Regional cerebral blood flow during volitional expiration in man: a comparison with volitional inspiration.


ID Serval
Article: article d'un périodique ou d'un magazine.
Regional cerebral blood flow during volitional expiration in man: a comparison with volitional inspiration.
Journal of Physiology
Ramsay S.C., Adams L., Murphy K., Corfield D.R., Grootoonk S., Bailey D.L., Frackowiak R.S., Guz A.
0022-3751 (Print)
Statut éditorial
Date de publication
Publication types: Comparative Study ; Journal Article ; Research Support, Non-U.S. Gov'tPublication Status: ppublish
1. Positron emission tomographic (PET) imaging of regional cerebral blood flow (rCBF), using a new 3-dimensional technique of data collection, was used to identify areas of neuronal activation associated with volitional inspiration and separately with volitional expiration in five normal male subjects. A comparison of the activated areas was also undertaken to isolate regions specific for one or other active task. 2. Scans were performed during intravenous infusion of H2(15)O under conditions of (a) volitional inspiration with passive expiration, (b) passive inspiration with volitional expiration and (c) passive inspiration with passive expiration. Four measurements in these three conditions were performed in each subject. Breathing pattern was well matched between conditions. 3. Regional increases in brain blood flow, due to increased neural activity associated with either active inspiration or active expiration, were derived using a pixel by pixel comparison of images obtained during the volitional and passive ventilation phases. Data were pooled from all runs in all subjects and were then processed to detect statistically significant (P < 0.05) increases in rCBF comparing active inspiration with passive inspiration and active expiration with passive expiration. 4. During active inspiration significant increases in rCBF were found bilaterally in the primary motor cortex dorsally just lateral to the vertex, in the supplementary motor area, in the right lateral pre-motor cortex and in the left ventrolateral thalamus. 5. In active expiration significant increases in rCBF were found in the right and left primary motor cortices dorsally just lateral to the vertex, the right and left primary motor cortices more ventrolaterally, the supplementary motor area, the right lateral pre-motor cortex, the ventrolateral thalamus bilaterally, and the cerebellum. 6. Using this modified and more sensitive PET technique, these findings essentially replicate those for volitional inspiration obtained in a previous study. For volitional expiration the areas activated are more extensive, but overlap with those involved in volitional inspiration. 7. The technique used has been successful in demonstrating the regions of the brain involved in the generation of volitional breathing, and probably in the volitional modulation of automatic breathing patterns such as would be required for the production of speech.
Abdominal Muscles/physiology, Adult, Brain/radionuclide imaging, Cerebrovascular Circulation/physiology, Electromyography, Humans, Inhalation/physiology, Male, Middle Aged, Motor Cortex/physiology, Neurons/physiology, Respiration/physiology, Thalamus/physiology, Tomography, Emission-Computed
Web of science
Création de la notice
25/09/2011 16:45
Dernière modification de la notice
20/08/2019 17:27
Données d'usage