The role of single fraction Gamma Knife radiosurgery for intraventricular central neurocytomas and the utility of F-18 fluroethyltyrosine: two case reports.
Détails
Télécharger: 2022_Dedeciusova_Neurocytoma.pdf (1365.85 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_F60A7D1361A1
Type
Article: article d'un périodique ou d'un magazine.
Sous-type
Etude de cas (case report): rapporte une observation et la commente brièvement.
Collection
Publications
Institution
Titre
The role of single fraction Gamma Knife radiosurgery for intraventricular central neurocytomas and the utility of F-18 fluroethyltyrosine: two case reports.
Périodique
Journal of medical case reports
ISSN
1752-1947 (Electronic)
ISSN-L
1752-1947
Statut éditorial
Publié
Date de publication
28/11/2022
Peer-reviewed
Oui
Volume
16
Numéro
1
Pages
441
Langue
anglais
Notes
Publication types: Case Reports ; Journal Article
Publication Status: epublish
Publication Status: epublish
Résumé
Primary treatment of central neurocytomas is surgical resection. Gamma Knife surgery is considered a valuable therapeutic option in case of residual (after subtotal resection) or recurrent central neurocytomas. Here, we focused on the role of F-18 fluroethyltyrosine as a marker to document tumor progression after initial resection, in the context of an atypical central neurocytoma. We also describe MIB-1's role in evaluating therapeutic decision-making.
Two patients with central neurocytomas were treated by Gamma Knife surgery in our center. The first case (31-year-old Caucasian male) had atypical central neurocytoma. Four and a half years after surgical resection, magnetic resonance imaging and F-18 fluroethyltyrosine documented clear progression of residual central neurocytoma, further treated by Gamma Knife surgery (18 Gy at 50%, target volume 1.4 cc, and prescription isodose volume 1.8 cc). The initial post-Gamma Knife surgery clinical course was uneventful, with progressive volumetric reduction of residual tumor up to 4.5 years, when out-of-field recurrence was suspected and confirmed by local F-18 fluroethyltyrosine hyperactivity. Second single-fraction Gamma Knife surgery was performed (18 Gy at 50%, target volume 0.49 cc, prescription isodose volume 0.72 cc). The second (32-year-old Caucasian female) had previous subtotal resection and typical central neurocytoma. Seven years later, she had residual tumor progression. Single-fraction Gamma Knife surgery was performed (16 Gy at 50% isodose line, target volume 1.7 cc, and prescription isodose volume 2.5 cc). Last follow-up showed tumor volume reduction. Follow-up magnetic resonance imaging showed important volumetric reduction of both treated lesions.
In atypical central neurocytomas, F-18 fluroethyltyrosine could be used as postoperative examination to detect small tumor remnants, follow-up evaluation following the Gamma Knife surgery or, in select cases, following surgical resection. The role of MIB-1 is important in therapeutic decision-making, as tumors with MIB-1 exceeding 2% are characterized by more aggressive clinical course. Single-fraction Gamma Knife surgery remains a valuable therapeutic option for postoperative residual atypical central neurocytomas and central neurocytoma recurrences.
Two patients with central neurocytomas were treated by Gamma Knife surgery in our center. The first case (31-year-old Caucasian male) had atypical central neurocytoma. Four and a half years after surgical resection, magnetic resonance imaging and F-18 fluroethyltyrosine documented clear progression of residual central neurocytoma, further treated by Gamma Knife surgery (18 Gy at 50%, target volume 1.4 cc, and prescription isodose volume 1.8 cc). The initial post-Gamma Knife surgery clinical course was uneventful, with progressive volumetric reduction of residual tumor up to 4.5 years, when out-of-field recurrence was suspected and confirmed by local F-18 fluroethyltyrosine hyperactivity. Second single-fraction Gamma Knife surgery was performed (18 Gy at 50%, target volume 0.49 cc, prescription isodose volume 0.72 cc). The second (32-year-old Caucasian female) had previous subtotal resection and typical central neurocytoma. Seven years later, she had residual tumor progression. Single-fraction Gamma Knife surgery was performed (16 Gy at 50% isodose line, target volume 1.7 cc, and prescription isodose volume 2.5 cc). Last follow-up showed tumor volume reduction. Follow-up magnetic resonance imaging showed important volumetric reduction of both treated lesions.
In atypical central neurocytomas, F-18 fluroethyltyrosine could be used as postoperative examination to detect small tumor remnants, follow-up evaluation following the Gamma Knife surgery or, in select cases, following surgical resection. The role of MIB-1 is important in therapeutic decision-making, as tumors with MIB-1 exceeding 2% are characterized by more aggressive clinical course. Single-fraction Gamma Knife surgery remains a valuable therapeutic option for postoperative residual atypical central neurocytomas and central neurocytoma recurrences.
Mots-clé
Humans, Female, Male, Adult, Neurocytoma/diagnostic imaging, Neurocytoma/radiotherapy, Neurocytoma/surgery, Radiosurgery, Neoplasm, Residual, Disease Progression, Plastic Surgery Procedures, Central neurocytoma, F-18 FET, Gamma Knife
Pubmed
Web of science
Open Access
Oui
Création de la notice
05/12/2022 15:29
Dernière modification de la notice
09/09/2023 5:51