Hypoxia and intra-complex genetic suppressors rescue complex I mutants by a shared mechanism.

Détails

Ressource 1Télécharger: 38215760.pdf (9165.84 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_F54B92E382BB
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Hypoxia and intra-complex genetic suppressors rescue complex I mutants by a shared mechanism.
Périodique
Cell
Auteur⸱e⸱s
Meisel J.D., Miranda M., Skinner O.S., Wiesenthal P.P., Wellner S.M., Jourdain A.A., Ruvkun G., Mootha V.K.
ISSN
1097-4172 (Electronic)
ISSN-L
0092-8674
Statut éditorial
Publié
Date de publication
01/02/2024
Peer-reviewed
Oui
Volume
187
Numéro
3
Pages
659-675.e18
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: ppublish
Résumé
The electron transport chain (ETC) of mitochondria, bacteria, and archaea couples electron flow to proton pumping and is adapted to diverse oxygen environments. Remarkably, in mice, neurological disease due to ETC complex I dysfunction is rescued by hypoxia through unknown mechanisms. Here, we show that hypoxia rescue and hyperoxia sensitivity of complex I deficiency are evolutionarily conserved to C. elegans and are specific to mutants that compromise the electron-conducting matrix arm. We show that hypoxia rescue does not involve the hypoxia-inducible factor pathway or attenuation of reactive oxygen species. To discover the mechanism, we use C. elegans genetic screens to identify suppressor mutations in the complex I accessory subunit NDUFA6/nuo-3 that phenocopy hypoxia rescue. We show that NDUFA6/nuo-3(G60D) or hypoxia directly restores complex I forward activity, with downstream rescue of ETC flux and, in some cases, complex I levels. Additional screens identify residues within the ubiquinone binding pocket as being required for the rescue by NDUFA6/nuo-3(G60D) or hypoxia. This reveals oxygen-sensitive coupling between an accessory subunit and the quinone binding pocket of complex I that can restore forward activity in the same manner as hypoxia.
Mots-clé
Animals, Mice, Caenorhabditis elegans/genetics, Caenorhabditis elegans/metabolism, Electron Transport Complex I/metabolism, Hypoxia/genetics, Hypoxia/metabolism, Mitochondria/genetics, Mitochondria/metabolism, Oxygen/metabolism, C. elegans, NADH:ubiquinone oxidoreductase, NDUFA6, NDUFS4, complex I, electron transport chain, hyperoxia, hypoxia, mitochondria, oxygen
Pubmed
Open Access
Oui
Création de la notice
25/01/2024 14:56
Dernière modification de la notice
13/02/2024 7:39
Données d'usage