Human cooperation in the simultaneous and the alternating Prisoner's Dilemma: Pavlov versus Generous Tit-for-Tat.

Détails

ID Serval
serval:BIB_FF0B953ED588
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Titre
Human cooperation in the simultaneous and the alternating Prisoner's Dilemma: Pavlov versus Generous Tit-for-Tat.
Périodique
Proceedings of the National Academy of Sciences of the United States of America
Auteur⸱e⸱s
Wedekind C., Milinski M.
ISSN
0027-8424 (Print)
ISSN-L
0027-8424
Statut éditorial
Publié
Date de publication
1996
Peer-reviewed
Oui
Volume
93
Numéro
7
Pages
2686-2689
Langue
anglais
Résumé
The iterated Prisoner's Dilemma has become the paradigm for the evolution of cooperation among egoists. Since Axelrod's classic computer tournaments and Nowak and Sigmund's extensive simulations of evolution, we know that natural selection can favor cooperative strategies in the Prisoner's Dilemma. According to recent developments of theory the last champion strategy of "win--stay, lose--shift" ("Pavlov") is the winner only if the players act simultaneously. In the more natural situation of players alternating the roles of donor and recipient a strategy of "Generous Tit-for-Tat" wins computer simulations of short-term memory strategies. We show here by experiments with humans that cooperation dominated in both the simultaneous and the alternating Prisoner's Dilemma. Subjects were consistent in their strategies: 30% adopted a Generous Tit-for-Tat-like strategy, whereas 70% used a Pavlovian strategy in both the alternating and the simultaneous game. As predicted for unconditional strategies, Pavlovian players appeared to be more successful in the simultaneous game whereas Generous Tit-for-Tat-like players achieved higher payoffs in the alternating game. However, the Pavlovian players were smarter than predicted: they suffered less from defectors and exploited cooperators more readily. Humans appear to cooperate either with a Generous Tit-for-Tat-like strategy or with a strategy that appreciates Pavlov's advantages but minimizes its handicaps.
Pubmed
Web of science
Open Access
Oui
Création de la notice
25/01/2008 10:43
Dernière modification de la notice
20/08/2019 16:29
Données d'usage