The Munc13 proteins differentially regulate readily releasable pool dynamics and calcium-dependent recovery at a central synapse.

Détails

ID Serval
serval:BIB_FF01B8410BCD
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
The Munc13 proteins differentially regulate readily releasable pool dynamics and calcium-dependent recovery at a central synapse.
Périodique
Journal of Neuroscience
Auteur⸱e⸱s
Chen Z., Cooper B., Kalla S., Varoqueaux F., Young S.M.
ISSN
1529-2401 (Electronic)
ISSN-L
0270-6474
Statut éditorial
Publié
Date de publication
2013
Peer-reviewed
Oui
Volume
33
Numéro
19
Pages
8336-8351
Langue
anglais
Résumé
The Munc13 gene family encodes molecules located at the synaptic active zone that regulate the reliability of synapses to encode information over a wide range of frequencies in response to action potentials. In the CNS, proteins of the Munc13 family are critical in regulating neurotransmitter release and synaptic plasticity. Although Munc13-1 is essential for synaptic transmission, it is paradoxical that Munc13-2 and Munc13-3 are functionally dispensable at some synapses, although their loss in other synapses leads to increases in frequency-dependent facilitation. We addressed this issue at the calyx of Held synapse, a giant glutamatergic synapse that we found to express all these Munc13 isoforms. We studied their roles in the regulation of synaptic transmission and their impact on the reliability of information transfer. Through detailed electrophysiological analyses of Munc13-2, Munc13-3, and Munc13-2-3 knock-out and wild-type mice, we report that the combined loss of Munc13-2 and Munc13-3 led to an increase in the rate of calcium-dependent recovery and a change in kinetics of release of the readily releasable pool. Furthermore, viral-mediated overexpression of a dominant-negative form of Munc13-1 at the calyx demonstrated that these effects are Munc13-1 dependent. Quantitative immunohistochemistry using Munc13-fluorescent protein knock-in mice revealed that Munc13-1 is the most highly expressed Munc13 isoform at the calyx and the only one highly colocalized with Bassoon at the active zone. Based on these data, we conclude that Munc13-2 and Munc13-3 isoforms limit the ability of Munc13-1 to regulate calcium-dependent replenishment of readily releasable pool and slow pool to fast pool conversion in central synapses.
Mots-clé
Age Factors, Analysis of Variance, Animals, Animals, Newborn, Brain Stem/cytology, Calcium/metabolism, Electric Stimulation, Excitatory Postsynaptic Potentials/drug effects, Excitatory Postsynaptic Potentials/genetics, Female, Gene Expression Regulation, Developmental/genetics, Green Fluorescent Proteins/genetics, Green Fluorescent Proteins/metabolism, Intracellular Signaling Peptides and Proteins/deficiency, Intracellular Signaling Peptides and Proteins/metabolism, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Nerve Tissue Proteins/deficiency, Nerve Tissue Proteins/genetics, Patch-Clamp Techniques, Synapses/genetics, Synapses/physiology, Synaptic Transmission/genetics, Synaptic Transmission/physiology, Vesicular Glutamate Transport Protein 1/metabolism
Pubmed
Web of science
Open Access
Oui
Création de la notice
24/12/2013 9:07
Dernière modification de la notice
20/08/2019 17:29
Données d'usage