Rapid fluidic exchange microsystem for recording of fast ion channel kinetics in Xenopus oocytes.

Details

Serval ID
serval:BIB_B03368508E76
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Rapid fluidic exchange microsystem for recording of fast ion channel kinetics in Xenopus oocytes.
Journal
Lab On A Chip
Author(s)
Dahan E., Bize V., Lehnert T., Horisberger J.D., Gijs M.A.
ISSN
1473-0197 (Print)
ISSN-L
1473-0189
Publication state
Published
Issued date
2008
Peer-reviewed
Oui
Volume
8
Number
11
Pages
1809-1818
Language
english
Abstract
We present a new lab-on-a-chip system for electrophysiological measurements on Xenopus oocytes. Xenopus oocytes are widely used host cells in the field of pharmacological studies and drug development. We developed a novel non-invasive technique using immobilized non-devitellinized cells that replaces the traditional "two-electrode voltage-clamp" (TEVC) method. In particular, rapid fluidic exchange was implemented on-chip to allow recording of fast kinetic events of exogenous ion channels expressed in the cell membrane. Reducing fluidic exchange times of extracellular reagent solutions is a great challenge with these large millimetre-sized cells. Fluidic switching is obtained by shifting the laminar flow interface in a perfusion channel under the cell by means of integrated poly-dimethylsiloxane (PDMS) microvalves. Reagent solution exchange times down to 20 ms have been achieved. An on-chip purging system allows to perform complex pharmacological protocols, making the system suitable for screening of ion channel ligand libraries. The performance of the integrated rapid fluidic exchange system was demonstrated by investigating the self-inhibition of human epithelial sodium channels (ENaC). Our results show that the response time of this ion channel to a specific reactant is about an order of magnitude faster than could be estimated with the traditional TEVC technique.
Keywords
Animals, Electrochemistry, Electrophysiological Processes/drug effects, Epithelial Cells/drug effects, Epithelial Cells/metabolism, Epithelial Sodium Channel/genetics, Epithelial Sodium Channel/metabolism, Female, Humans, Kinetics, Microfluidic Analytical Techniques/methods, Oocytes/cytology, Oocytes/metabolism, Patch-Clamp Techniques, Perfusion, Sodium/metabolism, Sodium/pharmacology, Sodium Channels/metabolism, Time Factors, Xenopus
Pubmed
Web of science
Create date
18/02/2009 9:25
Last modification date
23/11/2020 12:07
Usage data