Direct mapping of 19F in 19FDG-6P in brain tissue at subcellular resolution using soft X-ray fluorescence

Détails

Ressource 1Télécharger: BIB_FAA810E74311.P001.pdf (609.53 [Ko])
Etat: Public
Version: de l'auteur⸱e
ID Serval
serval:BIB_FAA810E74311
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Collection
Publications
Institution
Titre
Direct mapping of 19F in 19FDG-6P in brain tissue at subcellular resolution using soft X-ray fluorescence
Titre de la conférence
XRM2012, 11th International Conference on X-ray Microscopy
Auteur⸱e⸱s
Poitry-Yamate C., Gianoncelli A., Kourousias G., Kaulich B., Lepore M., Gruetter R., Kiskinova M.
Adresse
Shanghai, China, August 5-10, 2012
ISBN
1742-6596 (Electronic)
Statut éditorial
Publié
Date de publication
2013
Volume
463
Série
Journal of Physics: Conference Series
Pages
1-7
Langue
anglais
Résumé
Low energy x-ray fluorescence (LEXRF) detection was optimized for imaging cerebral glucose metabolism by mapping the fluorine LEXRF signal of 19 F in 19 FDG, trapped as intracellular 19 F-deoxyglucose-6-phosphate ( 19 FDG-6P) at 1μm spatial resolution from 3μm thick brain slices. 19 FDG metabolism was evaluated in brain structures closely resembling the general cerebral cytoarchitecture following formalin fixation of brain slices and their inclusion in an epon matrix. 2-dimensional distribution maps of 19 FDG-6P were placed in a cytoarchitectural and morphological context by simultaneous LEXRF mapping of N and O, and scanning transmission x-ray (STXM) imaging. A disproportionately high uptake and metabolism of glucose was found in neuropil relative to intracellular domains of the cell body of hypothalamic neurons, showing directly that neurons, like glial cells, also metabolize glucose. As 19 F-deoxyglucose-6P is structurally identical to 18 F-deoxyglucose-6P, LEXRF of subcellular 19 F provides a link to in vivo 18 FDG PET, forming a novel basis for understanding the physiological mechanisms underlying the 18 FDG PET image, and the contribution of neurons and glia to the PET signal.
Open Access
Oui
Création de la notice
29/10/2013 7:28
Dernière modification de la notice
20/08/2019 16:26
Données d'usage