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Inactivation of hypocretin receptor-2 signaling in dopaminergic
neurons induces hyperarousal and enhanced cognition but
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Hypocretin/Orexin (HCRT/OX) and dopamine (DA) are both key effectors of salience processing, reward and stress-related behaviors
and motivational states, yet their respective roles and interactions are poorly delineated. We inactivated HCRT-to-DA connectivity
by genetic disruption of Hypocretin receptor-1 (Hcrtr1), Hypocretin receptor-2 (Hcrtr2), or both receptors (Hcrtr1&2) in DA neurons and
analyzed the consequences on vigilance states, brain oscillations and cognitive performance in freely behaving mice. Unexpectedly,
loss of Hcrtr2, but not Hcrtr1 or Hcrtr1&2, induced a dramatic increase in theta (7–11 Hz) electroencephalographic (EEG) activity in
both wakefulness and rapid-eye-movement sleep (REMS). DAHcrtr2-deficient mice spent more time in an active (or theta activity-
enriched) substate of wakefulness, and exhibited prolonged REMS. Additionally, both wake and REMS displayed enhanced theta-
gamma phase-amplitude coupling. The baseline waking EEG of DAHcrtr2-deficient mice exhibited diminished infra-theta, but
increased theta power, two hallmarks of EEG hyperarousal, that were however uncoupled from locomotor activity. Upon exposure
to novel, either rewarding or stress-inducing environments, DAHcrtr2-deficient mice featured more pronounced waking theta and
fast-gamma (52–80 Hz) EEG activity surges compared to littermate controls, further suggesting increased alertness. Cognitive
performance was evaluated in an operant conditioning paradigm, which revealed that DAHcrtr2-ablated mice manifest faster task
acquisition and higher choice accuracy under increasingly demanding task contingencies. However, the mice concurrently
displayed maladaptive patterns of reward-seeking, with behavioral indices of enhanced impulsivity and compulsivity. None of the
EEG changes observed in DAHcrtr2-deficient mice were seen in DAHcrtr1-ablated mice, which tended to show opposite EEG
phenotypes. Our findings establish a clear genetically-defined link between monosynaptic HCRT-to-DA neurotransmission and
theta oscillations, with a differential and novel role of HCRTR2 in theta-gamma cross-frequency coupling, attentional processes, and
executive functions, relevant to disorders including narcolepsy, attention-deficit/hyperactivity disorder, and Parkinson’s disease.
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INTRODUCTION
Neuromodulators are master levers of brain circuits which shape
brain states and functional output by tuning neuronal firing or
synaptic strength. Hypocretin (HCRT, also known as Orexin, OX)
and dopamine (DA) are both major neuromodulators of arousal
and motivated states. Their interactions, however, remain ill
defined. A small population of glutamatergic neurons in the
lateral, perifornical and dorsomedial hypothalamus synthesizes
the neuropeptides HCRT-1 and HCRT-2 (OXA and OXB), and sends
axonal projections to all wake-promoting monoaminergic (includ-
ing dopaminergic) and cholinergic nuclei of the ascending arousal
system, as well as directly innervates their targets, the neocortex,
thalamus, hippocampus, amygdala, and spinal cord [1]. HCRT
neurons thus establish a brain-wide neural network, with
extraordinarily pleiotropic functions, spanning multiple physiolo-
gical, behavioral, emotional, and temporal domains [2, 3]. HCRT

peptides act through two genetically independent and differen-
tially expressed G-protein-coupled-receptors, HCRTR1 and
HCRTR2. HCRTR2 binds both peptides, whereas HCRTR1 only
binds HCRT-1 with high affinity. Brain level of each peptide,
differential signaling via the two receptors, and how each
uniquely impacts vigilance states and behavior remain elusive.
HCRT neurons fire maximally during active wakefulness, in line

with their role in maintaining heightened arousal [4], but can also
show burst firing during phasic events of rapid-eye-movement
sleep (REMS) [4], and occasional bursting during non-REMS (NREMS)
[5]¸ consistent with their role in sleep-to-wake transitions [6]. An
unexpected role of HCRT neurons in REMS was recently discovered
[7]. Disrupting the HCRT system in mice [8], dogs [9], and humans
[10] causes narcolepsy-type-1, a disease characterized by excessive
daytime sleepiness, vigilance state fragmentation, hypnagogic/
hypnopompic hallucinations, and emotionally-driven sudden
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muscle atonia, or cataplexy [11]. Inactivation of the Hcrt gene, or
combined loss of the two receptors, are sufficient to induce
narcolepsy in mice [12, 13], indicating that narcolepsy stems from
deficient HCRTR signaling. However, a circuit-based understanding
of the unique role of each HCRTR1 or HCRTR2-expressing target
population is still lacking. Among HCRT targets, DA neurons are
particularly interesting because of their established prime role in
regulating arousal and arousal-dependent behaviors [14] and
apparent functional overlap with HCRT.
Daytime sleepiness and cataplexy are two main narcolepsy

symptoms with opposite manifestations, EEG hypoarousal and
hyperarousal, respectively, yet both stem from HCRT deficiency
and both respond to dopaminergic drugs. In narcoleptic dogs and
mice, sleep attacks respond to D1-receptor agonists, and
cataplexy responds to D2/D3-receptor antagonists [15]. Most
stimulants act by raising brain DA levels. These findings suggested
that DA is an important effector of the HCRT system, and indeed
HCRT neurons densely innervate the VTA dopaminergic (DAVTA)
system [16]. HCRT-1 dose-dependently elevates [Ca2+]intracell in
dissociated DAVTA cells [17], and both HCRT peptides enhance
DAVTA

firing and induce tetrodotoxin-resistant depolarization in
brain slices [18]. Different firing patterns were elicited in different
DAVTA cell subsets, and single cells expressed either Hcrtr1, Hcrtr2,
or both receptors [18]. Whether the different responses reflected
differential Hcrtr1 vs Hcrtr2 expression remains an open question.
HCRT is thought to stimulate DAVTA activity both by direct HCRTR

activation on DA somatodendritic compartment, and indirectly by
potentiating glutamatergic afferents [18–20]. Intra-VTA HCRTR1
antagonism precluded acquisition of cocaine-induced locomotor
sensitization in rats, and blocked cocaine-induced DAVTA glutama-
tergic potentiation ex vivo [19], suggesting that HCRT→DAVTA

pathways are implicated in drug-associated plasticity. Because
HCRT neurons sense reward and danger-predicting cues [21], and
DAVTA glutamatergic potentiation is a mechanism of value-driven
learning of salient stimuli, the HCRT→DAVTA circuit is positioned to
be a prime inducer of DAVTA potentiation-related positive and
negative reinforcement [22]. For instance, male copulatory behavior
is coupled to FOS activation in HCRT terminal-apposed DAVTA cells,
and HCRTR1 antagonism suppresses mating behavior [23]. HCRT-
induced DAVTA activation is thus linked to rewards, but also to
stress-associated arousal [24]. In rat models of stress-induced
psychosis-like behavior associated with DAVTA hyperactivity,
HCRTR1/R2-dual antagonism reversed both aberrant DAVTA activity
and behavioral correlates of psychosis [25]. Intracerebroventricular
HCRT-1 infusion induced hyperlocomotion, stereotypy and groom-
ing, which could be fully abolished by DA-receptor antagonism [17].
Studies therefore implicate HCRT→DAVTA circuits in drug-
associated plasticity, sexual approach, stress-induced chronic
arousal (e.g. post-traumatic stress) and several other neuropsychia-
tric disorders [26].
The role of DAVTA neurons in sleep/wake control was long

ignored because average cell spiking rate changes little across
vigilance states. However spiking patterns vary sharply, with
prominent DAVTA burst firing in active wakefulness and REMS, but
tonic activity during NREMS [27]. The causal role of DAVTA

activation in salience-induced arousal is now demonstrated
[28, 29]. Interestingly, a major VTA target is the nucleus
accumbens (NAc), and the DAVTA→NAc circuit, well-known to
mediate reward-driven motivated behavior, recently emerged as
critical in bridging motivation and vigilance state control [29, 30].
Hence motivation was suggested as ‘3rd process’ of sleep/wake
regulation [31, 32]. Altogether, HCRT and DA neurons, on their
own, and through HCRT→DAVTA pathways, are implicated in
emotional drive, salience processing, behavioral state transitions
and cognition, but delineation of their interplay, and how it may
be implicated in arousal disorders, remain underexplored. In
addition to the DAVTA cell group, other DA cell nuclei, notably in
the hypothalamus and dorsal raphe, are known to be implicated

in vigilance state regulation [33–35]. Whether they are targets of
HCRT neurons and express HCRT receptors is however unknown.
To functionally interrogate HCRT→DA circuits, we generated

mice whose dopaminergic system cannot respond to HCRT input,
via HCRTR1, or HCRTR2, or neither. Importantly, these genetically-
targeted mice interrogate all types of HCRT→DA connectivity,
whether endowed by post-, pre-, or extra-synaptic action of HCRT
binding receptors on DA cell somata, dendrites or axons [36, 37], i.e.,
in dopaminergic nuclei or their targets. The mice also functionally
interrogate all potential HCRT→DA neuronal group connectivity,
not only HCRT→DAVTA. Our findings place DA signaling under
prominent neuromodulatory control of the hypocretinergic system
and show that this neuromodulation operates differentially through
HCRTR1 and HCRTR2. We reveal prominent roles of HCRTR2-
mediated HCRT→DA neurotransmission in regulating brain
oscillations, learning, attention, and behavioral inhibition, with
clinical implications for HCRTR-targeted drug development.

RESULTS
Selective inactivation of HCRT receptors in dopaminergic
neurons
To conditionally inactivate HCRT receptors, we engineered the Hcrtr1
(OxR1) and Hcrtr2 (OxR2) genes and created Cre-dependent knock-
out/GFP-reporter floxed alleles: Hcrtr1flox (reported in [38]), and
Hcrtr2flox (Fig. 1). Each floxed line was independently crossed to a
Dopamine transporter Cre driver (Dat-IRES-Cre [39]), generating
Hcrtr1flox/flox;Dat+/Cre (abbreviated: DAOxR1-KO), Hcrtr2flox/flox;Dat+/Cre

(DAOxR2-KO), and compound Hcrtr1flox/flox;Hcrtr2flox/flox;Dat+/Cre

(DAOxR1&2-KO) mutant mice (Fig. 1 and Fig. S1). Because floxed genetic
alleles can show altered expression relative to wild-type we
established crosses that generate Hcrtr1flox/flox, or Hcrtr2flox/flox

littermates, to use as genetic control group (CT) for each KO group:
Hcrtr1flox/flox (DAOxR1-CT), Hcrtr2flox/flox (DAOxR2-CT), and
Hcrtr1flox/flox;Hcrtr2flox/flox (DAOxR1&2-CT). We therefore generated 6
genotypic groups (3 KO:CT pairs, for Hcrtr1, Hcrtr2, and Hcrtr1&2,
respectively), and performed all analyses as pair-wise comparisons
between KO and CT littermate groups.
To verify at nucleotide level the accuracy and DA-specificity of

Cre/lox Hcrtr2 gene recombination in vivo, we sequenced genomic
DNA of various tissues from DAOxR2-KO and DAOxR2-CT mice. Only
VTA of DAOxR2-KO mice contained the diagnostic 792 bp recombi-
nant fragment, absent in tuberomammillary nucleus (TMN),
neocortex, or ear (Fig. 1c). Because not all DA neurons express
Dat [40], we estimated the fraction of DA neurons expressing Dat-
ires-Cre by counting cells immunoreactive for CRE and tyrosine
hydroxylase (TH), and found that overall 88.4% of ventral midbrain
area TH+ neurons express Dat-ires-Cre (2640 TH+ cells, n= 4 mice;
Fig. S2), and are therefore susceptible to Cre/lox recombination.
We quantified efficiency of Dat-Cre-driven gene deletion in

DA neurons using our designed GFP-reporter of gene inactiva-
tion, and found that 83.0 ± 2.8%, and 87.2 ± 1.5%, of ventral
midbrain TH+ neurons co-expressed GFP in DAOxR1-KO, and
DAOxR2-KO mice, respectively (Fig. S1d, e for R1, Fig. 1d, e for R2;
n= 12 sections, 2 mice per group), and have thus successively
recombined. These fractions represent the % of TH+ cells that
underwent recombination and hold an active endogenous
Hcrtr1 or Hcrtr2 promoter driving the GFP-reporter. This
demonstrates that a majority of ventral midbrain DA neurons
express Hcrtr1, or Hcrtr2 (>83% and >87%, respectively). Anti-
HCRTR1 immunostaining confirmed that most TH+ DAVTA cells
lost HCRTR1-immunoreactivity in DAOxR1-KO, but not DAOxR1-CT,
mice (Fig. S1f), and now express GFP instead (Fig. S1e). DA-
specificity of Hcrtr1 and Hcrtr2 gene deletion was quantified by
counting the fraction of GFP+ neurons expressing TH, confirm-
ing that a majority of recombined GFP+ cells are indeed DA
neurons (DAOxR1-KO: 74.4 ± 0.5%, Fig. S1d; DAOxR2-KO:
73.19 ± 2.42%, Fig. 1d; n= 12 sections, 2 mice per group).
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We next sought to functionally assess the effect of Hcrtr2 Cre/lox
recombination and verify that recombination creates a null
(Hcrtr2del), while the unrecombined Hcrtr2flox gene remains func-
tional in non-DA cells. Thus we performed patch clamp recordings
in ventral TMN histamine neurons, a cell type expressing Hcrtr2 and
not appreciably Hcrtr1 [41], using brain slices of wild-type (C57BL/6J),
Hcrtr2flox/flox, and whole-body KO (Hcrtr2del/del) mice (see Methods).
Putative histamine neurons were identified using their electro-
physiological characteristics with post-recording morphological

confirmation of biocytin-loaded cells (Fig. S3, Table S1, see Supple-
mentary Methods). We found that application of the selective
HCRTR2-agonist [Ala11,D-Leu15]-Orexin B (OXB-AL) triggers
spike trains in histamine neurons of C57BL/6J (88% of cells), and
Hcrtr2flox/flox mice (100% of cells), but elicits little response in cells
from Hcrtr2del/del mice (9% of cells) (Fig. 1f). Application of the
selective HCRTR2-antagonist TCS-OX2-29 fully blocked the effects of
OXB and OXB-AL in >80% cells of C57BL/6J and Hcrtr2flox/flox mice,
confirming HCRTR2-dependency of the response. Therefore,
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Fig. 1 Generation of mice with selective disruption of Hcrtr2 in dopamine neurons. a Homologous recombination of the Hcrtr2 gene with
the targeting vector creates the Hcrtr2-flox allele. The 5’loxP site was inserted in Exon1 5’-untranslated-region. 3’loxP was inserted within
Intron1. In Dat-IRES-Cre-expressing neurons, CRE/lox recombination creates the Hcrtr2del-GFP allele, with genomic deletion of DNA encoding 74
aa, encompassing HCRTR2 signal peptide, N-terminal domain, and most transmembrane region 1, and replacement of the Hcrtr2 coding
sequence with a promoterless Gfp cassette. The endogenous Hcrtr2 promoter now drives Gfp instead of Hcrtr2 in DA neurons, marking cells
having lost Hcrtr2 expression with GFP. TSS, Transcription start site. pA, polyadenylation signal. Chrm9, Chromosome 9. Hcrtr2flox is Hcrtr2tm1.1Ava

(MGI:5637402), and Hcrtr2KO-Gfp is Hcrtr2tm1.2Ava (MGI: 5637403). b Schematic representation of DAOxR2-KO mice. c Evidence of tissue-specific
genomic recombination. DNA was isolated from various tissues and subject to PCR. Unrecombined HcrtR2-flox diagnostic band (Flox, 2,145 bp)
is observed in cortex, TMN, VTA and ear from DAOxR2-CT and DAOxR2-KO mice, while the knockout diagnostic band (KO; 792 bp) is only observed
in VTA of DAOxR2-KO mice. The 792 bp recombined fragment was fully sequenced, confirming exact recombination event (n= 2). d GFP and
Tyrosine Hydroxylase (TH) immunostaining demonstrates efficiency and specificity of Hcrtr2 Exon1 deletion in DA cells of the ventral midbrain
(−2.92 to −3.88 mm from bregma) of DAOxR2-KO mice. (Left) Quantification in several midbrain subregions. (Right) Overall penetrance (% of
TH+ neurons co-expressing GFP) was 87.2 ± 1.5% (n= 12 sections, 2 mice). Specificity (% of GFP+ cells co-expressing TH) was 73.2 ± 2.4%
(n= 12 sections, 2 mice). VTA, ventral tegmental area; PBP, parabrachial pigmented nucleus; PN paranigral nucleus, SNc substantia nigra pars
compacta. e Representative confocal images depicting TH and GFP co-localization in ventral midbrain of DAOxR2-KO, but not DAOxR2-CT, mice.
Coronal 20-µm brain sections at −3.08 mm from bregma. Scale bar: low magnification, 100 µm; high magnification, 20 µm.
f Electrophysiological demonstration that Hcrtr2 Cre/lox recombination inactivates HCRTR2. (Left) Voltage trace recordings from putative
histaminergic neurons in TMN of C57BL/6 J, Hcrtr2flox/flox, and Hcrtr2del/del mice. Cells were held at −50mV in current-clamp mode. Voltage traces
represent 5-min continuous recordings, before, during (green horizontal line), and after OXB-AL (200 nM) application. OXB-AL triggers a long
train of action potentials in neurons from C57BL/6J and Hcrtr2flox/flox, but not Hcrtr2del/del, mice. (Right) Percentage of neurons responding to
different treatments in each genotype. Treatments were as follows: OXB (100 nM); OXB-AL (200 nM); TCS (5 μM)+OXB (100 nM); TCS
(10 μM)+OXB (100 nM); TCS (10 μM)+OXB-AL (200 nM). Number of neurons per treatment: C57BL/6J: 19/17/17/8/5; Hcrtr2flox/flox: 4/3/6/5/6;
Hcrtr2del/del: 10/11/7/5/5). OXB-AL: [Ala11, D-Leu15]-Orexin B; TCS: TCS-OX2-029; TMN: tuberomammillary nucleus.

M. Bandarabadi et al.

329

Molecular Psychiatry (2024) 29:327 – 341



creation of the Hcrtr2flox allele has preserved its function, while the
post-recombination Hcrtr2del allele is inactive.

Inactivating Hcrtr2 in DA neurons causes spontaneous
electrocortical hyperarousal
To determine how disrupting HCRT→DA neurotransmission
affects vigilance states and brain oscillations, we performed EEG/
EMG recordings in freely-behaving mice. While the quantity of
wakefulness and NREMS did not show major differences between
KO and CT mice in any group (Fig. S4), wakefulness spectral quality
showed profound alterations. DAOxR2-KO mice featured markedly
higher waking theta (7-11 Hz) power, but lower delta (1–4 Hz)
power, compared to DAOxR2-CT mice (see exact affected frequency
ranges in Fig. 2b and legend). Because waking theta activity is
associated with exploration and arousal [42], whereas waking
delta and inter-delta/theta (4–7 Hz) (together referred to as ‘infra-
theta’, 1–7 Hz) are markers of sleep propensity and decreased
vigilance [43, 44], these EEG alterations suggest that DAOxR2-KO

mice may be spontaneously more alert than controls. In contrast,
DAOxR1-KO mice’ waking spectra did not differ from controls, and
wakefulness of DAOxR1&2-KO mice featured diminished power
across a wide infra-theta range (2.00–7.25 Hz; Fig. 2b).
After 2 days of baseline recording, at light-onset of Day-3 (i.e, in

early resting phase), we exposed mice to 6-hour of ‘gentle handling’
sleep deprivation (SD), followed by 18 h of recovery. Time-frequency
heatmap analysis of the waking EEG during these 3 days revealed
powerful surges in theta and fast-gamma (52-80 Hz) power above
baseline at times of elevated activity (dark phase and SD) in all
genotypes, as expected for periods of increased alertness [45], but
these effects were most pronounced in DAOxR2-KO mice (Fig. 2c, left
heatmap, middle). When EEG power differences between KO and CT
were extracted by subtracting CT values from KO values (KO-CT), it
became apparent that DAOxR2-KO mice theta and fast-gamma power
surges surpassed those of CT mice (Fig. 2c, right heatmap, middle).
As theta and fast-gamma increased, infra-theta and beta (15-30 Hz)
frequencies concomitantly decreased, most prominently during SD.
In striking contrast, SD induced a drop in theta power in DAOxR1&2-KO

mice relative to controls (Fig. 2c, right heatmap, bottom),
suggesting that dual Hcrtr1&2 vs single Hcrtr2 loss in DA neurons
cause opposite responses in alertness at times of high sleep
pressure and experimental handling. To further address quantita-
tively these spectral trends, we analyzed the waking EEG power
dynamics within specific frequency ranges of interest. This
confirmed that theta and fast-gamma EEG activities dramatically
increase in DAOxR2-KO mice relative to controls during dark periods
and SD, while delta and inter-delta/theta activities concomitantly
decline (Fig. 2d). DAOxR1&2-KO mice exhibit the opposite, with
decreased theta, but higher delta and inter-delta/theta during SD
(Fig. 2d), and interestingly increased beta (15–30 Hz) activity as well
(Fig. S6). Thus, as estimated by both vigilance (theta) and sleepiness
(infra-theta) EEG indices, our results suggest that dopaminergic
Hcrtr2 disruption increases alertness, whereas combined Hcrtr1&2
loss reduces it. Beta band enhancement in DAOxR1&2-KO animals in
periods of heightened locomotor activity (SD), is intriguing and
reminiscent of observations in DA-depleted rats and in Parkinson’s
disease (PD)-associated movement disorders [46, 47].
To address how disrupting HCRT→ DA signaling affects

wakefulness in challenging environments, we exposed animals
to either enriched or stress-inducing environments (Fig. S7, see
Methods). Exposure to nesting material, which is rewarding in
rodents, was associated with surges in theta and fast-gamma
activity in all genotype groups, however these surges appeared
stronger and longer-lasting in DAOxR1-KO and DAOxR2-KO mice,
compared to controls (Fig. S7b). Strikingly, again, in double
DAOxR1&2-KO mutants, nest material induced an opposite EEG
response, with a decline in theta and fast-gamma activity in the
3 h following Nestlet addition (Fig. S7b). We next tested the mice’
EEG response upon removal from the nest at time of high sleep

propensity (ZT3), and transfer to a foreign environment. This
manipulation induced theta and fast-gamma power increase in
DAOxR2-KO, but decrease in DAOxR1&2-KO mice, relative to controls
(Fig. S7c, d). Thus, the spectral quality of wakefulness consistently
shows opposite changes in DAOxR2-KO and DAOxR1&2-KO mice, in
both rewarding and stressful environments, suggesting that
HCRT→DA circuits play prominent roles in regulating both
spontaneous and stimuli-induced arousal, irrespective of whether
stimuli have positive or negative valence.

DAOxR2-KO mice display increased theta-dominated
wakefulness uncoupled from locomotion
Prominent theta activity is present during locomotion and
exploratory behavior in rodents, but also during alert immobility
states [48]. We next examined whether increased waking theta
power of DAOxR2-KO mice results from altered sub-states of
wakefulness. We first quantified theta-dominated wakefulness
(TDW) [45] in all 6 groups and found that although total time
awake is not majorly affected in any group (Fig. S4a, b), time spent in
TDWmarkedly increased in DAOxR2-KO, but not DAOxR1-KO or DAOxR1&2-
KO, mice during baseline dark, SD, and recovery dark periods (DAOxR2-

KO vs DAOxR2-CT: baseline dark: 196.3 ± 17.7 vs 114.9 ± 28.5min, SD:
239.2 ± 15.4 vs 126.7 ± 26.7min, recovery dark: 202.1 ± 14.6 vs
125.9 ± 27.8min, Fig. 3a). Time-course analyses reveal that TDW
time (min/h), and fraction of wakefulness occupied by TDW (TDW/W
ratio) are dramatically increased in DAOxR2-KO in the first halves of the
night and during SD (Fig. 3b), while total wakefulness is unchanged
(Fig. 3b, top). We next assessed whether the increased TDW
correlates with locomotion and found no alteration in locomotor
activity in DAOxR2-KO mice compared to controls (Fig. 3b, bottom,
Fig. S8), suggesting that DAOxR2-KO mice display electrocortical but
not behavioral hyperarousal during the 3-day recording.
To determine if enhanced TDW results frommore frequent wake-

to-TDW transitions, or prolonged TDW, we quantified number and
duration of TDW episodes. TDW bouts lasted markedly longer in
DAOxR2-KO mice during baseline dark, SD and recovery (KO vs CT;
baseline dark: 12.8 ± 0.7 s vs. 8.7 ± 0.9 s; SD: 18.6 ± 1.7 s vs. 9.6 ± 1 s,
recovery dark: 12.4 ± 0.7 s vs. 9.1 ± 0.7 s; Fig. 3c, bottom). Hence,
during SD, mean TDW bout duration more than doubled. Baseline
TDW bout duration distribution analysis showed that short-to-
medium bout categories (4-64 s) were much rarer, while very long
TDW episodes (≥17min) were enhanced, resulting inDAOxR2-KOmice
spending 9.81 ± 4.35% of total TDW in this bout category, while
DAOxR2-CT did not display any 17min-long TDW episode (P= 0.014,
Mann-Whitney U statistics, Fig. 3d). Total number of TDW episodes,
however, did not differ (Fig. 3c, top). Therefore, increased time spent
in TDW is due to increased stability of the TDW state.
Analysis of TDW spectra of DAOxR1-KO mice revealed lower delta

(1-2.75 Hz) and slow-theta (6.75-8 Hz), but higher 8.5–10.75 Hz
activity. DAOxR1&2-KO mice show a similar pattern, with a more
pronounced decrease in theta (Fig. 3e). In contrast, DAOxR2-KO

mice showed increased theta power (7.75–10.25 Hz; Fig. 3e). We
then calculated the theta peak frequency in TDW of KO and CTs,
which did not differ (Table S3), indicating that alterations in TDW
theta power is not caused by shifts in TDW frequency. Together,
these results indicate that mice lacking Hcrtr2 in DA cells exhibit
constitutive cortical activation, and spend more time in a brain
state electrocortically akin to the one observed during explora-
tory behavior, even in the absence of external stimuli and
accompanying locomotory changes. Combined dopaminergic
HCRTR1&2 loss led to opposite changes, with higher infra-theta
but lower theta, suggesting a state of hypoarousal, and divergent
impacts of the two HCRTRs on dopaminergic circuits of arousal.

Loss of Hcrtr2 in dopaminergic neurons consolidates REMS
We next investigated the effects of HCRT→DA disruption on REMS
architecture and oscillations. Total time spent in REMS was
significantly prolonged in DAOxR2-KO compared to controls in baseline
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light period (DAOxR2-KO: 65.7 ± 1.9min vs DAOxR2-CT: 57.9 ± 2.8min),
but not in DAOxR1-KO and DAOxR1&2-KO mice (Fig. 4a, b). To determine
whether enhanced REMS results from more frequent NREMS-to-
REMS transitions, or from enhanced REMS stability, we quantified
REMS episode number and duration. DAOxR2-KO mice exhibited
prolonged REMS bouts (DAOxR2-KO: 66.2 ± 1.5 s vs DAOxR2-CT:
61.2 ± 1.7 s), without changes in bout number (Fig. 4c, top). Analysis
of bout duration distribution showed that, relative to controls,
DAOxR2-KO mice spent less of REMS in 32-64 s-long bouts, but more in
2–4min-long bouts (Fig. 4c, bottom). Hence, loss of HCRT
modulation of the DA system via HCRTR2 leads to both TDW and
REMS state consolidation.
HCRT neurons are reported to discharge during phasic REMS [4],

which represents intermittent rises in both amplitude and
frequency of theta oscillations during REMS [49]. We therefore
analyzed phasic REMS in our 6 genotype groups, and found that
mean duration of these events is longer in DAOxR2-KO relative to
controls (DAOxR2-KO: 1.634 ± 0.05 s vs DAOxR2-CT: 1.478 ± 0.05 s;
Fig. 4d), while it is unchanged in DAOxR1-KO and DAOxR1&2-KO mice.
A surprising finding was that DAOxR2-KO mice were severely

impaired in recovering REMS following SD. The homeostatic
rebound in REMS was delayed and occurred at a slower rate

(Fig. 4e, bottom). During the 18 h following SD, control mice
engaged in a total of 23.8 ± 4min of excess REMS compared to
baseline, whereas DAOxR2-KO mice’ REMS rebound only summed up
to 9.0 ± 2.6 min. Therefore, although dopaminergic Hcrtr2 inactiva-
tion prolongs REMS in baseline, REMS is diminished after a
homeostatic challenge. NREMS rebound also tended to be
reduced in DAOxR2-KO mice during the post-SD dark phase (Fig. S5a,
left). These findings suggest involvement of dopaminergic
HCRTR2 signaling in sleep homeostasis.
REMS spectral quality was next examined. We found opposing

effects of single Hcrtr2 vs double receptor inactivation on theta
power, which was significantly increased in DAOxR2-KO mice across
6.0–8.25 Hz, but decreased in DAOxR1&2-KO mice across 5.5–8.75 Hz
(Fig. 4f). These changes strikingly parallel the ones observed during
wakefulness and TDW, indicating that HCRT→DA modulation of
theta power operates across states, in wakefulness, TDW and REMS.

Enhanced theta-gamma coupling
Theta and gamma oscillations are instrumental in cognition, and
the strength of coupling between the theta phase and gamma
amplitudes correlates with learning and task performance in
rodents and humans [50, 51]. To investigate the role of
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per group, except n= 10 for DAOxR1&2-CT.
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dopaminergic HCRT signaling in modulating theta-gamma net-
works, we calculated phase-amplitude cross-frequency coupling
between these two oscillations using the modulation index (Fig. 5,
see Methods). We found that DAOxR2-KO mice express higher theta-
gamma coupling during waking and TDW in baseline dark phase
(DAOxR2-KO vs DAOxR2-CT; P= 0.0464; Fig. 5c), while theta-gamma
coupling of DAOxR1-KO and DAOxR1&2-KO mice did not differ from
controls. As theta and gamma frequencies also dominate the
REMS EEG [52], we next measured theta-gamma coupling during
REMS and found higher coupling index of the REMS theta rhythm
of DAOxR2-KO mice with gamma oscillations in baseline light phase
(DAOxR2-KO vs DAOxR2-CT; P= 0.0351; Fig. 5c), while Hcrtr1 or
Hcrtr1&2 dopaminergic inactivation did not significantly affect
REMS theta-gamma coupling.

DAOxR2-KO mice learn faster but exhibit maladaptive patterns
of reward-seeking behavior
As DAOxR2-KO mice present neurophysiological markers known to
correlate with cognitive performance, e.g. increased alert wakeful-
ness and higher theta-gamma coupling, we next compared

executive control and reward sensitivity of DAOxR2-KO and DAOxR2-
CT mice using an operant conditioning paradigm. Mice were trained
in a 3-choice serial reaction time task (3-CSRTT) in which each
mouse progresses through stages of increasing difficulty according
to individual performance and proceeds to the next training stage
when certain criteria are met (Fig. 6a and Methods). During the
training phase, DAOxR2-KO mice exhibited faster task acquisition,
requiring fewer days (Fig. 6b), and fewer sessions (Fig. 6c), to reach
the next training stage. When performance of all mice became
stable on the same training contingencies, their performance
during the last three sessions on the same stage was averaged (test
phase). DAOxR2-KO mice performed more correct responses com-
pared to DAOxR2-CT mice (Fig. 6d), with no difference in incorrect
responses (Fig. 6e), nor in response accuracy (Fig. 6f), or number of
omissions (Fig. 6g). However, DAOxR2-KO mice showed more
premature responses, i.e. responses preceding cue light illumina-
tion, suggesting an impulsive-like behavior (Fig. 6h), and more
perseverative responses, i.e. repeated head entries in absence of
reward intake, suggesting a compulsive-like trait (Fig. 6i). Collec-
tively, these data show that DAOxR2-KO mutants manifest improved
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show increased REMS latency (P= 0.0167, independent t-test, Top), and a slower and less extensive REMS rebound (Bottom). REMS latency is
unchanged in DAOxR1-KO and DAOxR1&2-KO mice. Time-course of REMS recovery after SD, calculated as accumulated excess time spent in REMS
compared to baseline, shows that DAOxR2-KO mice regain only ~40% as much REMS time compared to controls by end of the recovery dark
phase (P= 0.007, independent t-test). f Baseline spectral profiles of REMS in DAOxR1-KO, DAOxR2-KO, and DAOxR1&2-KO mice and respective controls.
Power density values are expressed as % of total EEG power density. Red lines indicate significant differences. DAOxR2-KO mice display
enhanced REMS theta power (6.0–8.25 Hz) compared to controls (two-way ANOVA; genotypeXfrequency interaction F(266,4272)= 1.600,
P < 0.001; Tukey post-hoc test, P < 0.05). In contrast DAOxR1&2-KO mice show reduced theta power (5.5-8.75 Hz) compared to controls (two-way
ANOVA; genotypeXfrequency interaction F(291,4964)= 1.251, P= 0.003; Tukey post-hoc test, P < 0.05). Bar graphs depict mean ± SEM. n= 9
mice/group, except n= 10 for DAOxR1&2-CT.

M. Bandarabadi et al.

333

Molecular Psychiatry (2024) 29:327 – 341



performance in acquisition and maintenance of instrumental
learning in a visual discrimination task, but they also concomi-
tantly exhibit signs of impaired inhibitory control.

DAOxR2-KO mice show higher choice accuracy under
increasingly demanding task contingencies
We next examined whether faster task acquisition during the
training phase and enhanced correct responses during the test
phase in DAOxR2-KO mice, could be denoting increased motivational
drive rather than improved attentional skills. We performed two
additional experiments that separately address aspects of atten-
tional performance and motivation, in a cognitive effort, and a
physical effort-demanding task, respectively (Fig. 6a). To assess

attentional performance, we progressively decreased the duration of
the light cue indicating the correct nosepoking response, assessing
the mice with the cue lasting 3, 2 and 1 s, i.e. under increasing
attentional demands. No differences were observed between
genotypes when the cue light was 3 or 2 s in correct and incorrect
responses, omissions, or accuracy (Fig. 7a, b). However, under the
most difficult condition with the cue lasting 1 s, DAOxR2-KO mice
showed higher performance reflected by fewer incorrect responses
and concomitant increased accuracy (Fig. 7c), with no differences in
number of correct responses, or omissions. These data suggest that
DAOxR2-KO mice have an enhanced capability to sustain attention,
and perform with higher accuracy when attentional demands are
increased, and align with the hypervigilance reported above.
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Fig. 5 Dopaminergic Hcrtr2-ablated mice exhibit enhanced theta-gamma phase-amplitude coupling during both wakefulness and REMS.
a Representative dynamics of theta-gamma coupling across vigilance states in DAOxR1-KO, DAOxR2-KO, and DAOxR1&2-KO mice and respective controls
during a 90-min interval in dark phase. Traces on top show the modulation index (MI) between theta (7–11 Hz) and fast-gamma (52–80 Hz)
oscillations, calculated using a 4-s moving window. Heatmaps color-code the distribution of gamma amplitudes across the theta phase, i.e. depict
phase-amplitude histograms of 4-s windows. Hypnogram is depicted below. b Heatmaps show the comodulogram analysis of phase-amplitude
coupling for representative mice of each group during REMS (12-h baseline light). DAOxR1-KO and DAOxR1&2-KO mice show similar levels of theta-
gamma coupling compared to their controls, while DAOxR2-KO mice display enhanced coupling. Right panels show the phase-amplitude
histograms of representative mice. c Pair-wise statistical comparisons between theta-gamma coupling values of KO and CT mice in wakefulness
and TDWof baseline dark phase, and REMS of baseline light phase. Theta-gamma coupling significantly increased in DAOxR2-KO mice compared to
controls during all three states (DAOxR2-KO vs DAOxR2-CT: wake: P= 0.0172; TDW: P= 0.0397; REMS: P= 0.0412; independent t-test). Bar graphs
depict mean ± SEM. n= 9 mice/group, except n= 10 for DAOxR1&2-CT.
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To further disentangle increased cognitive performance from
reward-based invigoration [53] or motivational drive, we next
subjected mice to a fixed and progressive schedule of reinforce-
ment to evaluate their willingness to work for the reward. To
minimize the contribution of attentional load, now only one hole
was illuminated. There was no difference between DAOxR2-KO and
DAOxR2-CT mice in number of nosepoking responses, neither under
a fixed (Fig. 7d), nor progressive ratio (Fig. 7e), suggesting no
alterations in motivation in an effortful task. Overall, these results
demonstrate improved performance of DAOxR2-KO mice when
attentional demands are high, namely during initial task acquisi-
tion, and when task contingencies are more demanding, but they
also show maladaptive patterns of reward-seeking behaviors
when assessed under well-trained conditions.

DISCUSSION
Our data establish a genetically-defined link between mono-
synaptic HCRT→ DA connectivity and theta oscillatory power in
wakefulness and REMS, and furthermore identify a link between

HCRT→ DA neurotransmission and executive functioning. We
disconnected the dopaminergic system from HCRT input by
selective Hcrtr1 or Hcrtr2 deletion in DA neurons. Although DAVTA

cells are the best characterized dopaminergic HCRT target, other
potential HCRT target DA groups in hypothalamus or dorsal
raphe would also be disconnected from HCRT input. Loss of
Hcrtr2 caused dramatic increases in waking theta activity and
time spent in alert wakefulness, albeit uncoupled from locomo-
tion, although EEG theta is commonly associated with locomo-
tion [42]. Thus DAOxR2-KO mice show electrocortical hyperarousal,
but not evident behavioral hyperarousal as evaluated by
locomotor activity in the homecage environment. Locomotor
responses in novel contexts remain however to be evaluated.
The increased rates of premature and repetitive (perseverative)
responding in the 3-CSRTT test chamber suggest that behavioral
hyperactivity is present.
REMS was also affected, with stronger theta activity, longer

bouts, and total duration. Furthermore, fast-gamma amplitudes
showed higher coupling to the theta phase during wakefulness
and REMS. Stronger theta-gamma coupling was associated with
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cognitive advantages, namely superior learning speed and
attentional performance, however compromised by maladaptive
patterns of reward-seeking, impulsivity and compulsivity-like
behaviors. DAOxR2-KO mice therefore earned more rewards, but

presumably at a higher energetical cost. Disconnection between
learning, attentional, and executive skills is intriguing and requires
investigation in additional contexts. None of the EEG changes
observed in DAOxR2-KO mice were seen in mice with chronic
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disruption of Hcrtr1, or both receptors, in DA cells. Strikingly,
DAOxR1&2-KO mice exhibited opposite changes, with decreased
theta activity in wakefulness, TDW and REMS. Our results thus
demonstrate critically distinct neuromodulation of DA pathways
by Hcrtr1 and Hcrtr2, with a crucial role of Hcrtr2 in theta/gamma
oscillations and associated cognition.
Although implication of the HCRT→DA circuit in theta is novel,

ample evidence exists for modulation of theta by HCRT and DA
individually. We previously reported profound disruption of theta
in Hcrt-KO mice, which show a severely theta-depleted baseline
wakefulness, through inability to maintain TDW for extended
periods [45, 54]. TDW instability of Hcrt-KO mice phenocopies
excessive daytime sleepiness of narcolepsy patients, who typically
fail to maintain arousal when under-stimulated. Similar to patients,
when subjected to external stimulation, Hcrt-KO mice showed
normalized TDW maintenance [45]. This is in strike contrast to
DAOxR2-KO mice, which display increased TDW across spontaneous
or enforced wakefulness, a priori challenging our understanding of
HCRT signaling.
HCRT neurons are well positioned to influence hippocampal

theta as they profusely innervate the medial septum (MS), a
structure which expresses Hcrtr2 RNA [55], and projects to the
hippocampus and paces hippocampal theta bursting activity.
Destruction of HCRT-2-binding neurons in MS of rats dramatically
decreased theta during wakefulness and REMS [56]. DAVTA axons
also project to the septum and contribute to regulate theta
oscillations [57]. Hence both HCRT and DAVTA project to the
septum and regulate hippocampal theta during wakefulness
and REMS.
A large body of data points to DA as facilitator of theta activity

[58, 59]. DA agonists and NMDA-glutamatergic DAVTA activation
induce theta, while VTA silencing or lesioning disrupts theta
[60–62]. Prominent hippocampal theta appears in two states,
active wakefulness (AW) and REMS, both featuring powerful DAVTA

bursting activity [27]. The theta peak frequencies in VTA and
hippocampal local field potentials are highly inter-correlated,
during AW and REMS [27, 57]. Since AW and REMS are both high-
cholinergic states sustained by pedunculopontine/laterodorsal
tegmental nuclei (LDT/PPT) activity, and LDT/PPT send excitatory
input to DAVTA cells [63], the DAVTA system may belong to a theta-
generating AW and REMS-active LDT/PPT→DAVTA→MS→hippo-
campal circuit [57].
Although generally associated, DA activity and theta power in

some contexts are inversely related, e.g. permanent hyperdopa-
minergia in Dat-KO mice is associated with decreased hippocam-
pal theta [64], and DA-depleted rats show theta amplification
during cognitive tasks [65]. Thus manipulations of the DA system
may bidirectionally modulate downstream effectors, due to
heterogeneities in DA subpopulations’ electrophysiological prop-
erties, receptive fields, projections, or in the subclass/distribution
of receptors. For instance, DA agents can show inverted-U-shaped
dose responses, e.g. too little or too much DA impairs working

memory. D2/3-agonists enhance sleep at low dosage, but
wakefulness at higher doses [66], depending on whether
presynaptic or postsynaptic effects dominate.
Interestingly, continued DAVTA optogenetic stimulation induces

a state of theta-enriched wakefulness [28] closely resembling
baseline wakefulness of DAOxR2-KO mice. Although optogenetic
activation and genomic manipulation are not directly comparable,
dopaminergic Hcrtr2 loss may likewise cause sustained theta
activity and dopaminergic activation. Genetic effects at two loci
can be non-additive, and the opposite effects of dual Hcrtr1&2 vs
single Hcrtr2 dopaminergic disruption, with Hcrtr1&2 most
resembling Hcrtr1, suggests that Hcrtr1 is epistatic to Hcrtr2 in
DA neurons. Nevertheless, our findings’ simplest interpretation
remains that DAOxR2-KO mice increased theta reflects enhanced DA
activity during wakefulness and REMS, while HCRTR2 signaling
normally dampens theta networks via dopaminergic inhibition.
HCRT is usually excitatory, however inhibitory HCRT-2 activity via
HCRTR2 is reported [67–69]. Conversely, since DAOxR1&2-doubly-
deficient mice experience reduced theta in waking and REMS,
paired dopaminergic HCRTR1&2 activity may normally stimulate
DA cell activity and theta networks. Consistent with this
hypothesis, DAOxR1&2-KO mice display beta enhancement, which
is a marker of DA deficiency. Beta activity is normally repressed
during movement, and its pathological increase is characteristic of
PD and DA-depleted rats [47, 70]. Interestingly, HCRT-1 and HCRT-
2 are neuroprotective in PD animal models [71], underscoring the
potential importance of HCRT→DA neurotransmission in PD, and
relevance of DAOxR1&2-KO mice as model of DA-deficiency
relevant to PD.
Disrupting HCRT→ DA circuits impacted REMS and wakefulness

almost identically. As mentioned, HCRT neurons show bursting
activity during phasic REMS [4, 72], and a sublaterodorsal
tegmental nucleus-projecting REMS-active HCRT population was
shown to sustain theta and prolong REMS [7]. Consistent with
active HCRT→DA signaling in phasic REMS, DAOxR2-KO mice
exhibit prolonged phasic REMS events. An increasing number of
studies also evidence DA activity during REMS. DAVTA neurons
show increased c-Fos expression during REMS rebound [73], and
NAc and medial prefrontal cortex (mPFC) DA release increases in
REMS [74]. DAVTA single-unit recording in rats revealed prominent
burst firing during REMS, as during palatable food consumption
[27], and DAVTA activity increases at NREMS-to-REMS transitions
[28]. Conversely, DA-depleted rats do not enter REMS, which is
restored by D2-agonists [75]. A recent study positioned DAVTA cells
as prime inducers of REMS, demonstrating DA transients appear-
ing within the BLA ~20 s before REMS-onset, while optogenetic
activation of BLA DAVTA terminals induced REMS [76]. In
agreement, DAVTA bursting activity observed by unit-recordings
appears ~10-20 s before REMS-onset [27].
An unexplained DAOxR2-KO phenotype is a strongly diminished

REMS rebound following SD. Could the shorter REMS rebound of
DAOxR2-KO mice stem from REMS higher theta power, whereby

Fig. 7 Dopaminergic Hcrtr2-ablated mice display higher choice accuracy under increasingly demanding task contingencies, but no
alterations in motivational drive. Shown are results of the attention and motivation probes (see timeline in Fig. 6). In the attention probe,
stimulus duration (i.e., cue light in apertures) varied from 3 to 1 s, thus exposing mice to contingencies of increasing attentional demand.
aWhen the stimulus duration was 3 s, no differences between DAOxR2-KO and DAOxR2-CT mice were observed in correct and incorrect responses,
omissions, and response accuracy (correct: P= 0.8213, incorrect: P= 0.5496, omission: P= 0.4297, accuracy: P= 0.5141, independent t-test).
b Similarly, no differences were observed when the stimulus duration was 2 s (correct: P= 0.0739, incorrect: P= 0.7905, omission: P= 0.2969,
accuracy: P= 0.8025, independent t-test). cWhen the stimulus duration was reduced to 1 s, no differences were observed between genotypes
regarding correct responses and omissions (correct: P= 0.5486, omission: P= 0.4516, independent t-test). However, DAOxR2-KO mice displayed
fewer incorrect responses, and a higher response accuracy (incorrect: P= 0.0133, accuracy: P < 0.001, independent t-test). In the motivation
probe, a single aperture was illuminated and only this choice was rewarded. Mice were challenged on a fixed ratio on one day, and on a
progressive ratio on the next day. DAOxR2-KO and DAOxR2-CT mice did not show significant differences in number of nosepokes in the active
aperture under a fixed ratio (P= 0.3926, independent t-test, d), nor the next day under a progressive ratio (P= 0.5083, independent t-test, e).
Bar graphs depict mean ± SEM. n= 8 DAOxR2-KO, n= 12 DAOxR2-CT.
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enhanced theta synchrony would facilitate the efficiency of REMS-
dependent recovery processes? REMS homeostasis is poorly
understood. The physiological and cognitive processes of REMS
may rely on the combined action of prominent cholinergic and
dopaminergic neuromodulation [27], and our study further
suggests involvement of HCRT→DA transmission in sleep
recovery.
A 3rd theta-dominated state is cataplexy, narcolepsy pathog-

nomonic symptom and HCRT deficiency signature. D2/D3-
receptors modulate cataplexy in narcoleptic dogs and mice, with
D2/D3-agonists aggravating, and blockers improving cataplexy
[77, 78]. Because D2/D3 are DA neuron inhibitory auto-receptors,
this suggests that DA insufficiency precipitates cataplexy. Opto-
genetic excitation of DAVTA terminals within BLA of narcoleptic
mice exposed to chocolate induced DA transients and cataplexy,
while WT mice experienced a much smaller DA release [76],
suggesting HCRT may inhibit DA release. Accordingly, our
HCRT→DA-deficient mice may display cataplexy upon chocolate
consumption. We did not evidence cataplexy in our mice, but they
were not exposed to chocolate or other potent triggers. The role
of HCRT→DA circuits in cataplexy warrants further investigation.
Theta-gamma coupling facilitates, or reflects, short-term mem-

ory processes. Rats learning day-by-day to associate contexts with
food location, demonstrated increasing theta-gamma coupling as
learning progressed, and theta-gamma coupling could predict the
probability of correct choice on a given day [50]. Accordingly,
DAOxR2-KO mice’ increased coupling is expected to enhance
learning speed and response accuracy, two expectations that we
confirmed in the 3-CSRTT. DAOxR2-KO mice not only learnt the task
faster, but they reached higher accuracy at baseline, and when
attentional demand increased, performed better. The mPFC is a
major DAVTA target, as well as a direct HCRT target, and a hub for
executive functions. DAOxR2-KO mice may experience malfunction
of a HCRT→ DAVTA→mPFC circuit [79] resulting from deficient
HCRTR2 signaling in DA cell bodies or terminals. Lambe et al.
demonstrated that HCRTR2 signaling at PFC thalamocortical
terminals plays a role in executive functions, whereby intra-PFC
HCRT-2 infusion improved high-attention-demanding task accu-
racy, by exciting thalamocortical terminals onto layer V pyramidal
cells [80]. Importantly, HCRT can act either by postsynaptic or
presynaptic action, i.e. acting on cell somata, or axon terminals. In
terminals, HCRT can modulate release of neurotransmitters, e.g.
glutamate, GABA, and potentially DA [36, 37, 81, 82]. Deficient
HCRTR2 signaling in DAVTA terminals, that densely innervate the
PFC and co-release DA and glutamate [83], may thus contribute to
DAOxR2-KO mice’ phenotype.
DAOxR2-KO mice enhanced performance was compromised by

premature responding, aligning with studies implicating HCRT in
impulsivity [84], and with observation that intra-VTA HCRTR1&2-
dual-antagonist application reduces cocaine-evoked premature
responding in rats [85]. DAOxR2-KO mice exhibited moreover
perseverative responding, with repeated head entries after reward
intake. Both premature and repetitive responding suggest
behavioral hyperactivity. Altogether, DAOxR2-KO mice phenotype
depicted several endophenotypes reminiscent of the neurodeve-
lopmental disorder attention deficit/hyperactivity disorder
(ADHD), characterized by inattention, impulsivity, and hyperactiv-
ity symptoms, which can exist together or in isolation. Firstly,
DAOxR2-KO mice waking EEG revealed constitutive electrocortical
hyperarousal, with increased theta/fast-gamma power. Enhanced
waking theta is documented in children with ADHD and ADHD
mouse models [86, 87]. Second, our mice display impaired
inhibitory control, with marked impulsivity. In the visual task we
used, impulsivity appeared coupled to enhanced attention. Three
ADHD subtypes are distinguished, subtype-H (hyperactive), -I
(inattentive)- and -C (combined). DAOxR2-KO mice may feature an
ADHD-H endophenotype, although other attentional modalities
need appraisal in our mice. DAOxR2-KO mice also show strong

compulsivity, a trait over-represented in ADHD [88]. Genetic and
pharmacological evidence strongly suggest involvement of DA
pathways in ADHD in humans and mouse models. The ‘DA
hypothesis of ADHD’ posits that DA hypofunction, or imbalance,
underlies ADHD [89, 90]. Meanwhile, HCRT deficiency is also linked
to ADHD. Narcolepsy patients show impaired executive function
and impulsivity [91], and clinical overlap exists between narco-
lepsy and ADHD [92]. Suggesting shared causalities, narcolepsy is
associated with increased ADHD incidence [93, 94]. Furthermore,
both pathophysiologies respond favorably to DA drugs. Whereas
methylphenidate and amphetamine cause hyperarousal in normal
subjects, they normalize arousal in ADHD patients, and improve
sleepiness in narcolepsy. Hence both HCRT and DA are established
candidate ADHD substrates, and our study suggests that HCRT→
DA connectivity is especially relevant.
Owing to their vital role in neuroplasticity, learning and

memory, theta and gamma oscillations and their phase coupling
are cognitive biomarkers and therapeutic targets. Oscillatory
alterations are observed in neuropsychological disorders, includ-
ing arousal disorders, anxiety, and depression. Stimulants and
other therapeutic interventions induce EEG changes that correlate
with clinical benefits. Oscillations therefore can act as non-invasive
biomarkers of recovery. Understanding circuits governing theta/
gamma neuromodulation may moreover lead to disease-causing
mechanisms. Post-mortem quantitative studies evidenced five-
fold heavier HCRT input to TH-immunoreactive neurons in human
VTA as compared with rat [95]. Hence, HCRT signaling in VTA may
play as critical a role in reward processing and cognition in
humans as it does in rodents, and further understanding of
HCRT→DA connectivity may guide novel therapies.

MATERIALS AND METHODS
Creation of Hcrtr2 conditional knockout mice
Hcrtr1flox mice generation was previously described [38, 96]. Hcrtr2flox allele
creation is detailed in SI Appendix. The allele is designed so the Hcrtr2
promoter drives Gfp instead of Hcrtr2 following Cre/lox-recombination.
Lox-lox recombination deletes DNA encoding HCRTR2 signal peptide,
N-terminal domain, and almost entire transmembrane-domain1. To create
a full-body Hcrtr2-null/GFP-reporter allele, Hcrtr2flox mice were crossed to
Tg(EIIa-cre)C5379Lmgd mice, which express Cre in the early embryo [97],
producing Hcrtr2del mice. To functionally validate Hcrtr1 and Hcrtr2 gene
engineering, Hcrtr2del were crossed with Hcrtr1del mice [38, 98], and double-
KO (Hcrtr1del/del,Hcrtr2del/del) were demonstrated to display narcolepsy with
cataplexy by EEG/EMG-video analysis [13].

Animals
Animal husbandry is detailed in SI Appendix. All animal procedures
followed Swiss federal laws and were approved by the State of Vaud
Veterinary Office. Care was taken at all times to optimize wellbeing and
minimize discomfort and stress.

Three-choice serial reaction time task (3-CSRTT)
The test is detailed in SI Appendix. Briefly, mice were trained to self-
administer a 0.2% saccharine liquid reward. A nosepoke in the ‘active’ port
activated delivery of 0.01ml reward from a liquid dipper. The test comprised
four increasing-difficult training stages and a test phase. To advance to the
next stage, mice had to earn a fixed number of rewards during a 30-min
session. Test phase performance was the average performance during the
last 3 days’ sessions. Premature, correct, incorrect, omission, and persevera-
tive responses were recorded. A premature response is nosepoking before
cue light illumination. A perseverative response is a supernumerary head
entry in liquid dispenser after reward consumption.
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