates
the connectivity density more intensively for low than high absolute
values of the correlation threshold. Laib et al.22 analyzed the mul-
tifractality of connectivity density time series of the wind network
and found that the larger multifractality at higher absolute values of
thresholds could be probably induced by the higher spatial sparseness
of the linked nodes at these thresholds.

Considering the topographic conditions of Switzerland and its
widespread wind monitoring systems, it is challenging to investigate
the topology of the wind network in terms of existence of network

communities, and to check if these communities match with the
topography of the territory.

To this aim, the edges of the network (the links between any two
stations of the wind system, which are the nodes of the network) are
weighted by the mutual information between the wind time series
recorded at each station. The mutual information, which quanti�es
the degree of nonlinear correlation between two time series, has been
already used to construct seismic networks,19 global foreign exchange
markets,4 and prediction of stock market movements.20

II. DATA AND NETWORK CONSTRUCTION

The data used in this work consist of daily mean wind speed,
collected from 119 measuring stations from 2012 to 2016 by Swiss-
MetNet, which is one of the weather monitoring systems in Switzer-
land covering almost homogeneously all the Swiss territory (Fig. 1).
Figure 2 shows, as an example, some of the measured wind speed
series (Table I).

To construct the network, the mutual information was used as
a metric to weight the edges between the nodes,

I(X,Y) =
∑

x∈X

∑

y∈Y

p(x, y) log

(

p(x, y)

p(x)p(y)

)

, (1)
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FIG. 2. Some example of daily wind time series.

whereX andY are two di�erent random variables (wind time series),
p(x) and p(y) are their respective probabilities, while p(x, y) is their
joint probability.

Mutual information is a measure of the amount of infor-
mation that one random variable contains about another random
variable.7

It can be shown that Eq. (1) can be written as follows:7

I(X,Y) = D(p(x, y) ‖ p(x)p(y)), (2)

where D(· ‖ ·) is the Kullback-Leibler divergence, which is a dissim-
ilarity measure between two probability distributions.
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TABLE I. Brief information on the stations used as an example in Fig. 2.

Station Name Longitude/latitude Altitude (m)

WFJ Weiss�uhjoch 9◦48′/46◦50′ 2691
KOP Koppigen 7◦36′/47◦07′ 484
BAS Basel 7◦35′/47◦32′ 316
CHU Chur 9◦32′/46◦52′ 556
LUG Lugano 8◦58′/46◦00′ 273

Thus, the mutual information can be seen as the departure of
the joint probability p(x, y) from the product of the two marginal
probabilities p(x) and p(y). We can easily show that I(X,Y) > 0 with
equality if and only if X and Y are independent.7 Consequently, the
higher themutual information, the stronger the dependence between
X and Y .

In this work, the probabilities p(x), p(y), and p(x, y) are calcu-
lated by using kernel smoothing for density estimation.40,41

Since the mutual information, de�ned in Eq. (1), is symmetric,
the network is undirected. Furthermore, the network is completely
connected, because all the nodes are connected. However, the edges
di�er by their weights given by the mutual information.

III. COMMUNITY DETECTION BY THE MULTILEVEL

METHOD

Proposed by Blondel et al.,2 the MultiLevel algorithm (ML)
is one of the community detection methods. Yang et al.45 com-
pared several well-known algorithms of community detection (Edge-
betweenness,16 Fastgreedy,5 Infomap,32 walktrap,29 and Spinglass31),
and found that ML outperforms all other algorithms on a set of
benchmarks.

The ML algorithm aims to optimise the modularity,26 which
measures the density of links inside a community, and compares it
between other communities. The modularity is de�ned as follows:

Q =
1

2m

∑

ij

[

Aij −
kikj

2m
δ(ci, cj)

]

, (3)

where Q ranges between −1 and 1 and2 Aij is the weight between
nodes i and j, 2m is the sum of all the weights in the graph, ki and
kj are the sum of weights connected to nodes i and j, respectively, ci
and cj communities (classes) of nodes. δ is the delta function of the
variables ci and cj.

The ML algorithm consists of two iterative steps. First, each
node is considered as a community for an initial partition. Then, the
node i is removed from its community ci and placed in another com-
munity cj, if this replacement maximises the modularity [Eq. (3)];
otherwise, the node i remains in its original community until when
there is no gain in the modularity. The gain in modularity of moving
a node i into a community C is computed as follows:2

1Q =

[

∑

in +2ki,in
2m

−

(
∑

tot +ki

2m

)2
]

−

[

∑

in

2m
−

(
∑

tot

2m

)2

−

(

ki

2m

)2
]

, (4)

where
∑

in is the sum of weights inside C,
∑

tot is the sum of weights
of edges incident to nodes in communityC, ki,in is the sum of weights
of connection of node i with other nodes of the same community C,
andm is the sum of all weights in the network.

The second step consists in building a new network whose
nodes are now the communities found during the �rst step. The
weights between these new nodes are de�ned by the sum of the link
weights of the corresponding communities of the old network, as it is
proposed by Arenas et al.1 for reducing the size of a complex net-
work by preserving the modularity. Then, the �rst step is applied
again on the new network iteratively until the modularity stops to
increase.

IV. RESULTS AND DISCUSSION

Figure 3 shows the mutual information among all the nodes.
Applying the community detection based on theMultiLevel method,
three di�erent communities are identi�ed, as shown in Fig. 4. Map-
ping the communities on the territory of Switzerland (Fig. 5), two
classes are mixed spatially (stations indicated by green and black
circles).

To quantify such spatial mixing e�ects, the well-known silhou-
ette width was used.33 This is de�ned as

s(i) =
b(i) − a(i)

max{a(i), b(i)}
, (5)

where a(i) is the dissimilarity between the node (object) i and the
other nodes of the same community, b(i) is the minimum value of
dissimilarity between the node i and the other nodes of other com-
munities, and the dissimilarity is the minimum Euclidean distance.
From Eq. (5), we can see that the silhouette s(i) ranges between
−1 and 1.

Figure 6 shows the silhouette widths for each station of each
community, by applying the silhouette on the mutual information
matrix and the obtained communities. Figure 7 shows the silhouette

FIG. 3. Mutual information matrix (119 × 119). Each cell (i, j) represents the
mutual information between station i and station j.
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FIG. 4. Network visualisation with the three communities
obtained by the ML method before applying the Seasonal
Decomposition of Time Series by Loess (STL).

widths, by applying it on the XY coordinates. The average values
are 0.19 (Mutual information matrix) and 0.09 (XY coordinates).
These low values indicate that the obtained communities are not well
spatially separated.

In order to understand the origin of such spatialmixing between
communities, we �ltered out from the wind series the trend and the
yearly cycle21 by using the Seasonal Decomposition of Time Series
by Loess (STL)6 (implemented by using the stl function of the stats

FIG. 5. Communities detected in the network con-
structed before the STL decomposition.
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FIG. 6. Silhouette width of each node of each community obtained, on the Mutual information matrix, before applying the STL decomposition. The average values of the
silhouette widths are 0.12 for the first community (black), 0.24 for the second community (red), and 0.24 for the third community (green). The total average is 0.19.

FIG. 7. Silhouette width of each node of each community obtained, on the XY coordinates, before applying the STL decomposition. The average values of the silhouette
widths are 0.04 for the first community (black), 0.24 for the second community (red), and −0.14 for the third community (green). The total average is 0.09.
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FIG. 8. Residuals of wind series, shown in Fig. 2, obtained by using the STL decomposition.

R library30). Then, we applied the community detection MultiLevel
method to the residual wind series. Figure 8 shows the residuals of
the same time series shown in Fig. 2, and Fig. 9 presents two detected
communities.

Mapping the communities on the Swiss territory, the two
communities do not show signi�cant spatial mixing (Fig. 10).
Furthermore, the silhouette width for each station of each commu-
nity is shown in Figs. 11 and 12, and the mean silhouette values are
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FIG. 9. Network visualisation with the two communities
obtained by the ML method after applying the STL.

0.35 (mutual informationmatrix) and 0.24 (XY coordinates), respec-
tively. These values are better than those obtained on the original
data before applying STL. This indicates that there is no signi�cant
spatial mixing between the two communities. This result was also

found signi�cant comparing it with the silhouette widths calculated
for 1000 random spatial distribution of the stations. Figures 13 and
14 show the histogram of the silhouette width for the randomised
classes.

FIG. 10. Communities detected in the network con-
structed after the STL decomposition.
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FIG. 11. Silhouette width of each node of each community obtained, on the mutual information matrix, after applying the STL decomposition. The average values of the
silhouette widths are 0.47 for the first community (black), 0.23 for the second community (red). The total average is 0.35.

By using the STL, the global trend and the yearly cycle
are removed from each time series. The residual of each wind
time series could represent the inner �uctuations of the wind
speeds at each location, which could indicate more properly the

morphotopographic and climatic characteristics of each measur-
ing site. In addition, wind speeds generally vary depending on the
pressure height contours.43 Moreover, Weber et al. studied wind
climatology in Switzerland and discussed links between founded

FIG. 12. Silhouette width of each node of each community obtained, on the XY coordinates, after applying the STL decomposition. The average values of the silhouette
widths are 0.21 for the first community (black), 0.27 for the second community (red). The total average is 0.24.
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FIG. 13. Comparison between the silhouette width (obtained using the mutual information matrix) histogram of 1000 random classes (blue) and the total average silhouette
width for classes obtained after the STL decomposition (red).

FIG. 14. Comparison between the silhouette width (obtained using the XY coordinates) histogram of 1000 random classes (blue) and the total average silhouette width for
classes obtained after the STL decomposition (red).
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classes and pressure.42 They also found that the characteristics
of these patterns are also provided by a wind rose, which is
de�ned by the atmospheric processes and complex orography in
Switzerland.42

The presented results are consistent with the previous work,21

in which the authors performed the spatial mapping of the multi-
fractal parameters on the wind speed in Switzerland, and they found
a canalization e�ect that separates these regions.

V. CONCLUSIONS

1. The wind network, constructed by representing the interactions
between the nodes using the mutual information, highlights the
(nonlinear) correlations among the wind series.

2. The STL decomposition permits one to extract the residuals
of the wind speed not in�uenced by the trends and annual
weather-induced forcing, but only by local meteoclimatic fea-
tures depending on the geomorphological and topographic
properties of each measuring station.

3. The MultiLevel method for the community detection in the
mutual information-based network of wind series shows dif-
ferent topological structures of the monitoring system, before
and after the removal of the trend and seasonal components.
The network constructed on the original data is characterized
by three di�erent communities, while that constructed on the
residual data (deprived of the trend and seasonal component)
is characterized only by two communities.

4. The communities of the network built on the original data are
quite spatially mixed. However, the communities of the net-
work built on the residual data are, instead, spatially well sepa-
rated, with no signi�cantly apparentmixing between the stations
belonging to the two communities.

5. The silhouette width, used to quantify the spatial mixing
between the found communities, shows an average value for the
communities detected in the network based on the original data
much lower than that found for the communities detected in the
network based on the residuals. Furthermore, the last is signif-
icant against the silhouette widths calculated after shu�ing the
stations of the two communities.

6. The two communities detected after removing the trend and
seasonal components match very well with climatic zones of
Switzerland, the Alps, and the Jura-Plateau. This suggests the
potential of the complex networkmethod in disclosing the inner
interactions among wind speed series measured in di�erent
climatic regions mainly due to the local topographic factors.
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