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Abstract. We show that the modal µ-calculus over GL collapses to the
modal fragment by showing that the fixpoint formula is reached after two
iterations and answer to a question posed by van Benthem in [vBe06].
Further, we introduce the modal µ

∼-calculus by allowing fixpoint con-
structors for any formula where the fixpoint variable appears guarded but
not necessarily positive and show that this calculus over GL collapses to
the modal fragment, too. The latter result allows us a new proof of the
de Jongh, Sambin Theorem and provides a simple algorithm to construct
the fixpoint formula.
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1 Introduction

The modal µ-calculus is an extension of propositional modal logic, with least
and greatest fixpoint operators. The term “µ-calculus” and the idea of extending
modal logic with fixpoints appeared for the first time in the paper of Scott and
De Bakker [SB69] and was further developed by others. Nowadays, the term
“modal µ-calculus” stands for the formal system introduced by Kozen [Koz83].
The standard semantics of the modal µ-calculus is given by transition systems.
As usual, formulae are interpreted as subsets of a system, the set of states where
the property expressed by the formula holds. Many natural properties such as
“there is an infinite path” can be expressed by a modal µ-formula. Indeed, it is
a powerful logic of programs subsuming dynamic and temporal logics like PDL,
PLTL, CTL and CTL∗. We refer to Bradfield and Stirling’s tutorial article [BS01]
or Stirling’s book [Sti01] for a thorough introduction to this system.

Gödel-Löb logic, GL, is used to investigate what arithmetical theories can
express in a restricted language about their provability predicates. As a modal
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logic, provability logic has been studied since the early seventies, and has had im-
portant applications in the foundations of mathematics. Beside the arithmetical
interpretation there is also a semantics given, as for almost all modal logics, by
transition systems. The class of all transitive and upward well-founded systems
forms a complete semantics for GL.

Fixpoints and fixpoint theorems play an important role in GL. The most
famous one, the existence of a fixpoint for guarded formulae was proved by de
Jongh and Sambin independently (c.f., [Smo85]). Even though it is formulated
and proved by strictly modal methods, the fixpoint theorem still has great arith-
metical significance. The uniqueness of the fixpoint was proved later by Bernardi,
de Jongh and Sambin independently (c.f., [Smo85]).

Since the modal µ-calculus is a general framework to study fixpoints in modal
logic, studying the modal µ-calculus over GL is a promising work. This has been
done by van Benthem in [vBe06] and Visser in [Vis05]. Both authors establish, by
using the de Jongh, Sambin fixpoint theorem, that the modal µ-calculus over GL

collapses to its modal fragment. But since they use the already known fixpoint
theorem in order to establish this collapse in [vBe06] van Benthem writes:

“Our . . . analysis does not explain why provability fixed-points are
explicitly definable in the modal base language. Indeed, the general rea-
son seems unknown.”

In this paper we answer this question. More precisely, we prove the collapse of
the modal µ-calculus over GL without using the de Jongh, Sambin Theorem by
showing that fixpoints are reached after two iterations of well-named fixpoint
formulae.

Fixpoint theorems in GL hold also for modal formulae where the variable
appears guarded but not necessarily positively and, from this point of view,
this first result is not completely satisfactory since modal µ-calculus allows fix-
point constructors only for syntactically positive formulae. Therefore, we also
introduce the modal µ∼-calculus which allows fixpoint constructors for formu-
lae where the fixpoint variable appears guarded. As can be done also for the
standard µ-calculus we define the semantics by way of games, in this case only
over transitive and upward well-founded transition systems and, by using game-
theoretical, we show that the modal µ∼-calculus collapses to the modal fragment
by providing an explicit syntactical translation of the modal µ∼-calculus into GL

which preserves logical equivalence. As a corollary of the collapse, we obtain a
new version of the de Jongh, Sambin Fixpoint Theorem with a simple algorithm
which shows how the fixpoint can be computed. In this sense we give an answer
to a generalisation of van Benthem’s question. Summing up, the modal µ∼-
calculus allows us to apply techniques similar as those known from the standard
µ-calculus to GL and could be regarded as a starting point for further studies in
this direction.

Both the collapse of the modal µ-calculus over GL and the one of the µ∼-
calculus over the same class of models are proved by using techniques and results
from [AF∞].
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In the next section we repeat the preliminaries and some results which are
already known. In Section 3 we analyse the modal µ-calculus over GL and show
that it collapses to the modal fragment. In the last section we introduce the
modal µ∼-calculus and show a collapse to the modal fragment. The result is
then used to provide a new proof of the uniqueness theorem of Bernardi, de
Jongh and Sambin and of the existence theorem of de Jongh, Sambin. For the
last one we also give a simple algorithm which shows how the fixpoint can be
computed.

2 Preliminaries

2.1 Gödel-Löb Logic GL

We start from an infinite countable set Prop of propositional variables. Then the
collection LGL of GL-formulae is given by:

ϕ ::= p | ∼p | ⊤ | ⊥ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ♦ϕ | �ϕ

where p ∈ Prop. If all propositional variables occurring in ϕ are in P ⊆ Prop,
we write ϕ ∈ LGL(P). If ψ is a subformula of ϕ, we write ψ ≤ ϕ. We write
ψ < ϕ when ψ is a proper subformula. sub(ϕ) is the set of all subformulae of ϕ.
The formula ¬ϕ is defined by using de Morgan dualities for boolean connectives
and the modal dualities for ♦ and � and the law of double negation. As usual,
we introduce implication ϕ → ψ as ¬ϕ ∨ ψ and equivalence ϕ ↔ ψ as (ϕ →
ψ)∧ (ϕ→ ψ). We say that p ∈ Prop is guarded in ϕ if p ≤ ϕ and all occurrences
of p are in the scope of a modal operator.

The axioms and inference rules below give a deduction system for GL. As
usual we write GL ⊢ ϕ if there is a derivation of ϕ in the system presented
below.

Axioms: All classical propositional tautologies, the Distribution Axiom from
modal logic

(�(α→ β) ∧�α)→ �β

and the Löb Axiom

�(�α→ α)→ �α.

Inference Rules: Beside the classical Modus Ponens

α α→ β

β

we have the Necessitation Rule
α

�α
.

As for all modal logics the semantics of GL is given by transition systems.
A transition system T is of the form (S,→T , λT ) where S is a set of states,
→T is a binary relation on S called the accessibility relation and λ : Prop →
℘(S) is a valuation for all propositional variables. A transition system T with a
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distinguished state s is called a pointed transition system and denoted by (T , s).
T denotes the class of all pointed transition systems. The accessibility relation
is called upward well-founded if there is no infinite chain of the form

s0 →
T s1 →

T s2 → . . . .

By T
wft we denote the subclass of pointed transition systems such that the

accessibility relation is transitive and upward well-founded.
Given a transition system T , the denotation of ϕ in T , ‖ϕ‖T , that is, the

set of states satisfying a formula ϕ is defined inductively on the structure of ϕ.
For all transition systems we set

– ‖p‖T = λ(p) and ‖ ∼p‖T = S \ λ(p) for all p ∈ Prop,
– ‖α ∧ β‖T = ‖α‖T ∩ ‖β‖T ,
– ‖α ∨ β‖T = ‖α‖T ∪ ‖β‖T ,
– ‖�α‖T = {s ∈ S | ∀t((s→T t)⇒ t ∈ ‖α‖T )}, and
– ‖♦α‖T = {s ∈ S | ∃t((s→T t) ∧ t ∈ ‖α‖T )}.

We say that a pointed transition system (T , s) is a model of a GL-formula if and
only if s ∈ ‖ϕ‖T . If all pointed transition systems (T , s) ∈ T

wft are a model of
ϕ then we write GL |= ϕ. A proof of the next theorem can be found in [Boo93].

Theorem 1. For all GL-formulae ϕ we have that

GL ⊢ ϕ if and only if GL |= ϕ.

2.2 The modal µ-calculus

The language of the modal µ-calculus results by adding greatest and least fixpoint
operators to propositional modal logic. More precisely, given an infinite countable
set Prop of propositional variables, the collection Lµ of modal µ-formulae (or
simply µ-formulae) is defined as follows:

ϕ ::= p | ∼p | ⊤ | ⊥ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ♦ϕ | �ϕ | µx.ϕ | νx.ϕ

where p, x ∈ Prop and x occurs only positively in ηx.ϕ (η ∈ {ν, µ}), that is, ∼x
is not a subformula of ϕ.

The fixpoint operators µ and ν can syntactically be viewed as quantifiers.
Therefore we use the standard terminology and notations as for quantifiers and,
for instance, free(ϕ) denotes the set of all propositional variables occurring free
in ϕ and bound(ϕ) those occurring bound. Further, we define var(ϕ) = free(ϕ)∪
bound(ϕ). If ψ is a subformula of ϕ, we write ψ ≤ ϕ. We write ψ < ϕ when
ψ is a proper subformula. sub(ϕ) is the set of all subformulae of ϕ. We write
ϕ ∈ Lµ(P) if it holds that free(ϕ) ⊆ P, with P ⊆ Prop.

The negation ¬ϕ of a µ-formula ϕ is defined inductively as for GL-formulae
and, further, for µ and ν we use

¬µx.ϕ(x) ≡ νx.¬ϕ(x)[x/¬x] and ¬νx.ϕ(x) ≡ µx.¬ϕ(x)[x/¬x].



5

Given a µ-formula ϕ, for all sets of bound variables X ⊆ bound(ϕ), the formula
ϕfree(X) is obtained from ϕ by eliminating all fixpoint operators binding a variable
x ∈ X but leaving the previously bound variables x as a free occurrences. When
X = bound(ϕ), sometimes we simply write ϕfree.

Let ϕ ∈ Lµ(P). An alternating µ-chain in ϕ of length k is a sequence

ϕ ≥ µx0.ψ0 > νx1.ψ1 > · · · > µ/νk−1.ψk−1

where for every i < k − 1 the variable xi is free in every ψ such that ψi ≥
ψ ≥ ψi+1. The maximum length of an alternating µ-chain in ϕ is denoted by
maxµ(ϕ). ν-chains and maxν(ϕ) are defined analogously. The alternation depth

of a µ-formula ϕ, denoted by ad(ϕ), is the maximum of maxµ(ϕ) and maxν(ϕ).
If ϕ is a purely modal formula, we set ad(ϕ) = 0.

The axioms and inference rules below define the deduction system Koz. As
usual we write Koz ⊢ ϕ if there is a derivation of ϕ in the system presented
below.

Axioms: All classical propositional tautologies and the Distribution Axiom

from modal logic and the fixpoint axioms

ηx.ϕ(x) ↔ ϕ(ηx.ϕ(x)), η ∈ {µ, ν}.

Inference Rules: Beside the classical Modus Ponens and the Necessitation Rule

we have the Induction Rule
ϕ→ α[x/ϕ]

ϕ→ νx.α
.

It can be shown that the fixpoint axioms can be replaced by the following weaker
axioms:

νx.ϕ(x)→ ϕ(νx.ϕ(x)) and µx.ϕ(x)← ϕ(µx.ϕ(x)).

We say that a variable x ∈ bound(ϕ) is well-bound in ϕ if no two distinct
occurrences of fixpoint operators in ϕ bind x, and x occurs only once in ϕ. A
propositional variable p is guarded in a formula ϕ ∈ Lµ if every occurrence of p in
ϕ is in the scope of a modal operator. A formula ϕ of Lµ is said to be well-named

if every x ∈ bound(ϕ) is guarded and well-bounded in ϕ. For all well-named ϕ,
if x is bound in ϕ then there is exactly one subformula occurrence ηx.δ ≤ ϕ
which bounds x, this formula is denoted by ϕx. In Lemma 4 we will see that any
µ-formula ϕ is equivalent to a well-named formula wn(ϕ), therefore, if nothing
else mentioned, we assume that all formulae are well-named.

Let ϕ(x) be a µ-formula. If x is free and occurs only positively in ϕ, then we
define ϕn(x) for all n inductively such that ϕ1(x) = ϕ(x) and such that

ϕk+1(x) ≡ ϕ[x/ϕk(x)].

ϕn(⊤) and ϕn(⊥) are obtained by substituting x with ⊤ or ⊥ respectively.
The rank, rank(ϕ), of a formula ϕ is an ordinal number defined inductively

as follows:

– rank(p) = rank(∼ p) = 1
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– rank(△ α) = rank(α) + 1 where △∈ {�,♦}
– rank(α ◦ β) = max{rank(α), rank(β)} + 1 where ◦ ∈ {∧,∨}
– rank(ηx.α) = sup{rank(αn(x)) + 1 ; n ∈ N} where η ∈ {ν, µ}.

In the joint work with Krähenbühl [AK∞] (see also [Alb∞]) one of the authors
shows that the algorithm for rank terminates. Further, it is an easy exercise to
show that for all formulae ϕ we have that rank(ϕ) = rank(¬ϕ). The next lemma
shows that well-naming iterated formulae which are already well-named does
not affect the rank.

Lemma 2 For all well-named formulae ϕ such that x appears only positively

and all n ∈ N we have that

rank(ϕn(⊤)) = rank(wn(ϕn(⊤))).

Similarly for ⊥.

Proof. The result follows from the fact that since ϕ is well-named the equivalent
well-named formula is given by simply renaming bound variables in ϕn(⊥). This
can be verified by showing by induction on n that there are no free occurrences
of a variable x in ϕn(⊤) which becomes bound in ϕ(ϕn(⊤)). ⊣

As for GL the semantics of modal µ-calculus is given by transition systems.
In order to define the denotation to fixpoint formulae let λ be a valuation, p a
propositional variable and S′ a subset of states S; we set for all propositional
variables p′

λ[p 7→ S′](p′) =

{

S′ if p′ = p,

λ(p′) otherwise.

Given a transition system T = (S,→T , λT ), then T [p 7→ S′] denotes the tran-
sition system (S,→T , λT [p 7→ S′]). Given a transition system T , the denotation

of ϕ in T , ‖ϕ‖T , that is, the set of states satisfying a formula ϕ is defined
inductively on the structure of ϕ as it was for GL and, in addition we set

– ‖νx.α‖T =
⋃

{S′ ⊆ S | S′ ⊆ ‖α(x)‖T [x 7→S′]}, and
– ‖µx.α‖T =

⋂

{S′ ⊆ S | ‖α(x)‖T [x 7→S′] ⊆ S′}.

For a formula ϕ(x) and set of states S′ ⊆ S we sometimes write ‖ϕ(S′)‖T instead
of ‖ϕ(x)‖T [x 7→S′]. When clear from the context we use ‖ϕ(x)‖T for the function

‖ϕ(x)‖T :

{

℘(S)→ ℘(S)

S′ 7→ ‖ϕ(S′)‖T .

By the Tarski-Knaster Theorem, c.f. [Tar55], ‖νx.α(x)‖T is the greatest fixpoint
and ‖µx.α(x)‖T the least fixpoint of the operator ‖α(x)‖T . Also for the modal
µ-calculus we have a completeness theorem, due to Walukiewicz.

Theorem 3 ([Wal00]). For all µ-formulae ϕ we have that

|= ϕ if and only if Koz ⊢ ϕ.
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The next lemma states some basic properties of denotations.

Lemma 4 For all transition systems T = (S,→T , λT ) and all formulae ϕ we

have that

1. ‖¬ϕ‖T = S \ ‖ϕ‖T ,

2. ‖ηx.ηy.ϕ(x, y)‖T = ‖ηx.ϕ(x, x)‖T , where η ∈ {µ, ν},
3. ‖νx.ϕ(x)‖T = ‖ϕ(⊤)‖T , if x is not guarded,

4. ‖µx.ϕ(x)‖T = ‖ϕ(⊥)‖T , if x is not guarded.

5. There is a well-named formula wn(ϕ) such that ‖ϕ‖T = ‖wn(ϕ)‖T .

Proof. Part 1 to part 4 are classical properties of the modal µ-calculus. Part 5
is a straightforward consequence of parts 2 to 4. ⊣

From now on, we assume that wn is a function associating to every formula ϕ
a well-named formula wn(ϕ) and by Lwn

µ we denote the set of all well-named
µ-formulae.

2.3 Embedding GL into the modal µ-calculus

In this subsection we define an embedding t from GL into the modal µ-calculus.
First, we define the function ()∗ : LGL(P )→ Lµ(P ) recursively on the structure
of the formula such that

– (p)∗ ≡ p and (∼p)∗ ≡∼p,
– (α ∧ β)∗ ≡ (α)∗ ∧ (β)∗ and (α ∨ β)∗ ≡ (α)∗ ∨ (β)∗

– (�α)∗ ≡ νx.�(x ∧ (α)∗), and
– (♦α)∗ ≡ µx.♦(x ∨ (α)∗).

The embedding t : LGL(P )→ Lµ(P ) is now defined as

t(ϕ) ≡ µx.�x→ (ϕ)∗.

The following theorem is due to van Benthem [vBe06]. It shows that GL which
semantically lives on transitive and upward well-founded transition systems can
be translated into the modal µ-calculus over arbitrary transition systems. For
the first equivalence van Benthem provides a syntactical proof without using
completeness results.

Theorem 5 ([vBe06]). For all formulae ϕ ∈ LGL we have that

(GL ⊢ ϕ ⇔ Koz ⊢ t(ϕ)) and (|=GL ϕ ⇔ |= t(ϕ)).

2.4 Parity games

Let V be a set. By V ∗ we denote the set of finite sequences on V , and by V +

we denote the set of nonempty sequences. Finally, by V ω we denote the set of
infinite sequences over V .
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A game G is defined in terms of an arena A and a winning conditionW . In our
case an arena is simply a bi-partite graph A = 〈V0, V1, E〉, where V0∩V1 = ∅ and
the edge relation, or set of moves, is E ⊆ (V0 ∪ V1)× (V0 ∪ V1). Let V = V1 ∪ V2

be the set of vertices, or positions, of the arena. Given two vertices a, b ∈ V ,
we say that b is a successor of a, if (a, b) ∈ E. The set of all successors of a is
sometimes denoted by aE or E(a). We say that b is reachable from a if there are
a1, . . . , an ∈ V such that a1 = a, an = b and for every 0 < i < n, ai+1 ∈ aiE.

A play in the arena A can be finite or infinite. In the former case, the play
is a non empty finite path π = a1 . . . an ∈ V + such that for every 0 < i < n,
ai+1 ∈ aiE and anE = ∅. In the last case, the play consists in an infinite path
π = a1 . . . an · · · ∈ V ω with ai+1 ∈ aiE for every i > 0. Thus a finite or infinite
play in a game can be seen as the trace of a token moved on the arena by two
Players, Player 0 and Player 1, in such a way that if the token is in position
a ∈ Vi, then Player i has to choose a successor of a where to move the token.

The set of winning conditions W is a subset of V ω. Thus, given a game
G = (A,W ) a play π is winning for Player 0 iff

1. if π is finite, then the last position an of the play is in V1,

2. if π is infinite, then it must be a member of W .

A play is winning for Player 1 if it is not winning for Player 0. In this framework
we are interested in what is called a parity winning condition. That is, given a
set of vertices V , we assume a colouring or ranking function Ω : V → ω such
that Ω[V ] is bounded. Then, the set W of winning conditions is defined as the
set of all infinite sequences π such that the greatest priority appearing infinitely
often in Ω(π) is even.

Let A be an arena. A strategy for Player i is simply a function σi : V ∗Vi → V ,
with i = 0, 1. A prefix a1 . . . an of a play is said to be compatible or consistent

with σi iff for every j with 1 ≤ j < n and aj ∈ Vi, it holds that σi(a1 . . . aj) =
aj+1. A finite or infinite play is compatible or consistent with σi if each of its
prefixes which is in V ∗Vi is compatible with σi. The strategy σi is said to be a
winning strategy for Player i on W if every play consistent with σi is winning
for Player i. A position a ∈ V is winning for Player i in the parity game G iff
there is a strategy σ for Player i such that every play compatible with σ which
starts from a is winning for Player i. A winning strategy σ is called memoryless if
σ(a1 . . . an) = σ(b1 . . . bn), when an = bn. For parity games we have a memoryless
determinacy result.

Theorem 6 ([EJ91,Mos91]) In a parity game, one of the Players has a mem-

oryless winning strategy from each vertex.

Having in mind this theorem, in the sequel we assume that all winning strategies
are memoryless, that is, a winning strategy in a parity games for Player 0 is a
function σ : V0 → V , analogously for Player 1.



9

2.5 Evaluation games for the modal µ-calculus

In this subsection we will see, given ϕ ∈ Lµ and a pointed transition system
(T , s0) with T = (S,→T , λT ), how to determine the corresponding parity game
E(ϕ, (T , s0)), called also the evaluation game of ϕ over (T , s0).

The arena of E(ϕ, (T , s0)) is the triple 〈V0, V1, E〉 which is defined recursively
such that

〈ϕ, s0〉 ∈ V

(remember that V = V0 ∪ V1) and such that if 〈ψ, s〉 ∈ V then we distinguish
the following cases:

– If ψ ≡ (∼)p and p ∈ free(ϕ). In this case we set E〈ψ, s〉 = ∅ and

〈ψ, s〉 ∈ V1 iff

{

s ∈ λT (ψ) if ψ ≡ p

s 6∈ λT (ψ) if ψ ≡∼p.

– If ψ ≡ x and x ∈ bound(ϕ). Given 〈ϕx, s〉 ∈ V , in this case we set

(〈ψ, s〉, 〈ϕx, s〉) ∈ E

and we have

〈ψ, s〉 ∈ V0 iff x is a µ-variable.

– If ψ ≡ α ∧ β. In this case we have 〈ψ, s〉 ∈ V1 and

(〈ψ, s〉, 〈α, s〉) ∈ E and (〈ψ, s〉, 〈β, s〉) ∈ E

– If ψ ≡ α ∨ β. In this case we have 〈ψ, s〉 ∈ V0 and

(〈ψ, s〉, 〈α, s〉) ∈ E and (〈ψ, s〉, 〈β, s〉) ∈ E

– If ψ ≡ �α. In this case we have 〈ψ, s〉 ∈ V1 and

(〈ψ, s〉, 〈α, s′〉) ∈ E for all s′ such that s→T s′.

– If ψ ≡ ♦α. In this case we have 〈ψ, s〉 ∈ V0 and

(〈ψ, s〉, 〈α, s′〉) ∈ E for all s′ such that s→T s′.

– If ψ ≡ νx.α. In this case we have 〈ψ, s〉 ∈ V1 and

(〈ψ, s〉, 〈α, s〉) ∈ E.

– If ψ ≡ µx.α. In this case we have 〈ψ, s〉 ∈ V0 and

(〈ψ, s〉, 〈α, s〉) ∈ E.
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We complete the definition of the parity game E(ϕ, (T , s0)) by defining the par-
tial priority function Ω : V → ω. The function is only defined on states of the
form 〈ηx.δ, s〉 ∈ V , where η ∈ {µ, ν}. In this case we have that:

Ω(〈ψ, s〉) =















ad(ηx.δ) if η = µ and ad(ηx.δ) is odd, or
η = ν and ad(ηx.δ) is even;

ad(ηx.δ) − 1 if η = µ and ad(ηx.δ) is even, or
η = ν and ad(ηx.δ) is odd.

Remember that if the play π is finite, Player 0 wins iff the last vertex of the
play belongs to V1, and if the play π is infinite, Player 0 wins iff the greatest
priority appearing infinitely often is even.

Theorem 7 ([ES89]) (T , s) ∈ ‖ϕ‖ iff Player 0 has a winning strategy for

E(ϕ, (T , s)).

This result can be seen as the “game-theoretical version” of what is usually
called the Fundamental Theorem of the semantic of the modal µ-calculus.

The next lemma verifies that over upward well-founded transition systems,
least fixpoints and greatest fixpoints coincide.

Lemma 8 Let T be an upward well-founded transition system. Then, for every

ϕ(x) ∈ Lµ such that x is guarded and positive it holds that

‖µx.ϕ(x)‖T = ‖νx.ϕ(x)‖T .

Proof. Note, that in an evaluation game there are no infinite regeneration of x
since then we would have an infinite chain of the form

s0 →
T s1 →

T s2 . . . .

Therefore, a winning play for νx.ϕ is also a winning play for µx.ϕ. With Theorem
7 we get the result. ⊣

3 The modal µ-calculus over GL

In this section we show that the expressivity of the modal µ-calculus over GL,
that is, over transitive and upward well-founded transition systems, is the same
as the one of the modal base language. In this sense we answer to van Benthem’s
question cited in the introduction.

In [AF∞] the authors showed that over transitive transition systems every
µ-formula is equivalent to a µ-formula without alternation of fixpoint operators.
Moreover, they showed that under certain conditions a fixpoint operator can be
eliminated by regenerating the formula:

Theorem 9 ([AF∞]) Let T be a transitive transition system, and let ϕ(x) be

a well-named µ-formula such that x ∈ free(ϕ) and occurs only once. Then
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1. If x is in the scope of a � in νx.ϕ(x) then

‖νx.ϕ(x)‖T = ‖ϕ2(⊤)‖T .

2. If x is in the scope of a ♦ in µx.ϕ(x) then

‖µx.ϕ(x)‖T = ‖ϕ2(⊥)‖T .

Definition 1. The translation τ : Lwn
µ (P ) → LGL(P ) is defined recursively on

the rank of the formula such that τ((∼)p) ≡ (∼)p, such that τ distributes over

boolean and modal connectives and such that for all η ∈ {µ, ν} we have

τ(ηx.ϕ) =

{

τ(wn(ϕ2(⊤))) x is in the scope of a � in ϕ,

τ(wn(ϕ2(⊥))) else.

Obviously, by first well-naming a formula and then applying τ we get a transla-

tion from Lµ(P ) to LGL(P ).

Given the fact that over well-founded transition systems greatest and least fix-
point coincide, this result gives us the collapse of the modal µ-calculus over GL

into its modal fragment.

Theorem 10. On transitive and upward well-founded transition systems we

have that the following holds for every ϕ ∈ Lµ:

‖ϕ‖T = ‖τ(wn(ϕ))‖T .

Proof. By Lemma 4 we can assume that ϕ is well-named. The proof is by in-
duction on rank(ϕ). The base case and the case where rank(ϕ) is a successor
ordinal are straightforward. If rank(ϕ) is a limit ordinal then ϕ is of the form
ηx.α (η ∈ {µ, ν}). Assume that ϕ is of the form νx.ϕ. If x is in the scope of a
� in ϕ then the induction step follows from Theorem 9.1. Else, x is only in the
scope of some ♦ in ϕ. In this case by Lemma 8 we have that

‖νx.ϕ‖T = ‖µx.ϕ‖T

and by applying Theorem 9.2 we get the induction step. The case where ϕ is of
the form µx.ϕ is shown by analogous arguments. ⊣

4 The modal µ
∼-calculus

In this section we introduce a new language, called the modal µ∼-calculus, which,
in some sense, can be seen as an extension of the guarded fragment of the modal
µ-calculus. The main novelty is that we allow the µ-operator to bind negative
(and guarded) occurrences of propositional variables. Therefore, the modal µ∼-
calculus allows us to refer explicitly, that is, in a µ-calculus style, to fixpoints of
guarded formulae. For example, the fixpoint of the “equation” p ↔ α(p) where
α(x) is a guarded formula can be directly denoted as µx.α(x). As it can be
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done for the modal µ-calculus the semantics of the modal µ∼-calculus is defined
by way of games over transitive and upward well-founded transition systems.
We provide an explicit syntactical translation of the modal µ∼-calculus into GL

which preserves logical equivalence. As a corollary of the collapse, we obtain a
new version of the de Jongh, Sambin Fixpoint Theorem. The modal µ∼-calculus
could be seen as a starting point for the application of tools of the standard
µ-calculus, as for example games, to GL.

4.1 Basic notions and results

The language of the modal µ∼-calculus, Lµ∼ , is almost the same as the one for
the modal µ-calculus with the only difference that we allow fixpoint constructors
also when the bound variable is appearing negatively, that is, modal µ∼-formulae

(or simply µ∼-formulae) are defined as follows:

ϕ ::= p | ∼p | ⊤ | ⊥ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ♦ϕ | �ϕ | µx.ϕ

where p, x ∈ Prop and where x appears guarded in ϕ. All syntactical notions,
such as Lµ∼(P), bound variable, rank of a formula, ϕx, ϕ

free(X) etc., are defined
as for the modal µ-calculus. Without loss of generality, we always suppose that
bound(ϕ) ∩ free(ϕ) = ∅.

We say that a µ∼-formula ϕ is in normal form if bound(ϕ)∩ free(ϕ) = ∅ and
if for all subformulae of ϕ of the form µx.µy.α we have that

– α is not of the form µz.β, and

– x occurs only negatively in α and y has only positive occurrences in α.

For the substitution, if x ∈ free(ϕ), then ϕ[x/ψ] is given by substituting
¬ψ to every negative occurrence ∼ x and by substituting ψ to every positive
occurrence x. As for the modal µ-calculus negation is defined by using de Morgan
laws and the duality of � and ♦, in addition we set

¬µx.α ≡ µx.¬α[x/¬x].

The last equivalence can be rather surprising at a first look. It is motivated by
the fact that the modal µ∼-calculus will be interpreted over upward well-founded
models, where least and greatest fixpoint coincide.

Note that, for every y ∈ bound(µx.α), y is negative in µx.α if and only if y
is negative in ¬µx.α.

The semantics for the modal µ∼-calculus over GL is given by evaluation
games on pointed upward well-founded and transitive transition systems. These
evaluation games are similar to the ones for the modal µ-calculus. Let ϕ ∈ Lµ∼

and (T , s) ∈ T
wft.

– First we construct recursively the two arenas 〈V +
0 , V +

1 , E+〉 from ϕ and
(T , s) and 〈V −

0 , V −
1 , E−〉 from ¬ϕ and (T , s) as it is done for the modal
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µ-calculus, then, for each vertex of the form 〈∼x, t〉 which was generated in
the recursion defining the arena 〈V +

0 , V +
1 , E+〉 we add the condition

〈∼x, t〉 ∈ V +
0 and E+(〈∼x, t〉) = ∅,

and if it was generated in the recursion defining the arena 〈V −
0 , V −

1 , E−〉 we
set

〈∼x, t〉 ∈ V −
0 and E−(〈∼x, t〉) = ∅.

– Then the arena of E(ϕ, (T , s)) is the triple 〈V0, V1, E〉 defined by taking the
disjoint union of the two arenas, with the following modification:
• For every vertex of the form 〈∼x, t〉 where x ∈ bound(ϕ) we set

E(〈∼ x, t〉) =

{

{〈¬ϕx, t〉} ⊆ V − if 〈∼x, t〉 ∈ V +
0

{〈ϕx, t〉} ⊆ V + if 〈∼x, t〉 ∈ V −
0 .

Since we are on upward well-founded models and that all regenerated variables
are guarded, all plays are finite. Therefore, we have that Player 0 wins if and
only if the last vertex of the play belongs to Player 1. Since therefore we do not
have to care about priorities the definition of evaluation game for µ∼-formulae
is admissible and well-defined4.

We say that a pointed upward well-founded transitive transition system (T , s)
is a model of a µ∼-formula if and only if Player 0 has a winning strategy in
E(ϕ, (T , s)). Further, we define

‖ϕ‖WT = {s ∈ S | (T , s) is a model of ϕ}.

By ‖ϕ‖W we denote the class of all upward well-founded and transitive models
of ϕ, that is, all pointed transition systems (T , s), transitive and upward well-
founded, such that s ∈ ‖ϕ‖W .

Example 1. Consider the formula µx.♦ ∼x. This formula says that Player 0 can
always force the number of the states visited in a play to be even. Because the
considered models are transitive, this implies that the formula says that the root
of the models has at least one accessible state.

The next lemma states some basic properties of denotation.

Lemma 11 For all transition systems T = (S,→T , λT ) and all µ∼-formulae

µx.ϕ we have that

1. ‖µx.µy.ϕ(x, y)‖WT = ‖µx.ϕ(x, x)‖WT ,

2. ‖µx1 . . . µxn.ϕ‖WT = ‖µxp(1) . . . µxp(n).ϕ‖
W
T , where p is any permutation over

{1, . . . , n},

4 Note that on non well-founded models a play can be infinite. Thus, since in this
kind of plays it is possible that Player 0 and Player 1 “switch” their roles infinitely
often, it is not clear how to extend our game-theoretical approach also to non well-
founded models by adding a natural and uniform (parity) winning conditions for
infinite plays.
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3. There is a well-named formula wn(ϕ) such that ‖ϕ‖WT = ‖wn(ϕ)‖WT ,

4. There is a formula nf(ϕ) in normal form such that ‖ϕ‖T = ‖nf(ϕ)‖T .

Proof. Part 1 is by definition of the evaluation game for the modal µ∼-calculus.
Part 2 is proved by an easy induction on the length of the prefix. Part 3 is a
straightforward consequence of part 1. Part 4 is a straightforward consequence
of part 1 and part 2. ⊣

The next lemma shows that over upward well-founded models, the positively
bounded fragment of the modal µ∼-calculus coincides with the guarded fragment
of the standard modal µ-calculus.

Lemma 12 Let ϕ ∈ Lµ ∩ Lµ∼ . Then for every upward-well founded model T

‖ϕ‖WT = ‖ϕ‖T .

Proof. This follows by applying Theorem 7 to the fact that, for every ϕ ∈ Lµ ∩
Lµ∼ , the evaluation games for Lµ∼ and the evaluation games for the µ-calculus
coincide over upward well-founded models. ⊣

The next lemma shows that negation behaves as expected.

Lemma 13 Let ϕ be a µ∼-formula and T = (S,→T , λT ) an upward well-

founded transition system. We have that

‖¬ϕ‖WT = S \ ‖ϕ‖WT .

Proof. Consider the evaluation game E(ϕ, (T , s)) where Player 0 starts to play as
Player 1 and vice versa. Clearly Player 0 (resp. Player 1) has a winning strategy
in this modified game iff she has a winning strategy in E(¬ϕ, (T , s)). From this
fact we get the claim. ⊣

The next lemma shows that in the modal µ∼-calculus formulae of the form µx.ϕ
indeed define a fixpoint.

Lemma 14 For every µx.ϕ ∈ Lµ∼ and every upward well-founded transition

system T it holds that

‖µx.ϕ‖WT = ‖ϕ[x/µx.ϕ]‖WT .

Proof. This result follows straightforwardly by definition of the evaluation game
for the modal µ∼-calculus. ⊣

4.2 The unicity of fixpoints

Let T be a upward well-founded and transitive transition system and ϕ a µ∼-
formula. Consider an arbitrary (memoryless) strategy σ for Player 0, not nec-
essarily winning. We define the restriction of E(ϕ, (T , s0)) on σ, denoted by
E|σ(ϕ, (T , s0)), as follows:
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– The set of positions V |σ of the restriction is given by all nodes which are the
positions of some play compatible with σ starting from position 〈ϕ, s0〉,

– The arena of E|σ(ϕ, (T , s0)) is the triple 〈V0|σ, V1|σ, E|σ〉 where:
1. V0|σ = ∅,
2. V1|σ = V |σ,
3. if 〈ψ, s〉 ∈ V |σ ∩ V1 then E|σ(〈ψ, s〉) = E(〈ψ, s〉), and
4. if 〈ψ, s〉 ∈ V |σ ∩ V0 then E|σ(〈ψ, s〉) = {σ(〈ψ, s〉)}.

We have that in E|σ(ϕ, (T , s0)) the only Player who can move is Player 1. This
can be done because the moves for Player 0 are already completely determined
by the (memoryless) strategy σ. Clearly, any play in E|σ(ϕ, (T , s0)) is a play in
E(ϕ, (T , s0)) compatible with σ. We say that a play π in E|σ(ϕ, (T , s0)) is winning
for Player 0 if and only if the play π is winning for Player 0 in E(ϕ, (T , s0)). If
σ is a winning strategy for Player 0 then any play in E|σ(ϕ, (T , s0)) is winning
for Player 0.

Definition 2. Let T be a upward well-founded transitive transition system, ϕ
a µ∼-formula and σ any strategy for Player 0 in the parity game E(ϕ, (T , s0)).
Then, for every position 〈ψ, s〉 of E|σ(ϕ, (T , s0)), we define a measure d(〈ψ, s〉):

d(〈ψ, s〉) =

{

0 if E|σ(〈ψ, s〉) = ∅

sup{d(〈ψ, s′〉) + 1 : 〈ψ, s′〉 ∈ E|σ(〈ψ, s〉)} otherwise.

Note that, since T is upward well-founded, there cannot be an infinite chain of
the form 〈a0, a1, a2, . . . 〉 such that for every i ≥ 0, 〈ai, ai+1〉 ∈ E|σ. Therefore for
all evaluation games E(ϕ, (T , s0)) and all vertices 〈ψ, v〉 in the arena d(〈ψ, v〉) is
a well-defined ordinal number, such that if a vertex 〈α, v′〉 is reachable from a
vertex 〈β, v′′〉 then we have that d(〈α, v′〉) < d(〈β, v′′〉).

The next theorem shows that a fixpoint formula µx.α(x) in the modal µ∼-
calculus defines a fixpoint, as proved in Lemma 14, and that any other fixpoint
of a formula α(x) is identical to µx.α(x). In this sense it is an existence and
uniqueness theorem, and it is the central result of the section.

Theorem 15 Let ϕ(x) ∈ Lµ∼ and x ∈ free(ϕ) a guarded variable. Let T be a

upward well-founded transitive transition system. Then, for every A ⊆ S we have

‖ϕ(A)‖WT = A if and only if A = ‖µx.ϕ(x)‖WT .

Proof. The implication from right to left follows from Lemma 14. In order to
prove the implication from left to right, suppose ‖ϕ(A)‖WT = A. From the def-
inition of evaluation game we straightforwardly can derive the inclusion A ⊆
‖µx.ϕ(x)‖WT . For the other inclusion, suppose that s ∈ ‖µx.ϕ(x)‖WT . We have
that Player 0 has a winning strategy σ in E(µx.ϕ, (T , s)). Consider the restricted
evaluation game E|σ(µx.ϕ, (T , s)). For each vertex 〈α, v〉 in E|σ(µx.ϕ, (T , s)), we
have that d(〈α, v〉) is a well-defined measure. Clearly, with the following claim
we finish the proof.

Claim: For all vertices of the form 〈α, s′〉 in E|σ(µx.ϕ, (T , s)) if α = µx.ϕ
then s′ ∈ A, and, if α = µx.¬ϕ then s′ /∈ A.
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The proof of the claim is by induction on d. Since d(〈µx.ϕ, s′〉) > 0 and
d(〈µx.¬ϕ, s′〉) > 0 the induction base is trivial. For the induction step assume
first that we have a vertex 〈µx.ϕ, s′〉 in E|σ(µx.ϕ, (T , s)). We distinguish two
cases:

1. If from 〈µx.ϕ, s′〉 there is no a reachable vertex of the form 〈µx.ϕ, s′′〉 or
〈µx.¬ϕ, s′′〉 then we have that s′ ∈ ‖ϕ(A′)‖WT for all sets of states A′ and,
therefore, we also have s′ ∈ ‖ϕ(A)‖WT . Since by assumption ‖ϕ(A)‖WT = A
we proved the claim.

2. Otherwise we distinguish two subcases given by the first vertex reached which
is of either the form 〈µx.ϕ, s′′〉 or 〈µx.¬ϕ, s′′〉.
(a) If the first vertex reached of such kind is 〈µx.ϕ, s′′〉, then, since we have

that d(〈µx.ϕ, s′〉) > d(〈µx.ϕ, s′′〉), by induction hypothesis we get s′′ ∈
A.

(b) If the first vertex reached of such kind is 〈µx.¬ϕ, s′′〉, then, since we
have that d(〈µx.ϕ, s′〉) > d(〈µx.¬ϕ, s′′〉), by induction hypothesis we get
s′′ /∈ A.

Therefore, for each play consistent with σ starting from 〈µx.ϕ, s′〉 it holds
that if it reaches first a vertex of the form 〈µx.ϕ, s′′〉 (or equivalently of the
form 〈x, s′′〉) we have that s′′ ∈ A, and, if it reaches first a vertex of the form
〈µx.¬ϕ, s′′〉 (or equivalently of the form 〈∼x, s′′〉) we have that s′′ 6∈ A. But
it can easily be seen that this implies s′ ∈ ‖ϕ(A)‖WT . Since by assumption
‖ϕ(A)‖WT ⊆ A we finish the induction step for the case α = µx.ϕ(x).

The induction step for a vertex of the form 〈µx.¬ϕ, s′〉 is verified in the same
way by using the fact that by Lemma 13 we have that ‖¬ϕ(A)‖WT = S\‖ϕ(A)‖WT
and, therefore, by assumption that ‖¬ϕ(A)‖WT = S \A.

⊣

Corollary 1. Let ϕ and ψ be two µ∼-formulae. If for all upward well-founded

transitive transition system T we have that ‖ψ‖WT = ‖ϕ‖WT then for all variables

x and all T we have that

‖µx.ψ‖WT = ‖µx.ϕ‖WT

Proof. By the “if” direction of Theorem 15 we have that

‖µx.ψ‖WT = ‖ψ‖WT [x 7→‖µx.ψ‖W
T

]

and with the premise of the corollary we get

‖µx.ψ‖WT = ‖ϕ‖WT [x 7→‖µx.ψ‖W
T

].

Applying the “only if” direction of Theorem 15 we obtain that

‖µx.ψ‖WT = ‖µx.ϕ‖WT .

⊣
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The next theorem provides a new proof of Bernardi, de Jongh, Sambin The-
orem (c.f. Chapter 8 in [Boo93] or [Smo85]) using our results on the modal
µ∼-calculus.

Theorem 16. Let ϕ(x) ∈ LGL, where x is guarded. We have that

GL ⊢ �s(p↔ ϕ(p)) ∧�s(q ↔ ϕ(q))→ (p↔ q)

where �sϕ :≡ �ϕ ∧ ϕ.

Proof. By Theorem 5 it is enough to show that for all ϕ(x) ∈ LGL it holds that

|= µx.�x→ (((�s)(p↔ ϕ(p)) ∧ (�s)(q ↔ ϕ(q)))→ (p↔ q))∗.

And this can be shown by showing for all ϕ(x) ∈ LGL that we have

|= µx.�x→ (p↔ ϕ(p) ∧ q ↔ ϕ(q) ∧�∗(q ↔ ϕ(q)) ∧�∗(q ↔ ϕ(q))→ (p↔ q))
(1)

where �∗γ ≡ νx.�(x ∧ γ).
Assume, that we have

s ∈ ‖µx.�x ∧ p↔ ϕ(p) ∧ q ↔ ϕ(q) ∧�∗(q ↔ ϕ(q)) ∧�∗(q ↔ ϕ(q))‖T .

Then, (T , s) is well-founded and we have for s and for all reachable states s′

from s that q ↔ ϕ(q) and p ↔ ϕ(p). Therefore, if we assume that T consists
of s and all reachable states from s, which is an admissible assumption, we get
that we have

λT (p) = ‖ϕ(λT (p))‖WT and λT (q) = ‖ϕ(λT (q))‖WT .

By Theorem 15 we get that

λT (p) = ‖µx.ϕ(x)‖WT and λT (q) = ‖µx.ϕ(x)‖WT .

and therefore we obtain that

s ∈ ‖p↔ q‖T .

We have shown Equation 1 and finished the proof. ⊣

4.3 Collapsing the modal µ
∼-calculus

In this subsection we provide an explicit syntactical translation of the modal µ-
calculus into GL which preserves logical equivalence. As a corollary, we obtain a
new proof of the de Jongh, Sambin Fixpoint Theorem which provides an explicit
construction of the fixpoint formula based on the syntactical translation defining
the collapse.

First of all, remember that, by Lemma 11.4, we can suppose that every µ∼-
formula is in normal form.
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Lemma 17 Let α(x) be a modal formula such that x appears only negatively

and guarded. Then, for every T ∈ T
wft we have that

‖µx.(α[x/α(x)])‖WT = ‖µx.α(x)‖WT .

Proof. Let A be ‖µx.α(x)‖WT . By the “if” direction of Theorem 15 we have that
‖α(A)‖WT = A. We can iterate this equivalence twice and get

‖α[x/α(A)]‖WT = A.

Applying the “only if” direction of Theorem 15 gives us

‖µx.((α[x/α(x)])‖WT = A

and therefore the proof of this lemma. ⊣

Note that, if x ∈ bound(µx.α) appears only negatively, then x occurs only posi-
tively in µx.(α[x/α(x)]).

Everything is now set up in order to prove that the modal µ∼-calculus over
GL collapses to its modal fragment.

Definition 3. The syntactical translation I : Lµ∼ → LGL uses the translation

τ from Lµ to LGL of Definition 1. It is defined recursively as follows:

– I(p) = p and I(∼p) =∼p.
– I(⊥) = ⊥ and I(⊤) = ⊤.

– I(α ◦ β) = I(α) ◦ I(β), where ◦ ∈ {∧,∨}.
– I(△ β) =△ I(β), where △∈ {�,♦}.
– Assume that nf(µx.I(α(x))) is of the form µz.µy.α̂(z, y). We set

I(µx.α) = τ(wn(µz.β(z))),

where β(z) ≡ τ(wn(µy.α̂(z, y)))[z/τ(wn(µy.α̂(z, y)))]).

Lemma 18 The translation I is well-defined and, moreover, if

ϕ ∈ Lµ∼(P ) then I(ϕ) ∈ LGL(P ).

Proof. By induction on the structure of the formula. The only critical case is
when ϕ ≡ µx.α. By induction hypothesis, I(α(x)) ∈ LGL. Therefore α̂(y, z) ∈
LGL. By definition of normal form, z occurs only negatively and y occurs only pos-
itively in µz.µy.α̂(y, z). Thus, µy.α̂(y, z) ∈ Lµ. This implies that wn(µy.α̂(y, z))
is well-defined and by Theorem 10 that τ(wn(µy.α̂(y, z))) ∈ LGL. Note that y
occurs only positively in α̂(y, z) and wn(µy.α̂(y, z)) is given by duplicating and
renaming y. Therefore, it follows that z occurs only positively in

τ(wn(µy.α̂(z, y)))[z/τ(wn(µy.α̂(z, y)))]).

This implies that µz.β(z) ∈ Lµ and therefore that wn(µz.β(z)) is well-defined.
Thence by Theorem 10 we have that τ(wn(µz.β(z))) ∈ LGL.
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Theorem 19 Let ϕ ∈ Lµ∼ . On upward well-founded and transitive transition

systems T we have that

‖ϕ‖WT = ‖I(ϕ)‖WT .

Proof. The proof goes by induction on rank(ϕ). If rank(ϕ) = 1 or rank(ϕ) is
a successor ordinal the induction step is straightforward. If rank(ϕ) is a limit
ordinal then ϕ is of the form µx.α. In this case by Lemma 11 we have that

‖µx.I(α)‖WT = ‖µz.µy.α̂(z, y)‖WT .

Since by induction hypothesis we have that ‖I(α)‖WT = ‖α‖WT , with Corollary 1
we get that

‖µx.I(α)‖WT = ‖µx.α‖WT

and therefore that
‖µx.α‖WT = ‖µz.µy.α̂(z, y)‖WT . (2)

Since by Lemma 18 and by construction of normal forms, α̂ is a modal formula
we have that µy.α̂ ∈ Lµ. With Theorem 10 and Lemma 11 we get that for all
upward well-founded and transitive T we have that

‖µy.α̂‖WT = ‖τ(wn(µy.α̂))‖WT .

By Corollary 1 it holds that

‖µz.µy.α̂‖WT = ‖µz.τ(wn(µy.α̂))‖WT

and with Equation 2 that

‖µx.α‖WT = ‖µz.τ(wn(µy.α̂))‖WT . (3)

Remember that y occurs only positively and z only negatively in α̂. Moreover
wn(µy.α̂(y, z)) is obtained by multiplying and renaming y. Therefore, since z ap-
pears only negatively in µy.α(y, z) it appears only negatively in wn(µy.α̂(y, z)),
too. Now, note that by definition of τ we are “regenerating” the formula only
on positive occurrences and, therefore, we have that z appears only negatively
in τ(µy.α̂), too. By Lemma 17 it holds that

‖µz.(τ(wn(µy.α̂)))‖WT = ‖µz.
(

τ(wn(µy.α̂))[z/τ(wn(µy.α̂))](z)
)

‖WT .

With Equation 3 we get

‖µx.α‖WT = ‖µz.
(

τ(wn(µy.α̂))[z/τ(wn(µy.α̂))](z)
)

‖WT .

By Lemma 11 and Theorem 10 we finish the induction step. ⊣

The last theorem of the paper is a new version of the de Jongh, Sambin Fixpoint
Theorem. Our version provides an explicit construction of the fixpoint formula
based on the definition of I.
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Theorem 20. Let ϕ(x) ∈ LGL(P), where x is guarded. We have that

GL ⊢ I(µx.ϕ)↔ ϕ(I(µx.ϕ)).

Further if ϕ ∈ LGL(P) then we have that I(µx.ϕ) ∈ LGL(P \ {x}).

Proof. The fact that I(µx.ϕ) ∈ LGL(P \ {x}) follows from Lemma 18. For the
provable equivalence, we show that GL |= I(µx.ϕ) ↔ ϕ(I(µx.ϕ)). The proof
then follows by Theorem 1. Let T ∈ T

wft. We have

s ∈ ‖I(µx.ϕ(x))‖T ⇔ s ∈ ‖µx.ϕ(x)‖WT Lemma 12 and Theorem 19,
⇔ s ∈ ‖ϕ(µx.ϕ(x))‖WT Lemma 14,
⇔ s ∈ ‖ϕ(x)‖W

T [x 7→‖µx.ϕ‖W
T

]
Definiton of evaluation game,

⇔ s ∈ ‖ϕ(x)‖W
T [x 7→‖I(µx.ϕ)‖W

T
]
Theorem 19,

⇔ s ∈ ‖ϕ(x)‖T [x 7→‖I(µx.ϕ)‖T ] Lemma 12,
⇔ s ∈ ‖ϕ(I(µx.ϕ))‖T Definition of denotation.

⊣

We end with two examples where we apply our translation in order to find a
solution of a modal equation.

Example 2. Consider the modal equation x↔ ¬�x. This is the same as

x↔ ♦ ∼x. (4)

By Theorem 20 the µ∼-formula µx.♦ ∼ x is the solution of Equation 4. By
definition of I we have that

I(µx.♦ ∼x) = τ(µx.♦¬♦ ∼x) = τ(µx.♦�x) = ♦�♦�⊤.

Note, that on upward-well-founded transitive transition system T , it holds that
‖♦�♦�⊤‖T = ‖¬�⊥‖T .

Example 3. Consider the modal equation x↔ (�(x→ q)→ � ∼x). This is the
same as

x↔ ♦(x∧ ∼q) ∨� ∼x. (5)

By Theorem 20 the formula I(µx.♦(x∧ ∼q) ∨ � ∼x) is a solution of Equation
5. Let’s trace the construction of the fixpoint given by Definition 3:

We have that

α̂ ≡ ♦(x∧ ∼q) ∨� ∼y

and that

τ(µx.α̂) ≡ ♦((♦(⊥∧ ∼q) ∨� ∼y)∧ ∼q) ∨� ∼y.

The formula τ(µx.α̂) can be simplified by using the following equivalence

‖τ(µx.α̂)‖T = ‖♦(� ∼y∧ ∼q) ∨� ∼y‖T .
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Now, we calculate β(y) of Definition 3 by using the simplified τ(µx.α̂) above and
get

β(y) ≡ ♦(�¬(♦(� ∼y∧ ∼q) ∨� ∼y)∧ ∼q) ∨�¬(♦(� ∼y∧ ∼q) ∨� ∼y).

By definition of negation, we get

β(y) ≡ ♦(�(�(♦y ∨ q) ∧ ♦y)∧ ∼q) ∨�(�(♦y ∨ q) ∧ ♦y).

Note that the following semantical equivalences hold

– ‖♦(�(�(♦y ∨ q) ∧ ♦y)∧ ∼q)‖T = ‖♦(�⊥∧ ∼q)‖T , and
– ‖�(�(♦y ∨ q) ∧ ♦y)‖T = ‖�⊥‖T .

Therefore, we get

‖µy.β(y)‖T = ‖♦(�⊥∧ ∼q) ∨�⊥‖T = ‖�(�⊥ → q)→ �⊥‖T .

Since I(µx.♦(x∧ ∼ q) ∨ � ∼ x) ≡ τ(wn(µy.β(y))) it follows that the formula
�(�⊥ → q)→ �⊥ is a solution of Equation 5.
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