A comparison between L1 Markov random field-based and wavelet-based estimators
Détails
ID Serval
serval:BIB_FCF11BBA0CD9
Type
Partie de livre
Sous-type
Chapitre: chapitre ou section
Collection
Publications
Institution
Titre
A comparison between L1 Markov random field-based and wavelet-based estimators
Titre du livre
Statistical Data Analysis Based on the L1-Norm and Related Methods
Editeur
Birkhäuser Verlag
ISBN
978-3-0348-9472-2
Statut éditorial
Publié
Date de publication
2002
Editeur⸱rice scientifique
Dodge Y.
Série
Statistics for Industry and Technology
Numéro de chapitre
VI
Pages
395-403
Langue
anglais
Résumé
We consider the problem of denoising a one-dimensional signal modeled as the realization of a Markov random field (MRF) by maximizing its posterior distribution. We study the maximum a posteriori (MAP) estimate corresponding to the Laplacian (ℓ1) MRF prior to avoid oversmoothing regions with large intensity gradient. Although the MAP estimate is unique, the non-differentiability of the posterior distribution makes it difficult to find, so we first derive and prove convergence of a relaxation algorithm to find the exact MAP estimate. We then investigate the finite sample property of the MAP MRF-ℓ1 and -ℓ2 estimates on a Gaussian simulation. Finally we apply the estimator to detect the trend on the extreme value distribution of a financial time series.
Création de la notice
23/08/2011 8:57
Dernière modification de la notice
20/08/2019 16:27