Determinants of topogenesis and glycosylation of type II membrane proteins. Analysis of Na,K-ATPase beta 1 AND beta 3 subunits by glycosylation mapping.

Details

Serval ID
serval:BIB_D3CD766359A2
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Determinants of topogenesis and glycosylation of type II membrane proteins. Analysis of Na,K-ATPase beta 1 AND beta 3 subunits by glycosylation mapping.
Journal
Journal of Biological Chemistry
Author(s)
Hasler U., Greasley P.J., von Heijne G., Geering K.
ISSN
0021-9258
Publication state
Published
Issued date
09/2000
Peer-reviewed
Oui
Volume
275
Number
37
Pages
29011-29022
Language
english
Abstract
The structural and molecular determinants that govern the correct membrane insertion and folding of membrane proteins are still ill-defined. By following the addition of sugar chains to engineered glycosylation sites (glycosylation mapping) in Na,K-ATPase beta isoforms expressed in vitro and in Xenopus oocytes, in combination with biochemical techniques, we have defined the C-terminal end of the transmembrane domain of these type II proteins. N-terminal truncation and the removal of a single charged residue at the N-terminal start of the putative transmembrane domain influence the proper positioning of the transmembrane domain in the membrane as reflected by a repositioning of the transmembrane domain, the exposure of a putative cryptic signal peptidase cleavage site, and the production of protein species unable to insert into the membrane. Glycosylation mapping in vivo revealed that the degree of glycosylation at acceptor sites located close to the membrane increases with the time proteins spend in the endoplasmic reticulum. Furthermore, core sugars added to such acceptor sites cannot be processed to fully glycosylated species even when the protein is transported to the cell surface. Thus, the glycosylation mapping strategy applied in intact cells is a useful tool for the study of determinants for the correct membrane insertion of type II and probably other membrane proteins, as well as for the processing of sugar chains in glycoproteins.
Keywords
Amino Acid Sequence, Animals, Female, Glycosylation, Membrane Proteins/chemistry, Molecular Sequence Data, Sodium-Potassium-Exchanging ATPase/chemistry, Sodium-Potassium-Exchanging ATPase/metabolism, Xenopus
Pubmed
Web of science
Open Access
Yes
Create date
24/01/2008 12:28
Last modification date
20/08/2019 15:53
Usage data