Temporal difference models describe higher-order learning in humans.

Details

Serval ID
serval:BIB_4904DFDE8566
Type
Article: article from journal or magazin.
Collection
Publications
Title
Temporal difference models describe higher-order learning in humans.
Journal
Nature
Author(s)
Seymour B., O'Doherty J.P., Dayan P., Koltzenburg M., Jones A.K., Dolan R.J., Friston K.J., Frackowiak R.S.
ISSN
1476-4687 (Electronic)
ISSN-L
0028-0836
Publication state
Published
Issued date
2004
Volume
429
Number
6992
Pages
664-667
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov'tPublication Status: ppublish
Abstract
The ability to use environmental stimuli to predict impending harm is critical for survival. Such predictions should be available as early as they are reliable. In pavlovian conditioning, chains of successively earlier predictors are studied in terms of higher-order relationships, and have inspired computational theories such as temporal difference learning. However, there is at present no adequate neurobiological account of how this learning occurs. Here, in a functional magnetic resonance imaging (fMRI) study of higher-order aversive conditioning, we describe a key computational strategy that humans use to learn predictions about pain. We show that neural activity in the ventral striatum and the anterior insula displays a marked correspondence to the signals for sequential learning predicted by temporal difference models. This result reveals a flexible aversive learning process ideally suited to the changing and uncertain nature of real-world environments. Taken with existing data on reward learning, our results suggest a critical role for the ventral striatum in integrating complex appetitive and aversive predictions to coordinate behaviour.
Keywords
Conditioning, Classical/physiology, Cues, Electric Stimulation, Hand, Humans, Learning/physiology, Magnetic Resonance Imaging, Models, Neurological, Neostriatum/physiology, Pain/physiopathology, Punishment, Time Factors
Pubmed
Web of science
Create date
11/09/2011 19:31
Last modification date
20/08/2019 14:56
Usage data