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Abstract 

Background and objective:  The automated detection of atrial activations (AAs) recorded from intracardiac elec‑
trograms (IEGMs) during atrial fibrillation (AF) is challenging considering their various amplitudes, morphologies and 
cycle length. Activation time estimation is further complicated by the constant changes in the IEGM active zones in 
complex and/or fractionated signals. We propose a new method which provides reliable automatic extraction of intra‑
cardiac AAs recorded within the pulmonary veins during AF and an accurate estimation of their local activation times.

Methods:  First, two recently developed algorithms were evaluated and optimized on 118 recordings of pulmonary 
vein IEGM taken from 35 patients undergoing ablation of persistent AF. The adaptive mathematical morphology algo‑
rithm (AMM) uses an adaptive structuring element to extract AAs based on their morphological features. The relative-
energy algorithm (Rel-En) uses short- and long-term energies to enhance and detect the AAs in the IEGM signals. 
Second, following the AA extraction, the signal amplitude was weighted using statistics of the AA sequences in order 
to reduce over- and undersensing of the algorithms. The detection capacity of our algorithms was compared with 
manually annotated activations and with two previously developed algorithms based on the Teager–Kaiser energy 
operator and the AF cycle length iteration, respectively. Finally, a method based on the barycenter was developed to 
reduce artificial variations in the activation annotations of complex IEGM signals.

Results:  The best detection was achieved using Rel-En, yielding a false negative rate of 0.76% and a false positive rate 
of only 0.12% (total error rate 0.88%) against expert annotation. The post-processing further reduced the total error 
rate of the Rel-En algorithm by 70% (yielding to a final total error rate of 0.28%).

Conclusion:  The proposed method shows reliable detection and robust temporal annotation of AAs recorded within 
pulmonary veins in AF. The method has low computational cost and high robustness for automatic detection of AAs, 
which makes it a suitable approach for online use in a procedural context.
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Background and objective
Atrial fibrillation (AF) is the most common arrhythmia in 
clinical practice. Morbidity and mortality associated with 
AF place a considerable burden on society related mostly 
to thromboembolic and hemodynamic complications. 
Catheter-based ablation has now evolved to become an 
important treatment option for many patients with AF. 
The analysis of intracardiac electrograms (IEGMs) dur-
ing ablation procedures provides important information 
in order to identify potential ablation targets and predict 
ablation outcome. More specifically, characteristics such 
as the AF cycle length (CL) of atrial activations (AAs), 
and its dynamic patterns, have been shown to help iden-
tify critical ablation targets or anticipate ablation out-
come [1–5]. Similarly, the recording of intermittent rapid 
atrial activities in the pulmonary veins (PVs) has been 
shown to identify arrhythmogenic foci that trigger AF 
[6, 7]. The analysis of PVs activity may also provide clues 
to better define ablation targets and ablation endpoint in 
chronic forms of AF [8, 9].

In order to perform analysis of the AF CL and of the 
patterns of AA times series, an effective automatic extrac-
tion algorithm is the first step needed. Various algorithms 
based on amplitude thresholds [10, 11], energy operators 
[12] or template matching [13] have been proposed, but 
automatic detection of individual activations is techni-
cally challenging when dealing with AF IEGMs exhibiting 
a large patient- and time-dependent spectrum of mor-
phologies, amplitudes and frequencies.

Another limitation is the technical difficulty of cor-
rectly estimating the local activation times (LATs) of the 
detected AAs. The constant changes in the IEGM active 
zones observed in complex and/or fractionated signals 
will induce variations in the temporal analysis of AA 
sequences. The maximum and/or minimum peaks or the 
maximum slope have been traditionally used to estimate 
LATs [14, 15]. These methods may provide unreliable or 
biased estimates of the LAT sequence, especially in the 

presence of complex or fractionated signal morphologies, 
such as in AF recordings.

We recently developed two algorithms to extract bio-
medical events in real-time/online applications [16, 17]. 
The purpose of our study is therefore to (1) evaluate these 
two approaches in order to identify an algorithm able to 
provide reliable automatic extraction of intracardiac AAs 
recorded within the pulmonary veins during AF, and (2) 
propose a robust method to estimate the LATs of the 
detected AA sequences in the presence of complex and/
or fractionated signals. We compared our methods with 
manually annotated activations and with two other pre-
viously developed algorithms based on the Teager-Kaiser 
energy operator [18] and the AF cycle length iteration 
[19], respectively.

Methods
To obtain the raw AA detections from IEGM, we applied 
two innovative algorithms: (1) a short-term event extrac-
tion algorithm named Relative-Energy (Rel-En) [16], and 
(2) a mathematical morphology approach with an adap-
tive structuring element called Adaptive Mathematical 
Morphology (AMM) [17]. Following the raw AA detec-
tion, we further used the statistics of the extracted AA 
intervals to reduce the over- and undersensing of AA 
detections. Then, we used a barycenter-based method to 
correctly estimate the LAT. Figure 1 illustrates the work-
flow used in the present study.

Electrogram dataset
The electrogram dataset consisted of 118 intracardiac 
bipolar recordings collected in 35 patients (Age [IQR]: 
61 [59–68] years old) undergoing first time ablation 
of persistent AF (sustained duration of AF 12 [7–24] 
months) in three different hospitals (CHUV, Lausanne, 
Switzerland; Inselspital, Bern, Switzerland; CHU de Bor-
deaux, Bordeaux, France). All patients provided written 

Keywords:  Biomedical signal processing, Non-linear signal processing, Atrial fibrillation, Intracardiac electrograms, 
Activation detection

Fig. 1  Block diagram of the detection method
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informed consent and the study was approved by the 
Local Human Research Ethics Committees.

The recordings were made using a 20-pole vari-
able circumferential Lasso® catheter (Biosense Web-
ster, Diamond Bar, CA) with closely spaced electrodes 
(2–6–2  mm) placed in the PVs prior to radiofrequency 
ablation. The data were obtained via the EP recording 
system (Labsystem Pro, Boston Scientific, Lowell, MA, 
for Bordeaux data; and Axiom Sensis XP®, Siemens, Ber-
lin, Germany, for Lausanne and Bern data). The bipolar 
IEGMs were recorded during the electrophysiological 
protocol at a sampling rate of 1 or 2 kHz (band-pass fil-
tered 30–300  Hz, 50  Hz notch filtered). The 118 IEGM 
segments had a mean duration of 43 ± 18 s (median 49 s; 
range 9–75 s).

In order to test the performance of the algorithms, a 
blinded clinical electrophysiology expert manually anno-
tated the exact LATs on the recordings using an in-house 
Matlab-based graphical user interface. These manual 
annotations were used as the ground truth. The data-
base was randomly distributed into a training cohort (22 
patients, 78 recordings, total IEGM duration of 3525  s, 
total number of 28,136 AAs) to optimize the algorithm, 
and a validation cohort (13 patients, 40 recordings, total 
IEGM duration of 1527 s, total number of 19,090 AAs) to 
compute detection efficiency. The two cohorts were cre-
ated patient-wise while aiming to keep a 2:1 ratio in the 
number of recordings (i.e. each cohort contains IEGM 
signals from different patients). Random patients (using 
built-in uniform random generator in Matlab) were 
assigned to the validation cohort until the number of 
recordings reached 1/3 of the total number. Clinical char-
acteristics were similar between the two cohorts and are 
presented in Table  1. The significance of any difference 

between subgroups was analysed with the Mann‐Whit-
ney U test for continuous variables, and with Fisher’s 
exact test for categorical variables.

Raw detection of atrial activations
Relative energy algorithm
The relative-energy (Rel-En) algorithm is an original 
short-term event detection algorithm proposed recently 
[16]. In this approach, illustrated in Fig. 2, the input sig-
nal is enhanced by multiplication with a signal-derived 
coefficient to allow easier and more accurate detection of 
the AA. The enhancing coefficient signal c(·) is computed 
as the ratio between the short- and long-term energies of 
the input signal x(·):

where swin and lwin represent the half-length of the short 
and long sliding windows, respectively. The windowing is 
performed using a Hamming window. While the short-
term window duration allows for the extraction of the 
AA, the long-term window duration reflects the local 
baseline behavior of the electrogram. The parameter p 
denotes the exponent. Since the AAs can be intermixed 
with complex and/or fractionated signals, small values of 
p can lead to a high number of false positives. In contrast, 
a larger p has the tendency to improve the extraction of 
the AAs when higher levels of perturbation are present, 
but this may lead to missed detections of low amplitude 
AAs. In the present study the exponent parameter p 
was set to 4, as it was shown in [16] that the detection 
error rate does not drastically change around the optimal 
parameter. Finally, the output signal is computed as:

(1)c(n) =

n+swin
i=n−swin

|x(i)|p

n+lwin
j=n−lwin

Hamming j · x j
p

Table 1  Clinical characteristics of the training and validation cohorts. Data are shown as median and interquartile range for 
continuous variable and counts for categorical variables

All
(n = 35)

Training
(n = 22)

Validation (n = 13) Training 
versus 
validation
p value

No. of IEGM recordings 118 78 40

Total number of AA 28,136 19,090 9046

Total IEGM duration (s) 5052 3525 1527

Duration of IEGM recordings (s) 42.8 [25.4–58.5] 45.2 [29.2–61.2] 38.2 [18.3–58.3] 0.19

Age (years) 61.0 [59.0–68.0] 61.5 [57.0–67.8] 61.0 [59.0–68.8] 0.79

Sex (male/female) 26/9 17/5 9/4 0.69

AF duration (years) 4.0 [1.8–6.5] 3.0 [1.1–5.8] 6.0 [4.0–10.0] 0.05

Duration of sustained AF (months) 12.0 [7.2–24.0] 12.0 [8.0–24.0] 12.0 [7.0–24.0] 0.77

LVEF (%) 55.0 [49.0–62.5] 57.5 [48.5–63.8] 55.0 [50.0–61.0] 0.95

Left atrial size (mm) 47.5 [40.8–52.3] 47.0 [43.0–49.0] 48.0 [40.0–53.0] 0.65
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AAs are detected on xRE signal using a minimum 
threshold THP ad hoc, defined as the P-th percentile of 
the amplitude distribution of xRE . The three parameters 
swin , lwin and P are signal-dependent and need to be tuned 
to achieve efficient detection. To avoid the detection of 
multiple peaks during one activation, a minimum inter-
val between two consecutive activations must be defined. 
A 70  ms interval was selected based on the shortest 
reported interval physiologically recorded in PVs [20].

Adaptive mathematical morphology algorithm
The adaptive mathematical morphology (AMM) algo-
rithm has been thoroughly presented in previous papers 
aiming at either extraction of QRS complexes from the 
surface ECG [17] or detection of AA sequences from 
intracardiac signals [21]. Briefly, the AAs are extracted 
using a structuring element (SE) which is continuously 
updated for each new AA based on the topological fea-
tures of the previous detected AA. The AMM algorithm 
consists of the following steps (Fig. 3A):

(1)	 A synthesized SE with an AA-like morphology 
is empirically defined using the IEGM at hand 
(Fig.  3B). The SE is defined by five fiducial points 
representing the onset, offset, peak, the minimum 
between the onset and the peak, and the minimum 

(2)xRE(n) = x(n) · c(n) between the peak and the offset. The amplitude of 
the synthesized SE is computed as the difference 
between the maximum and the minimum value of 
the first 500 ms of the IEGM. The duration of the 
synthesized SE is empirically chosen. In the present 
work, we will test a range of SE lengths to find the 
optimal duration for an efficient AA detection (Sec-
tion III Results).

(2)	 The IEGM is split in 200-ms non-overlapping slid-
ing windows. Using the SE, the average of the math-
ematical morphology operators top-hat and bot-
tom-hat is calculated on each 200-ms IEGM epoch 
(Eq.  3). The top-hat and bottom-hat operators are 
based on two basic morphological operation, dila-
tion and erosion, and the combined operators 
opening and closing [22]. The first 200-ms IEGM 
window is filtered using the synthesized SE, after-
wards the following windows are filtered using an 
updated SE (step 4). Figure 3C shows that each fil-
tering phase results in a feature signal xMM which 
consists in non-zero values at the times of AA and 
zero otherwise.

	 where x represents the 200-ms IEGM to which the 
mathematical morphology filtering is applied, the 

(3)xMM = x −
x ◦ SE + x · SE

2
,

Fig. 2  Block diagram (A) and illustrative example (B) of the relative energy algorithm
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symbols ∘ and ⦁ denote the opening and closing 
operation respectively.

(3)	 Following the filtering phase of each window, the 
feature signal xMM is scrutinized to extract the AAs. 
The non-zero segments are identified and processed 
as follows:

•	The most significant peak in the extracted seg-
ment is defined as the AA. To prevent false AA 
extraction, the distance between two successive 
detected AAs must be at least 70 ms (physiological 
limit).

•	Onset and offset of the newly detected AA are 
considered as the start and end of the non-zero 
segment.

•	The minimum between the onset and the signifi-
cant peak, together with the minimum between 
the significant peak and the offset are extracted for 
the SE update (step 4).

(4)	 The location indices and amplitude values of the 
five fiducial points (AA onset, offset, and peak, 
and the local minima around the onset and offset) 
extracted at step (3) are used to update the SE so 

that it best represents the actual AA morphology of 
the subject:

CurrentLocation and ExtractedLocation represent 
the location indices of the first minimum, peak, second 
minimum and offset of the current SE and the extracted 
AA, respectively. The CurrentLocation is computed as 
the distance from the fiducial point to the onset of the 
current SE, and the ExtractedLocation is computed as 
the distance from the fiducial point to the onset of the 
extracted AA (the onset of the non-zero segment). Cur-
rentAmplitude and ExtractedAmplitude represent the 
amplitude of the offset, first minimum, peak, second 
minimum and offset of the current SE and the extracted 
AA, respectively. Using NewLocation and NewAmpli-
tude, SE is updated by means of linear interpolation. 
The newly updated SE is then used for filtering of the 
next IEGM window. An α value of 0.5 was used as 

(4)

NewLocation = (1− α) · CurrentLocation

+ α · ExtractedLocation

NewAmplitude = (1− α) · CurrentAmplitude

+ α · ExtractedAmplitude

Fig. 3  A Block diagram of the AMM algorithm. B Initialization of the SE. The fiducial points of the SE are illustrated in the left panel: ○—the onset, 
□—the minimum between the onset and the main peak, *—the main peak, ◇—the minimum between  the main peak and the offset, □—the 
offset. C Mathematical morphological filtering. The feature signal represents the average of the mathematical morphology operators top-hat and 
bottom-hat calculated on each 200-ms IEGM epoch. AMM, adaptive mathematical morphology; IEGM, intracardiac electrogram, SE, structuring 
element
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learning coefficient to avoid excessive variations of SE, 
for instance in case of large AA amplitude changes.

Reduction in over‑ and undersensing of atrial activations
Due to the various morphologies of the AAs in AF and 
the beat-to-beat variability in morphology and ampli-
tude, a substantial amount of activations may be missed, 
or noise, artifacts or far-field components may be con-
sidered as activations. We therefore aimed to design a 
post-processing method able to reduce the oversens-
ing, undersensing, and total error rate of the detection 
algorithms. To this end, the signal amplitude before and 
after a detected activation is weighted in order to spot a 
missed or false detection according to the probability that 
it represents a true activation. Two weight functions, one 
linear ( wl ) and one non-linear ( wn ), are computed based 
on the statistical information extracted from the raw AA 
detections:

where meanAA and σAA represent the mean and stand-
ard deviation of the AA intervals, respectively. P70 and 
PmeanAA represent the weighting factor at time t = 70 ms 
and t = meanAA ms.

The linear weight function wl is a ramp signal which 
starts from the value P70 at time t = 70 ms and reaches 
the value PmeanAA at t = meanAA ms. The non-linear 
weight function wn is a truncated Gaussian distribution 
of mean meanAA and standard deviation σAA , centered 
at t = meanAA ms and enlarged by a factor E . For both 
weight functions, the null value during the first 70  ms 
ensures that no new activation is detected during this 
interval (physiological limit).

The post-processing is performed in two steps: false 
detections are removed first, and then, missed AAs are 
screened.

Correction of false atrial activations
As a first step and for each new AA detection, the two 
weight functions (Eq.  5) are computed for the preced-
ing and succeeding interval around the current activa-
tion (LAT0). The amplitude of the previous and the next 
activation around the current activation is further multi-
plied by the weight functions. For the Rel-En algorithm, 
a detection is considered false and will be removed if the 
amplitude of the weighted activation is smaller than the 
threshold THP . For the AMM algorithm, the weighted 
signal is reprocessed by the detection algorithm and an 

(5)

wl(k) =

�

0, 0 ≤ k ≤ 70
PmeanAA−P70
meanAA−70 (k − 70)+ P70, k ≥ 70

wn(k) =











0, 0 ≤ k < 70

E PmeanAA
σAA

exp
�

−
(k−meanAA)2

2σ 2
AA

�

, 70 ≤ k ≤ meanAA

PmeanAA, k ≥ meanAA

AA detected on the original signal is considered false if it 
is no longer present on the weighted signal.

An example of an artifact falsely detected as an AA 
with the Rel-En algorithm, and adequately removed 
using the weight functions is shown in Fig. 4. The weight 
functions (Eq.  5) are computed for the preceding inter-
val [LAT−1, LAT0] and succeeding interval [LAT0, LAT1] 
around the activation detected at time LAT0 . A value of 
these functions greater than 1 will result in an amplifica-
tion of the signal, while a value smaller than 1 will result 
in a dampening of the signal. As shown in Fig. 4, a shorter 
time interval between LAT0 and LAT1 compared to the 
mean value estimated on all raw AA-intervals will result 
in a decrease in the amplitude by the weight functions at 
LAT1 which will fall below the detection threshold THP . 
It will therefore be considered as a false detection and 
will be removed from the AA detections sequence.

Fig. 4  Correction of false AAs for the Rel-En algorithm. Three 
activations are detected on this time window (dotted vertical lines). 
The first two are true detections, the third one is an artifact. The top 
panel shows the IEGM. The weight functions computed around the 
processed activation LAT0 for the next and previous intervals are 
presented on the second panel. The linear and non-linear functions 
are displayed in red and blue, respectively. The effect of these weights 
on the output signal (in black) is shown on the third panel (red and 
blue for the linear and non-linear functions, respectively). Due to the 
shorter time interval (103 ms) between LAT0 and LAT1 compared 
to the mean value (219 ms), the amplitude at LAT1 is decreased by 
the weight functions and falls below the detection threshold. It is 
therefore considered as a false detection and removed from the AA 
sequence. The amplitude at LAT−1 is not reduced due to the large 
interval (271 ms) and this activation is kept as a correct detection. The 
effect on the activations LAT−1 and LAT1 is shown in detail on the last 
panel. AA, atrial activation; IEGM, intracardiac electrogram; LAT, local 
activation time; Rel-En, relative energy algorithm
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Correction of missed atrial activations
As a second step, the interval between two consecutive 
activations at times LATi and LATi+1 is scrutinized to 
identify possible missed AA. The amplitude of the signal 
between the two activations is multiplied by the weight 
functions computed for the interval [LATi, LATi+1]:

where x is the signal between the two activations, 
wl|n denotes the linear and non-linear weight func-
tion, respectively, and TR(wl|n(k)) represents the time-
reversed version of wl|n(k) . For the Rel-En algorithm, an 
activation is considered as missed at the time LATi + k 
if the value of xweighted(k) is greater than the threshold 
THP . For the AMM algorithm, the weighted signal is 
reprocessed by the detection algorithm to spot a possible 
missed activation.

An example of a detection missed by the Rel-En algo-
rithm and corrected using the weight functions is shown 
in Fig.  5. After a first pass by the Rel-En algorithm, the 
signal is multiplied by the combined linear and non-
linear weight functions. A value of the combined weight 
functions above 1 will result in amplification of the sig-
nal, while a value below 1 will result in dampening of 
the signal. As shown in Fig. 5, the first interval [LAT−1, 
LAT0] is longer than the mean value of the AA intervals 
(231  ms). This results in an amplification of the central 
part of the interval. The weighted version may hence 
cross the detection threshold, unmasking a missed acti-
vation. The newly detected activation will then be added 
to the AA sequence.

Comparison with existing algorithms
Our method was compared with two published algo-
rithms on the validation cohort. Firstly, we applied the 
Cycle Length Iteration algorithm proposed by Ng et  al. 
[19]. This method searches the peaks iteratively in the 
EGMs based on their amplitude. An ad-hoc criterion is 
proposed to determine the end of the detection. A post-
processing step based on the AA intervals allows reduc-
ing the number of missed detections. Secondly, we used 
the Non Linear Energy Operator algorithm proposed by 
Nguyen et al.  [18]. This method uses Teager operator to 
compute the energy of the signal. An adaptive threshold 
is applied on this energy signal to delimit the active zones 
of the signal corresponding to the AAs.

Annotation correction
The presence of multiple peaks or fractionated signals on 
the IEGM may induce fluctuations in the timings of the 

(6)
xweighted(k) = Wl|n(k) · x(LATi + k),

Wl|n(k) = wl|n(k) · TR(wl|n(k)),

AA detection. The temporal analysis of the AAs sequence 
is affected by these artificial variations. In order to reduce 
this effect, we propose a beat-by-beat correction of the 
AA annotation based on the following steps:

•	 Extract a portion of the signal around the AA
•	 Compute the envelope of the absolute value of the 

signal
•	 Reject low amplitude tails of the activation with a 

cutoff on the envelope
•	 Define the corrected annotation as the barycenter of 

the power of the remaining signal

The corrected annotation is computed on the squared 
signal, rather than on the signal itself, to enhance the 
influence of high amplitude peaks.

Since the exact times of the annotations are unknown, 
we use the variance of the AAs sequence to evaluate the 
result of the correction. Indeed, if we assume that the 
fluctuations of the annotations are independent of the 
AA, we have:

Fig. 5  Correction of missed AAs for the Rel-En algorithm. Three 
activations are detected on this time window (dotted vertical lines). 
The top panel shows the IEGM. Second panel: combined weight 
functions Wl|n . (linear in red, non-linear in blue) Third panel: effect 
on the output signal (in black) of the linear (red) and non-linear 
(blue) weights for each interval. The first interval is long (432 ms) 
compared to the mean value (231 ms) of the AA intervals. The central 
part of the interval is then amplified and the weighted amplitude is 
above the detection threshold (horizontal dashed lines), revealing 
a missed activation. The second interval is short (185 ms), the signal 
is not amplified and no missed activation is detected. The last panel 
displays the missed activation in detail. AA, atrial activation; Rel-En, 
relative energy algorithm
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where LAT (·) is the sequence of AA times originally 
detected with the Rel-En or AMM algorithm, LAT0(·) is 
the sequence of the true AA times, et(·) the sequence of 
the errors due to imprecisions in the estimation of the 
AA times and e(·) the sequence regrouping any other 
errors. Since the variance is positive, a reduction in the 
variance of the LAT sequence, var(LAT ) , after the cor-
rection process corresponds to a reduction in the vari-
ance of et sequence, i.e. the error due to the estimation 
of AA times. Due to the inherent non-stationarity of AF, 
the variance of the AA intervals is expected to be large. 
Our method corrects the annotations on a beat-to-beat 
basis, without considering the other activations. There-
fore, with the hypothesis that the imprecisions of the 
detections are uncorrelated to the true variations of the 
AA sequences, the measured decrease in variance in the 
AA sequence indicates a reduction of this imprecision.

Results
Raw detection
Raw detection tuning
The Rel-En and AMM algorithms were optimized on the 
training cohort. The performances of the algorithms were 
assessed using the false negative/positive rates (num-
ber of missed/false detections divided by the number of 
activations) and the total detection error rate (the sum 
of false positive and negative rates). The impact of the 

(7)
LAT (i) = LAT0(i)+ et(i)+ e(i),

var(LAT ) = var(LAT0)+ var(et)+ var(e),

parameters of the two algorithms on the detection error 
rates is displayed in Fig. 6.

Relative-energy algorithm. For the Rel-En algorithm, we 
simultaneously examined (grid search) the small and long 
window durations and the percentile value P. The small 
window swin was tested from 20 to 120 ms, the long win-
dow lwin was tested from 100 to 1000 ms and the percen-
tile value P was tested from the 6th to 13th percentiles. 
The best parameters were defined as the ones yielding the 
fewest detection errors (i.e. false negative and false posi-
tive) on our training cohort.

Figure  6a–c show that the best result was obtained 
using swin = 100 ms , lwin = 400 ms and P = 11th per-
centile. As shown in Fig. 6b the long window parameter 
lwin has the largest influence on the total error rate in the 
vicinity of the optimal value for the Rel-En algorithm.

Adaptive mathematical morphology algorithm. Fig-
ure  6d shows the effect of the duration of the synthe-
tized SE on the detection error rate. The length of SE was 
tested from 10 to 200 ms and the optimal duration giving 
the fewest detection errors was 20 ms.

Raw detection: comparison of the algorithms
Using the optimal parameters derived from the train-
ing cohort, we applied both algorithms on our valida-
tion cohort and computed the detection errors. The best 
detection was achieved using the Rel-En algorithm, yield-
ing a false negative rate of 0.76% and a false positive rate 
of only 0.12%. The total error rate was 0.88%. The AMM 
algorithm yielded a poorer detection, achieving a false 
negative rate of 2.65% and a false positive rate of 0.84%. 

Fig. 6  Detection error rates with respect to the parameters of the relative energy algorithm (a–c), and the adaptive mathematical morphology 
algorithm (d). The blue curve shows the false positive rate, the red curve shows the false negative rate. The total error rate is displayed in black
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The total error rate was 3.49%. Results are summarized 
in Table 2.

Reduction in over‑ and undersensing
After raw detection, post processing of AAs sequences 
was performed in order to reduce the detection errors. 
Parameters defining the weight functions were optimized 
on the training cohort for the results provided by both 
detection algorithms.

For the linear weight, the value at 70  ms ( P70 ) was 
tested from 0 to 0.4 and the value at the mean value of 
the AA sequence ( PmeanAA ) was tested from 1 to 3. For 
the nonlinear weight, the max weight value ( PmeanAA ) 
was tested from 1 to 3 and the enlargement parameter E 
was tested from 1 to 3.

Rel‑En algorithm
For the Rel-En algorithm, the combinations of param-
eters providing the largest reduction in the detection 
errors were P70 = 0 and PmeanAA = 2.1 for the linear 
weight, and E = 1.25 and PmeanAA = 3 for the non-linear 
weight.

Table 3 summarizes the results achieved on the valida-
tion cohort using optimal parameters for both linear and 
non-linear weight functions. The linear weight provided 
a reduction of almost 50% in the false detection rate and 
40% in the missed detection rate. The non-linear function 
yielded an even better improvement with an almost 70% 
reduction in both detection rates. The final total error 
rate using the non-linear weight fell to only 0.28%.

AMM algorithm
For the AMM algorithm, the combinations of parameters 
providing the largest reduction in the detection errors 

were P70 = 0.4 and PmeanAA = 2.2 for the linear weight, 
and E = 1.25 and PmeanAA = 3 for the non-linear weight.

Results achieved on the validation cohort using opti-
mal parameters for both linear and non-linear weight 
shapes are summarized in Table 3. Both linear and non-
linear weight functions increased the false detection 
rate while decreasing the missed detection rate of the 
algorithm. This resulted in a decreased total error rate 
in both cases. The linear weight performed slightly bet-
ter than the non-linear weight. The reduction in total 
error rate obtained by the linear weight for the AMM 
was 5.2% compared to the raw algorithm.

Comparison with existing algorithms
Two existing detection algorithms (CLI and NLEO) 
were applied on the validation cohort. The perfor-
mances of the Rel-En algorithm after reduction of 
over- and under-sensing were compared to the those 
obtained with these two algorithms. The results are 
summarized in Table 4. The NLEO algorithm achieved 
a total error rate of 3.01% and the CLI algorithm 
achieved 3.63%. Both algorithms yielded higher rates of 

Table 2  Performances of the Rel-En and AMM algorithms on the 
training and validation cohorts. The Rel-En algorithm performed 
better in the two cohorts both in terms of false negative and 
false positive rate

The bold typo is used to highlight the final error, the other errors are partial 
errors

Rel-En AMM

Training cohort
 False negative 0.41% 1.74%

 False positive 0.27% 2.40%

Total error rate 0.67% 4.14%
Validation cohort

 False negative 0.76% 2.65%

 False positive 0.12% 0.84%

Total error rate 0.88% 3.49%

Table 3  Reduction in over- and undersensing. Detection 
optimization for the Rel-En and AMM algorithms using both 
linear and non-linear weight functions. The values in brackets 
refer to the relative variations in error rates with the optimization

False negative
(% change with 
optimization)

False positive
(% change with 
optimization)

Total error
(% change 
with 
optimization)

Raw Rel-En 0.76% 0.12% 0.88%

 Linear 0.40% (− 47.4%) 0.07% (− 37.9%) 0.47% (− 46.1%)

 Non-linear 0.24% (− 68.4%) 0.04% (− 70.6%) 0.28% (− 68.7%)

Raw AMM 2.65% 0.84% 3.49%

 Linear 2.14% (− 19.2%) 1.17% (+ 39.3%) 3.31% (− 5.2%)

 Non-linear 2.25% (− 15.1%) 1.08% (+ 28.6%) 3.33% (− 4.6%)

Table 4  Comparison results with existing algorithms. The Rel-En 
algorithm performed better, both in terms of false positive and 
false negative rates on the validation cohort

*p-value < 0.05 Rel-En versus CLI and Rel-En versus NLEO using Wilcoxon rank-
sum test

The bold typo is used to highlight the final error, the other errors are partial 
errors

CLI NLEO Rel-En

False negative 0.83% 1.77% 0.24%*

False positive 2.80% 1.24% 0.04%*

Total error rate 3.63% 3.01% 0.28%*
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false positive and false negative detection compared to 
the Rel-En algorithm (p value < 0.05).

Annotation correction
In order to reduce the artificial variations in timings of 
the AA detection, a correction of these annotations was 
implemented on the optimized Rel-En algorithm. Fig-
ure 7 shows an example of the correction process in the 
case of fractionated signals (a) and in the presence of 
multiple peaks (b). The green dots represent the origi-
nally detected AAs, whereas the corrected annotations 
are displayed by red dots. The new annotations are less 
dependent on the shapes of the AAs, which lessens 

the artificially-induced variability in the AA-intervals 
sequence.

On the validation cohort, a reduction of 5.4 ± 7.8% in 
the variance of the corrected AA-interval sequence was 
obtained compared to the original time series obtained 
by the Rel-En algorithm. In 17 records (42.5%), the reduc-
tion in the artificial variation was greater than 5%. In a 
single record, the correction process led to the opposite 
outcome, and resulted in an increase in variance greater 
than 5%. A histogram of the relative changes in variance 
is shown in Fig.  8a. The relative and absolute variance 
changes of each recording are displayed with respect to 
the original AAs variance of the recording on panels (b) 

Fig. 7  Examples of fractionated signals (a) and multiple peaks (b). The envelope of the signal is displayed in red. The detected atrial activations 
and the corresponding corrected annotations are represented by the green and red dots, respectively. Note on panel (a) that the peak annotation 
creates an artificial “long-short-long” sequence, while the correct sequence is actually a “short-long-short” one (black arrows)

Fig. 8  Variance changes resulting from the annotation corrections. The histogram of the relative variance changes is shown on panel (a). The 
absolute and relative changes are displayed with respect to the AA sequence variance on panels (b) and (c), respectively. Despite fairly large 
absolute variance changes, the relative changes in recordings with large AA variance were more limited. AA, atrial activation
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and (c), respectively. Note that the recordings with a large 
variance display a small relative change even if the corre-
sponding absolute change is large.

Discussion
The present study proposes a novel iterative approach to 
automatically detect AAs and provide accurate CL esti-
mations from bipolar IEGM recorded during persistent 
AF. The method is based on the following steps (illus-
trated in Fig. 1): (1) raw detection of AA complexes using 
a low-complexity algorithm recently developed by our 
group for the automatic extraction of events from bio-
medical signals; (2) correction for over- and under-sens-
ing of AA detections using a novel processing technique 
consisting in a statistical-based weighting of the signal 
amplitude around each raw AA detection; (3) correction 
for the artificial variations in beat-to-beat CL estimations 
using a method based on the barycenter of the power of 
the AAs.

Our study shows that the proposed 3-step method is 
efficient for automatically detecting AAs and provides 
accurate beat-to-beat CL estimations on AF electrograms 
with complex activations and fractionation. Consider-
ing the marginal error rate achieved (0.28%), our method 
may be used for the automatic annotation of AAs on 
large database, allowing a huge time-saving compared to 
a manual verification. Furthermore, the low complexity 
of the signal processing techniques makes the proposed 
approach suitable for use in real-time/online settings. 
The Rel-En can be computed with a delay related to the 
length of the long-term window (400  ms) and the sta-
tistics used during the post-processing step could be 
updated in a buffer or computed along a sliding window.

The relative timings and morphologies of the activa-
tion patterns during AF are constantly changing which 
precludes the use of automated detection of individual 
AAs. Various methods have been previously proposed 
to automatically detect AAs from electrograms in AF. 
Threshold-based detection algorithms [10, 11], will 
invariably be prone to over- and undersensing due to the 
range of signal morphologies and amplitudes in AF. Ng 
et al. [19] introduced a new algorithm which uses a mean 
and median CL convergence criterion to detect atrial 
complexes. While the CL-based method may have advan-
tages for IEGM with large beat-to-beat variations in CL, 
a threshold-based approach would be more appropriate 
for variable AA amplitudes. The Teager-Kaiser energy 
operator [12, 23], was proposed to detect abrupt changes 
in the signal amplitude and detect high-frequency events. 
This method is however sensitive to fractionation. More 
robust methods such as template matching [13] or wave-
let transform have been proposed to deal with contami-
nated signals. However, the problem remains partially 

unsolved when dealing with signals with a large patient- 
and time-dependent spectrum of shapes, amplitudes and 
frequencies as is the case for intracardiac recordings of 
AF. Compared to these methods, our iterative approach 
has some advantages mainly due to the fact that the 
detection algorithms can be easily tailored for robust 
detection even for IEGMs with significant beat-to-beat 
variation both in CL and in AA morphology. Moreover, 
our detection algorithms require only a limited number 
of parameters to be optimized, and are easy to implement 
and computationally uncostly as demonstrated by Orlan-
dic et  al. [24]. In their study, a real-time ECG R-peak 
detection algorithm based on Rel-En produced compara-
ble accuracy results with around one third less memory 
consumption compared to three state-of-the-art meth-
ods. The two window durations of the Rel-En algorithm 
can be intuitively selected based on the physiological 
constraints of the signals at hand. The Rel-En algorithm 
achieved the best performance for an optimal short-term 
and long-term window of 100  ms and 400  ms, respec-
tively, which fits with the physiological constraints of 
the AA complexes in persistent AF. Moreover, due to the 
elementwise multiplication of the coefficient signal with 
the signal at hand, the algorithm is robust against spuri-
ous peaks as in the case of double-peak or fractionated 
activations. The AMM algorithm has been used in sev-
eral previous studies and has already shown good results, 
especially in the detection of QRS complexes in ECG 
recordings. However, the variety of shapes in the intra-
cardiac recordings alongside with the presence of impul-
sive and high frequency noise impair the performances 
of the algorithm. On the other hand, Rel-En is a recently 
developed algorithm aiming to enhance the events of 
interest in different types of physiological recordings, 
such as EEGs, PPG, etc. The high consistency shown by 
Rel-En in the automatic detection of activations against 
manually marked activations demonstrates the potential 
of our algorithm for the automatic detection of AAs dur-
ing persistent AF. This has been confirmed by comparing 
the performances of our detection with two published 
algorithms. The Rel-En obtained superior results both in 
terms of false negative and false positive detection on the 
same set of recordings.

The Rel-En and AMM detection algorithms both 
showed significantly higher false negative than false posi-
tive rates. This is likely related to the high heterogeneity 
of AA morphology in persistent AF. Although the origi-
nal algorithms yielded few false detections or missed 
activations, we further attempted to reduce the under-
sensing and oversensing. The proposed novel post-pro-
cessing approach corrected almost all missed activations 
or false detections. The high correction efficiency may 
be explained by the fact that the approach is tailored to 
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the processed IEGM. The two weight functions used to 
enhance the signal before and after each raw detected 
activation are computed using the mean value of the raw 
AA intervals. While using contextual information ena-
bles high correction efficiency, adequate recording length 
is needed for accurate estimation of mean CL. Recently, 
Ng et  al. [19] also showed that the undersensing, over-
sensing and total error rate of their mean CL-based 
detection algorithm reached a stabilized level at an IEGM 
duration > 10 s.

Importantly, alongside a high sensitivity and specific-
ity, the accurate estimation of the LATs is also a desired 
feature of the detection algorithms. The barycenter 
approach [25, 26], was proposed as a robust alternative 
to the classical peak or maximum slope annotation of the 
LAT. The main drawback of the barycenter approach is 
the estimation of the onset and offset of the activation for 
the barycenter determination. In the present study, we 
circumvented this barycenter-related issue by focusing 
on large amplitude portion of the activation, considering 
that the tails (or low amplitude parts) of the activation 
will only have a small influence in the LAT computa-
tion. This aspect was even reinforced by working with the 
squared envelope of the signal.

Limitations
Our study may be limited by the size of the study popula-
tion and by the fact that the detection approach was opti-
mized and validated on a multi-center cohort consisting 
only of IEGMs recorded from the PVs. Since IEGM char-
acteristics (including amplitude, fractionation, activation 
morphology) may vary depending on the structural and 
electric complexity of the underlying myocardium [27], 
our findings may not necessarily apply to highly frag-
mented or continuous signals recorded in the atria. Our 
database however includes electrograms of varied com-
plex activation and morphological patterns, with het-
erogeneous signal amplitude and fractionation, but still 
with clearly present isoline. Furthermore, we also showed 
that variations in the algorithm parameters outside of the 
optimal values did not affect significantly the detection 
performance. Finally, a further limitation may relate to 
the fact that single expert annotation was used as ground 
truth.

Conclusion
In the present study we propose a novel iterative 
approach to automatically detect atrial activations and 
provide accurate CL estimations from bipolar IEGMs 
recorded during persistent AF. By providing both a reli-
able detection and a robust temporal annotation of AAs, 
the added value of our proposed method resides in the 
fact that it addresses two main limitations encountered in 

the temporal analysis of AF activations. Considering the 
marginal error rate achieved and the low complexity of 
the signal processing technique, our proposed method 
may be used in real-time settings for the automatic anno-
tation of AA on large databases.
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