Automatic Decision-Oriented Mapping of Pollution Data

Détails

ID Serval
serval:BIB_F4AEA8C1CEF6
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Collection
Publications
Institution
Titre
Automatic Decision-Oriented Mapping of Pollution Data
Titre de la conférence
Computational Science and Its Applications: International conference, Perugia, Italy, Proceedings, Part I
Auteur⸱e⸱s
Kanevski M., Timonin V., Pozdnoukhov A.
Editeur
Springer Berlin Heidelberg
ISBN
978-3-540-69839-5
ISSN-L
0302-9743
Statut éditorial
Publié
Date de publication
2008
Peer-reviewed
Oui
Editeur⸱rice scientifique
Gervasi O., Murgante B., Laganà A., Taniar D., Mun Y., Gavrilova M.
Volume
5072
Pages
678-691
Langue
anglais
Notes
Kanevski2008c
Résumé
The paper deals with the development and application of the methodology
for automatic mapping of pollution/contamination data. General Regression
Neural Network (GRNN) is considered in detail and is proposed as
an efficient tool to solve this problem. The automatic tuning of
isotropic and an anisotropic GRNN model using cross-validation procedure
is presented. Results are compared with k-nearest-neighbours interpolation
algorithm using independent validation data set. Quality of mapping
is controlled by the analysis of raw data and the residuals using
variography. Maps of probabilities of exceeding a given decision
level and ?thick? isoline visualization of the uncertainties are
presented as examples of decision-oriented mapping. Real case study
is based on mapping of radioactively contaminated territories.
Mots-clé
automatic cartography, General Regression Neural Networks, decision-oriented, mapping, uncertainty estimation
Création de la notice
25/11/2013 17:18
Dernière modification de la notice
20/08/2019 16:21
Données d'usage