Epidote in hydrous mafic magmas : near solidus phase relations in the lower crust

Détails

Ressource 1Télécharger: BIB_F2F9D2376682.P001.pdf (28691.27 [Ko])
Etat: Supprimée
Version: Après imprimatur
ID Serval
serval:BIB_F2F9D2376682
Type
Thèse: thèse de doctorat.
Collection
Publications
Institution
Titre
Epidote in hydrous mafic magmas : near solidus phase relations in the lower crust
Auteur⸱e⸱s
Dessimoz M.
Directeur⸱rice⸱s
Müntener O.
Détails de l'institution
Université de Lausanne, Faculté des géosciences et de l'environnement
Adresse
Université de Lausanne UNIL - Sorge Amphipôle - bureau 314 CH-1015 Lausanne SUISSE
Statut éditorial
Acceptée
Date de publication
2011
Langue
anglais
Résumé
Crystallisation of hydrous mafic magmas at high pressure is a subject of numerous petrologic and experimental studies since the last century and is mainly related to the process of continental crust formation and the possible link between mantle derived melts and low pressure granitoids. Albeit the sequence of crystallization is well constrained by experimental studies, the origin of exposed lower crustal rocks exposed on the earth surface is controversial. Ones line of argument is favouring high pressure crystallization of dry or wet mafic magmas, whereas others invoke partial melting of pre-existing crust. Therefore studies involving field, textural and chemical observations of exposed lower crust such as in Kohistan (Pakistan) or Talkeetna (Alaska) are crucial to understand the continental crust formation processes via arc magmatism. Epidote-bearing gabbros are very sparse and always associated with the deep part of continental crust (>30 km) as in the Kohistan Arc Complex (Pakistan) or in the Chelan Complex (western U.S.). Magmatic epidote is restricted to a small temperature interval above the water-saturated solidus of MORB and represent the last crystallizing liquids in lower crustal regions. However, epidote and melt stability at lower crustal pressures are not clearly established.¦The Chelan complex (western U.S.) at the base of the Cascadian Arc is composed mainly by peraluminous tonalité associated with gabbroic and ultramafic rocks and was traditionally interpreted as a migmatitic terrain. However field, chemical and mineralogical observations rather suggest a magmatic origin and point to a protracted crystallization at intermediate to high pressure ~ 1.0 GPa dominated by amphibole fractionation and followed by isobaric cooling down to 650°C. Crystal fractionation modelling using whole rock composition and field constraints is able to generate peraluminous tonalité. The modelled crystallisation sequence and the volume proportions are in agreement with experimental studies performed at these pressures. The Chelan complex was thus not formed during a partial melting event, but represent the sequence of crystallisation occurring at the base of the crust. Massive fractionation of hornblende is able to generate peraluminous tonalité without significant assimilation of crustal rock.¦Similarly to the Chelan complex, the base of the Kohistan arc is composed of cumulates derived by high pressure crystallization of hydrous magma. In garnet gabbros, epidote occurs as magmatic phase, crystallising from hydrous interstitial melt trapped between grain boundaries at lower crustal pressures (Ρ ~ 1.2 GPa) for temperature of (650-700 °C). Trace and REE signature in epidote indicate that epidote was formed through peritectic reaction involving garnet, clinopyroxene and plagioclase. At the beginning of the crystallisation epidote signature is dominated by REE content in the melt, whereas at the end the signature is dominated by reacting phases. Melt in equilibrium with epidote inferred from the partition coefficients available is similar to intrusive tonalité up the section indicating that hydrous melt was extracted from the garnet gabbros. In some gabbros epidote shows single homogeneous compositions, while in others coexisting epidote have different compositions indicating the presence of solvi along the Al-Fe3+ join. The overgowths are only observed in presence of paragonite in the assemblage, suggesting high water content. At high water content, the hydrous solidus is shift to lower temperature and probably intersects the solvi observed along the Al-Fe3+ join. Therefore, several compositions of epidote is stable at high water content.¦-¦La composition chimique de la croûte continentale est considérée comme similaire à celle du magmatisme calco-alcalin de marge continentale active (enrichissement en éléments mobiles dans les fluides, anomalies négatives en Nb, Ta et éléments à haut potentiel électronique, etc...). Cependant la nature andésitique de la croûte continentale (Si02 > 60 wt%), résultant des nombreuses intrusions de granitoïdes dans la croûte supérieure, est sujette à polémique et le lien entre les magmas dérivés du manteau et les roches évoluées de faible profondeur n'est pas clairement établi (fusion partielle de croûte basaltique, cristallisation fractionnée à haute pression, etc...).¦Les affleurements de croûte profonde sont rares mais précieux, car ils permettent d'observer les phénomènes se passant à grande profondeur. Le complexe de Chelan (Washington Cascades) en est un exemple. Formé à environ 30 km de profondeur, il est composé de roches gabbroïques et ultramafiques, ainsi que de tonalités, qui furent souvent interprétés comme le produit de la fusion partielle de la croûte. Cependant, les relations de terrain, la chimie des éléments majeurs et des éléments traces sont cohérentes avec l'évolution d'un complexe magmatique mafique dans la croûte profonde ou moyenne ( 1.0 GPa), dominée par le fractionnement de l'amphibole. Après son emplacement, le complexe a subi un refroidissement isobare jusqu'à des températures de l'ordre de 650 °C, déduit de la composition chimique des minéraux. Un bilan de masse contraint pax les observations de terrain permet de calculer la séquence et les volumes de fractionnement. Les faciès évolués légèrement hyperalumineux observés sur le terrain peuvent être générés par la cristallisation de 3 % de websterite à olivine, 12 % d'hornblendite à pyroxène 33 % d'hornblendite, 19 % de gabbros, 15 % de diorite et 2 % de tonalité. Nous montrons ainsi qu'une série de fractionnement contrôlée par l'amphibole permet de générer des tonalités sans assimilation de matériel crustal et l'exemple de Chelan illustre la viabilité de ce processus dans la formation de croûte continentale.¦Les réactions proches du solidus saturé en H20 dans les systèmes basaltiques à des pressions élevées restent énigmatiques. Diverses expériences tendent à montrer que l'épidote est stable dans ces conditions, mais rarement observée (décrite ?) comme phase primaire dans les systèmes naturels. Les épidotes trouvées dans les gabbros de Jijal (nord-Pakistan) montrent des textures de type .magmatique telles qu'observées dans les roches évoluées. Le contenu en terres rares de ces épidotes est très variable allant de signatures enrichies en terres rares légères impliquant la présence de liquide interstitiel à des signatures complètement déprimées en ces mêmes éléments, évoquant une cristallisation en coexistence avec du grenat. Ces diverses signatures reflètent un chemin de cristallisation en présence de liquide interstitiel et enregistrent des réactions péritectiques impliquant grenat, clinopyroxene et plagioclase à des pressions de ~ 1.2 GPa pour des températures de 650-700 °C. Cependant dans quelques échantillons deux ou trois compositions d'épidotes coexistent démontrant la présence de lacunes d'immiscibilité le long de la solution solide épidote-clinozoïsite. La forte teneur en H20 du liquide magmatique est certainement à l'origine de la coexistence de deux compositions distinctes.
Création de la notice
13/10/2011 13:18
Dernière modification de la notice
20/08/2019 16:20
Données d'usage