Citrobacter rodentium Requires Intestinal Neural Wiskott-Aldrich Syndrome Protein (N-WASp) for Actin Pedestal Formation, Colonization and Epithelial Barrier Disruption In Vivo

Details

Serval ID
serval:BIB_CE274DE961E5
Type
Inproceedings: an article in a conference proceedings.
Publication sub-type
Abstract (Abstract): shot summary in a article that contain essentials elements presented during a scientific conference, lecture or from a poster.
Collection
Publications
Institution
Title
Citrobacter rodentium Requires Intestinal Neural Wiskott-Aldrich Syndrome Protein (N-WASp) for Actin Pedestal Formation, Colonization and Epithelial Barrier Disruption In Vivo
Title of the conference
Digestive Disease Week 2011
Author(s)
Garber J.J., Shi H.N., Nguyen D.D., Maillard M.H., Mallick E., Leong J.M., Snapper S.B.
Address
Chicago, Illinois, United-States, May 7-11, 2011
ISBN
0016-5085
Publication state
Published
Issued date
2011
Volume
140
Series
Gastroenterology
Pages
S646
Language
english
Notes
Publication type : Meeting Abstract
Abstract
Background: Citrobacter rodentium is a natural mouse pathogen that is genetically closelyrelated to the human enteric pathogens enteropathogenic and enterohemorrhagic E. coli.Among the repertoire of conserved virulence factors that these pathogens deliver via typeIII secretion, Tir and EspF are responsible for the formation of characteristic actin-richpedestals and disruption of tight junction integrity, respectively. There is evidence In Vitrothese effectors accomplish this, at least in part, by subverting the normal host cellularfunctions of N-WASP, a critical regulator of branched chain actin assembly. Although NWASPhas been shown to be involved in pedestal formation In Vitro, the requirements ofN-WASP-mediated actin pedestals for intestinal colonization by attaching/effacing (A/E)pathogens In Vivo is not known. Furthermore, it is not known whether N-WASP is requiredfor EspF-mediated tight junction disruption. Methods: To investigate the role of N-WASPin the gut epithelium, we generated mice with intestine-specific deletion of N-WASP(iNWKO), by mating mice homozygous for a floxed N-WASP allele (N-WASPL2L/L2L) tomice expressing Cre recombinase under the villin promoter. Separately housed groups ofWT and iNWKO mice were inoculated with 5x108 GFP-expressing C. rodentium by intragastriclavage. Stool was collected 2, 4, 7, and 12 days after infection, and recoverablecolony forming units (CFUs) of C. rodentium were quantified by plating serial dilutions ofhomogenized stool on MacConkey's agar. GFP+ colonies were counted after 24 hoursincubation at 37°C. The presence of actin pedestals was investigated by electron microscopy(EM), and tight junction morphology was assessed by immunofluorescence staining ofoccludin, ZO-1 and claudin-2. Results: C. rodentium infection did not result in mortalityin WT or iNWKO mice. Compared to controls, iNWKO mice exhibited higher levels ofbacterial shedding during the first 4 days of infection (day 4 average: WT 5.2x104 CFU/gvs. iNWKO 4.7x105 CFU/g, p=0.08), followed by a more rapid clearance of C. rodentium, (day7-12 average: WT 2x106 CFU/g vs. iNWKO 2.7x105, p=0.01). EM and immunofluorescencerevealed the complete lack of actin pedestals in iNWKO mice and no mucosa-associatedGFP+ C. rodentium by day 7. WT controls exhibited tight junction disruption, reflected byaltered distribution of ZO-1, whereas iNWKO mice had no change in the pattern of ZO-1.Conclusion: Intestinal N-WASP is required for actin pedestal formation by C. rodentium InVivo, and ablation of N-WASP is associated with more rapid bacterial clearance and decreasedability of C. rodentium to disrupt intercellular junctions.
Keywords
,
Web of science
Create date
16/03/2012 10:07
Last modification date
20/08/2019 15:48
Usage data