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Abstract
Despite the common assumption that orthologs usually share the same function, there have been various reports of
divergence between orthologs, even among species as close as mammals. The comparison of mouse and human is
of special interest, because mouse is often used as a model organism to understand human biology.We review the
literature on evidence for divergence between human and mouse orthologous genes, and discuss it in the context
of biomedical research.
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INTRODUCTION
The mouse Mus musculus is the most widely used

model organism to understand human biology.

Relative to other mammals, and many other verte-

brates, mice have fast reproduction, short life spans,

are not expensive, easy to handle and can be

manipulated at the molecular level [1]. There are

almost 400 000 publications in PubMed with

‘mouse’ (or ‘mice’ or ‘murine’) in the title, second

only to human (�700 000 publications with ‘human’

in the title). In addition to sharing the mammalian

body plan, human and mouse have a median of

78.5% amino acid sequence identity [2]. In a first

approximation, it seems reasonable to expect genes

to have conserved function between human and

mouse, both normal and pathological. This expect-

ation is usually applied to orthologs. The definition

of orthology is formally based on evolutionary cri-

teria, but is often taken to imply functional conser-

vation (discussed in Refs [3, 4]), especially for

one-to-one orthologs.

The assumption of conserved function between

orthologs has been supported even between rela-

tively distant species, by observations of conserved

phenotypic effects when orthologs were subject to

knock-in experiments [5, 6] or insitu [7, 8], clarifying

the role of genes involved in human diseases.

Yet there is also some evidence of differential pheno-

typic effects [9]. In this review, we consider some

sources of variation of ortholog function between

human and mouse, especially in the context of bio-

medical research. We do not consider other sources

of human–mouse differences, such as the emergence

of novel genes [10].

In the specific case of humans and mice, while

both species are placental mammals and share many

common anatomical features and physiological pro-

cesses, there are also a number of biological differ-

ences, which should be expected to translate into

differences between orthologous genes, especially

considering a divergence time of �100 Mya

[11, 12]. Rodents are notably small, specialized for

gnawing, and have a high rate of reproduction [13],

unlike primates. Mus musculus has an average weight

of 12–30 g, sexual maturity at 1.5 months and up to

10 litters per year [14]. Probably related to the dif-

ferences in life history, mice genomes have evolved

faster than those of primates [2, 15].

Here, we first provide a few examples of experi-

mentally determined divergence between human
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and mouse orthologs, to illustrate that the existence

of such differences are not to be dismissed as simply

mistakes in genomic studies. We try to relate these

examples to knowledge which can be derived from

genomic databases. Then we discuss the evidence

from comparative large-scale studies, concerning

the frequency of differences between human and

mouse orthologs. Of note, the ‘function’ of a gene

does not have an unambiguous definition, and we

have tried here to stay as close as possible to the

aspects which are relevant to the use of mice as bio-

medical model organisms. Moreover, given that this

question has been explicitly raised relatively recently,

we are aware that we are presenting a still very in-

complete view, which we hope will be enriched by

future comparative studies.

EXAMPLES OF DIVERGENCE IN
GENE FUNCTION BETWEEN
HUMANANDMOUSE
TDP1 is a gene that participates in the repair of Topo

I–DNA complexes. The intra-cellular expression

localizations of TDP1 orthologs in human and

mouse have been determined to be in the cytoplasm

and in the nucleus, respectively [16]. The mutation

TDP11478A>G in humans is linked to SCAN1 dis-

order, characterized by ‘ataxia, cerebellar atrophy,

and peripheral neuropathy’, whereas there is no

clear phenotype for this mutation in this mouse

ortholog [16]. There are no obvious differences in

gene expression patterns (as reported in Bgee, Ref.

[17]), nor evidence of positive selection on the pri-

mary sequence (as reported in Selectome, Ref. [18])

between human and mouse. The intracellular ex-

pression localization of TDP1 in human and mouse

thus seems to result in different phenotypes.

While the molecular basis of inflammation is

mostly conserved among mammals, the role of the

two selectins, P and E, differs between human and

mouse. The human ortholog of mouse P-selectin has

lost the standard mammalian regulatory pathway.

Notably, human P-selectin is not responsive to

TNF (Tumor necrosis factor), a major inflammatory

factor, a difference with major effects on the rolling

of leukocytes in vivo, and on the contribution to in-

flammation [19]. There also seems to be a decreased

role of human P-selectin in contact hypersensitivity.

As Liu et al. [19] conclude, their ‘results underscore

the need for caution in extrapolating the functions of

P-selectin obtained in mice to humans, particularly

in the many models where mediators are generated

that activate NF-kB– and ATF-2–dependent genes’.

Interestingly, P-selectin is often associated in the

biomedical literature to thymus activity [20], but

the evidence seems derived from mouse models.

Transcriptome data (as reported in Bgee) support

expression of P-selectin in the thymus in mouse,

but not in human, so it is possible that this role

also is not conserved between the orthologs.

LEFTY is a locus that includes two genes,

LEFTY1 and LEFTY2, which arose by independent

duplications in rodents and in primates (thus, human

LEFTY1 and mouse lefty1 are not one-to-one ortho-

logs, despite the names). In both mouse and human,

the LEFTY genes are involved in the establishment

of asymmetry during development. There is some

evidence for positive selection on Lefty1 in mouse

and rat (reported in Selectome based on

TreeFam 7), and there is experimental evidence

that the molecular function is carried out differently

in human and mouse [21]. Notably, it seems that the

asymmetric expression patterns in development are

controlled differently in human and mouse [21].

Thus, similar global functions are carried out by

orthologs, but with differences in the specifics of pro-

tein sequence and expression pattern. Interestingly,

Yashiro et al. [21] point out that there are also many

specific differences in anatomical asymmetry between

human and mouse, which might be related to these

differences in LEFTY/Lefty function.

LARGE-SCALEQUANTITATIVE
EVIDENCE FORDIVERGENCE
Expression divergence
The examples above show that divergence of func-

tion between human and mouse orthologs can be

mediated by gene expression regulation. While the

same level of mechanistic details cannot be provided

in genomic studies, it is interesting in this context to

evaluate the scale of expression divergence between

human and mouse orthologs.

The study of the evolution of gene expression is

hampered by the difficulty of distinguishing experi-

mental noise from bona fide functional divergence. In

a careful study comparing relative expression profiles

between human and mouse orthologs, Liao and

Zhang [22] reanalyzed the GNF dataset of human

and mouse microarrays [23]. They found that after

correcting for experimental variation, only 16% of

orthologs between human and mouse had expression
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profiles as divergent as random pairs. Housekeeping

orthologous genes appear to diverge more in expres-

sion than tissue-specific genes [22, 24]. Conservation

of expression patterns between human–mouse

tissue-specific orthologs has been confirmed by an

alternative experimental approach [25], but without

any specific quantification of divergent orthologs.

Three points should be noted about these results.

Firstly, even 16% of orthologs is clearly above the 5%

accepted false positive rate of the randomization

method, which indicates that changes in expression

pattern between human and mouse are not very rare

(as previously noted in Ref. [4]). Secondly, the other

84% of genes are more conserved than a random

expectation, but might still diverge in functionally

relevant ways. Thirdly, Liao and Zhang [22] and

other related studies have mostly used the Pearson’s

correlation coefficient as a measure of gene expres-

sion conservation, whereas this is biased especially for

housekeeping genes [26] (B. Piasecka et al., unpub-

lished data). Of note, an alternative measure, the

‘Gene expression barcode’ [27], which detects

organ specific overexpression of genes, recovers

also a good conservation of organ-specific expression

between human and mouse orthologs; but a more

detailed quantification is not provided.

Thus, it appears that the changes of expression

pattern found in small-scale studies do not represent

very rare evolutionary events, but rather that diver-

gence by expression is a relatively common phenom-

enon between human and mouse orthologs.

Gene isoforms
Alternative splicing is very frequent in human and

mouse genes. A methodological consequence is that,

as gene orthology prediction is mostly based on se-

quence similarity, orthologous genes can be errone-

ously inferred by grouping the wrong gene isoforms,

which might have dissimilar functions. From a more

fundamental perspective, many differences in splicing

patterns have been reported between human and

mouse orthologs [28, 29]. If a significant proportion

of these splice forms have functional roles, then this

provides a potential path for functional divergence

between the orthologs.

In one study, >11% of human-mouse alternative

cassette exons were found to be subject to exon

skipping in one organism, yet consecutively spliced

in the other [29]. Non-conserved exons between

human and mouse are mostly found outside the

coding sequences, suggesting that when non-

conserved exons are localized within coding

sequences, it might be due to species-specific func-

tional effects [30]. In a more recent study, orthology

at the gene level was distinguished from orthology

at the transcript level (conservation of exon struc-

ture) [31]. Even using relaxed criteria for transcript

orthology, 13% of human-mouse orthologous genes

have non-orthologous transcripts [31]. This level of

divergence, if it is confirmed, is of the same scale as the

divergence observed at the expression level. The gain

of splice forms has been shown to be a continuous

process in human and mouse evolution [32], which

certainly provides material for functional divergence.

The phenomenon of alternative promoters regu-

lating different gene isoforms is related both to

changes in expression and to changes in transcript

structure. Sequence comparison between human-

mouse alternative promoters shows not only rather

low sequence conservation during evolution, but

especially that the subsets of conserved and

non-conserved alternative promoters can be distin-

guished clearly [33]. For example, the human

ACACB gene has two alternative promoters. Only

one of those promoters is highly conserved in

rodents, while both promoters actively regulate

the skeletal muscle ACACB gene function in

humans [34].

Differences in gene copy number
Approximately 9% of orthologs are duplicated either

in human, or mouse, or both independently, as was

the case for LEFTY (estimated as the proportion of

non one-to-one orthologs among orthologs in

Ensembl Compara [35]). In most of these cases, iden-

tifying which ortholog is expected to share the func-

tion between species is difficult. Moreover, positive

selection appears to affect strongly these lineage-

specific duplicates [36], which might imply changes

in biochemical function.

Not only are genes duplicated in the human and

mouse lineages, but copy number variations (CNVs)

are widely observed among human and mouse gen-

omes. These can result from local alterations, such as

duplications, deletions, translocations or inversions.

In humans, CNVs have been shown to be medically

relevant, e.g. linked to the reaction to cancer treat-

ment [37]. In mice, CNVs have a significant impact

on the measure of gene expression [38]. CNVs

appear to affect a biased subset of the genome.

Human CNVs are enriched in protein coding

genes with high synonymous and non-synonymous
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divergence to their mouse orthologs [39]. These

genes are associated with olfaction, immunity and

protein secretion. Mouse CNVs, on the other

hand, seem to have decreased amino acid sequence

divergence [39].

These variations, and the differences in the genes

affected, render the definition of one-to-one orthol-

ogy more complex between human and mouse. It is

possible to have one-to-one orthologs for some in-

dividuals, but not for others. If the copy variants have

differences in function (e.g. different expression

levels), then orthologs might have functional conser-

vation in some individuals but not others. The study

of CNVs is mostly recent, and the functional and

medical consequences remain to be elucidated in

more detail. But we can already suggest that, parallel

to the recently introduced concept of ‘splicing

orthology’ [31], we might need to define a concept

of ‘copy number orthology’, restricted to orthologs

with the same number of copies in both organisms.

Consistent with the original evolutionary definition

of orthology, it would probably be best to restrict

this further to the most probable ancestral copy

number, whose function was probably conserved.

Phenotypic divergence
Gene–phenotype relations can be complex, and dif-

ferent between species. For example, the alteration

of GSK3 perturbs nutrient and stress signaling in

yeast, anteroposterior patterning and segmentation

in insects, dorsoventral patterning in frogs and cra-

niofacial morphogenesis in mice [40, 41]. Obviously,

predicting its phenotypic implication in human is not

straightforward. Therefore, the relation of gene

function to phenotype prediction between organisms

is a difficult task.

Several cases of single genes linked to human dis-

eases show apparently normal mouse phenotypes

when experimentally manipulated. For example,

BCL10, SGCA and PKLR are linked to different

human diseases when mutated (from OMIM [42]),

whereas they present no phenotypic effect in mouse.

This indicates that there are several pathogenic

human mutations that have become fixed in mouse

evolution [43].

Liao and Zhang [44] showed that >20% of

human essential genes are mouse non-essential, and

that the rate of evolution of those 20% is significantly

higher than for the human–mouse essential. Gene

essentiality is an extreme case of phenotypic

impact, yet orthologous human and mouse essential

genes can result in different phenotypes. For ex-

ample, Adamts2, Acox1 and Fancg are essential for

human [45, 46] and mouse [47, 48] but show differ-

ent phenotypic effect when mutated (discussed in

Ref. [44]). This finding shows a high rate of func-

tional divergence between human-mouse orthologs.

Recently, a review of ‘phenologs’, phenotypes asso-

ciated to orthologous genes, showed that different

phenotypes might correspond to deeper functional

homology [49]. Such research might help to identify

genes implicated in human disease, despite pheno-

typic divergence between orthologs.

CONCLUSION
This review is per force quite limited, because a sys-

tematic exploration of functional differences be-

tween orthologs has only come on the agenda of

biological research recently [4, 50]. We believe that

both small-scale and large-scale studies provide evi-

dence that functional divergence between human

and mouse orthologs, although a minority phenom-

enon, still affects a significant proportion of genes.

Divergence of gene expression, of alternative spli-

cing, and of mutant phenotypes, each affect of the

order of 10–20% of ortholog pairs, under conserva-

tive estimates. If these and other different processes

affect different genes, then it might be a majority of

genes which are affected. But even if the same genes

differ in expression pattern, splicing, etc., then

having �15% of human-mouse orthologs with

strong differences will affect many pathways and bio-

logical processes of interest. We look forward to

future explorations of this topic, preferably combin-

ing high-quality experimental data and large-scale

approaches.

Key Points

� Significant divergence in expression between human and mouse
orthologs.

� High divergence of alternative splicing between human and
mouse orthologs.

� Fast evolution of genes with copy number variants in human.
� Significant divergence in gene-phenotype relations between

humanmouse orthologs.
� This divergence is relevant to biomedical research usingmouse.
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