A finite volume scheme for cardiac propagation in media with isotropic conductivities

Détails

ID Serval
serval:BIB_012B41E2E010
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Titre
A finite volume scheme for cardiac propagation in media with isotropic conductivities
Périodique
Mathematics and Computers in Simulation
Auteur(s)
Bendahmane M., Bürger R., Ruiz-Baier R.
ISSN-L
0378-4754
Statut éditorial
Publié
Date de publication
2010
Peer-reviewed
Oui
Volume
80
Pages
1821-1840
Langue
anglais
Résumé
A finite volume method for solving the monodomain and
bidomain models for the electrical activity of myocardial
tissue is presented. These models consist of a parabolic
PDE and a system of a parabolic and an elliptic PDE,
respectively, for certain electric potentials, coupled to
an ODE for the gating variable. The existence and
uniqueness of the approximate solution is proved, and it
is also shown that the scheme converges to the
corresponding weak solutions for the monodomain model,
and for the bidomain model when considering diagonal
conductivity tensors. Numerical examples in two and three
space dimensions are provided, indicating experimental
rates of convergence slightly above first order for both
models.
Mots-clé
Axially symmetric bidomain model, Reactionâeuro"diffusion, system, Finite volume approximation, Convergence to the, weak solution
Création de la notice
02/07/2013 10:54
Dernière modification de la notice
03/03/2018 13:13
Données d'usage