Intelligence artificielle en médecine interne : développement d’un modèle prédictif des durées de séjour [Artificial Intelligence in internal medicine : development of a model predicting length of stay for non-elective admissions]
Détails
Télécharger: RMS_760_2042.pdf (1688.93 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY-NC-ND 4.0
Etat: Public
Version: Final published version
Licence: CC BY-NC-ND 4.0
ID Serval
serval:BIB_FC5BDD829CD3
Type
Article: article d'un périodique ou d'un magazine.
Sous-type
Synthèse (review): revue aussi complète que possible des connaissances sur un sujet, rédigée à partir de l'analyse exhaustive des travaux publiés.
Collection
Publications
Institution
Titre
Intelligence artificielle en médecine interne : développement d’un modèle prédictif des durées de séjour [Artificial Intelligence in internal medicine : development of a model predicting length of stay for non-elective admissions]
Périodique
Revue medicale suisse
ISSN
1660-9379 (Print)
ISSN-L
1660-9379
Statut éditorial
Publié
Date de publication
24/11/2021
Peer-reviewed
Oui
Volume
17
Numéro
760
Pages
2042-2048
Langue
français
Notes
Publication types: Journal Article
Publication Status: ppublish
Publication Status: ppublish
Résumé
Efficient management of hospitalized patients requires carefully planning each stay by taking into account patients' pathologies and hospital constraints. Therefore, the ability to accurately estimate length of stays allows for better interprofessional tasks coordination, improved patient flow management, and anticipated discharge preparation. This article presents how we built and evaluated a predictive model of length of stay based on clinical data available upon admission to a division of internal medicine. We show that Machine Learning-based approaches can predict lengths of stay with a similar level of accuracy as field experts.
Mots-clé
Artificial Intelligence, Hospitalization, Humans, Internal Medicine, Length of Stay, Patient Discharge
Pubmed
Open Access
Oui
Création de la notice
03/12/2021 11:21
Dernière modification de la notice
06/05/2023 5:49