Supplemental data for:

Spatial focalization of pheromone/MAPK signaling triggers commitment to cell-cell fusion

Omaya Dudin, Laura Merlini and Sophie G Martin

Figure S1 (related to Figure 1): Myo51 and Myo52 co-localize in committed mating pairs.

Homothallic h90 *myo52-tdTomato myo51-3YFP* cell pairs were washed with fresh media in microfluidics chambers as in Figure 1. Committed mating pairs, as defined by maintenance of their Myo52-tdTomato signal showed strong co-localization of Myo51-3YFP. By contrast, uncommitted cell pairs, which disassembled their fusion focus, showed no or very weak Myo51 signal prior to focus disassembly. Bars = 2 μ m.

Figure S2 (related to Figure 2): Polarity factors localize normally in exponentially growing autocrine M-cells.

(A, B, C) Cell length at division, cell width and septum placement of wt and autocrine M-cells during exponential growth in presence of nitrogen (n = 50). (D) 10-fold serial dilutions of wt and autocrine M-cells on minimal (EMM) and rich (YE) medium. (E) Localization of Myo52-tdTomato or Scd2-GFP in wt and autocrine M-cells during exponential growth in presence of nitrogen. The top images show calcofluor-stained cells. Bars = 2 μ m. (F) Whole-cell GFP fluorescence intensity as a proxy for gene expression of Mam1-sfGFP, Fus1-sfGFP and Map3-sfGFP in autocrine M-cells grown in media with or without

1

nitrogen after 16h (n > 50). *t* test ***, P < 2 × 10⁻¹⁴. (G) Calcofluor-stained wt and autocrine M-cells after 12 hours in MSL-N. Bar is 2 μ m.

Figure S3 (related to Figure 3): Pheromone and MAPK signaling are not focalized in heterothallic strains treated with high dose of synthetic pheromones.

Imaging of heterothallic *h*- *sxa*2 Δ (top) or *h*+ *sxa*1 Δ (bottom) strains treated with synthetic pheromones as indicated, expressing the indicated tagged proteins. Bars = 2 µm.

Figure S4 (related to Figure 6): Lack of focalization and fusion defects upon constitutive activation of Byr1.

(A) Fusion efficiency of wt and *byr1^{DD}* homothallic pairs (n > 500). *t* test, ***, P < 2 × 10⁻⁵. (B) Localization of Byr1-sfGFP and Byr1^{DD}-sfGFP in wildtype and *byr1^{DD}* cell pairs (top panels; no tag on Myo52), and Myo52-GBP-mCherry in wildtype and *byr1^{DD}* cell pairs (bottom panels; no tag on Byr1). Note that the presence of the GBD has no influence in these cells, as these do not express GFP. (C) Quantification of the width of the Byr1-sfGFP and Byr1^{DD}-sfGFP fluorescence signals in cells as in (B, top row) (n = 10). *t* test, ***, P < 7 × 10⁻⁹.

Supplemental Movie 1 (related to Figure 1): Committed and uncommitted cell pairs.

Time-lapse of a committed and uncommitted mating pair of homothallic *h90* cells expressing Myo52-tdTomato and p^{map3} :*GFP* in Cellasic microfluidic chamber. Fresh media is flown at 13µl/h (5psi) for 10 minutes.

Supplemental Movie 2 (related to Figure 2): Polarized growth and lysis of autocrine M-cells.

Deconvolved single z-plane DIC and epifluorescence timelapse of autocrine Mcells expressing Myo52-tdTomato. Note that the Myo52 signal localizes at sites of growth, as well as at the site of lysis in the top cell of the bottom panel.

Supplemental Movie 3 (related to Figure 2): Fusion of autocrine M-cells.

Deconvolved single z-plane DIC timelapse of autocrine M-cells lysing (two on the left) or fusing together (pair on the right), as in Figure 2H.

Supplemental Movie 4 (related to Figure 4): Unstable fusion focus in *map3^{dn9}* mutant.

Deconvolved single z-plane epifluorescence timelapse of homothallic *h90* cells expressing Myo52-tdTomato and Map3^{dn9}-GFP. Note the mobile Myo52 signal in the *h*+ cell marked by the expression of map3^{dn9}-GFP, compared to the stable signal in the *h*- cell, which expresses unmarked Mam2.

Supplemental Movie 5 (related to Figure 4): Unstable fusion focus in $rgs1\Delta$ mutant.

Deconvolved single z-plane DIC and epifluorescence timelapse of homothallic $h90 \ rgs1\Delta$ cells expressing Myo52-tdTomato. Note the multiple cycles of formation and disappearance of the Myo52 focus at the contact site between the pair of cells that fails to fuse on the right. The timelapse also shows one successful fusion event.

Supplemental Movie 6 (related to Figure 5): Rescue of fusion by forced recruitment of Map3^{dn9} to the fusion focus.

Deconvolved single z-plane DIC and epifluorescence timelapse of homothallic *h90* cells expressing Myo52-GBP-mCherry and Map3^{dn9}-GFP. Map3^{dn9}-GFP focalization stabilizes the Myo52 focus and cells successfully fuse.

Supplemental Movie 7 (related to Figure 5): Examples of fragmented and broad Map3^{dn9} signal.

Deconvolved single z-plane DIC and epifluorescence timelapse of homothallic *h90* cells expressing Myo52-GBP-mCherry and Map3^{dn9}-GFP. In these instances where Map3^{dn9}-GFP signal is fragmented or broad, the cells fail to fuse.

Supplemental Movie 8 (related to Figure 6): Forced recruitment of MAP2K Byr2 stabilizes the fusion focus and leads to cell fusion in *map3^{dn9}* mutant.

Deconvolved single z-plane DIC and epifluorescence timelapse of homothallic *h90 map3^{dn9}* cells expressing Myo52-GBP-mCherry and Byr1-GFP. Byr1-GFP focalization stabilizes the Myo52 focus and cells successfully fuse.

Supplemental Movie 9 (related to Figure 6): Forced recruitment of MAP2K Byr2 stabilizes the fusion focus and leads to cell lysis in $rgs1\Delta$ cells.

Deconvolved single z-plane DIC and epifluorescence timelapse of homothallic $h90 \ rgs1\Delta$ cells expressing Myo52-GBP-mCherry and Byr1-GFP. Byr1-GFP focalization stabilizes the Myo52 focus, leading to cell lysis in absence of a paired partner.

Table S1. St	rains used	in	this	study

	Figure 1	
YSM2535	h90 myo52-tdtomato-natMX pmap3-GFP-ura4+	(Dudin et al., 2015)
	Figure 2	
YSM952	h- myo52-tdtomato-natMX	Lab Stock
YSM2787	h- mam2::map3-hphMX myo52-tdtomato-natMX	This Study
YSM2788	h- mam2::map3-hphMX myo52-tdtomato-natMX fus1- sfGFP-kanMX	This Study
YSM2791	h- mam2::map3-hphMX fus1::LEU2	This Study
YSM2792	h- mam2::map3-hphMX myo52-tdtomato-natMX exg3- sfGFP-kanMX	This Study
YSM2793	h- mam2::map3-hphMX myo52-tdtomato-natMX eng2- sfGFP-kanMX	This Study
	Figure 3	
YSM2787	h- mam2::map3-hphMX myo52-tdtomato-natMX	This Study
YSM2794	h+ sxa1::kanMX myo52-tdtomato-natMX	This Study
YSM2795	h- sxa2::kanMX myo52-tdtomato-natMX	This Study
YSM2789	h- mam2::map3-hphMX myo52-tdtomato-natMX mam1- sfGFP-kanMX	This Study
YSM2790	h- mam2::map3-sfGFP-kanMX myo52-tdtomato-natMX	This Study
YSM2796	h- mam2::map3-hphMX nmt41::GFP-chd gpa1-mCherry ^{sw} - kanMX	This Study
YSM2797	h- mam2::map3-hphMX fus1::LEU2 mam1-sfGFP-kanMX	This Study
YSM2798	h- mam2::map3-hphMX fus1::LEU2 gpa1-mCherry ^{sw} - kanMX	This Study
YSM2799	h- mam2::map3-sfGFP-kanMX myo52-tdtomato-natMX fus1::hphMX	This Study
YSM2800 YSM2801	h90 myo52-tdtomato-natMX mam1-GFP-natMX h90 myo52-tdtomato-natMX map3-GFP-kanMX	This Study This Study
YSM2802	h90 gpa1-mCherry ^{sw} -kanMX	This Study

YSM2803	h90 myo52-tdtomato-natMX map3-GFP-kanMX fus1::LEU2	This Study	
YSM2804	h90 fus1::LEU2 mam1-GFP-kanMX	This Study	
YSM2805	h90 fus1::LEU2 gpa1-mCherry ^{sw} -kanMX	This Study	
	Figure 4		
YSM2126	h90 map3-GFP-kanMX rgs1::hphMX	Lab Stock	
YSM2572	h90 eng2-sfGFP-kanMX myo52-tdtomato-natMX	(Dudin et al., 2015)	
YSM2573	h90 exg3-sfGFP-kanmX myo52-tdtomato-natMX	(Dudin et al., 2015)	
YSM2787	h- mam2::map3-hphMX myo52-tdtomato-natMX	This Study	
YSM2791	h- mam2::map3-hphMX fus1::LEU2	This Study	
YSM2806	h90 myo52-tdtomato-natMX map3 ^{dn9} -GFP-kanMX	This Study	
YSM2807	h90 myo52-tdtomato-natMX rgs1::hphMX	This Study	
YSM2808	h- mam2::map3-hphMX myo52-tdtomato-natMX rgs1::kanMX	This Study	
YSM2809	h- mam2::map3 ^{dn9} -sfGFP-kanMX myo52-tdtomato-natMX	This Study	
YSM2810	h- mam2::map3-sfGFP-kanMX myo52-tdtomato-natMX rgs1::hphMX	This Study	
YSM2811	h90 myo52-tdtomato-natMX rgs1::hphMX mam1-sfGFP- kanMX	This Study	
YSM2812	h90 gpa1-mCherry ^{sw} -kanMX rgs1::hphMX	This Study	
YSM2813	h90 exg3-sfGFP-kanMX rgs1::hphMX	This Study	
YSM2814	h90 eng2-sfGFP-kanMX rgs1::hphMX	This Study	
YSM2815	h90 ura4-294-Pmap3-map3 ^{dn9} -ura4+ eng2-sfGFP-kanMX	This Study	
YSM2816	h90 ura4-294-Pmap3-map3 ^{dn9} -ura4+ exg3-sfGFP-kanMX	This Study	
Figure 5			
YSM2806	h90 myo52-tdtomato-natMX map3 ^{dn9} -GFP-kanMX	This Study	
YSM2817	h90 myo52-GBP-mCherry-bleMX map3 ^{dn9} -GFP-kanMX	This Study	

YSM2818	h90 myo52-GBP-mCherry-bleMX map3 ^{dn9} -GFP-kanMX fus1::hphMX	This Study	
	Figure 6		
YSM2819	h90 myo52-tdtomato-natMX byr2-GFP-kanMX	This Study	
YSM2820	h90 myo52-tdtomato-natMX spk1-sfGFP-kanMX	This Study	
YSM2821	h90 myo52-tdtomato-natMX byr1-sfGFP-kanMX	This Study	
YSM2822	h90 myo52-tdtomato-natMX byr1-sfGFP-kanMX fus1::LEU2	This Study	
YSM2823	h90 myo52-tdtomato-natMX byr1-sfGFP-kanMX rgs1::hphMX	This Study	
YSM2824	h90 ura4-294-Pmap3-map3 ^{dn9} -ura4+ byr1-sfGFP-kanMX	This Study	
YSM2825	h90 ura4-294-Pmap3-map3 ^{dn9} -ura4+ myo52-GBP-mCherry- bleMX byr1-GFP-kanMX	This Study	
YSM2826	h90 myo52-GBP-mCherry-bleMX byr1-GFP-kanMX rgs1::hphMX	This Study	
YSM2827	h- sxa2::kanMX myo52-GBP-mCherry-bleMX	This Study	
YSM2828	h- sxa2::kanMX myo52-GBP-mCherry-bleMX byr1-GFP- natMX	This Study	
YSM2829	h90 myo52-GBP-mCherry-bleMX byr1-GFP-kanMX rgs1::hphMX fus1::natMX	This Study	
YSM2836	h- mam2::map3-hphMX myo52-tdtomato-natMX byr1- sfGFP-kanMX	This Study	
YSM2837	h- mam2::map3-hphMX byr1-sfGFP-kanMX fus1::LEU2	This Study	
	Figure S1		
YSM2529	h90 myo52-tdtomato-NatMX myo51-3YFP-KanMX	(Dudin et al., 2015)	
Figure S2			
YSM952	h- myo52-tdtomato-natMX	(Dudin et al., 2015)	
YSM2787	h- mam2::map3-hphMX myo52-tdtomato-natMX	This Study	
YSM2788	h- mam2::map3-hphMX myo52-tdtomato-natMX fus1- sfGFP-kanMX	This Study	
YSM2789	h- mam2::map3-hphMX myo52-tdtomato-natMX mam1- sfGFP-kanMX	This Study	

YSM2790	h- mam2::map3-sfGFP-kanMX myo52-tdtomato-natMX	This Study
YSM2830	h- scd2-GFP-kanMX	This Study
YSM2831	h- mam2::map3-hphMX scd2-GFP-kanMX	This Study

	Figure S3	
YSM2794	h+ sxa1::kanMX myo52-tdtomato-natMX	This Study
YSM2795	h- sxa2::kanMX myo52-tdtomato-natMX	This Study
YSM2832	h- sxa2::kanMX mam2-sfGFP-kanMX	This Study
YSM2833	h- sxa2::hphMX byr1-sfGFP-kanMX myo52-tdtomato- natMX	This Study
YSM2834	h+ sxa1::hphMX map3-sfGFP-kanMX myo52-tdtomato- natMX	This Study

	Figure S4	
YSM2821	h90 myo52-tdtomato-natMX byr1-sfGFP-kanMX	This Study
YSM2851	h90 byr1-DD-sfGFP-kanMX (S214D T218D)	This Study
YSM2852	h90 myo52-GBP-mCherry-bleMX	This Study
YSM2853	h90 byr1-DD (S214D T218D) myo52-GBP-mCherry-bleMX	This Study

Figure S2

G

Figure S3

Myo52-tdTomato Mam2-sfGFP Byr1-sfGFP

Myo52-tdTomato Map3-sfGFP Byr1-sfGFP

Α

Byr1-sfGFP Myo52-GBP-mCherry

С

