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Abstract  

The application of plant growth-promoting bacteria (PGPB) with biocontrol activities as 

inoculants of crops plants against phytopathogenic fungi and insect pests provides a biological 

alternative to the use of agrochemicals. Two Pseudomonas sp. strains were isolated from 

agricultural well water in the area of Bejaia, northeastern Algeria, located rather closely to a 

lead mine deposit. The isolates S4LiBe and S5LiBe had 16S rRNA gene sequence similarities 

of 99.4% to 99.7% with Pseudomonas protegens CHAOT and other P. protegens strains. The 

phenotypic profiles tested with BIOLOG-GN2-microplates were very similar, but showed 

also some remarkable differences. The isolates S4LiBe and S5LiBe showed plant growth-

promoting potential based on the production of the phytohormone indole acetic acid and 

siderophores and the solubilization of insoluble phosphate. In addition, they produced 

chitinase and other polymer degrading enzymes. Interestingly, while S4LiBe and S5LiBe 

were resistant against heavy metals (2.0 mM K2Cr2O7 and 3.0 mM CoSO4, HgSO4, CdSO4 

8H2O and PbCl2), the reference strain P. protegens CHAOT was very sensitive to Hg2+ and 

Cd2+ and had lower tolerance towards Co2+ and Pb2+. The isolates S4LiBe and S5LiBe were 

very active in mycelial growth inhibition assays against Botrytis cinerea, Verticillium dahlia, 

Fusarium graminearum, Aspergillus niger and A. flavus (growth inhibition between 88% and 

48%). Furthermore, S4LiBe and S5LiBe showed effective insecticidal activities, when tested 

in the Galleria injection assay and they were tested positive for the insect toxin gene fitD 

alike the reference strain CHA0T. Finally, inoculation of barley seeds with S5LiBe resulted in 

significantly stimulated germination rate and growth of seedlings, with increased shoot length, 

shoot and root fresh weight, shoot and root dry weight as compared to non-inoculated plants. 

Thus, the heavy metal tolerant isolates S4LiBe and S5LiBe harbor a diverse potential as 

beneficial bacteria for agricultural application. They may be very useful even in polluted soils 

for the stimulation of e.g. biomass crops. The demonstration of successful isolation from 

agricultural well water may open more ready access for a wide variety of this kind of 

beneficial bacteria for agricultural application.  

Keywords: Pseudomonas protegens, heavy metal tolerance, plant growth-promoting bacteria, 

biocontrol, insecticidal activity, enzymatic activities, barley 
 

 

 

 



1. Introduction 

Inoculation with plant growth-promoting bacteria (PGPB) represents an agrobiotechnology 

designed to improve growth, yield and health of agricultural crops [49, 51]. The use of these 

beneficial microorganisms appears to be a cost-effective, ecosystem friendly and healthy 

alternative to the extensive use of chemicals such as fungicides, herbicides and insecticides, 

which could have negative impacts on the environment and human health.  

The potential of PGPB to increase crop production involves the solubilization of inorganic 

phosphate and ferric iron minerals, the increased uptake of mineral nutrients [33], the ability 

to reduce stress ethylene production in plants [19], N2 fixation [31], and the production of 

plant hormones such as auxins, gibberellins and cytokinins [18]. Another mechanism used by 

the PGPB to improve plant health is the increase of resistance against phytopathogenic 

microorganisms. PGPB are able to control pathogens by several mechanisms: competitive 

root colonization, production of antimicrobial compounds [11], production of hydrolytic 

enzymes, siderophores, HCN, ammonia, and by inducing systemic plant resistance [49]. In 

addition, insecticidal activities were reported for some PGPB in addition to the existing 

biocontrol repertoire with perspectives for application against insect crop pests [48]. Recent 

reports suggest that PGPB also enhance the tolerance of plants towards abiotic stresses such 

as drought [54, 58], chilling injury [3], salinity [22], metal toxicity [13] and elevated 

temperature stress [1, 2]. 

A high diversity of PGPB have been identified which enhance plant growth by several 

mechanisms. These PGPB belong for example to the bacterial genera Pseudomonas, 

Azospirillum, Cellulosimicrobium, Azotobacter, Klebsiella, Enterobacter, Alcaligenes, 

Arthrobacter, Burkholderia, Bacillus and Serratia [10, 18, 21, 27, 35, 36, 39]. 

Among PGPB, Pseudomonas spp. have been broadly studied for their roles in plant growth 

promotion and biological control [16, 17, 21, 25, 30, 46, 59]. Plant growth promoting 

activities of Pseudomonas spp. include production of indole acetic acid (IAA) [16], phosphate 

solubilization [60], degradation of toxic compounds [38] and production of biocontrol agents 

against fungal phytopathogens like the production of siderophores [7, 14] or antibiotics [21, 

24] as well as against insect pests by the production of insect toxins [41]. 

Due to industrialization, environmental pollution by heavy metals is a common problem all 

over the world. However, heavy metal contamination of soils and water may also originate 

from natural occurring geominerals. Nevertheless, in many sites anthropogenic activities have 



enriched or deposited huge amounts of heavy metal containing rocks, soil and debris, which 

are the sources of pollution plumes into the surrounding soil and water bodies. In heavy 

metal-polluted sites, heavy metal-resistant bacteria have been found, which face the pollution 

and even have the ability to reduce it [38]. 

In the present investigation, agricultural well water was tested for the presence of PGPB, 

because this water was fed from agricultural soil and it was used for irrigation. In addition, 

there was a lead mineral containing rock deposit in some distance, origination from lead 

mining, which is no longer in operation. An emphasis was laid on the Pseudomonas group of 

bacteria, because these have a wide spectrum of plant-beneficial activities ranging from 

antagonistic activities against a wide range of phytopathogenic fungi, insecticidal activity, and 

phytohormone, siderophore and extracellular enzyme production. One of the isolate was 

further tested for plant growth promotion effects on barley seedlings. 

 

2. Materials and Methods 

 

2.1 Isolation and screening of bacteria 

PGPB were isolated from well water (receiving effluents from agricultural soil) in the region 

of Bejaia (northern Algeria). Samples were serially diluted in sterile distilled water and 0.1 ml 

of each dilution was seeded onto nutrient broth agar in triplicates. The agar plates were 

incubated at 28°C for 1 week and colonies with different morphologies were selected, re-

streaked on nutrient agar medium, and checked for purity.  

 

2.2 Phenotypic and molecular phylogenetic characterization 

The isolates and reference strains were phenotypically characterized using the Biolog GN2 

MicroPlate™ according to the manufacturer´s instruction. For the phylogenetic 

characterization, genomic DNA extraction from pure bacterial colonies was carried out using 

the FastDNA® SPIN kit in conjunction with the FastPrep FP120 instrument (Qbiogene, 

Heidelberg, Germany) according to the manufacturer’s instructions. The genomic DNA was 

further PCR amplified for 16S rDNA gene sequencing using the flanking primer pair 616F 

(5´AGA GTT TGA TYM TGG CTCAG 3´) and 630R (5´ CAK AAA GGA GGT GAT CC 

3´). The amplification program was performed in a thermocycler peqSTAR 96 Universal, 

with an initial denaturation step at 95°C for 3 min, followed by 30 cycles of 45s denaturation 



at 94°C, 45s annealing at 55°C, 1 min extension at 72°C, and a final extension step at 72°C 

for 10 min. Correct amplification was tested with standard horizontal agarose gel 

electrophoresis followed by ethidium bromide staining. Amplification products were cloned 

using the StrataClone PCR cloning system. Clones were then sequenced using the Big Dye 

Terminator Labeling Kit (Applera, Europe BV) with an ABI PRISM 3730 DNA Analyzer 

(Applied Biosystems, Foster City, USA). For phylogenetic analyses the obtained 16S-

sequences were aligned with the Sina Aligner V1.2.11 on the Silva website (www.arb-

silva.de) and phylogenetical allocated with the software package ARB [32]. Phylogenetic tree 

construction was performed by using the Maximum-Likelihood [40]. 

 

2.3 Plant growth-promoting properties:  

Production of indole acetic acid (IAA) 

IAA production was measured using the method described by Bric et al. [5]. The isolates were 

grown in LB liquid medium supplemented with 0.5% glucose and 500 μg/ml tryptophan and 

incubated under shaking conditions at 30°C for 72h. 5 ml of culture was centrifuged at 9000 

rpm for 20 min and 2 ml of supernatant was transferred to a fresh tube to which 100μl of 10 

mM orthophosphoric acid and 4 ml of reagent (1 ml of 0, 5 M FeCl3 in 50 ml of 35% HClO4) 

were added. The mixture was incubated at room temperature for 25 min and the absorbance of 

pink color developed was read at 530 nm.  

Phosphate solubilization  

The isolates were tested for inorganic phosphate solubilization. Freshly grown bacterial 

culture was inoculated to Pitkovskaya agar containing inorganic phosphate and incubated at 

30°C for 5 days. A clear halo around the bacterial colony indicates solubilization of mineral 

phosphate [53]. 

Cellulase activity 

Bacteria were inoculated in CMC (Carboxy Methyl Cellulose) agar containing (g/l): 

Na2HPO4 6, KH2PO4 3, NaCl 0.5, NH4Cl 1, yeast extract 3, CMC 7, agar-agar 15 and 

incubated at 30°C for 8 days. At the end of the incubation, to visualize the hydrolysis zone, 

the agar medium was inundated with a solution of Congo red (1% w/v) for 20 min. Congo red 

solution was then poured off, and the plates were further treated with 1 M NaCl [8]. Clear 

zones around the colony indicated the production of extracellular cellulase. 

http://www.arb-silva.de/
http://www.arb-silva.de/


Esterase activity 

The isolates were inoculated in the media which is described by Sierra [56], containing (g/l) 

peptone 10, NaCl 5, CaCl2 2H2O 0.1, agar-agar 18, and 1% of sterilized tween 80. After 

incubation at 30°C for 48 h a clear halo around the colonies demonstrated esterase activity. 

Lipolytic activity 

Lipolytic activity was determined as described above for the determination of esterase activity 

[56]. In this experiment, tween 80 was replaced by tween 20. Clear halos around the colonies 

indicate lipolytic activity. 

Protease activity 

Protease activity tests were carried out in skimmed milk agar medium. After incubation at 

30°C for 48 h, the presence of a clear zone around colony was the indication of protease 

production [26]. 

 

Siderophore production  

The experiments were carried out in Chrome Azurol S agar, according to the method of 

Schwyn and Neilands [55]. CAS agar was prepared from four solutions, which were sterilized 

separately before mixing: the Fe-CAS indicator solution, buffer solution, nutrient solution and 

casamino acid solution. After autoclaving and at a temperature of about 50oC, nutrient 

solution and casamino acid solution were added to the buffer solution. The indicator solution 

was added last with sufficient stirring to mix the ingredients. The isolates were streaked on 

the surface of the blue agar plates, incubated at 30°C for 3 days, and examined for growth and 

production of red to orange halos surrounding the colonies, indicating siderophore production. 

 

Chitinase activity 

Chitinase activity was determined as described by Kopečný et al. [28]. Bacterial isolates were 

inoculated in minimal salt medium containing 0,8% of colloidal chitin as sole carbon and 

energy source and the following incredients (g/l): K2HPO4 2.7, KH2PO4 0.3, MgSO4 7H2O 

0.7, NaCl 0.5, KCl 0.5, yeast extract 0.13, agar-agar 15. The plates were incubated at 30°C for 

7 days. Clear zone around the colonies indicate extracellular chitinase activity. 

 



2.4 Biocontrol activities: 

Antifungal activity 

The isolates were assayed for antifungal activities against Botrytis cinerea, Verticillium 

dahlia, Fusarium graminearum, Asperillus niger and A. flavus as described by Sagahón et al. 

[52]. An -cm2 fungal plug was placed in the center of Luria Bertani (LB) plate and each 

bacterial isolate was inoculated at a distance of 2.5 cm from the fungal inoculum. Plates 

without potential bacterial antagonist served as negative control. Three replicates were 

performed for each confrontation experiment. The plates were then incubated at 25±2°C for 5 

days and verified every day. The percentage of growth inhibition (PGI) of the fungus was 

recorded and calculated using the formula: PGI (%) = KR-R1/KR-100 where KR corresponds 

to the distance from the point of inoculation to the colony margin on the control dish (mm). 

R1 represents the distance (mm) of fungal growth from the point of inoculation to the colony 

margin on the treated dishes. 

 

Insecticidal activity 

As biological insecticidal activitiy test, the Galleria mellonella virulence assay was 

performed. The injection assays for virulence determination used last-instar larvae of G. 

mellonella (Entomos AG, Grossdietwil, Switzerland) as described before by Péchy-Tarr et al., 

[41] with 18 larvae per tested bacterial strain.  

To test the presence of the fitD-toxin gene fitD-specific primers were applied with DNA 

extracted from the bacteria. The polymerase chain reaction was performed using the GoTaq 

DNA Polymerase kit (Promega) according to the manufacturer´s instructions and the primer 

pairs fitD-screen-F: 5´-CCTGCTCAATACCCTGATCG-3´ and fitD-screen-R: 5´-

GTGGTTGGCGAAGTACTGCTC-3`.  

 

2.5 Heavy metal tolerance  

Heavy metals incorporated media were used to examine the ability of the isolates to resist 

heavy metals. Cells of overnight grown cultures were inoculated on nutrient agar plates 

supplemented with different heavy metals (K2CrO7, HgSO4, CdSO4 8H2O, CoSO4, PbCl2), 

The concentration of each heavy metal solution (0.5, 1, 1.5, 2, 2.5 and 3 mM) was prepared in 

sterile deionized water and sterilized by autoclaving at 121oC for 15 min. After incubation for 

24-48 h at 30°C, the plates were examined for cell growth [23]. 

 



2.6 Plant growth stimulation tests 

 

Barley (Hordeum vulgare L.) seeds were surface-sterilized as described by Götz et al. [20]. 

First, the seeds were treated with 70% ethanol for 1 min and then with 12% acidified 

hypochlorite for 15 min. The seeds were washed thoroughly in sterile water. Then the seeds 

were germinated on LB agar plates in the dark at room temperature for 2 days. 

For seed inoculation, S5LiBe was grown in LB medium overnight at 30ºC. The bacterial 

culture was pelleted by centrifugation and the supernatant was discarded. The cell pellet was 

washed twice with 20 ml phosphate buffered saline (PBS, pH 7.2), and suspended in PBS. 

The optical density of the bacterial suspension was adjusted to 0.1 at 620 nm, corresponding 

to a cell density of 108 cells/ml [15]. Surface sterilized barley seeds were incubated with the 

bacterial suspension for 1 h at room temperature. Control seeds were incubated in sterile 

distilled water under the same conditions [35]. The seeds were planted in pots filled with 

agricultural soil with the following characteristics: pH (7.04), granulometry (clay 17.07%, 

fine silt 23.0%, coarse silt 7.09%, fine sand 12.35%, coarse sand 28.92%), active limestone 

0.38%, conductivity 200 µS/cm, organic carbon 6.38%, exchangeable K2O 0.11 g/kg, 

exchangeable CaO 3.99 g/kg, exchangeable MgO 5.24 g/kg. 

The experiment consisted of seven lots and each lot was composed of seven seeds, inoculated 

or non-inoculated with bacterial suspension. The seeds were sown at a depth of approximately 

1 cm. The experiment was performed under natural dark/light cycles (16 h of light and 8 h of 

dark) at a temperature of 25-35°C for one to two weeks [50]. Seed germination was 

determined by counting germinated seeds at 3 and 7 day after sowing the seeds. Results 

corresponding to final counts were reported as percentage of germination [26]. Plant growth 

response parameters were measured after 15 days including shoot length, fresh and dry weight 

of shoot, fresh and dry weight of root. 

 

2.7 Statistical analysis  

Data obtained from the plant growth responses were subjected to analysis of variance by the 

least significant difference (LSD) test at p≤0,05 with statistical software XLSTAT version 

2009.1.02. 

 

 



3. Results 

3.1 Phylogenetic and phenotypic characterization of the isolates 

Two bacterial strains (S4LiBe and S5LiBe) were obtained from the well water after plating 

and purifying on NB-agar. The colonies had a greenish yellow color, resembling 

Pseudomonas spp. Bacterial cells were motile and stained Gram-negative.  

For molecular phylogenetic characterization of the isolates, 16S rDNA sequence analysis was 

performed. PCR-amplified 16S rDNA of the bacterial strains was sequenced and blasted with 

the NCBI database. Comparative analysis with whole 16S rDNA data base sequences 

suggested that the isolates S4LiBe and S5LiBe were most closely related to Pseudomonas 

protegens. The 16S rDNA sequences of the two isolates were 99.8% similar to each other. 

S4LiBe showed 99.8% 16S rRNA similarity to Pseudomonas sp. AF521651, 99.7% to P. 

protegens Pf-5 (sequence AJ417073), 99.6% to P. protegens PGNR1 (sequence AJ417071), 

and 99.5% to P. protegens CHA0T (sequence AJ278812). The 16S rDNA of S5LiBe had 

99.4% similarity with Pseudomonas sp. AF521651, 99.6% with Pseudomonas protegens AJ 

417073 and 99.5% with P. protegens CHA0T (sequence AJ278812) (see table S2). The 

phylogenetic position of the isolates based on 16S rDNA similarity is also shown in the 

dendrograms based on maximum likelihood tree calculation (Figure 1). 

The metabolic characteristics of the isolates S4LiBe and S5LiBe were obtained using the 

Biolog GN2 MicroPlates (Table S1) and compared with the type strain of P. protegens 

CHA0T and P. protegens Pf-5. From 115 carbon sources tested with the isolates S4LiBe and 

S5LiBe, 89% were identical with the type strain CHA0T, while 84% were identical with the 

strain Pf-5. Differences in the utilization pattern between CHA0T and the isolates were found 

for m-inositol, D-psicose, sucrose, formic acid, hydroxybutyric acid, itaconic acid, succinamic 

acid, D-alanine, L-alanine, L-alanylglycine, hydroxy-L-proline and L-threonine (for more 

information see table S1).  

 
Figure 1: Phylogenetic relationship of the 16S rDNA sequences of S4LiBe and S5LiBe and 
different reference strains. The calculated dendrogram is based on maximum likelihood tree 
calculation. 
 

3.2 Plant growth promotion traits 

Table 1 shows the PGP traits of the isolates in comparison with the P. protegens type strain 

CHA0T. The production of IAA ranged from 3.1 to 4.0 μg ml-1 in the presence of 500 µg/ml 



L-tryptophan. The isolates and the reference strain produced urease, lipase, protease, esterase 

and cellulose at different levels. However, CHA0T failed to produce chitinase under the 

applied test conditions. The abilities to solubilize precipitated phosphate and to produce 

siderophores were common in S4LiBe, S5LiBe and CHA0T. 

 

3.3 Heavy metal tolerance  

Among all heavy metals tested, lead and cobalt were the least toxic to all isolates. S4LiBe, 

S5LiBe and CHA0 were able to grow in the presence of K2CrO7 at concentrations up to 2 

mM. The isolates S4LiBe and S5LiBe showed a very high degree of tolerance to up to 3 mM 

of HgSO4, CdSO4, and PbCl2. In contrast, CHA0 was very sensitive to HgSO4 and less 

tolerant towards CdSO4 and PbCl2 (Table 2).  

 

3.4 Biological control activities 

Fungal antagonistic activity 

Figure 2 shows the antifungal activity of the isolates against the pathogenic fungi F. 

graminearum, V. dahliae and B. cinerea as well as Asperillus niger and A. flavus tested in an 

agar plate confrontation assays. All five fungi were inhibited to different extents by the P. 

protegens isolates S5LiBe and S4LiBe. 

 
Figure 2: Percentage Growth Inhibition (PGI %) of plant pathogens in the presence of the 
isolates S4LiBe and S5LiBe 
 

Insecticidal activity 

The Galleria mellonella virulence assay of the isolates S4LiBe and S5Libe as well as the 

reference strain CHA0T clearly demonstrated that the isolates exhibited equal effective 

insecticidal activity as the P. protegens reference strain (Figure 3). In both isolates also the 

fitD gene for the Fit insecticidal toxin could be detected.   

 

Figure 3: Insecticidal activity of the isolates S4LiBe and S5LiBe compared to the reference 

strain CHA0T. 

 

3.5 Plant growth-promoting effect of isolate S5LiBe 

The seed germination and growth promotion tests with barley showed that two weeks after 

inoculation strain S5LiBe significantly increased germination percentage and growth of 

barley. S5LiBe increased significantly the shoot length compared to the control. Bacterial 



inoculation also had a significant effect on fresh and dry weight of shoot and root (0.01; 

0.075; 0.04 and 0.03), respectively, compared to the controls (0.06; 0.047; 0.025 and 0.016). 

 

Figure 4: Germination percentage in non-inoculated and S5LiBe-inoculated barley seeds 
after 3 and 7 days. 

Figure 5a, b, c: Stimulation of growth of barley by inoculation with strain S5BiLe after 15 
days of growth. 

 

4. Discussion 

Fluorescent pseudomonads and other rhizobacteria are well known for their abilities to 

successfully colonize plant roots and to promote plant growth by biological control [21] and 

plant growth promotion activities [42]. In the present study, two Pseudomonas sp. isolates 

from agricultural well water indeed showed a wide variety of different features of plant 

growth promoting traits. The isolates S4LiBe and S5LiBe appeared to be related to 

fluorescent pseudomonads based on 16S rDNA gene similarity analysis (Figure 1) and carbon 

utilization pattern (Table S1). The isolates S4LiBe and S5LiBe are very similar (99.8% 

16SrRNA gene similarity) to each other and are very closely related (99.4 to 99.7%) to the P.  

protegens strains CHA0T and Pf-5 [44]. However, a definite phylogenetic clarification would 

need further analysis based on concatenated alignments of several household genes [30, 42], 

because 16S rRNA analysis alone cannot conclusively resolve very closely related species, 

like in the Pseudomonas fluorescens cluster.  

Biological control of phytopathogens by fluorescent pseudomonads reduces the severity of 

many plant diseases [49]. In this study, both isolates showed clearly in vitro antagonistic 

potential against three plant pathogenic fungi Botrytis cinerea, Verticillium dahliae and 

Fusarium graminearum (88%, 80% and 82% respectively) as well as towards two Aspergillus 

spp. (Figure 2). Srinivasan et al. [57] had characterized five members of the genus 

Pseudomonas, P. putida FC-6B, P. sp. FC-7B, P. putida FC-8B, P. sp. FC-9B and P. sp. FC-

24B, which showed antifungal activity against F. oxysporum sp and F. oxysporum. f.sp. 

lycopersici. Sagahón et al. [52] reported that Pseudomonas spp. 11 inhibited up to 70% of 

Stenocarpella maydis and Stenocarpella macrospora and the filtrates obtained in logarithmic 

growth phase from the P. fluorescens 16 inhibited 54% of the growth of S. maydis. In addition 

to siderophore and chitinase production, the observed biological control activity of the isolates 

is probably also due to the production of several antibiotic compounds, like 2,4-



diacetylphloroglucinol and pyoluteorin, as is well known for fluorescent pseudomonads [21, 

44]. Currently, genomic analysis of the two isolates is in progress, which will demonstrate 

which biosynthetic gene clusters for antibiotic production and other antagonistic activities are 

present in the two well water isolates from Algeria. Like the reference strain P. protegens 

CHA0T and related strains [41, 47], the isolates S4LiBe and S5LiBe also harbor insecticidal 

activities, as could be demonstrated by the positive Galleria mellonella injection assay and 

the presence of the fitD gene (Figure 3). Since the infection and growth within insect larvae 

constitutes a second growth cycle of these bacteria - apart from plant roots , it may be 

hypothesized, that these types of bacteria were enriched in the well water also harboring 

insect larvae. Therefore, the isolation of PGPB with insecticidal activities from agricultural 

well water may be a quite straightforward approach, which may be useful in future isolation 

attempts. 

S5LiBe-inoculated plants significantly increased germination rate, shoot length, fresh and dry 

biomass of barley comparing with non-inoculated plants after two weeks of growth. Plant 

growth-promoting strains of Pseudomonas spp. have been already described in multiple 

studies, recently e.g. by Rosas et al. [46], who reported that the strain P. aurantiaca SR1, 

when applied on maize and wheat seeds showed a significant plant growth-promoting effect. 

The beneficial effect of Pseudomonas was also confirmed by Egamberdieva et al. [15] who 

tested the co-inoculation of Pseudomonas spp. with Rhizobium on the growth of fodder galega 

(Galega orientalis Lam.). Co-inoculation of plants showed increased shoot and root dry 

matter compared to the inoculation with R. galega HAMBI 540 alone. The isolates S4LiBe 

and S5LiBe as well as the reference strain CHA0 had IAA production activity in the presence 

of L-tryptophan in the range of 3-4 µg/ml, which is in the range of other PGPBs. Naik and 

Sakthivel [37] suggested that the plant growth-promoting ability of Pseudomonas sp. PUP6 

could be based on the production of phytohormone IAA, siderophores and phosphate-

solubilizing enzymes. Wahyudiet al. [59] reported that the capability to increase plant growth 

parameters in germination seed bioassays was highly related to the IAA level produced by 

Pseudomonas spp. applied. The growth-promoting effect of S5LiBe can also be due to 

another mechanism, which is linked to its phosphate-solubilizing activity. Phosphorus 

(phosphate) is one of the major essential macronutrients for biological growth and 

development and the formation of insoluble forms of phosphorus limits soil phosphorus 

accessibility. Rodriguez and Fraga [45] reported that Pseudomonas and other phosphate-

solubilizing bacteria are capable to increase the availability of phosphate in soil. Siderophore 



production is another important characteristic of efficient plant growth promotion which was 

observed with the isolates as well as the applied reference strain CHA0. Siderophores are 

widely studied as one biocontrol mechanism against plant pathogenic microbes, but they also 

may support iron nutrition of plants. Siderophores can stimulate plant growth indirectly by the 

inhibition of phytopathogenic microorganisms competing for the growth-limiting, mostly 

insoluble ferric iron resource in soils [15, 29, 50].  

Furthermore, the isolates S4LiBe and S5LiBe produce several exo-cellular enzymes (protease, 

cellulose, chitinase and urease) which are potentially relevant for soil fertility. The 

degradation of protein by microbial peptidases is important in N-cycling in soils by making 

organically bound nitrogen accessible for plants [4]. Chitinases are well known to lyse the 

fungal cell wall [9] and thus could effectively contribute to control plant-pathogenic fungi. As 

reported by Egamberdieva et al. [15], cellulose production of bacteria can enhance nodule 

formation. Co-inoculation of the cellulose-producing strain Pseudomonas trivialis 3Re27 with 

Rhizobium galegae HAMBI 540 significantly increased nodulation and nitrogen content of 

fodder galega, whereas cellulose-negative Pseudomonas extremorientalis TSAU20 showed no 

significant stimulation. 

Since heavy metals cannot be biologically degraded to harmless products and hence persist in 

the environment indefinitely, heavy metal contamination of agriculture soil is a significant 

environmental problem and has several disadvantages on human health and agriculture [61]. 

The selection of metal-tolerant plant growth-promoting microorganisms can be advantageous 

to speed up the recolonization of the plant rhizosphere in polluted soils [12]. Both isolates in 

this study were characterized by considerable tolerance to rather high levels (up to 3 mM) of 

the heavy metals Co, Pb, Hg and Cd, and up to 2 mM of chromium (Table 3). Dell’Amico et 

al. [13] showed that inoculation with cadmium-resistant strains of Pseudomonas tolaasii and 

Pseudomonas fluorescens enabled Brassica napus to grow under cadmium stress and they 

suggested that the bacterial production of indole acetic acid (IAA), siderophores and ACC (1-

aminocyclopropane-1-carboxylate) deaminase was involved  in plant protection against 

cadmium stress. Since the P. protegens reference strain CHA0T (like related PGPB) is rather 

sensitive to these heavy metals (Table 3), the heavy metal tolerance of S4LiBe and S5LiBe 

can be regarded as a distinct novel feature among this group of bacteria. Probably, the vicinity 

of the heavy metal deposit had resulted in soil contamination, which fostered the distribution 

of heavy metal tolerance. It is well known that metal resistance transposons or plasmids are 

shared between Gram-negative bacteria [34]. Further detailed investigation of the actual 



contamination in the area of isolation and the well water as well as of the genetic basis in the 

isolated bacteria are necessary.  

In conclusion, the isolates S5LiBe and S4LiBe revealed plant growth-promoting potentials, as 

shown by the presence of many key features of plant growth promotion and by the stimulation 

of germination and growth of barley seedlings upon inoculation. Furthermore, the estimation 

of the antagonistic effect against pathogenic fungi and also insecticidal activity add further 

valuable activities for possible plant beneficial bacterial inoculants. To find out most efficient 

biological control agents against plant diseases under given application conditions, an 

increasing number of isolates is still to be investigated [6]. The observed heavy metal 

tolerance of the new isolates towards mercury, cadmium, cobalt and lead may enable the 

newly isolated P. protegens strains as superior candidates for inoculation of biomass crops in 

heavy metal contaminated soils.  
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Table 1: Plant growth-promoting traits of the isolates S4LiBe, S5LiBe, and P. protegens 
CHA0T 

 
Traits S4LiBe S5LiBe CHA0T 

IAA (µg/ml) 4.0 3.1 3.5 
Chitinase + ++ - 
Protease + + ++ 
Esterase + + + 

Cellulase + + + 
Lipase + + ++ 
Urease ++ +++ + 

Phosphate solubilization ++ ++ ++ 
Siderophore production ++ +++ ++ 

 

+++: High activity;  ++: average activity;  +: moderate activity; -: no activity 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 



Table 2: Heavy metal tolerance of the isolates S4LiBe and S5LiBe and P. protegens CHA0T 
 
  Isolates 
  S4LiBe S5LiBe CHA0T 

K2CrO7 (mM) 

0.5 +++ +++ +++ 
1 +++ +++ ++ 

1.5 ++ ++ ++ 
2 + + + 

2.5 - - - 
3 - - - 

HgSO4(mM) 

0.5 +++ +++ - 
1 +++ +++ - 

1.5 ++ ++ - 
2 ++ ++ - 

2.5 ++ ++ - 
3 ++ ++ - 

CdSO48H2O (mM) 

0.5 +++ +++ ++ 
1 ++ ++ + 

1.5 + ++ - 
2 + + - 

2.5 + + - 
3 + + - 

CoSO4 (mM) 

0.5 +++ +++ +++ 
1 +++ +++ +++ 

1.5 +++ +++ ++ 
2 ++ ++ ++ 

2.5 + + + 
3 + + - 

PbCl2 (mM) 

0.5 +++ +++ +++ 
1 +++ +++ +++ 

1.5 +++ +++ ++ 
2 +++ +++ ++ 

2.5 +++ +++ + 
3 +++ +++ + 

 
+++: High resistance;  ++: average resistance;  +: resistance; -: sensitive 
 

 

 

 

 

 

 



Legends to Figures: 

Figure 1: 16S rRNA gene similarity tree, based on maximum likelihood analysis 

Figure 2: Percentage Growth Inhibition (PGI %) of plant pathogenic fungi (plate 
confrontation assays) by the isolates S4LiBe and S5LiBe 

Figure 3: Insecticidal activity of the isolates S4LiBe and S5LiBe compared to the reference 
strain CHA0T.  

• PCR-analysis of the fitD gene 
• Galleria mellonella virulence assay, according to Péchy-Tarr et al. [41]; 

Black circles: P. protegens CHA0T (positive control) 
Blue diamonds: Pseudomonas sp. S4LiBe; 
Red squares: Pseudomonas sp. S5LiBe; 
Gray triangles: 0.9% NaCl solution (negative control) 
 

Figure 4: Germination percentage in non-inoculated and S5LiBe-inoculated barley seeds after 
3 and 7 days. Different letters (a and b) indicate significant differences obtained by the 
Fischer LSD test (p≤0,05). 

Figure 5: Stimulation of growth S5LiBe-inoculated and non-inoculated (control) barley 
seedlings 15 days after inoculation. Different letters (a and b) indicate significant differences 
obtained by the Fischer LSD test (p≤0,05).  

A) Effect on shoot length,  

B) Effect on fresh and dry weight of shoots,  

C) Effect on fresh and dry weight of roots.  
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Figure 5:  
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Table S1:  16S rRNA-gene similarities between the isolates S4LiBe and S5LiBe and different 
Pseudomonas protegens and other Pseudomonas spp. strains 

  

Pseudom
onas taeanensis. FJ424813 

Pseudom
onas lundensis. A

B
021395 

Pseudom
onas deceptionensis. G

U
936597 

Pseudom
onas fragi. A

F094733 

Pseudom
onas psychrophila. A

B
041885 

Pseudom
onas sp.. A

F521651 

S4L
iB

e 

S5L
iB

e 

Pseudom
onas protegens C

H
A

O
T. A

J278812 

Pseudom
onas protegens PF-5. A

J417073 

Pseudom
onas protegens PG

N
R

1. A
J417071 

Pseudom
onas am

ygdali. Z76654 

Pseudom
onas cannabina. A

J492827 

Pseudom
onas caricapapayae. D

84010 

Pseudom
onas savastanoi. A

B
021402 

Pseudom
onas congelans. A

J492828 

Pseudom
onas syringae pv. syringae. D

Q
318866 

P. taeanensis, 
FJ424813 100                 

P. lundensis, 
AB021395 96.8 100                

P. deceptionensis, 
GU936597 96.6 99.3 100               

P. fragi, AF094733 96.8 99.1 99.4 100              

P. psychrophila, 
AB041885 96.2 99.2 99.4 99.8 100             

P. sp., AF521651 95.8 97.6 97.5 97.2 97.1 100            

S4LiBe 95.7 97.5 97.4 97.1 97.0 99.9 100           

S5LiBe 95.6 97.4 97.3 97.0 96.9 99.8 99.8 100          

P. protegens 
CHAOT, AJ278812 95.6 97.6 97.5 97.2 97.0 99.6 99.5 99.4 100         

P. protegens Pf-5, 
AJ417073 95.8 97.6 97.5 97.2 96.9 99.7 99.7 99.5 99.9 100        

P. protegens 
PGNR1, AJ417071 95.7 97.6 97.5 97.2 96.8 99.7 99.6 99.5 99.8 100 100       

P. amygdali, Z76654 95.4 97.4 97.2 97.0 97.1 97.9 97.8 97.7 97.9 97.9 97.9 100      

P. cannabina, 
AJ492827 95.9 98.1 97.7 97.5 97.4 98.3 98.2 98.1 98.0 98.1 98.0 98.7 100     

P. caricapapayae, 
D84010 96.2 97.9 97.6 97.3 97.4 98.6 98.5 98.4 98.6 98.6 98.6 98.6 99.5 100    

P. savastanoi, 
AB021402 96.2 98.1 97.7 97.4 97.6 98.7 98.6 98.5 98.7 98.7 98.7 98.7 99.5 99.8 100   

P. congelans, 
AJ492828 95.9 98.1 97.7 97.5 97.4 98.6 98.6 98.4 98.3 98.4 98.4 98.8 99.5 99.7 99.7 100  

P. syringae pv. 
syringae, DQ318866 95.7 98.0 97.6 97.3 97.5 98.6 98.4 98.4 98.3 98.4 98.3 98.7 99.5 99.6 99.7 99.9 100 

 

 

 

 

 



Table S2: Carbon source utilization patterns (BIOLOG GN2 microplate tests) of S4LiBe, 

S5LiBe and P. protegens CHA0T and Pf-5: 

 
Metabolite S5LiBe S4LiBe CHA0T Pf-5 

α-Cyclodextrin - - - - 
Dextrin + + + + 

Glycogen - - - - 
Tween 40 + + + + 
Tween 80 + + + + 

N-Acetyl-D-Galactosamine - - - - 
N-Acetyl-D-Glucosamine + + + - 

Adonitol - - - - 
L-Arabinose - - - - 

D-Arabitol - - + - 
D-Cellobiose - - - - 

i-Erythritol - - - - 
D-Fructose + + + + 

L-Fucose - - - - 
D-Galactose - - - - 
Gentiobiose - - - - 

α-D-Glucose + + + + 
m-Inositol + + - - 

α-D-Lactose - - - - 
Lactulose - - - - 

Maltose - - - - 
D-Mannitol + + + - 
D-Mannose + + + - 

D-Melibiose - - - - 
β-Methyl-D-Glucoside - - - - 

D-Psicose - + + - 
D-Raffinose - - - - 
L-Rhamnose - - - - 

D-Sorbitol - - - - 
Sucrose + + - + 

D-Trehalose + + + - 
Turanose - - - - 

Xylitol - - - - 
Methyl pyruvate + + + - 

Mono-Methyl-succinate - - - - 
Acetic Acid + + + + 

Cis-Aconitic Acid + + + + 
Citric Acid + + + + 

Formic Acid + - + - 
D-Galactonic Acid Lactone - - - - 

D-Galacturonic Acid - - - - 
D-Gluconic Acid + + + + 

D-Glucosaminic Acid - - - - 
D-Glucuronic Acid - - - - 

α-Hydroxybutyric Acid - - - - 
β-HydroxybutyricAcid + + + + 
γ-Hydroxybutyric Acid - - + + 

p-HydroxyPhenylaceticAcid + + + - 
Itaconic Acid - - + + 

α-Keto Butyric Acid - - - - 
α-KetoGlutaric Acid + + + + 
α-KetoValeric Acid - - - - 

D,L-Lactic Acid + + + + 
Malonic Acid + + + + 



Propionic Acid + + + + 
Quinic Acid + + + + 

D-Saccharic Acid - - - - 
Sebacic Acid - - - - 

Succinic Acid + + + + 
Bromosuccinic Acid + + + + 

Succinamic Acid (+) - + - 
Glucuronamide - - - - 
L-Alaninamide - - - - 

D-Alanine - (+) - - 
L-Alanine + (+) - - 

L-Alanylglycine + - - - 
L-Asparagine + + + + 

L-Aspartic Acid + + + + 
L-Glutamic Acid + + + + 

Glycyl-L-Aspartic Acid - - - - 
Glycyl-L-Glutamic Acid + + + - 

L-Histidine + + + + 
Hydroxy-L-Proline + + + - 

L-Leucine + + - - 
L-Ornithine - - - - 

L-Phenylalanine - - - - 
L-Proline + + + + 

L-Pyroglutamic Acid + + + - 
D-Serine - - - - 
L-Serine + + + + 

L-Threonine - - + - 
D,L-Carnitine - - - - 

γ-Amino Butyric Acid + + + + 
Urocanic Acid + + + + 

Inosine + + + - 
Uridine - - - - 

Thymidine - - - - 
Phenyethylamine - - - - 

Putrescine + (+) + + 
2-Aminoethanol + + + + 

2,3-Butanediol - - - - 
Glycerol + + + + 

D,L-α-Glycerol Phosphate + + + - 
Glucose-1-phosphate - - - - 
Glucose-6-phosphate + + + + 

 
“+”: Positive reaction, “(+)”: Weak positive reaction, “-“: Negative reaction 
 


