Disease-associated mutations in the actin-binding domain of filamin B cause cytoplasmic focal accumulations correlating with disease severity.

Details

Serval ID
serval:BIB_F0B42A9FCABF
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Disease-associated mutations in the actin-binding domain of filamin B cause cytoplasmic focal accumulations correlating with disease severity.
Journal
Human Mutation
Author(s)
Daniel P.B., Morgan T., Alanay Y., Bijlsma E., Cho T.J., Cole T., Collins F., David A., Devriendt K., Faivre L., Ikegawa S., Jacquemont S., Jesic M., Krakow D., Liebrecht D., Maitz S., Marlin S., Morin G., Nishikubo T., Nishimura G., Prescott T., Scarano G., Shafeghati Y., Skovby F., Tsutsumi S., Whiteford M., Zenker M., Robertson S.P.
ISSN
1098-1004 (Electronic)
ISSN-L
1059-7794
Publication state
Published
Issued date
2012
Volume
33
Number
4
Pages
665-673
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov'tPublication Status: ppublish
Abstract
Dominant missense mutations in FLNB, encoding the actin-cross linking protein filamin B (FLNB), cause a broad range of skeletal dysplasias with varying severity by an unknown mechanism. Here these FLNB mutations are shown to cluster in exons encoding the actin-binding domain (ABD) and filamin repeats surrounding the flexible hinge 1 region of the FLNB rod domain. Despite being positioned in domains that bind actin, it is unknown if these mutations perturb cytoskeletal structure. Expression of several full-length FLNB constructs containing ABD mutations resulted in the appearance of actin-containing cytoplasmic focal accumulations of the substituted protein to a degree that was correlated with the severity of the associated phenotypes. In contrast, study of mutations leading to substitutions in the FLNB rod domain that result in the same phenotypes as ABD mutations demonstrated that with only one exception disease-associated substitutions, surrounding hinge 1 demonstrated no tendency to form actin-filamin foci. The exception, a substitution in filamin repeat 6, lies within a region previously implicated in filamin-actin binding. These data are consistent with mutations in the ABD conferring enhanced actin-binding activity but suggest that substitutions affecting repeats near the flexible hinge region of FLNB precipitate the same phenotypes through a different mechanism.
Pubmed
Web of science
Open Access
Yes
Create date
28/05/2012 17:18
Last modification date
20/08/2019 16:18
Usage data