LTR-mediated retroposition as a mechanism of RNA-based duplication in metazoans.

Details

Ressource 1Request a copy Under indefinite embargo.
UNIL restricted access
State: Public
Version: author
License: CC BY-NC 4.0
Serval ID
serval:BIB_1D3A50C22444
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
LTR-mediated retroposition as a mechanism of RNA-based duplication in metazoans.
Journal
Genome research
Author(s)
Tan S., Cardoso-Moreira M., Shi W., Zhang D., Huang J., Mao Y., Jia H., Zhang Y., Chen C., Shao Y., Leng L., Liu Z., Huang X., Long M., Zhang Y.E.
ISSN
1549-5469 (Electronic)
ISSN-L
1088-9051
Publication state
Published
Issued date
12/2016
Peer-reviewed
Oui
Volume
26
Number
12
Pages
1663-1675
Language
english
Notes
Publication types: Journal Article
Publication Status: ppublish
Abstract
In a broad range of taxa, genes can duplicate through an RNA intermediate in a process mediated by retrotransposons (retroposition). In mammals, L1 retrotransposons drive retroposition, but the elements responsible for retroposition in other animals have yet to be identified. Here, we examined young retrocopies from various animals that still retain the sequence features indicative of the underlying retroposition mechanism. In Drosophila melanogaster, we identified and de novo assembled 15 polymorphic retrocopies and found that all retroposed loci are chimeras of internal retrocopies flanked by discontinuous LTR retrotransposons. At the fusion points between the mRNAs and the LTR retrotransposons, we identified shared short similar sequences that suggest the involvement of microsimilarity-dependent template switches. By expanding our approach to mosquito, zebrafish, chicken, and mammals, we identified in all these species recently originated retrocopies with a similar chimeric structure and shared microsimilarities at the fusion points. We also identified several retrocopies that combine the sequences of two or more parental genes, demonstrating LTR-retroposition as a novel mechanism of exon shuffling. Finally, we found that LTR-mediated retrocopies are immediately cotranscribed with their flanking LTR retrotransposons. Transcriptional profiling coupled with sequence analyses revealed that the sense-strand transcription of the retrocopies often lead to the origination of in-frame proteins relative to the parental genes. Overall, our data show that LTR-mediated retroposition is highly conserved across a wide range of animal taxa; combined with previous work from plants and yeast, it represents an ancient and ongoing mechanism continuously shaping gene content evolution in eukaryotes.
Keywords
Animals, Chickens/genetics, Culicidae/genetics, Drosophila melanogaster/genetics, Evolution, Molecular, Gene Duplication, Gene Expression Profiling/methods, Humans, Mammals/genetics, Mice, RNA, Messenger/genetics, Retroelements, Segmental Duplications, Genomic, Terminal Repeat Sequences, Zebrafish/genetics
Pubmed
Web of science
Open Access
Yes
Create date
22/12/2016 13:37
Last modification date
23/11/2022 7:50
Usage data