Generation and Evaluation of Synthetic Data in a University Hospital Setting
Détails
Télécharger: 35612040 .pdf (187.74 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY-NC 4.0
Etat: Public
Version: Final published version
Licence: CC BY-NC 4.0
ID Serval
serval:BIB_FF74F4A9D504
Type
Partie de livre
Sous-type
Chapitre: chapitre ou section
Collection
Publications
Institution
Titre
Generation and Evaluation of Synthetic Data in a University Hospital Setting
Titre du livre
Challenges of Trustable AI and Added-Value on Health
Editeur
IOS Press
ISSN
0926-9630
1879-8365
1879-8365
ISSN-L
0926-9630
Statut éditorial
Publié
Date de publication
25/05/2022
Peer-reviewed
Oui
Volume
294
Série
Studies in Health Technology and Informatics
Pages
141-142
Langue
anglais
Résumé
In this study, we propose a unified evaluation framework for systematically assessing the utility-privacy trade-off of synthetic data generation (SDG) models. These SDG models are adapted to deal with longitudinal or tabular data stemming from electronic health records (EHR) containing both discrete and numeric features. Our evaluation framework considers different data sharing scenarios and attacker models.
Pubmed
Open Access
Oui
Création de la notice
17/06/2022 13:38
Dernière modification de la notice
05/09/2024 8:59