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The making of Pangea is the result of large-scale amalgamation of continents and micro-continents, which
started at the end of the Neoproterozoic with the formation of Gondwana. As pieces were added to Gondwana
on its South-American, Antarctica and Australia side, ribbon-like micro-continents were detached from its
African and South-Chinese side: Cadomia in the late Neoproterozoic, Avalonia and Hunia in the Ordovician,
Galatia in the Devonian and Cimmeria in the Permian. Cadomia was re-accreted to Gondwana, but the other
ribbon-continents were accreted to Baltica, North-China, Laurussia or Laurasia. Finding the origin of these nu-
merous terranes is a major geological challenge. Recently, a global plate tectonic model was developed together
with a large geological/geodynamic database, at the Lausanne University, covering the last 600 Ma of the Earth's
history. Special attention was given to the placing of Gondwana derived terranes in their original position, using
all possible constraints. We propose here a solution for the Variscan terranes, another paper deals with the
Altaids. The Galatian super-terrane was detached from Gondwana in the Devonian, during the opening of
Paleotethys, and was quickly separated into four sub-terranes that started to by-pass each other. The leading
terranes collided at the end of the Devonian with the Hanseatic terrane detached from Laurussia. In the Carbon-
iferous, Gondwana started to impinge onto the amalgamated terranes, creating the Variscan chain and the
Pangean super-continent. East of Spain Paleotethys remained opened until the Triassic, subducting northward
under Laurasia. Roll-back of the Paleotethyan slab triggered the collapse of most of the European Variscan
orogen, which was replaced by series of Permian rifts, some of them becoming oceanized back-arc basins during
the Triassic. Major force changes at the Pangean plate limits at the end of the Triassic provoked its break-up,
through the opening of the proto-Caribbean, central-Atlantic, Alpine-Tethys oceanic seaways.
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1. Introduction

Pangea reached its final shape at the end of the Triassic, following
a long history of terranes and continent accretion. The timing of these
collisions is usually quite well known from sedimentary and meta-
morphic records, what is less clear is the kinematics of the terranes
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In a new model developed at UNIL these last 10 years, a database
including a wide range of constraints was used to produce a global
plate tectonic model starting at 600 Ma (Hochard, 2008). More than
one thousand “geodynamic units” (GDU) were defined based on their
present day geological history, and then assembled as building stones
to form terranes, according to geodynamic scenario in space and time
(Fig. 1 and Table 1 as an example). Using the synthetic isochrones
methodology (Stampfli and Borel, 2002), plates were reconstructed
by adding/removing material, along plate limits. Plate velocities are
major constraints in the kinematics of the involved terranes and conti-
nents and were closely monitored.

This was an iterative process where geological data were always
put forwards, but at a certain stage the model is also becoming a pre-
dictive tool, enabling to make choices according to plate tectonic
principles (Wilhem, 2010). Having a global model in hand, it is also
possible to derive the main forces acting at the plate boundaries
(Vérard et al., 2012a), and this can be challenged through the analysis
of geological data.

The full global model is reached around 520 Ma, enabling the
exact measure of oceanic versus continental areas from that time on-
ward, as well as the ratio of old versus new oceanic crust (Hochard et
al., in prep.). The long-term eustatic variations curve derived from a
3D version of the model is very similar to the generally accepted
long-term curve from the literature (Vérard et al., in prep.). Our
curve largely depends on the many plate tectonics options that
were discussed and chosen for these 600 Ma years of Earth's history.

Large portions of the model have already been published
(e.g. Bagheri and Stampfli, 2008; Bandini et al., 2011; Bonev and
Stampfli, 2011; Chablais et al., 2011; Ferrari et al., 2008; Meinhold et
al,, 2010; Moix et al.,, 2008; Stampfli and Hochard, 2009; Vérard et al.,
2012b; Wilhem et al.,, 2012). Regarding the Variscan cycle, several pa-
pers have been published (e.g. Stampfli et al., 2011; von Raumer and
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Stampfli, 2008; von Raumer et al., 2009) mainly centred on the place
of the Alpine basements in the Variscan orogen, and we intend here
to enlarge this discussion to present a new overview of the plate
tectonics mainly for the Paleozoic times of the Variscan-Tethyan area.

Two recent meetings were devoted to the Variscan cycle, one in
Madrid in 2011 (Gutiérrez-Marco et al., 2011), and one in Sassari in
2012 (Géologie de la France, 2012), in which many new data were
presented, and we want to show here how they can be integrated
in our model and where are the remaining challenges.

2. Origin of Gondwana

The history of amalgamation of Gondwana has been heavily treated
in the literature, and is still a matter of strong debate. The model
presented herein is therefore tentative and not definitive, and we
provide the reader with a large number of key references.

The present model for the amalgamation of Gondwana strongly
relies on the linkage in space and time of many ophiolitic sutures
(Fig. 2). Many sutures (in blue in Fig. 2) have collision ages older
than our first reconstruction at 600 Ma, and crustal fragments, there-
fore, are already shown amalgamated. Such sutures include those in
the Nubian area (ca. 710-750 Ma in the Onib-Sol Hamed zone;
Meert, 2003), and all along the western side of the east Pan-African
orogeny (from ca. 680 Ma in the Nabitah zone to 650 Ma in the Urd
Al Amar zone and 630-650 Ma in its southern continuation along
the Tanzania craton; ages after Meert, 2003 and references therein).
Sutures in South America (Paraguai and Araguaia, ca. 635 after
Rodrigues et al., 2010), in western Africa (Mauritanides-Bassarides
and Rockelides with a collision age ranging between 650 and
600 Ma; e.g. DeAradjo et al., 2010; Lytwyn et al., 2006; Paixdo et al.,
2008; Rodrigues et al.,, 2010), and in central Africa (Yaoundé and
Central Africa with unclear ages; DeAradjo et al., 2010; Dos Santos
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Fig. 1. Present-day map showing GDUs and terranes as defined on the reconstruction of Fig. 4. Transects presented in Table 1: Turan-Pamir (1); Western Kunlun (2); Qilian-Qaidam
(3); Qinling-Yangtze (4); GDUs mentioned in Table 1: Tu, Turan; Ba, Badakshan; SKu, South Kunlun; NQi, North Qilian; Qi, Qilian; Qa, Qaidam; EKu, East Kunlun; Er, Erlangping; Qin,
Qinling; Da, Dabie and Ya, Yangtze. Light yellow: post-460 Ma formation; dark green, Hunia (H); light blue: Gondwana, its blocks are found also in the Kazakhstan terranes: the
criss-cross pattern corresponds to the Intra-Alpine terrane of Fig. 6. This figure is in part derivative from the Neftex Geodynamic Earth Model. © Neftex Petroleum Consultants

Ltd. 2011.
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Table 1

Correlation table of the GDUs making up the highly composite late Paleozoic suture zone south of the North-China, Tarim block. The correlation was done along four transects in-
dicated at the top (see Fig. 1 for location). South of the North-China, Tarim block, a middle Ordovician to Silurian back-arc basin is found, the suture between Hunia and the Chinese
blocks is located south of this basin and comprises Devonian HP rocks. A Devonian molasse is also found on Hunia, showing that it was amalgamated to the Chinese blocks at that
time. Hunia s.l. is a composite terrane, that comprises an exotic block (Qilian) abandoned during the opening of the Qaidam ocean. The Paleotethys suture zone is located south of
Hunia, with Carboniferous to Triassic marine series. This suture zone is also composite, due to the Galatian superterrane smearing along the transform margin of Hunia during the
opening of Paleotethys. Pieces of older basements were locally abandoned there, together with elements of the suture of the eastern Rheic ocean. This Devonian suture zone was
then affected by the opening of Carboniferous back-arc basins. Turan-Pamir transect: Boulin (1988), Gaetani (1997), Brookfield (2000), Schwab et al. (2004), Natal'in and Sengor
(2005); Western Kunlun transect: Mattern and Schneider (2000), Xiao et al. (2002), Wang (2004), Yuan et al. (2004), Jiang et al. (2008) and Lu et al. (2008); Qilian-Qaidam tran-
sect: Wu et al. (1993), Yang et al. (1996), Bian et al. (2001), Qian et al. (2001), Yang et al. (2001), Yang et al. (2002), Meng and Ge (2003), Song et al. (2003), Xia et al. (2003), Bian et
al. (2004), Shi et al. (2004), Zhai (2004), Liu et al. (2005), Zhang et al. (2005), Hou et al. (2006), Liu et al. (2006b), Menold et al. (2006), Shi et al. (2006), Song et al. (2006), Xu et al.
(2006), Yang et al. (2006), Li et al. (2007), Song et al. (2007), Tung et al. (2007), Zhang et al. (2008), Song et al. (2009), Xiao et al. (2009) and Zhang et al. (2009); and Qinling-
Yangtze transect:Yin and Nie (1993), Li (1994), Yu and Meng (1995), Xue et al. (1996a), Xue et al. (1996b), Yin and Nie (1996), Faure et al. (2001), Li et al. (2003), Ratschbacher
etal. (2003), Wang and Li (2003), Hacker et al. (2004), Liu et al. (2006a), Ratschbacher et al. (2006), Li et al. (2007), Tang et al. (2007), Yuan et al. (2007), Zhou et al. (2008) and Wu
et al. (2009).
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et al., 2008; Owona et al., 2011) are also older than our first recon-
struction. However, collision ages cluster around 600 Ma in the
Pharusides and Dahomides-Borborema (ca. 620 Ma in the Pharusides
and ca. 580 Ma in the Dahomides after DeAratjo et al., 2010; see also
a synthesis of the region after Caby, 2003). Following Fitzsimons
(2003) and Boger (2011), a suture running between the Antarctica
(or Crohn) Craton and the Mawson craton is inferred and thought
to be older than 600 Ma. The delimitation of that suture is derived
from topographic (Etopol, bedrock surface; Amante and Eakins,
2009), gravimetric (Grace; Tapley et al., 2005) and magnetic
(Emag2; Maus et al., 2009) lineaments and is linked to the Darling
Fault along the Yilgarn craton in Australia.

The sutures shown in purple (Fig. 2) are latest Neoproterozoic to
Early Cambrian in age. In fact, the Paraguai, Brasilia, Araguai, West

Congo belts comprise two age clusters, one around 620 Ma and the sec-
ond around 570 Ma (e.g. Gray et al., 2006, 2008; Hanson, 2003; Laux et
al., 2005; Rodrigues et al., 2010; Veevers, 2007). The first set of ages is
interpreted as the collision of intra-oceanic magmatic arcs turning the
passive margin (DaSilva et al., 2008) into an active one, and the second
set of ages as the final continent-continent collision. The suture of the
Paraguay Belt (e.g. Bandeira et al., 2012; Dantas et al,, 2009) is linked
to the Transbrasiliano Lineament (Ramos et al., 2010), with ages as
young as 550 Ma. Of similar age (ca. 570-550 Ma), the Betsimisaraka
suture in Madagascar (Buchwaldt et al,, 2003; Collins et al., 2003;
DeWaele et al., 2009; Key et al., 2011) is linked, in the South, to Early
Cambrian deformation in the Liitzow-Holm Bay and Shackleton Ranges
in Antarctica (Leat et al., 2005), and syn-collisional granite intrusion in
Iran to the North (e.g. Saki, 2010).
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Fig. 2. Reconstruction of Gondwana showing major sutures zones; blue: older than or about 600 Ma; purple: mainly between 550 Ma and 600 Ma; orange: mainly between 500 Ma and
550 Ma; brown and green: younger than 500 Ma (or Australides, termed after Vaughan et al., 2005). Blue abbreviations correspond to suture names: [A.], Araguai; [Ara.], Araguaia; [A.S.],
Alice Spring; [B.], Brasilia; [Bets.], Betsimisaraka; [Bor.], Borborema; [C.A.], Central Africa; [C.F.], Cape Fold; [Dam.], Damara; [Del.], Delamerian; [D.F], Dom Feliciano; [Dh.], Dahomides;
[D.M.], Dronning Maud; [G.], Gariep; [Gu.], Gurupi; [Gam.], Gamburtsev; [K.], Kaoko; [Kuu.], Kuunga; [K.Z.], Katagan-Zambezi; [Lach.], Lachlan; [LS.], Liitzow-Shackleton; [Luf.], Lufilian
Arc; [M.], Mauritanides; [Moz.], Mozambique; [NBS], Nabitah; [N.E.], New England; [OHS], Onib-Sol Hamed; [Par.], Paraguai; [Ph.], Pharusides; [Pin.], Pinjarra; [R.], Rebeira; [Roc.],
Rockelides; [Ross], Ross; [UAA.], Urd Al Amar; [Sal,], Saldanha; [Tuc.], Tucavaca; [Teb.], Tebicuary; [W.], West Congo; [Y.], Yaoundé. Green names and abbreviations correspond to
cratonic areas: A.A., Ascuncion Arch; C.C, Curnamona craton; G., Grunehogna craton; Go., Goids craton; L.A,, Luis Alvez craton; P., Parnaiba craton; Pp., Paranapanema meta-craton;
RA, Rio Apa meta-craton; S.L., Sdo Luis craton. (Lat-Long projection). This figure is in part derivative from the Neftex Geodynamic Earth Model. © Neftex Petroleum Consultants Ltd.

2011.

The last series of sutures, which must be considered when talking
about the final assembly of Gondwana (e.g. Yoshida et al,, 2003 and
all references therein) are those shown in orange (Fig. 2). Those sutures
have ages ranging from ca. 550 Ma in the Pinjarra orogen (Australia;
e.g. Fitzsimons, 2003; Wingate and Evans, 2003), to 520-530 Ma in
the Kuunga orogen (Antarctica; e.g. Harley, 2003; Zhao et al., 2003),
and to 550-500 Ma in the Lufilian Arc, Katagan-Zambesi Belt and
Damara orogen (Africa; Gray et al., 2008, and references therein). The
suture running from the Saldanha orogen (Africa), to the Ross orogen
(Antarctica), and to the Delamerian orogen (Australia) display mostly
ages between 550 Ma and 500 Ma, but is more commonly associated
with the formation of the Australides (Vaughan et al, 2005 and all
references therein), which are often considered as peri-Gondwana
events.

3. Cadomia, Avalonia, Hunia and Gondwana

One of the main challenges of these reconstructions was to find
the homeland of small terranes. For the Paleozoic this is even more
difficult as some of these have been re-displaced after a former amal-
gamation. The «classical» Variscan models (e.g. Franke, 2000; Matte,
1991, 2001), most of them of continental drift type, consider that
the present juxtaposition of terranes allows for deriving geodynamic
relationships for adjacent blocks. That might be true for the final
closing of the Rhenohercynian marine space, but we propose that in
such a complex orogen, juxtaposition is suspicious, and most terranes

are displaced or exotic to each other. These classical models see the
collision of Gondwana derived terranes in the Early Carboniferous
as the final collision of Gondwana, thus totally ignoring the presence
of Paleotethys. This is where a global plate tectonic model comes of
use, as it has some predictive qualities, which impose some geometri-
cal and geodynamical constraints; mainly the necessity to keep conti-
nuity and coherency along plate limits, and not just move continents
around the globe. This was done and redone during the last ten years
for the blocks involved in the Variscan collision (Stampfli et al., 2002,
2011; von Raumer et al., 2002, 2009), and their placing along the
margin of Gondwana.

Between 600 and 500 Ma, the Cadomian arc system and the conti-
nents composing Gondwana were amalgamated. The last Pan-African
magmatic events are thus synchronous to the Cadomian ones. The
Cadomian arc system was partly derived from North China and
Gondwana at first, the arc was linked westward with Avalonia and
the Amazon craton (Linnemann et al., 2007 and the many references
therein). Around 540 Ma, all these elements were in collision, forming
a proto-Gondwana landmass. It is only after 500-510 Ma that Gond-
wana finally included continents such as Antarctica and Australia, and
terranes such as the Himalayan domain and Pampia in South-
America. Elements related to Australia, such as the High-Himalaya,
Indochina and Cathay blocks were accreted during the late Cambrian
and Ordovician to India/South-China (Figs. 3 and 4). South-China and
all the blocks that will be involved in the Variscan orogeny were al-
ready part of Gondwana since the late Neoproterozoic, as northern
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Fig. 3. Global reconstruction for the Late Ordovician, showing the location along Gondwana of the blocks (GDUs) involved in the Variscan chain (modified from Stampfli et al., 2011). Av,
Avalonia; Ba, Baltica; CI, Cathay-Indochina; Er, Erlangping ocean; Gd, Gander arc; Hu, Hunia; Ir, Iranian blocks; NC, North-China; Qi, Qilian; SC, South-China: Qa, Qamdo; SZ,
Songlia-Zongza; Sh, Shan; Tr, Tarim. The Galatian superterrane (GDUs in yellow) is made of four sub-terranes (see also Figs. 4 and 6), from left to right: the Meguma terrane: Br,
Brunswick; MG, Meguma; Me, Moroccan Meseta; the Armorica terrane: BRK, Betics-Rif-Kabbilies; OM, Ossa Morena; Ar, Armorica s.str; Sx, Saxothuringia; Mo, Moesia; Db, Dobrogea;
Is, Istanbul; the Ibero-Ligerian terrane: cl, central Iberia; CA, Cantabria; Ct, Catalunia; AP, Aquitaine-Pyrenees and Corsica; MC, Massif Central; Md, Moldanubian; the intra-Alpine terrane:
MM, Montagne Noire-Maures; Ad, Adria, Sardinia and outer Dinarides; AA, Austroalpine; He, Helvetic; Cr, Carpathian; HI, Hellenidic; GR, Getic-Rhodope; An, Anatolic; Pt, Pontides
(Karakaya). The GDUs forming the future Hanseatic terrane along Avalonia are: Sh, Sehoul block; cb, coastal block; eM, eastern Meseta; Po, south Portuguese; Ch, Channel; MR,
mid-German rise; D-B, Dacides-Bucovinian. Major rifts are shown in light orange. Legend: 1 — passive margin, 2 — synthetic anomaly, 3 — seamount, 4 — intra-oceanic subduction
zone, 5 — mid-ocean ridge, 6 — active margin. This figure is in part derivative from the Neftex Geodynamic Earth Model. © Neftex Petroleum Consultants Ltd. 2011.

India (lesser Himalaya), Iran-Afghanistan and South-China (Yangtze
block) shared a common Ediacaran-Cambrian carbonate platform
(Hamdi et al., 1989; Jiang et al., 2003).

This has quite some bearing on zircon distribution (e.g. Gutiérrez-
Alonso et al., 2007; Linnemann et al., 2007, 2008), pan-African zircons
could also be Cadomian, and old basements are not found only in
Africa, but also in China, Australia, etc....(see age indications for the
N-Chinese and Hunia blocks basement on Table 1 as examples). The
placing of Gondwana derived terranes was often done through
comparison of zircon distribution, but only using the African, South-
American references (e.g. Keppie et al., 2003; Martinez Catalan et al.,
2004). It is obvious that such a large continent as Gondwana had devel-
oped large river systems, therefore, zircon distribution has to be used
with caution (e.g. Meinhold et al., 2013; Pereira et al.,, 2012b).

Our placing of Gondwana derived terranes is using as many
constraints as possible, paleogeographic markers such as carbonate
distribution in the Cambrian or Devonian, and also geodynamic con-
straints and drifting patterns derived from the model. For example,
we follow here the accepted placing of Avalonia close to west Africa,
Amazonia (e.g. Keppie et al., 2003; Murphy et al., 2004, 2006; Nance
et al,, 2002), but Cambrian to Ordovician similar geodynamic evolu-
tion to Avalonia (i.e. opening of the Rheic ocean) found in most
European Variscan blocks, implies that these blocks be placed also
along the Gondwana margin. In view of the large number of blocks,

they must extend along the North-African border and much further
east, over thousands of kilometres. And, effectively, if most of these
blocks record the opening of an Ordovician ocean, their paleogeogra-
phy and geodynamic evolution thereafter are becoming quite different;
this is obvious when looking at the age/distribution of the Ordovician
magmatism.

On Fig. 4, one can see that Avalonia had an eastern equivalent,
Hunia, accreted to North China in the Silurian (Table 1). Hunia is on
its way to collision with North China, whereas Avalonia is already
docking with Baltica. The northern margin of Africa has become a
passive margin (confirmed by subsidence pattern of some blocks, von
Raumer and Stampfli, 2008), whereas the western South Chinese
margin of Gondwana is of transform type, characterized by bimodal
magmatism, following subduction related magmatism and deforma-
tion, as found in the Alpine basement blocks (von Raumer et al., 2013,
and references therein) and neighbouring regions (e.g. Balintoni and
Balica, 2013).

Thus, Northern Gondwana was characterized by an active margin
setting since at least the early Ordovician, and by the subsequent
opening of the Rheic ocean, after a period of subsidence and rifting
behind the Ganderia-Avalonia-Hunia arc systems. Consequently,
the basement areas of these regions show a strong activity of crustal
extension and rifting during the late Cambrian-early Ordovician,
accompanied by many intrusions. The detachment of Hunia from
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Fig. 4. Modified from Stampfli et al. (2011). The Cambrian opening of back-arc basins (Fig. 1A Guzhangian) resulted in the detachment from the South Chinese segment of the Qilian
Terrane. In Fig. 1B, early Tremadoc and C late Floian, the arc migrated alone toward Baltica leaving the Qilian microcontinent surrounded by passive margins. During the late
Cambrian and Ordovician time, the migrating arc collided both with the Gondwana and North China margins, turning the latter from passive to active after subduction reversal.
The Erlangping back-arc basin then developed within the southern margin of North China (Fig. 1C and D Early Sandbian), and its arc successively collided with the Qilian and future
Hunian terranes (Fig. 1D and E, Hirnantian). This amalgamated Hunia-Qilian terrane was accreted in turn to North China (Fig. 1F, Ludlow), and a new active margin developed
under North China. Av, Avalonia; Ba Baltica; CI, Cathay-Indochina; Er, Erlangping ocean; Gd, Gander arc; Hu, Hunia; Kz, Kazakhtania; Lg, Ligerian arc; NC, North China; NQ,
North Qilian ocean; Qa, Qaidam ocean; Qi, Qilian; SC, South China; Tr, Tarim. The Galatian superterrane (in yellow) legend is found on Fig. 3. For cross-sections see Fig. 7. This figure
is in part derivative from the Neftex Geodynamic Earth Model. ©Neftex Petroleum Consultants Ltd. 2011.
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Gondwana gave birth to the eastern branch of the Rheic ocean, slight-
ly younger (c. 460 Ma) than the western branch (Rheic s.str. c.
480 Ma) related to the detachment of Avalonia. Earlier detachment
of terrane such as Ganderia from Amazonia around 500 Ma
(van Staal et al., 2012) shows that this opening was most likely
diachronous, starting first in the west north of South-America, and
propagating eastward north of Africa. We consider here that Ganderia
and Avalonia drifted together and Avalonia was abandoned during
the translation to Laurentia (Fig. 4). In the eastern part of the
Gondwana margin, comprising among others the Alpine and Mediter-
ranean domains, the Ordovician active margin started later than in
the west and lasted until the middle/late Ordovician.

The opening of the eastern Rheic ocean followed a collision of a
North-China derived arc with the Gondwana active margin, such an
arc relic is known in the upper nappes of Galicia and dated around
475 Ma (Sanchez Martinez et al., 2012). This collision triggered the in-
version of previous Cambrian-Ordovician grabens and produced the
widespread Armorican quartzite event (480-465 Ma, e.g. Gutiérrez-
Alonso et al, 2007) in northern Gondwana (von Raumer and
Stampfli, 2008). In Spain the Armorican quartzite if often unconform-
able on older strata due to this pre-Arenig (Floian) deformation
phase. But, the ongoing detritic input can also be linked to the shoulder
uplift and erosion of the opening Rheic ocean, and to the evolution of
the Gondwana border towards a passive margin stage in the middle
Ordovician (e.g. McDougall et al., 1987).

Thus, an overall Ordovician geodynamic scenario for the northern
Gondwana margin can be constructed (Fig. 4) through the cessation

of magmatic activity and the diachronous onset of passive margin
settings, related to the opening of the Rheic ocean within the
peri-Gondwana cordillera from the late Cambrian in the west to the
early Ordovician in the west.

4. Wander path of Gondwana and Eo-Variscan events

The source of many Gondwanan magnetic poles is also found in the
blocks amalgamated to Gondwana between 600 and 300 Ma mainly
those from the Lachlan orogen in Australia and Pampia in Argentina
(as discussed in Vérard, 2004, see also below last chapter on global
Pangea). To overcome this issue, we constructed a new wander path
for Gondwana around three paleo-poles (c. 550 Ma, 480 Ma and
300 Ma) generally coherent in the studies of Bachtadze and Briden
(1991), Schmidt et al. (1990), Li and Powell (2001), Torsvik and Van
der Voo (2002) and McElhinny et al. (2003). In the intervals, we
followed a paleogeographic approach similar to Scotese and Barrett
(1990). Poles have been constrained by using the worldwide carbonate
distribution for the pre-Ordovician, then the Hirnantian pole is
constrained by the numerous records of glaciation on Gondwana
(e.g. Ghienne, 2011; Fig. 5), and also the main geodynamic events that
created kinematic changes, such as the opening of major oceans.
But one of the main constraints comes from the velocities implied by
such a wander path. Paleomagnetic paths proposed so far imply veloc-
ities ranging from 15 cm/yr to more than 45 cm/yr (Vérard, 2004).
We consider such velocities too high or unacceptable for a large conti-
nent/plate. Instead we tried to average them to 8-10 cm/yr. The

EH Glacial deposits

400 Age (in my)
o Paleo-Pole

— 40°S Parallel

Fig. 5. APWP for Gondwana on a Hirnantian reconstruction. The main changes of direction in the wander path are related to major tectonic events, like the amalgamation of
Gondwana in the early Cambrian, the onset of spreading of the Rheic ocean in the middle Ordovician, the onset of spreading of the Paleotethys in the late Devonian, and the
amalgamation of Pangea from the late Carboniferous to the late Triassic. This figure is in part derivative from the Neftex Geodynamic Earth Model. © Neftex Petroleum Consultants

Ltd. 2011.



/ldoc.rero.ch

http

resulting path (Fig. 5) is in good agreement with the most recent path of
Torsvik and Cocks (2011), especially for the middle-upper Ordovician to
Upper Carboniferous time span.

S
A
C) Early "%
Frasnian

Apparent Polar Wander Paths (APWP) of North-America and
Baltica are quite well constrained for the Paleozoic, and our new
path for Gondwana allows to reassess some models where collision
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Fig. 7. Cross-section models of the evolution of the Gondwana margin from 490 to 300 Ma (modified from Stampfli et al., 2011). The sections are tied to Gondwana, so the continent
to the right is changing through times. For the left part of the figure, North China elements are facing Gondwana, whereas for the right side of the figure, it is Laurussia. Location of

the cross-sections is found on Figs. 4, 6 and 8. The horizontal scale is not respected.

of these landmasses are proposed already in the Silurian-Devonian
(e.g. Arenas et al., 2009; Keppie et al., 2010; Martinez Catalan et al.,
2007, 2009) in order to explain the eo-Variscan HP event found in
Spain, France and Germany. The alternative is to place this event on
the Gondwana border, a model we already proposed in Stampfli et
al. (2002). This first attempt was completely revised in the following
years, but the principle stays the same. The Ordovician passive
margin created by the opening of the Rheic ocean (East and West), has
to be changed into an active margin again, in order to detach all the
Variscan blocks from Gondwana and bring them to Laurasia. In doing
so, the Paleotethys opened and the Rheic ocean closed. This is one of
the very few solutions if we consider the APWP path of Gondwana as
redefined here (Figs. 5 and 6).

In Fig. 6, we see that an intraoceanic subduction zone developed in
the Rheic ocean, starting from a leaky transform zone, and the associat-
ed arc (Lg, Ligerian, Fig. 6A) is progressively colliding with the Gond-
wana passive margin from west to east. Partial or total obduction of

the arc or back-arc domain on the passive margin can be expected
(Oman model), then slab detachment was followed by subduction
reversal (initially N-dipping then S-dipping, e.g. Massif Central,
Lardeaux et al., 2012) and the passive margin plus the obducted mate-
rial were transformed into an active margin (Figs. 6 and 7). The HP
event recorded in many Variscan domains can be related to either the
collision of the arc with the passive margin and/or the obduction of
the back-arc ridge, and as the phenomenon is diachronous, a relatively
large time span of HP can be expected (from 400 Ma to 370 Ma). In
this suture zone, ophiolites can be derived from the upper plate (arc
crust, back-arc ridge) but also from the lower plate, the mantle litho-
sphere of these various units can be juvenile or derived from the toe
of the Gondwanan margin and thus, much older. This seems to be
confirmed by the recent dating of such rock in Galicia (Sanchez
Martinez et al., 2012). Out of sequence thrusting can also be expected
in view of the very oblique type of collision north of Africa, whereas a
more frontal collision is expected for the intra-Alpine domain located

Fig. 6. Global reconstructions for the Devonian (A, Early Emsian, B, Eifelian, C, Early Frasnian, D, Middle Famennian), showing the progressive opening of Paleotethys and separation
of the S-Chinese block from Gondwana (modified from von Raumer et al., 2013). The detached Gondwana terranes formed the Galatian superterrane, made of four terranes:
1A, intra-Alpine; IL, Ibero-Ligerian; Ar, Armorica; Mg, Meguma. These are slowly imbricated during their drifting and divided in more sub-blocks (see Fig. 9). Along the Laurussian
margin a set of blocks (Hs: Hanseatic terrane) is detached through slab roll-back processes, they represent parts of South-Avalonia. Av, Avalonia; Ba, Baltica; Hs, Hanseatic; Ir, Iran;
Kz, Kazakhstania; La, Laurentia, Lg, Ligerian arc system; Lr, Laurussia; NC, North-China; Sb, Siberia; SC, South-China; Tr, Tarim. Major rifts are shown in light orange, the red spot
represents the Silurian Iranian hot spot. The cross-sections a, ¢ and d, are located on the Eifelian reconstruction (B), they show how the collision of the Gondwana margin with
an incoming intra-oceanic arc changed that margin from passive to active. For the other cross-sections see Fig. 7. This figure is in part derivative from the Neftex Geodynamic

Earth Model. © Neftex Petroleum Consultants Ltd. 2011.
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along the South Chinese portion of the margin. This can explain the
presence of remnants of older oceans, either the Ordovician Rheic
ocean (c. 460 Ma and younger) or older fragments (c. 500 Ma, e.g.
Arenas et al, 2007, 2009) related to the Qilian arc (part of
proto-Hunia left behind on the Gondwana margin) and brought to
the surface during the Rheic rifting, thus forming the toe of the
Gondwanan Ordovician passive margin.

Recent re-dating of ophiolitic units shows that this eo-Variscan
obduction event can be followed up to the Southern Carpathian
domain (Plissart et al., 2012) with ages ranging from 409 to 380 Ma.
However, ophiolitic remnants are not present everywhere along this
eo-Variscan suture for different reasons, one of them is that this zone
is colliding again with the blocks derived from Laurasia (Hanseatic ter-
rane) from 360 to 340 Ma, then this collisional domain was affected by
important strike slip events until 300 Ma. However, the eo-Variscan
event affected all the blocks located along the border of Gondwana,
and this can be seen also through the cessation of sedimentation in
many basins at that time due to flexural bulging and/or ensuing slab
detachment (see subsidence curves in von Raumer and Stampfli,
2008).

5. Opening of Paleotethys

We are departing here from our previous model (Stampfli et al.,
2002) where Hunia was considered as the main ribbon-like micro-
continent leaving Gondwana during the opening of Paleotethys in the
Silurian. The Silurian accretion of Hunia to North China (Table 1)
implies that this accretion took place when the Paleotethys was not
yet opened. Thus, Hunia represents a first train of terranes leaving
Gondwana more or less at the same time than Avalonia (during the Or-
dovician, see above). The second train of terranes leaving Gondwana in
the Devonian has been called the Galatian superterrane (Stampfli et al.,
2011).

In the late Ordovician, both western and eastern segments of the
Rheic ocean made a single oceanic domain. North of Africa, the
passive margin of Gondwana became an active margin again in the De-
vonian (see above). From the upper Ordovician to the Silurian, crustal
extension is observed along the Gondwana margin through the sedi-
mentary record, the subsidence patterns, the interruption of sedimen-
tation and the intrusion of basic volcanic rocks at different places (von
Raumer and Stampfli, 2008). New monazite age-data (Schulz and von
Raumer, 2011) confirm an early Silurian thermal event for the Aiguilles
Rouges area. Located along the S-Chinese (Gondwana) margin this area
is the witness of the transform type eastern Rheic margin. The em-
placement of 450 Ma gabbros at different places and the many early Si-
lurian acidic volcanic rocks of the Noric Terrane are the signature of an
extending crust in the Alpine domain; the older ones (450-420 Ma)
are related to the eastern Rheic opening, the youngest (410-380 Ma)
to the opening Paleotethys (von Raumer et al., 2013).

The opening of Paleotethys is well constrained along the Iranian
segment of its southern margin (Bagheri and Stampfli, 2008), a late
Ordovician-Silurian rift filled with very thick volcanic deposits, aborted
in Early Devonian time, then a new rift opened. Red sandstones and
evaporites of middle Devonian age, were followed by marine deposits
in the Givetian, and final transgression of the rift shoulder took place
in the Famennian. At the other end of the Paleotethys in Morrocco,
the anti-Atlas region shows an evolution towards a passive margin
setting already in the early Devonian (e.g. Ouanaimi and Lazreq,
2008), characterized by open marine sequences rich in ammonoids.
This demonstrates the diachronous opening of Paleotethys from west
to east.

A middle to late Devonian passive margin evolution can also be
observed in Spain (Fig. 8) when considering the sedimentation from
the West Asturian-Leonese and Cantabrian zones (Garcia-Alcade,
2002; Fig. 8). Frasnian sequences are onlapping on large tilted blocks,
a general transgression is represented by the Famennian over-lapping

sequence, and slope to pelagic deposits (nodular limestones, ammo-
noids) are found in the Palentian domain. The distal part of this
potential Iberic northern Paleotethys margin segment would have
been subducted under the Pyrenees-Catalonia block in the Carbonif-
erous, the rest of the region becoming a flexural basin filled-up by
flysch deposit with marine incursions lasting until the end of the
Carboniferous (an exception in the Variscan world). On the other
side of the Iberic block, Frasnian volcanism is known in the Almaden
region (Garcia-Alcade, 2002). This scheme would confirm the
opening of Paleotethys as a back-arc ocean. A late Devonian to Early
Carboniferous arc is also known in the Bohemian massif (Lardeaux
et al., 2012). Devonian subduction related granitoids are also found
at the far end of the Galatian superterrane in the Sakarya block
(Pt, in Fig. 8) of northern Turkey (Aysal et al., 2012).

6. The Galatian superterrane accretion to Eurasia

The Galatian superterrane was detached from Gondwana in
segments, following the diachronous Ligerian arc collison with the
Gondwana passive margin (eo-Variscan obduction/collisional event, c.
390 Ma, see above). It started from the west, north of N-Africa with
the detachment of the Armorica s.l. segment around 400 Ma, then the
Ibero-Ligerian fragment and the Intra-alpine, Mediterranean segment
after (c. 380 Ma). Thermal subsidence of these blocks after their detach-
ment from Gondwana is shown nearly everywhere by the development
of pelagic sequences (stars on Fig. 8B) such as middle/late Devonian red
nodular limestones, followed by Tournaisian/Visean black radiolarites
(lydites), then by Tournaisian/Visean flysch with blocks, marking the
onset of collision.

A triple junction was established around the Arabian promontory,
corresponding to the three branches of Paleotethys. The Iranian
seaway separated the Iranian-Afghan domain from South China, the
Sulu-Dabie seaway separated South China from the intra-Alpine/
Mediterranean terranes, and the N-African seaway separated Gond-
wana from Armorica-Iberia.

These oceanic branches started out as back-arc basins that merged
to give rise to the Devonian Paleotethys. During their drifting, the
Iberian-Intra-Alpine segment passed behind the Armorican one. This
imbrication was enhanced when Armorica collided with the Hanseatic
arc detached from Laurussia in the late Devonian. Then the most east-
ern and external part of the Galatian terrane (the Mediterranean blocks
s.l., comprising Italy, Greece, Turkey) by-passed the intra-Alpine blocks
in a westward rotational movement following the overall anti-
clockwise rotation of Gondwana. The Paleotethys mid-ocean ridge
had been subducted by now, as predicted by the model (Fig. 8C & D),
the mid-ocean ridge becoming perpendicular to the subduction zone.
Then, a fair amount of coupling was possible between the rotating
Gondwana plate and the active margin of Laurasia. Also, slab detach-
ment in the Variscan collision zone allowed for a large amount of
right lateral strike slip movements that even exaggerated the duplica-
tion of the former ribbon-like Galatian superterrane.

Along Laurasia an arc extended from Newfoundland up to the
Caspian area, back-arc basins associated to it, are represented by the
Rhenohercynian oceanic domain. It is characterized by important
plutonism/volcanism that extended through most of the Devonian Pe-
riod (e.g., Walliser, 1981; Ziegler, 1988; in the mid-German Crystalline
High: Anthes and Reischmann, 2001; Reischmann and Anthes, 1996; in
the South Portuguese volcanic-sedimentary complex (Pyrite Belt) of
Late Famennian-Visean age, Thiéblemont et al, 1994; the Eastern
Meseta, Hoepffner et al., 2005). Eastward, it is represented by the
Paphlagonian pelagic domain (Stampfli and Kozur, 2006). This Hanse-
atic arc is made by terranes such as the South-Portuguese, Channel,
East-Meseta and Mid-German Rise, and part of the Caucasus and
Black-sea in the east. This arc north of the Rheic ocean could have
been partly intraoceanic and was totally destroyed during the collision
(Pereira et al, 2012a). The Hanseatic terranes/arc system, was
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Fig. 8. Reconstructions of the Variscan domain for: A, Early Famennian, B, Late Tournaisian, C, Late Visean, D, Bashkirian and E, Gzhelian (modified from Stampfli et al., 2011); this model
shows how the GDUs involved in the Variscan collision can be restored into a single ribbon-like superterrane before 370 Ma (see Fig. 3 for legend). Along the Eurasian margin, the
opening of the Rhenohercynian ocean (e.g., G-P, Harz-Giessen-Northern Phyllites zone) has detached the Hanseatic terrane from the mainland: Sh, Sehoul block; cb, coastal block;
eM, eastern Meseta; Po, south Portuguese; Ch Channel; MR mid-German rise; D-B, Dacides-Bucovinian; CC, Caucasus. On A, Early Famennian reconstruction, a and b, show the possible
location of back-arc basins opening along the leading edge of the Ligerian and Armorican terranes. On C, Late Visean reconstruction, c, corresponds to the Zone Houillére back-arc basin.
On D, Bashkirian and E, Gzhelian reconstructions, d, corresponds to the Cantabrian-Ebro late Carboniferous marine embayment. The terrane colour code corresponds to the one in Fig. 9.
Pg, is the Paphlagonian sea-way, a potential successor of the Rhenohercynian ocean north of Turkey. The restored cross-section through the Iberic block is located on the A) Early
Famennian reconstruction and discussed in the text. The grey line with dots is the Rheic suture in its preserved northern segment. This figure is in part derivative from the Neftex
Geodynamic Earth Model. © Neftex Petroleum Consultants Ltd. 2011.

11



/ldoc.rero.ch

http

imbricated with fragments of the Armorican or Meguma terranes
around the Iberian landmass. We roughly follow here the imbrication
model of Martinez Catalan et al. (2007), where the amalgamated Ar-
morican, Rhenohercynian terranes were indented by the Iberian prom-
ontory around 360-350 Ma. This imbrication produced a duplication of
the sutures as can be seen on the late Tournaisian reconstruction
(Fig. 8B), the main Rheic suture is located between the Hanseatic
blocks and the Armorican ones, but also between Armorica and the
Iberic, intra-Alpine blocks, although this southern suture would also
comprise elements of Paleotethys. Continuing roll-back of the
Rhenohercynian ocean northward allowed for more imbrication and
even indenting of the Iberic block into the pre-existing terrane assem-
bly until the end of the Carboniferous (Gutiérrez-Alonso et al.,, 2012),
marked by a remnant marine trough between Iberia and the
Pyrenean-Catalonian blocks. It is to be noted that at the beginning of
the Iberian block translation, the subducting ocean was the Rheic
(Fig. 6B), it was soon replaced by Paleotethys (Figs. 8 and 9A), and
finally by the Rhenohercynian ocean (Fig. 8D & E).

This indenting also created large oroclinal bending mainly in the
Iberic-Morrocan domain (Figs. 8 and 9; Gutiérrez-Alonso et al., 2012;

Martinez Catalan, 2012), and large imbrication of pre-existing blocks in
the Meseta domain of Morocco and Algeria (Hoepffner et al., 2005;
Michard et al., 2008). In the Meseta domain, several phases of deforma-
tion have been recognized, marking 1) the collision of the Meguma-
Galatian terrane with the Hanseatic one in the Tournaisian, 2) the Visean
deformation marking the collision of the amalgamated terranes with
Laurasia, 3) the Late Carboniferous “major phase” marking the collision
of Gondwana with Laurasia. This is accompanied by magmatism and vol-
canism, related to collision/subduction, and finally to slab detachment in
the late Carboniferous, early Permian. Compression lasted until the early
Permian. The final closing oceanic domain was Paleotethys; no ophiolitic
remnants have been found, but this is generally the case with main
oceans whose buoyancy is largely negative.

During the translation of the Galatian s.l. terranes from Gondwana
to Laurasia, roll-back of the retreating Rheic ocean to the north may
have triggered the opening of back-arc basins in the leading edge of
the terranes. Such a back-arc basin has been recognized in the Vosges,
Black-Forest (Skrzypek et al., 2012). These authors propose an open-
ing related to the subduction of Paleotethys to the south, but as can be
seen from Fig. 8 (A), such late Devonian back-arc basins would be

Meguma Hanseatic-W  Hanseatic-E Armorican

Ligerian

Iberian Intra-Alpine Mycenian Galatian

Fig. 9. Reconstruction for the Late Carboniferous (Gzhelian), modified from von Raumer et al., 2012 showing the division of the Galatian superterrane into sub-blocks during the
amalgamation along the Eurasian margin. From north to south we find the Hanseatic terrane elements that were detached from Eurasia (in yellow in Europe and purplish east
of the Black-Sea), they are strongly displaced and imbricated in Morocco with elements of the Meguma terrane. Next, we find the Armorican s.I. elements strongly indented by
the Iberic block in the west. The red line with dots represents the potential location of the Rheic suture, duplicated during terrane transfer westward. South of the Armorica terrane
are found the elements of the Ibero-Ligerian terrane of Fig. 6, divided now in two elements, the Iberic one and the Ligerian one. North of the former intra-Alpine terrane (now cut in
three pieces, the Intra-Alpine s.str., the Galatian s.str., and the Mycenian terranes) the major strike slip zone in red is also a potential displaced Rheic suture. Eastward, we find the
Galatian terrane s.str. (blocks composing mainly northern Turkey) whose southern elements were displaced westward to form the Mediterranean Variscan blocks named Mycenian
terrane (Hellenidic, Dinaridic and Italic blocks). The Triassic Paleotethys suture is found south of these two last terranes, in which remnants of seamounts are found (e.g. Ly,
Carboniferous seamount of the Lycian nappes, Moix et al., 2008), but an older (Carboniferous) Paleotethys suture should also be present all around the African promontory (e.g. Sicily,
Morocco, see text). The lines with triangles (green or red) show potentially still active thrusting fronts at that time. Abbreviations for GDUs are on Figs. 3 and 8; TC, Transcaucasian, SC,
South Caspian. This figure is in part derivative from the Neftex Geodynamic Earth Model. © Neftex Petroleum Consultants Ltd. 2011.
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related to the subducting Rheic ocean located north of these regions.
The Visean inversion recognized in the Vosges, would correspond to
the collision of the amalgamated Hanseatic and detached Ligerian
arcs, with the Ligerian terrane. However, in view of the inferred oblig-
uity of the collision, it is not sure where exactly the back-arc basin
was located. Another back-arc relic is known in the Armorica terrane
in Brittany (Barboni, 2011). So, the back-arc may have been formerly
in front of the Armorica terrane only, and during translation, the
Ligerian terrane was juxtaposed to the collided arcs. The presence of
these basins in front of the major blocks complicates establishing
the polarity of subduction and the nature of block juxtapositions.
Such a scenario could explain the varying vergence of the nappe
structure in the chain.

The large Zone Houillére rift in the western Alps (Briangonnais,
e.g. Cortesogno et al., 1984) and its Carboniferous calc-alkaline volca-
nism and associated Versoyen mafic complex (dated at 337 Ma,
Mugnier et al., 2008) represent a potential back-arc too, again related
to the subducting ocean to the north, rather than to the south, here it
would have been the Rhenohercynian ocean, after the closure of the
Rheic (Fig. 8D). The Paphlagonian basin north of Turkey contains Car-
boniferous radiolarites, late Permian pelagic deposit are also recorded
(Stampfli and Kozur, 2006). It is difficult to envisage how the basin
stayed opened during the main Variscan shortening phase, and as
the stratigraphic record is known only from blocks it could be
envisaged that the late Permian basin was a Paleotethyan back-arc,
whereas the older sequences correspond to an eastern equivalent of
the Rhenohercynian ocean.

As can be seen in Fig. 7 (350-340 Ma), the arc-arc collision was
followed by lithospheric delamination due to the disapearing Rheic
ocean. This process is regarded as the source of the numerous
durbachites/I-type granitoids (stars on Fig. 8C) emplaced at that
time in the nascent orogen (von Raumer et al, 2012, 2013). The
arc-arc collision was followed by subduction reversals on both sides
of the arc-arc collage, which led to subduction of the Paleotethys
toward the north, and the Rhenohercynian ocean toward the south.
The latter did not last very long and a late Carboniferous slab detach-
ment can be expected along the northern suture zone. It can be placed
at the transition from marine to lacustrine deposits around the
Wales-Brabant high (flexural bulge) at the beginning of the Westpha-
lian (Late Bashkirian, c. 315-310 Ma, Waters and Davies, 2006). In
the Paleotethys, slab window due to the mid-ocean ridge subduction
took place between 340 and 320 Ma. These numerous and repeated
lithospheric events where the asthenosphere/lithosphere boundary is
rapidly changing, could explain the large number of migmatite forma-
tion and granite intrusion at that time.

Terranes located to the south of the Variscan orogenic collage
(mainly the Mycenian terrane, Figs. 8 & 9) were transported west-
ward after the subduction of the Paleotethyan mid-ocean ridge (see
above); a situation that triggered re-attachment of these blocks to
the Gondwanan plate (Fig. 7, 330-320 Ma), which was rotating anti-
clockwise at that time with regards to Laurasia. This rotation is due to
the fact that collision already took place between North and South
America, pinning the plate in that region, and to the strong northward
slab pull of Paleotethys. This rotation is well expressed in the APWP of
Fig. 5, with a change in direction marking the formation of Pangea.
Finally, in the Late Carboniferous, Gondwana collided with the terranes
accreted earlier to Laurasia, causing the final Variscan tectonic events
from Florida to Spain.

7. Post-Variscan extensional events

As discussed above, a marine embayment remained open between
the Iberic and Pyrenean block until the late Carboniferous (Fig. 8, D
and E), which was filled up by flysch deposits (Cantabrian basin,
and Ebro region, Colmenero et al., 2002). Upper Carboniferous marine
sequences are also known from the Tuscan domain in Italy. In both
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areas these are followed by Permo-Triassic continental deposits, but
to the south and eastward, pelagic early Permian series are known
in Sicily, Greece and Turkey, where subduction/accretion continued
along the northern margin of Paleotethys (Stampfli and Borel, 2004;
Stampfli et al.,, 2003). From Greece to Iran, this active Paleotethys
margin generated a series of oceanic back-arc basins during the
Triassic.

The Late Carboniferous was the time of over-thickening of the
Variscan lithosphere due to imbrication of the different blocks
(Fig. 8) and also to slab detachment of the intervening oceans
(Rhenohercynian, Rheic, Paleotethys; Fig. 7). Late Carboniferous to
early Permian volcanism and magmatism can be related to these
events; however, along the Paleotethyan margin, magmatism of that
age can be related to continuing northward subduction and related
extension in the upper plate. Effectively, the collisional system
ended eastward, in a very similar manner as the Himalayan-Tibetan
collision zone ends eastward towards the Pacific (Molnar and
Tapponnier, 1975). The amalgamation of the blocks was rapidly
followed by lithospheric collapse above the retreating Paleotethys
slab from Sicily to the Middle-East. In the Pelagonian cordillera for
example, granitic emplacement is dated between 325-300 Ma, and
exhumation ages are early Permian (295-280 Ma; Vavassis et al.,
2000), showing an immediate change to unroofing/extension in the
upper plate (Laurasia) following slab retreat after the closure of the
oceanic domains north of the chain. Similar observations can be
made in many places in the southern Variscan belt. In the Ligurian
Brianconnais (western Alps, e.g. Dallagiovanna et al., 2009) a change
from early Permian calc-alkaline to middle Permian K-alkaline rhyo-
lites is thought to date the transition from collision to delamination
of the continental lithosphere. Many other places in the Alps show
voluminous magmatism of Permo-Triassic age (Spalla et al.,, 2012),
usually following post-collisional late Carboniferous granitic em-
placements (e.g. von Raumer et al., 2009).

Permian rifting is actually affecting the whole Variscan chain (from
Germany to Greece and from Spain to the Caucasus; e.g. Ziegler and
Stampfli, 2001 and references therein), quickly re-equilibrating the
crust and lithospheric mantle to their present-day average thicknesses,
and developing a giant basin and range zone (1500 x 3000 km). The
sea invaded some Permian grabens (Carnic Alps domain and Greece,
De Bono et al., 2002), whereas the arc/fore-arc domain in the south
remained under deep water from the Early Permian to the middle
Triassic, with known pelagic series in Sicily, Greece and Turkey
(Stampfli and Borel, 2004; Stampfli et al., 2003). In Turkey and Iran,
accretion of Carboniferous and Permian Paleotethyan seamounts has
also been demonstrated at that time (Bagheri and Stampfli, 2008;
Moix et al., 2008; Okay, 2000, and references therein) and allows to
trace the Paleotethys suture despite of the lack of ophiolites in most
places and the subsequent duplication of the suture (Stampfli and
Borel, 2004).

In the Triassic, extension in the upper plate led to the opening of
oceanic marginal basins (Stampfli and Kozur, 2006), younging south-
ward (Scythian to Anisian in Meliata and Kiire basins, Ladinian in the
Maliac basin and Carnian in the Pindos basin). These openings were
stopped in the Carnian through the collision of the Eurasian arc with
the Cimmerian blocks detached from Gondwana (eo-Cimmerian
phase, e.g. Seng6r, 1979). The Late Triassic Paleotethyan slab detach-
ment from Sicily to China, changed considerably the forces at the
Pangea plate limits and triggered its break-up, well shown by the
development of late Triassic rifts in the future Atlantic and Caribbean
regions (see below).

8. The global Pangea
Large ribbon-like continental fragments left Laurentia to be accreted

until the Triassic to South-America, Australia and Antarctica (the fa-
mous SAMFRAU geosyncline of Du Toit, 1937) as shown in Fig. 10. The
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Fig. 10. Mollweide projection of the world in the Norian (modified from Chablais et al., 2011; see also: Bandini et al., 2011; Flores, 2009; Vérard et al., 2012a). Wrangelia and Stikinia
formed a single terrane derived from the Austalian side of Gondwana in the late Carboniferous. During their transfer to Laurentia, Wrangelia was abandoned and is soon to be col-
liding with an intra-oceanic arc comprising blocks now found in New-Zealand. Wrangelia comprised also large volcanic plateaus (Peninsular and Kamutsen terranes). The
disappearing oceanic plate between Stikinia and Quesnellia was the Permo-Carboniferous Panthalassa or Cache Creek ocean (e.g. Johnston and Borel, 2007 and references therein).
At any time, Panthalassa was made of several mainly oceanic plates, separated by mid-ocean ridges and intra-oceanic subduction zones. Arc-arc collisions were common, as it is the
case on this figure between Stikinia and Quesnellia. Cim, Cimmerian terrane; Cs, Cassiar; NC, North-China; NZ, New-Zealand; Ok, Okhotsk; Qs, Quesnellia; SE-A, South-East Asia; SC,
South-China; St, Stikinia; Tb, Tibetan blocks (not South-Lhassa which is in the Cimmerian blocks); Wr Wrangelia. The main sutures on the Panthalassa side of Gondwana are indi-
cated (see text). This figure is in part derivative from the Neftex Geodynamic Earth Model. © Neftex Petroleum Consultants Ltd. 2011.

oldest sutures (Pampia, Ross, Delamerian) date from the amalgamation
of Gondwana; large continental fragment were added to Australia and
Antarctica in the Late Cambrian-Ordovician times, at the same time

Q micro-continents and arcs were accreted to South-America (Pampia

)

-
L

event, Ramos et al., 2010). The Tabberabbera suture corresponds to
the accretion of a large intra Panthalassa arc (Yass arc complex) during
the Devonian. The Patagonia one corresponds to the opening and clos-
ing of a Carboniferous back-arc ocean. The Gympie suture is related to
the last accretion of a large continental ribbon continent to Australia.
This set of terranes was most likely derived from North-America, and
some were abandoned during the long translation of the arc up to the
Australian regions (Vérard and Stampfli, in press, submitted for
publication). Some large blocks/ribbons were also re-detached from
the Australian Panthalassa margin during the late Carboniferous, to
form the future Wrangelia-Stikinia terrane, crossing the entire
Panthalassa (we adopt here the point of view of Johnston and Borel,
2007, that we tested in terms of velocities and paleobiogeography, but
many other options exist also). Stikinia collided with terranes detached
during the Devonian (Cassiar) and the Permian (Quesnellia) from the
American Pacific active margin, the detached terranes and the exotic
ones will be re-accreted to North America from the Triassic to the
Cretaceous (Flores, 2009). The suture between Stikinia and Quesnellia
contains numerous remnants of mainly Permian seamounts with typi-
cal Tethyan microfauna, showing that Stikinia did cross the tropical
zone of Panthalasa during the Permian. The abandoned Wrangelia
terrane is also associated to upper Triassic carbonates that show it
was located in the intertropical zone at that time (e.g. Jones et al,
1977, Fig. 9). Triassic seamounts with Tethyan fauna are also known
from Japan, we traced these through our plate model to find their for-
mer location in the tropical Triassic Panthalassa (Chablais et al., 2011).

The other major blocks that participated to the build-up of
Pangea were Siberia, Kazakhstan and the Tarim, North Chinese
blocks, forming the pendant of the Variscan orogen in Asia, the
Altaids. A new model of this complex orogen was developed at
Lausanne (Wilhem, 2010; Wilhem et al., 2012), incorporating the
latest data from Chinese and Russian colleagues, mainly regarding
new ages of metamorphism and magmatism. We followed this
model herein. Multiple peri-Siberian accretion-collision events
took place before the end of the Early Paleozoic. The Mongol-
Okhotsk Ocean opened within this new accreted continent in the
Early-Middle Paleozoic. The Kazakhstan continental block was
formed in the Early Silurian in Eastern Gondwana by the accre-
tion—collision of several ribbon-microcontinents and island-arc-
type terranes. Most Kazakhstan microcontinents originated in Gond-
wana (Fig. 1, the part of Kazakhstan in light blue) from which they
were detached in the Vendian to middle Cambrian to collide with
the Indochina-Cathay arc/terranes complex (the ones in light
green in Fig. 1) and continued their course westward by-passing
the Chinese blocks (Wilhem et al., 2012, Fig. 4E and F). Kazakhstania
was finally created from the Arenigian to the Early Silurian. The
complete Kazakhstania moved westward toward Siberia and Tarim,
North-China in the Middle-Late Paleozoic.

From the mid-Paleozoic, Siberia, Tarim/North-China and Kazakhstania
began to mutually interact (Fig. 6). The new plate tectonic arrange-
ments led to oroclinal bending and large-scale rotation of Kazakhstania
during the Carboniferous; the main terminal sutures of the Altaids are
Permo-Triassic. Following the completion of the Altaids, only the
Mongol-Okhotsk ocean remained opened until the Jurassic-Cretaceous
(Fig. 10). Siberia was finally welded to Baltica not before the end of
the Triassic in the Arctic regions (Fig. 11).

14



/ldoc.rero.ch

http

Fig. 11. North pole view of the world in the late Carnian. On this figure one can assess the importance of the Laurasian part of Pangea, to which Siberia has been finally assembled.
The Cimmerian, Tibetan and South-Chinese terranes are in the process of final amalgamation that can be placed in the Norian. The Selwin (Saybian) ocean can be seen as an intra
Pangea ocean has it is not spreading. Its opening was mainly in the Devonian and its width can be determined through the distribution of Late Paleozoic carbonate in the Cassiar
terrane and also kinematic constraints regarding its closure that took place in the Cretaceous mainly (see Bandini et al., 2011; Johnston, 2008). A large plume (red line) is shown
under the opening Gulf of Mexico rift system. For legend see Fig. 10. This figure is in part derivative from the Neftex Geodynamic Earth Model. © Neftex Petroleum Consultants Ltd.

2011.

The final welding of Siberia on one side and of the Cimmerian,
Tibetan and South-Chinese blocks on the other, to Laurasia can be
placed in the Late Triassic (e.g. Ferrari et al., 2008; Wilhem, 2010)
and resulted in a reorganization of the forces at the Pangean plate
boundaries, triggering its break-up. In Figs. 10 and 11 one can see
that a first system of rift initiated along the Variscan suture from
central America through the Gulf of Mexico (Ouachita suture) and cen-
tral Atlantic region up to North-Africa, along the future Atlas system.
The Gulf of Mexico and Atlas rift systems aborted and were replaced
by the proto-Caribbean seaway (Bandini et al., 2011) and the Alpine
Tethys (Stampfli and Hochard, 2009) during early Jurassic times,
which marks the real break-up of Pangea.

9. Conclusions

Amalgamation of continents can be a simple event when dealing
with large continental blocks. However, most of the time, smaller ter-
ranes are involved in the suturing of disappearing oceans. The Variscan
or Altaids domains are good examples of this juxtaposition of terranes
of different origins. The final structural framework of these mountain
belts can be misleading when looking at the geodynamic relationship
between juxtaposed blocks, and only a thorough analysis of the
geodynamic scenarios of each block can finally allow determining
the exotic/local nature of the terranes. In the Variscan domain,
“cylindricity” of the chain never really existed, excepted for the
eo-Variscan event that took place along the Gondwana margin. After
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that, duplication of the original framework took place at many scales
until final juxtaposition of unrelated fragments. Oceanic sutures were
duplicated and were also the site of continental scale strike-slip faults,
but many of these large faults are not sutures. So, defining the original
provenance of the Variscan blocks at the Gondwana margin remains
the major tool to unravel the possible scenario of their wandering
between Gondwana and Laurasia.

The making of Pangea had to start first with the amalgamation of
Gondwana around 520-510 Ma, producing an already large landmass.
Then, in the Ordovician, series of ribbon continents left Gondwana to
be accreted to the newly formed Laurussia or to North-China/Tarim.
On the southern side of Gondwana, accretion of terranes also continued
from the Paleozoic to the Triassic, mainly along the Antarctica-Australia
margins, most of these terranes originated from southern Laurentia. Fi-
nally, in the late Carboniferous, Gondwana started to collide with
Laurussia. Pangea was born at that time (c. 300 Ma) and lasted until
the end of the Triassic (200 Ma). In the meantime, large continental
masses were added to it, such as Siberia-Kazakhstania, North-China/
Tarim, and finally South-China/SE-Asia and ribbon continents such as
the Cimmerian and Tibetan blocks that originated from Gondwana
and whose drifting finally closed the Paleotethys. By that time, nearly
all continental blocks on Earth were parts of Pangea.

This final Carnian-Norian accretion to Laurasia (eo-Cimmerian
event) changed the forces at the plate boundaries, mainly when sub-
duction started north of Neotethys under the accreted Cimmerian
blocks and when also subduction progradation jumped north of the
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Quesnellia arc after its collision with Stikinia. These two synchronous
events produced diverging forces acting mainly on the Laurasian part
of Pangea, and break-up took place in the over thickened crust along
the Variscan suture, producing series of continental rifts filled by Late
Triassic sediments, from the Gulf of Mexico to the Algerian Atlas. Final
break-up took place during the opening of the proto-Caribbean/
central Atlantic/Alpine-Tethys oceanic system in the early Jurassic
(Stampfli and Hochard, 2009).
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