Real-time 3D imaging of Haines jumps in porous media flow.

Details

Serval ID
serval:BIB_49F30214261D
Type
Article: article from journal or magazin.
Collection
Publications
Title
Real-time 3D imaging of Haines jumps in porous media flow.
Journal
Proceedings of the National Academy of Sciences of the United States of America
Author(s)
Berg S., Ott H., Klapp S.A., Schwing A., Neiteler R., Brussee N., Makurat A., Leu L., Enzmann F., Schwarz J.O., Kersten M., Irvine S., Stampanoni M.
ISSN
1091-6490 (Electronic)
ISSN-L
0027-8424
Publication state
Published
Issued date
2013
Volume
110
Number
10
Pages
3755-3759
Language
english
Notes
Publication types: Journal ArticlePublication Status: ppublish
Abstract
Newly developed high-speed, synchrotron-based X-ray computed microtomography enabled us to directly image pore-scale displacement events in porous rock in real time. Common approaches to modeling macroscopic fluid behavior are phenomenological, have many shortcomings, and lack consistent links to elementary pore-scale displacement processes, such as Haines jumps and snap-off. Unlike the common singular pore jump paradigm based on observations of restricted artificial capillaries, we found that Haines jumps typically cascade through 10-20 geometrically defined pores per event, accounting for 64% of the energy dissipation. Real-time imaging provided a more detailed fundamental understanding of the elementary processes in porous media, such as hysteresis, snap-off, and nonwetting phase entrapment, and it opens the way for a rigorous process for upscaling based on thermodynamic models.
Pubmed
Web of science
Open Access
Yes
Create date
21/04/2013 9:34
Last modification date
20/08/2019 14:57
Usage data